
  

Summary. Computational geometry problems are often encountered in programming contests. In this 

article we examine some problems that, traditionally, are solved using vectors. Another approach to 

finding solutions is proposed, less commonly found in the specialized literature. 

Keywords: competitive problems, computational geometry, programming, original solutions. 

 

O METODĂ NON-STANDARD DE SOLUȚIONARE 

A PROBLEMELOR DE GEOMETRIE COMPUTAȚIONALĂ 

Rezumat. Problemele de geometrie computațională se întâlnesc deseori în concursurile de programare. În 

acest articol sunt examinate câteva probleme care, tradițional, se rezolvă utilizând vectorii. Se propune o 

altă abordare de căutare a soluțiilor, mai puțin întâlnită în literatura de specialitate. 

Cuvinte cheie: probleme competitive, geometrie computațională, programare, soluții originale. 

 

Introduction 

Computational geometry problems are often encountered in programming contests 

at different levels. A series of notions and formulas from analytical geometry are used to 

solve them. 

In the specialty literature there are several standard problems with their solutions: 

the problem of convex windings; the problem of triangularizations; proximities and 

belongings etc. [1, 2]. 

It is obvious that knowledge of analytical geometry (Cartesian coordinates, polar 

coordinates, the equation of the straight line, coordinate transformations, geometric 

transformations, vectors, relative positions, intersections, etc.) is required to solve them. 

Problems related to the positions of the point relative to another geometric figure 

are solved starting from the notion of the position of the point relative to a vector, which, 

for some students, is a difficult subject to understand. 

In the following, we will try to describe how to solve some problems of 

computational geometry related to the positions of the point against another geometric 

figure without using the notion of vector. 

 

Problem 1. Point and polygon. The natural number n, n < 100, the Cartesian 

coordinates of point M and the Cartesian coordinates of n points A1, A2, … An, 

representing the vertices of the convex polygon A1A2 … An, are given. Determine an 

algorithm that verifies whether or not the point M belongs to the mentioned polygon. 

 

CZU: 004.02       DOI: 10.36120/2587-3636.v18i4.96-103
 A NON-STANDARD METHOD OF SOLVING 

Acta et Commentationes, Sciences of Education, nr. 4 (18), 2019                                     ISSN 1857-0623
p. 96-103                                                                                                                          E-ISSN 2587-3636

COMPUTATIONAL GEOMETRY PROBLEMS 

Andrei BRAICOV, associate professor, PhD 

Tiraspol State University 

96



  

Solution: 

For the point M to belong to the polygon A1, A2, … An it must: 

- coincide with one of the points of the polygon or; 

- belong to one of the segments [Ai, Ai + 1], where i = 1, 2, … n and An + 1 = A1. 

The point M belongs to the segment [Ai, Ai + 1] if d(Ai, M) + d(M, Ai + 1) = d(Ai, Ai + 1). The 

second case also includes the first. 

The complexity of the algorithm is O(n). 

 

Problem 2. Convex polygon. The natural number n, n < 100, and the Cartesian 

coordinates of n points A1, A2, … An, representing the vertices of the polygon A1A2 … An, 

are given. Write an algorithm that checks whether or not the mentioned polygon is a 

convex polygon. 

Solution: 

It is known that the polygon A1A2 … An is convex only if all its vertices (except for 

the points Ai  and Ai + 1) belong to the same semiplane determined by any of the line        

Ai Ai + 1, where i = 1, 2, … n – 1. 

It can be shown that the requirement in the definition can be "simplified" as 

follows: 

Definition 1. Polygon A1A2 … An is a convex polygon only if for any two vertices 

Aj, Aj + 1, points Aj – 1 and Aj + 2  will belong to the same semiplane determined by the 

segment Aj Aj + 1, where j = 1, 2, …, n, and A0 = An, An + 1 = A1, An + 2 = A2. 

In solving the problem we will use the notion of deviation of a point from a straight 

line, a notion less commonly found in the specialized literature. 

Definition 2. Let d be a line with the equation ax + by + c = 0 and the point       

M(m1, m2). The number am1 + bm2+ c is called the deviation of the point M from the line 

d, which we note Ab (M, d). 

The following Lemma can be easily demonstrated. 

