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Abstract. The mathematical model of the immune response to infectious diseases with
the influences of environmental factors is investigated. The conditions for the existence
and uniqueness of the solution to the mathematical model for 𝑡 > 0 have been established.
Stationary solutions have been identified, along with the conditions for their existence
and asymptotic stability. The results are illustrated using a model example.
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Modelarea matematică a răspunsului imun la bolile infecţioase
sub influenţa factorilor de mediu

Rezumat. Modelul matematic al răspunsului imun la bolile infecţioase sub influenţa
factorilor de mediu este investigat. Au fost stabilite condiţiile de existenţă şi unicitate
a soluţiei modelului matematic pentru 𝑡 > 0. Soluţiile staţionare au fost identificate
ı̂mpreună cu condiţiile de existenţă şi stabilitate asimptotică. Rezultatele sunt prezentate
folosind un exemplu model.
Cuvinte-cheie: răspuns imun, boală infecţioasă, model matematic, soluţie staţionară,
stabilitatea soluţiilor, ecuaţii diferenţiale cu ı̂ntârziere, modelul Marchuk, model al siste-
mului imunitar.

1. Introduction

Numerous works, including those [1]-[4], [8], [9] and others, are devoted to the
mathematical modelling of the immune response. G.Bell proposed a predatory-prey
model in an immune response to infections by antigens (viruses, bacteria or foreign cells)
[1]. In 1980, G.I. Marchuk published a mathematical model that reflects the humoral
immune response of the human body and is described by a system of delay differential
equations [2]:
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𝑑𝑉

𝑑𝑡
= (𝛽 − 𝛾𝐹)𝑉,

𝑑𝐶

𝑑𝑡
= 𝛼𝜉 (𝑚)𝑉𝜏𝐹𝜏 − 𝜇𝑐 (𝐶 − 𝐶∗),

𝑑𝐹

𝑑𝑡
= 𝜌𝐶 − 𝜂𝛾𝐹𝑉 − 𝜇 𝑓 𝐹,

𝑑𝑚

𝑑𝑡
= 𝜎𝑉 − 𝜇𝑚𝑚,

(1)

where variables represent the core factors of the infectious process. The immune response
involves the production of specific objects (antibodies, 𝐹 (𝑡)), which are generated by a
cascade of plasma cells 𝐶 (𝑡). Antibodies are capable of neutralizing or destroying
foreign materials (antigens), the amount 𝑉 (𝑡) of which changes over time 𝑡 ≥ 𝑡0 = 0. The
models also include the relative mass of the affected target organ m(t), which serves as a
generalized measure of organ damage caused by the virus, and 𝜉 (𝑚) = 1 for 𝑚 ∈ [0, 𝑚∗]
and 𝜉 (𝑚) = (𝑚 − 1)/(𝑚∗ − 1) for 𝑚∗ < 𝑚 ≤ 1, having 𝑚∗ ∈ (0, 1) and considering for
𝑚 ∈ [0, 𝑚∗] the immune system functions normally; 𝑉𝜏 (𝑡) = 𝑉 (𝑡 − 𝜏), 𝐹𝜏 (𝑡) = 𝐹 (𝑡 − 𝜏).

The delay factor 𝜏 > 0 plays a crucial role in the model as it sets the time from the
moment of infection to the activation of immune response mechanisms. More complex
delay models have been developed for the immune response to hepatitis B and C, tuber-
culosis, and other diseases [2]-[6]. Various aspects of immune response dynamics have
been studied in the works of U. Forys and M. Bodnar [4].

The course of infectious diseases, such as hepatitis and acute respiratory diseases, is
influenced by factors such as air pollution, water contamination, industrial waste, noise
pollution, chemical pollution and other environmental pollutants. The model represented
in the current work and described subsequently takes into account an integral factor 𝐸 (𝑡),
which is the sum of 𝑚 factors 𝐸𝑖 (𝑡) and is represented as follows:

𝐸 (𝑡) = 𝑎1𝐸1(𝑡) + ... + 𝑎𝑚𝐸𝑚(𝑡),

where 𝑎𝑖 ≥ 0, 𝑎1 + ... + 𝑎𝑚 = 1.
Let us assume that the change of 𝐸 (𝑡) occurs according to the generalized Hutchinson

equation [5], [7], which has the following form:

𝑑𝐸 (𝑡)
𝑑𝑡

= 𝑟

(
1 −

(
𝐸 (𝑡 − Δ)

𝐸∗

)𝑛)
𝐸 (𝑡), 𝑡 > 0, (2)

where 𝑟 > 0 - coefficient of linear growth, 0 < Δ - the average time for the restoration
of ecological balance, amount of which is 𝐸∗ > 0. Using the parameter 𝑛 > 0, a more
accurate shape of the curve can be selected for a better representation of the system
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dynamics. This flexibility allows the modelling of specific scenarios or data, ensuring a
closer match to observed behavior in immune response or external factors dynamics (see
Fig.1).

Figure 1. The dynamics of the generalized Hutchinson model for
𝑛 = 1, 2, 3, 4, 5 and 𝑟 = 0.5,Δ = 1, 𝐸∗ = 0.25

The change over time of the factors 𝑉, 𝐸, 𝐹, 𝐶 and the measure 𝑚, 0 ≤ 𝑚(𝑡) ≤ 1 –
the extent of organ damage against which the antigen 𝑉 is directed – is proposed to be
described by a system of equations:

𝑑𝑉

𝑑𝑡
= (𝛽 − 𝛾𝐹)𝑉,

𝑑𝐶

𝑑𝑡
= 𝛼𝜉 (𝑚)𝑉𝜏𝐹𝜏 − 𝜇𝑐 (𝐶 − 𝐶∗) − 𝜀𝑐𝐸,

𝑑𝐹

𝑑𝑡
= 𝜌𝐶 − (𝜇 𝑓 + 𝜂𝛾𝑉)𝐹,

𝑑𝑚

𝑑𝑡
= 𝜎𝑉 − 𝜇𝑚𝑚 + 𝜀𝑚𝐸,

(3)

The initial conditions for the system (3) solution have the following form:

𝑉 (𝑡) = 0, 𝑡 ∈ [−𝜏, 0), 𝑉 (0) = 𝑉0 ≥ 0;

𝐹 (𝑡) = 𝐹0(𝑡) ≥ 0, 𝑡 ∈ [−𝜏, 0];𝐶 (0) = 𝐶0 ≥ 0;𝑚(0) = 𝑚0 ∈ [0, 1).
(4)

The work explores issues of the existence and nonnegativity of solutions, identifies
stationary solutions, establishes coefficient conditions for their stability, and conducts
numerical modelling of the immune response for the model (3).

2. Nonnegativity and existence of a solution

It has been proven that the solution to the problem (3), (4) is nonnegative, which
corresponds to the medical nature of the immune response process. It is known that the
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solution to equation (2) with initial condition 𝐸0(𝑡) ≥ 0 for 𝑡 > 0 exists for 𝑡 > 0 and is
bounded, that means 0 ≤ 𝐸 (𝑡) ≤ 𝑀 .

Theorem 2.1. Let the coefficients of the system of equations (3) be nonnegative, and
suppose there exists a solution for 𝑡 > 0 and the condition

𝜀𝑐𝑀 < 𝜇𝑐𝐶
∗ (5)

is satisfied. Then the solution of system (3) with initial conditions (4) is nonnegative for
𝑡 > 0.

Proof. The solution of the equation (2) with initial function 𝐸0(𝑡) ≥ 0 for the 𝑡 ∈ [−Δ, 0]
exists for 𝑡 > 0 and limited [7] by

0 ≤ 𝐸 (𝑡) ≤ 𝑀, 𝑡 ≥ 0. (6)

From the first equation of (3) after integration we obtain the following:

𝑉 (𝑡) = 𝑉0𝑒𝑥𝑝(
∫ 𝑡

0
(𝛽 − 𝛾𝐹 (𝑠)) 𝑑𝑠) ≥ 0.