Lemma. Points M and N belong to the same semiplane determined by line d if and only if 

Ab(M, d) and Ab(N, d) have the same sign. (1) 

The relationship (1) can be written as follows: 

Ab(M, d) × Ab(N, d) > 0. (2) 

Therefore, taking into account definition 2 and relation (2), we conclude that for the 

mentioned polygon to be convex the condition must be met: 

Ab(Aj – 1, Aj Aj +1) × Ab(Aj + 2, Aj Aj +1) > 0,  (3) 

for any  j = 1, 2, …, n, where A0 = An, An + 1 = A1 and An + 2 = A2. 

If we define the type  

struct t_point { 

    double x, y; 

} TPoint; 

Andrei Braicov

97



  

then the function for determining the deviation of the point X from the line side YZ can 

be defined as follows: 

double ab(TPoint X, TPoint Y, TPoint Z) 

{ 

 return (Y.y - Z.y) * X.x + (Z.x - Y.x) * X.y + Y.x * Z.y - Y.y * Z.x; 

} 

Thus, the complexity of the algorithm was reduced to O(n). 

 

Problem 3. The interior of the polygon [3]. The natural number n, n < 100, the 

Cartesian coordinates of point M and the Cartesian coordinates of n points A1, A2, … An, 

representing the vertices of the convex polygon A1A2 … An, are given. Write an algorithm 

that determines whether or not the point M belongs to the interior of mentioned polygon. 

Solution: 

We will create the solution of the problem using the same notion as in the case of 

problem 2, i.e. the deviation of a point from a straight line. 

In this case must be verified the relationship: 

Ab(M, Ai Ai +1) × Ab(Ai + 2, Ai Ai +1) > 0,  

for any i = 1, 2, …, n, where An + 1 = A1 and An + 2 = A2. 

In this case the complexity of the algorithm is also O(n). 

#include <iostream> 

using namespace std; 

typedef struct t_point { 

    double x, y; 

} TPoint; 

//Deviation of a point X from a straight line YZ 

double ab(TPoint X, TPoint Y, TPoint Z) 

{ 

 return (Y.y - Z.y) * X.x + (Z.x - Y.x) * X.y + Y.x * Z.y - Y.y * Z.x; 

} 

int main() 

{ 

    int n; 

    TPoint M; 

    TPoint *A; 

    bool f; 

    cout << "Write the number of peaks: "; 

    cin >> n; 

 

    A = new TPoint[n + 2]; 

    for (int i = 0; i < n; ++i) { 

        cout << "Coord X: "; 

        cin  >> A[i].x; 

        cout << "Coord Y: "; 

A non-standard method of solving computational geometry problems

98



  

        cin  >> A[i].y; 

    } 

    cout << "Write the coordinates of the point M: "; 

    cin  >> M.x >> M.y; 

    f = true; 

    // We add the first 2 vertices to the vector 

    A[n].x = A[0].x; 

    A[n].y = A[0].y; 

    A[n + 1].x = A[1].x; 

    A[n + 1].y = A[1].y; 

    for (int i = 0; i < n; ++i) { 

        if (ab(M, A[i], A[i + 1]) * ab(A[i+2], A[i], A[i+1]) <= 0) { 

            f = false; 

        } 

    } 

    if (f) { 

        cout << "Belongs"; 

    } else { 

        cout << "It does not belong"; 

    } 

    return 0; 

} 

 

 

 

A (– 4; 2) 

B (2; 4) 

C (6; 2) 

D (6; – 4) 

E (2; – 8) 

F (– 8; – 4) 

Andrei Braicov

99



  

 

 

 

 

Problem 4. The outside of the polygon. The natural n, n < 100, the Cartesian 

coordinates of point M and the Cartesian coordinates of n points A1, A2, … An, 

representing the vertices of the convex polygon A1A2 … An, are given. Write an algorithm 

that determines whether or not the point M belongs to the outside of the mentioned 

polygon. 

Solution: 

The search for the solution of this problem includes the methods applied to solve 

problems 1 and 3. 

Thus, we will verify that at least one of the two relationships is respected: 

1) there is at least one i, where i = 1, 2, …, n, and An + 1 = A1,  An + 2 = A2, such that: 

Ab(M, Ai Ai +1) × Ab(Ai + 2, Ai Ai +1) < 0; 

A non-standard method of solving computational geometry problems

100



  

2) there is at least one i, where i = 1, 2, …, n, An + 1 = A1 and An + 2 = A2, such that: 

Ab(M, Ai Ai +1) × Ab(Ai + 2, Ai Ai +1) = 0 and d(Ai, M) + d(M, Ai + 1) > d(Ai, Ai + 1). 

In this case the complexity of the algorithm is also O(n). 