From that follows that 𝑉 (𝑡) ≥ 0 for 𝑡 > 0, if 𝑉0 ≥ 0 and 𝑉 (𝑡) > 0 for 𝑉0 > 0. From the
equation for the 𝑚(𝑡), we obtain

𝑚(𝑡) = 𝑚0𝑒
−𝜇𝑚𝑡 +

∫ 𝑡

0
𝑒−𝜇𝑚 (𝑡−𝑠) (𝜎𝑉 (𝑠) + 𝜀𝑚𝐸 (𝑠) 𝑑𝑠) ≥ 0. (7)

Since 𝑚(0) ≥ 0, 𝑉 (𝑡) ≥ 0 and 𝐸 (𝑡) ≥ 0, then 𝑚(𝑡) > 0 for 𝑡 > 0. The initial function
𝑉 (𝑡) = 0 for 𝑡 < 0, then on the interval [0, 𝜏]

𝑑𝐶

𝑑𝑡
= −𝜇𝑐𝐶 + 𝜇𝑐𝐶

∗ − 𝜀𝑐𝐸. (8)

The solution of the equation (8) is the following:

𝐶 (𝑡) = 𝐶∗ + (𝐶0 − 𝐶∗)𝑒−𝜇𝑐𝑡 − 𝜀𝑐

∫ 𝑡

0
𝑒−𝜇𝑚 (𝑡−𝑠)𝐸 (𝑠) 𝑑𝑠,

Since 𝐸 (𝑡) ≤ 𝑀 for 𝑡 > 0, then

𝐶 (𝑡) ≥ 𝐶∗ − 𝜀𝑐𝑀

𝜇𝑐
(1 − 𝑒−𝜇𝑐𝑡 ) ≥ 𝐶∗ − 𝜀𝑐𝑀

𝜇𝑐
> 0.

From the condition 𝐹 (0) > 0 we obtain 𝐹 (𝑡) > 0 on some interval (0, 𝑡1). Let us assume
that 𝑡1 ≤ 𝜏 and 𝐹 (𝑡1) = 0. Then 𝑑𝐹 (𝑡1 )

𝑑𝑡
= 0. At the same time,

𝑑𝐹 (𝑡1)
𝑑𝑡

= 𝜌𝐶 (𝑡1) − 𝜂𝛾𝐹 (𝑡1)𝑉 (𝑡1) − 𝜇𝑐𝐹 (𝑡1) = 𝜌𝐶 (𝑡1) > 0,
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which contradicts the assumption. Thus, 𝐹 (𝑡) > 0 for 𝑡 ∈ [0, 𝜏]. Since 𝜉 (𝑚) ≥ 0 and, on
the interval [𝜏, 2𝜏], 𝐹 (𝑡 − 𝜏)𝑉 (𝑡 − 𝜏) ≥ 0, then

𝑑𝐶

𝑑𝑡
= 𝜉 (𝑚(𝑡))𝑉 (𝑡 − 𝜏)𝐹 (𝑡 − 𝜏) − 𝜇𝑐 (𝐶 − 𝐶∗) − 𝜀𝑐𝐸 ≥ −𝜇𝑐 (𝐶 − 𝐶∗) − 𝜀𝑐𝑀.

From the estimate of the solution of the equation for F(t) on [0, 𝜏], it follows that𝐶 (𝑡) > 0
on [𝜏, 2𝜏]. Accordingly, 𝐹 (𝑡) > 0 on that interval. Using the step method, the positivity
of𝐶 (𝑡) and 𝐹 (𝑡) is similarly proven on [2𝜏, 3𝜏], and so forth for subsequent intervals. ■

Theorem 2.2. Let the coefficients and initial conditions at 𝑡 = 0 for the solutions of
equations (2) and (3) be positive numbers. Then there exists a unique solution to the
problem (2), (3), defined on [0,∞) and differentiable on (0, 𝜏) ∪ (𝜏,∞).

Proof. For equation (2), at each step [𝑘Δ, (𝑘 + 1)Δ], 𝑘 = 0, 1, ..., a linear equation
𝑑𝐸
𝑑𝑡

= 𝑞𝐸 (𝑡) with a continuous function 𝑞(𝑡), 𝑡 > 0 is obtained. Therefore, there exists a
unique solution to the equation (2) for 𝑡 > 0, which is differentiable if the initial function
𝐸0 ∈ 𝐶 [−Δ, 0].

Let 𝑉 (0) > 0. Then there exists a solution 𝑉 (𝑡) on some interval (0, 𝑎). Moreover, by
Theorem 2.1, 𝑉 (𝑡) > 0. From this it follows that 𝐹 (𝑡) > 0 for 𝑡 ∈ (0, 𝑎). Thus on that
interval

𝑑𝑉

𝑑𝑡
= 𝛽𝑉 − 𝛾𝐹𝑉 ≤ 𝛽𝑉.

The solution to the linear equation 𝑑𝑉
𝑑𝑡

= 𝛽𝑉 is defined for all 𝑡 > 0. According to
Wintner’s theorem [6], the solution 𝑉 (𝑡) of the first equation of (3) is defined for 𝑡 > 0.
Since the function 𝑉0(𝑡) has a first-order discontinuity at 𝑡 = 0, the function 𝑉 (𝑡) is
continuous for (0,∞) and differentiable over intervals (0, 𝜏) and (𝜏,∞).

From the form of the solution 𝑚(𝑡) according to formula (7), it follows that the solution
𝑚(𝑡) is defined for 𝑡 > 0 and 𝑚 ∈ 𝐶1(0,∞).

The existence and uniqueness of solution 𝐹 ∈ 𝐶1(0,∞) is received from the differen-
tiability of the right-hand side of the equation for F factor and an inequality

𝑑𝐹

𝑑𝑡
= 𝜌𝐶 − (𝜂𝛾𝐹 + 𝜇 𝑓 )𝐹 ≤ 𝜌𝐶,

using Winter’s theorem.
■

11



MATHEMATICAL MODELLING OF THE IMMUNE RESPONSE TO
INFECTIOUS DISEASES

3. Stationary solutions and their stability

By substituting 𝐸 (𝑡) = 𝐸 (𝑡) + 𝐸∗, 𝑡 = 𝑠Δ, equation (2) is transformed into the form

𝑑𝐸 (𝑠)
𝑑𝑠

= −𝑟𝑛Δ𝐸 (𝑠 − 1) + 𝑓 (𝐸 (𝑠 − 1)),

where lim𝑥→0
𝑓 (𝑥 )
𝑥

= 0. The roots of the characteristic equation 𝜆 + 𝑟𝑛Δ𝑒−𝜆 = 0 have
negative real parts if the following condition is satisfied [7]

0 < 𝑟𝑛Δ < 𝜋/2. (9)

According to the theorem on stability by linear approximation, the solution 𝐸 = 𝐸∗ of
equation (2) is asymptotically stable under the fulfilment of the condition (9).

The stationary solutions of system (3) are derived by the system of equations

(𝛽 − 𝛾𝐹)𝑉 = 0,

𝛼𝑉𝐹 − 𝜇𝑐 (𝐶 − 𝐶∗) − 𝜀𝑐𝐸 = 0,

𝜌𝐶 − (𝜇 𝑓 + 𝜂𝛾𝑉)𝐹 = 0,

𝜎𝑉 − 𝜇𝑚𝑚 + 𝜀𝑚𝐸 = 0.

(10)

The medical justification of the solutions requires 𝜉 (𝑚) = 1, which is achieved when
𝑚 ≤ 𝑚∗ means that the damage to the target organ does not exceed the critical level.

For the problem (2),(3), there always exists such a stationary solution

𝐸1 = 𝐸∗, 𝑉1 = 0, 𝐶1 = 𝐶∗ − 𝜀𝑐𝐸
∗

𝜇𝑐
, 𝐹1 =

𝜌𝐶1
𝜇 𝑓

, 𝑚1 =
𝜀𝑚𝐸

∗

𝜇𝑚
(11)

that defines the state of a healthy organism under permissible environmental pollution
levels. The stationary solution (11) has a medical justification, if it is nonnegative. This
holds if the following conditions are met:

𝜀𝑐𝐸
∗ < 𝐶∗𝜇𝑐, 𝜀𝑚𝐸

∗ ≤ 𝜇𝑚𝑚
∗ (12)

Theorem 3.1. If condition (9), (12) and condition

𝛽 − 𝛾𝐹1 < 0 (13)

are satisfied, then solution (11) is locally asymptotically stable.