 

Problem 5. The area of the polygon. We give the natural number n, n < 100, the 

Cartesian coordinates of n points A1, A2, … An, representing the vertices of a simple 

polygon (the edges of the polygon do not intersect). Write an algorithm that calculates 

the area of the polygon A1A2 … An. 

Solution: 

a) If A1A2 … An  is a convex polygon (this condition can be verified, see the solution of 

Problem 2), then the problem will be solved by triangulating the polygon ([1, page 29]), 

then summing the areas of all the obtained triangles.  

b) The problem is more difficult if the polygon A1A2 … An is concave. 

In this case it results that there is at least one i, where i = 1, 2, …, n, A0 = An, An + 1 = A1 

and An + 2 = A2, that Ab(Ai – 1, Ai Ai +1) × Ab(Ai + 2, Ai Ai +1) < 0. (Figure 1). 

 

Figure 1. The case of the concave polygon 

 

Figure 1 suggests the following algorithm: 

1. "Exclude" the vertex Ai + 1. The obtained polygon will have the area greater than 

the polygon A1A2 … An, the difference being equal to the area of the triangle Ai Ai +1 Ai + 2. 

We store the area of this triangle in a vector S. 

2. We use a "queue" in which we store all the points of the given polygon except 

the "excluded" vertices. Let B1B2 … Bm, where m ≤ n, be the obtained polygon (extracted 

from "queue"). 

3. The area of the polygon A1A2 … An is equal to the area of the polygon B1B2 … Bm 

minus the sum of the elements of the vector S. The polygon B1B2 … Bm is convex, so we 

reduced the problem solving to the case a). 

Andrei Braicov

101



  

This algorithm is not valid for any polygon! 

 

Figure 2. The case 2 of the concave polygon 

 

From figure 2 we notice that if we "exclude" the peak Ai + 1, then the obtained 

polygon is not simple, so the described algorithm is not valid. 

It can be shown (see, for example, [4, page 258]) that the most "convenient" 

algorithm for calculating the area of polygon A1A2 … An is the calculation of the 

expression value: 

, 

where An + 1 = A1, A0 = An, and xi and yi – the coordinates of the point Ai. 

 

Problem 6. The intersection of two segments. The Cartesian coordinates of 4 points P1, 

P2, P3, P4 are given. Determine an algorithm that checks if the segments [P1P2] and 

[P3P4] intersect. 

Solution: 

In [4, page 254] the solution of this problem is presented in two stages: 

1. Rapid rejection test. If the rectangle with the diagonal [P1P2] does not intersect 

with the rectangle with the diagonal [P3P4], then neither the segments [P1P2] and [P3P4] 

intersect. 

2. Checking of intersection. If the rejection test is "not passed", then for segments 

[P1P2] and [P3P4] to intersect, each of the two segments must intersect the line containing 

the other segment. 

Another way to solve this problem: 

1. Rapid rejection test. If the lines P1P2 and P3P4 do not intersect, then neither the 

segments [P1P2] and [P3P4] intersect. 

2. Let the rejection test be "not passed" and M = P1P2 ∩ P3P4. The segments [P1P2] 

and [P3P4] intersect if and only if point M belongs to the segment [P1P2], that is, only if 

the relation (M, P1) + d(M, P2) = d(P1 P2) occurs. 

 

A non-standard method of solving computational geometry problems

102



  

Conclusions 

Computational geometry highlights the applicative role of mathematics. In the 

context of competitive informatics, it strengthens the motivation and the need for a deep 

study of analytical geometry (in plan and in space). 

Obviously, the skills of solving the problems of computational geometry increase 

the chances of success in the contests and the programming Olympics. 

The didactic approaches to study this field must be folded on the degree of 

understanding of the new concepts by the students. If the use of vectors has difficulties, 

at the first stage problems should be analyzed for which solutions can be found without 

vector calculations. Subsequently, one can return to vectors, which represent an efficient 

tool for solving problems with high degree of difficulty. 

 

Bibliography 

1. Corlat S. Metodologia rezolvării problemelor de geometrie computaţională. 

Chișinău: Tipografia UST, 2013. 

2. Ласло М. Вычислительная геометрия и компьютерная графика на С++. 

Москва: Бином, 1997. 

3. Braicov A. Informatică. Turbo Pascal. Culegere de probleme. Editura Prut 

Internațional, 2007. 232 p. ISBN 9975 – 69-788-7. 

4. Cerchez E., Șerban M. Programarea în limbajul C/C++ pentru liceu (volumul III). 

Iași: Editura Polirom, 2006. 296 p. 

 

Andrei Braicov

103