Proof. Let us perform a substitution in system (3): 𝐸 = 𝐸 + 𝐸∗, 𝑉 = 𝑉,𝐶 = 𝐶 +𝐶1, 𝐹 =

𝐹 + 𝐹1, 𝑚 = 𝑚 + 𝑚1. Let (𝑉, 𝐹, 𝐶, 𝑚) be a solution of (10), then the linearized system

12



Bihun Y. and Ukrainets O.

corresponding to (3) for this solution takes the form

𝑑𝑉

𝑑𝑡
= (𝛽 − 𝛾𝐹)𝑉,

𝑑𝐶

𝑑𝑡
= 𝛼𝑉𝐹𝜏 + 𝛼𝐹𝑉𝜏 − 𝜇𝑐𝐶 − 𝜀𝑐𝐸,

𝑑𝐹

𝑑𝑡
= 𝜌𝐶 − 𝜇 𝑓 𝐹 − 𝜂𝛾(𝑉𝐹 +𝑉𝐹),

𝑑𝑚

𝑑𝑡
= 𝜎𝑉 − 𝜇𝑚𝑚 + 𝜀𝑚𝐸.

(14)

If the conditions of the theorem are satisfied, the nonnegativity of the solution (11) is
evident. The characteristic equation for the linearized system (14) for solution (11) takes
the form

(𝜆 + 𝑟𝑛𝑒−Δ)

����������
𝛽 − 𝛾𝐹1 − 𝜆 0 0 0
𝛼𝐹1𝑒

−𝜆𝜏 −𝜇𝑐 − 𝜆 0 0
−𝜂𝛾𝐹1 𝜌 𝜇 𝑓 − 𝜆 0

𝜎 0 0 −𝜇𝑚 − 𝜆

���������� =
= (𝛽 − 𝛾𝐹1 − 𝜆) (𝜇𝑐 + 𝜆) (𝜇 𝑓 + 𝜆) (𝜇𝑚 + 𝜆) = 0,

If conditions (9) and (13) are satisfied, the roots are negative, and the stationary solution
is locally asymptotically stable. It is worth noting that solution (11) can be interpreted as
the state of a healthy organism under an acceptable level of environmental pollution. ■

Theorem 3.2. Let condition (13) hold, and for the initial values𝐶0 and𝑉0 the inequalities

𝐶0 > 𝐶∗ + 𝜀𝑀

𝜇𝑐
, 0 < 𝑉0 < 𝑉∗ =

𝜇 𝑓 (𝛾𝐹1 − 𝛽)
𝜂𝛾𝛽

+ 2𝜌𝜀𝐶𝑀
𝜇𝑐

(15)

are satisfied. Then, the function 𝑉 (𝑡) decreases for 𝑡 > 0 and

lim
𝑡→∞

𝑉 (𝑡) = 0.

Proof. Let 𝑐(𝑡) = 𝐶 (𝑡) −𝐶∗, 𝑐0 = 𝐶0 −𝐶∗. For 𝑡 ∈ [0, 𝜏] from second equation of model
(3) and initial functions (4); the following equation is received:

𝑑𝑐

𝑑𝑡
= −𝜇𝐶𝑐 − 𝜀𝑐𝐸.

From the first inequality from (15) and the boundedness of the solution of equation (2)
by the constant 𝑀 is received:

𝑐(𝑡) = 𝑐0𝑒
−𝜇𝑐𝑡 − 𝜀𝑐

∫ 𝑡

0
𝑒−𝜇𝑐 (𝑡−𝑠)𝐸 (𝑠) 𝑑𝑠 ≥ 𝑐0𝑒

−𝜇𝑐𝑡 − 𝜀𝑐𝑀

𝜇𝑐
(1 − 𝑒−𝜇𝑐𝑡 ) ≥ 𝑐0

2
. (16)
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Thus, for 𝑡 ∈ [0, 𝜏]
𝐶 (𝑡) ≥ 𝐶∗ + 2𝜀𝑐𝑀

𝜇𝑐
. (17)

On the interval [𝜏, 2𝜏], taking into account that 𝐹 (𝑡) > 0, we obtain
𝑑𝑐

𝑑𝑡
= 𝛼𝜉 (𝑚)𝐹 (𝑡 − 𝜏)𝑉 (𝑡 − 𝜏) − 𝜇𝑐𝑐(𝑡) − 𝜀𝑐𝐸 (𝑡) ≥ −𝜇𝑐𝑐(𝑡) − 𝜀𝑐𝐸 (𝑡),

from which assessment (16) is received. So forth for subsequent intervals [2𝜏, 3𝜏].
Since 𝐹 (𝑡) > 0 for 𝑡 > 0 and 𝛽 − 𝛾𝐹∗ < 0, then function 𝑉 (𝑡) decreases on the interval

(0, 𝑡1), 𝑡1 > 0 and 𝑑𝑉 (𝑡1 )
𝑑𝑡

= 0. Then 𝐹 (𝑡1) =
𝛽

𝛾
and on the certain interval (𝑡1, 𝑡2) the

following conditions are satisfied: 𝑑𝑉 (𝑡 )
𝑑𝑡

≥ 0,

𝑑𝐹 (𝑡)
𝑑𝑡

≤ 0. (18)

Let us consider the value of the derivative
𝑑𝐹 (𝑡1)
𝑑𝑡

= 𝜌𝐶 (𝑡1) − 𝜂𝛾𝐹 (𝑡1)𝑉 (𝑡1) − 𝜇 𝑓 𝐹 (𝑡1) > 𝜌(𝐶∗ + 2𝜀𝑐𝑀
𝜇𝑐

) − 𝜂𝛽𝑉0 − 𝜇 𝑓

𝛽

𝛾
.

From the estimate (17) follows:
𝑑𝐹 (𝑡1)
𝑑𝑡

= 𝜂𝛽

(
𝛾𝐹1 − 𝛽

𝛽𝛾𝜂
+ 2𝜌𝜀𝑐𝐸

𝛽𝜂𝜇𝑐
−𝑉0

)
= 𝑉∗ −𝑉0 ≥ 0,

This contradicts estimate (18). Hence, the function 𝑉 (𝑡) decreases for 𝑡 > 0 and the limit
for 𝑡 → ∞ is the stationary solution 𝑉1 = 0. ■

Remark 3.1. In the monograph [2] number 𝑉∗ is called an immunological barrier. If,
during antigen infection, its degree does not exceed 𝑉∗, then the disease will not develop.

The problem (2), (3) may have another stationary solution that corresponds to the state
of a chronic disease:

𝐸2 = 𝐸∗, 𝐹2 =
𝛽

𝛾
,

𝑉2 =
𝜇𝑐𝜇 𝑓 𝛽 − 𝜌𝛾𝜇𝑐𝐶

∗ + 𝜌𝛾𝜀𝑐𝐸
∗

𝛽(𝛼𝜌 − 𝜇𝑐𝜂𝛾)
,

𝐶2 =
𝛼𝛽𝜇 𝑓 − 𝜂𝛾2𝜇𝑐𝐶

∗ + 𝜂𝛾2𝜀𝑐𝐸
∗

𝛾(𝛼𝜌 − 𝜇𝑐𝜂𝛾)
,

𝑚2 =
𝛿𝑉2 + 𝐸2

𝜇𝑚
.

(19)

A stationary solution (19) exists if either

𝛼𝜌 > 𝜇𝑐𝜂𝛾, 𝜌𝛾𝜇𝑐𝐶
∗ < 𝜇𝑐𝜇 𝑓 𝛽 + 𝜌𝛾𝜀𝑐𝐸

∗

or the inequality with the opposite sign is satisfied. If 𝑉2 > 0, then 𝐶2 > 0 accordingly.
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The characteristic equation for system (19), corresponding to the stationary solution
𝑋 := (𝐸2, 𝑉2, 𝐶2, 𝐹2, 𝑚2) takes the form:

𝑃5(𝜆) := −(𝜇𝑚 + 𝜆) (𝜆 + 𝑟𝑛𝑒−𝜆Δ) ∗

�������
−𝜆 0 −𝛾𝑉2

2𝐹2𝑒
−𝜆𝜏 −𝜇𝑐 − 𝜆 𝛼𝑉2𝑒

−𝜆𝜏

−𝜂𝛾𝐹2 𝜌 𝜂𝛾𝑉2 − 𝜇 𝑓 − 𝜆

������� =
= (𝜇𝑚 + 𝜆) (𝜆 + 𝑟𝑛𝑒−𝜆Δ) (𝜆3 + 𝑐1𝜆

2 + +𝑐2𝜆 + 𝑐3) = 0,

where 𝑐1 = 𝜇𝑐 + 𝜇 𝑓 − 𝜂𝛾𝑉2, 𝑐2(𝜆) = 𝜇𝑐𝜇 𝑓 − (𝜂𝛾 + 𝛼𝜌𝑒−𝜆𝜏 + 𝜂𝛽)𝑉2,
𝑐3(𝜆) = (𝛼𝜌𝑒−𝜆𝜏 − 𝜂𝜇𝑐)Δ𝑉2.

If inequality (9) holds, the study of the asymptotic stability of the solution 𝑋 reduces
to finding the conditions under which 𝑅𝑒(𝜆) < 0 for the roots of the quasi-polynomial
𝑃3 = 0. Let us consider the case when 𝜏 = 0, which is the case of an instantaneous
immune system response to the infection of the human body. In this case, the problem
reduces to studying the roots of a cubic equation

𝑃3,0(𝜆) = 𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3 = 0, (20)

where 𝑎1 = 𝑐1, 𝑎2 = 𝜇𝑐𝜇 𝑓 − ((1+ 𝛽)𝜂𝛾 +𝛼𝜌)𝑉2, 𝑎3 = 𝛽(𝛼𝜌 − 𝜂𝛾𝜇𝑐)𝑉2. Let us consider
the case of a strong immune response [2], when

𝛼𝜌 > 𝜂𝛾𝜇𝑐, (21)

in that case 𝑎3 > 0.
From the Routh-Hurwitz criterion [6], it follows that the necessary and sufficient

conditions for the asymptotic stability of solution 𝑋 are the fulfilment of condition (21)
and

𝑎1 > 0, 𝑎1𝑎2 − 𝑎3 > 0. (22)

From the analysis of the roots of the characteristic equation of the linearized system,
the conditions for the asymptotic stability and instability of solution (19) have been
found. Therefore, sufficient conditions for either maintaining a chronic disease state or
transitioning from a chronic condition to an acute form have been obtained.

4. Numerical modelling

Numerical simulations of the immune response were conducted using the Wolfram
Mathematica computer algebra system, considering the influence of environmental fac-
tors. These simulations were based on the system (2), (3) with the following parameters:
𝛽 = 0.6, 𝛾 = 0.2, 𝛼 = 0.9, 𝜇𝑐 = 0.5, 𝐶∗ = 1, 𝜌 = 0.9, 𝜇 𝑓 = 0.17, 𝜂 = 0.8, 𝜎 =

0.35, 𝜇𝑚 = 0.4, 𝑟 = 0.5,Δ = 1, 𝐸∗ = 0.25, 𝑛 = 1;𝑉0 = 0.000001, 𝐶0 = 𝐹0 = 1, 𝐸0 =
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0.5, 𝑚0 = 0. Simulations were performed under two distinct scenarios: Figures 2(a),
3(a) with 𝜀𝑐 = 𝜀𝑚 = 0, and Figures 2(b), 3(b) with 𝜀𝑐 = 𝜀𝑚 = 0.0001.

Figure 2(a) illustrates the change in the level of plasma cells 𝐶 (𝑡) without the influence
of the environmental factors 𝐸 (𝑡). In Figure 2b, under the influence of 𝐸 (𝑡), oscilla-
tions occur in the plasma cell population, and the weakened overall immune response is
demonstrated.

a) b)

Figure 2. Dynamics in the immune response model factor 𝐶 (𝑡) without (a) and
with (b) the influence of environmental factors.

Figures 3(a) and 3(b) show the dynamics of the extent of damage 𝑚(𝑡) to the target
organ. With pollution (Figure 3b), there remains relatively minor damage to the target
organ according to the parameters set by this model example. The presence of the
ecological factor leads to an overall destabilizing effect on the system’s equilibrium.
When 𝐸 (𝑡) = 0, then 𝑚(𝑡) → 0 for 𝑡 → ∞.

a) b)

Figure 3. Dynamics in the immune response model factor 𝑚(𝑡) without (a) and
with (b) the influence of environmental factors.
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