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On the symbol of singular operators in the case of contour with
corner points

Vasile Neagu and Petru Moloşnic

Abstract. This paper proposes a method for constructing a symbol for singular integral
operators in the case of a piecewise Lyapunov contour. The definition of the symbol
function involves numbers that characterize the space in which the research is being
carried out, as well as the values of the corner points of the contour, which makes it
possible to obtain formulas for calculating the essential norms of singular operators and
conditions for the solvability of singular equations with a shift and complex conjugation.
In obtaining these results, we will essentially rely on the well-known results of I. Gelfand
concerning maximal ideals of commutative Banach algebras [7]. In the absence of corner
points on the integration contour, the results of this work are consistent with the results
from [1].
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Asupra simbolului operatorilor singulari ı̂n cazul conturului cu
puncte unghiulare

Rezumat. În această lucrare se propune o metodă de construire a simbolului operatorilor
integrali singulari ı̂n cazul unui contur Lyapunov pe porţiuni. Definiţia funcţiei-simbol
conţine parametrii, care caracterizează spaţiul ı̂n care se desfăşoară cercetarea, precum şi
mărimile punctelor unghiulare ale conturului, ceea ce face posibilă obţinerea de formule
de calcul a normelor esenţiale ale operatorilor singulari şi condiţiilor de rezolvabilitate a
ecuaţiilor singulare cu translaţii şi conjugare complexă. În obţinerea acestor rezultate, ne
vom baza ı̂n esenţă pe rezultatele binecunoscute ale lui I. Ghelfand privitoare la idealele
maximale ale algebrelor Banach comutative [7]. În absenţa punctelor unghiulare pe
conturul de integrare, rezultatele din această lucrare sunt ı̂n concordanţă cu rezultatele
din [1].
Cuvinte-cheie: operator singular, algebre Banach, contur Lyapunov pe porţiuni, simbol,
condiţii Noether.
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ON THE SYMBOL OF SINGULAR OPERATORS IN THE CASE OF CONTOUR
WITH CORNER POINTS

1. Introduction

A great number of works are devoted to singular integral operators and Riemann
boundary value problems in the case of a Lyapunov contour; it is enough to point out the
monograph by I. Gokhberg and N. Krupnik [1], which contains an extensive bibliography
on this issue. In papers [2], [3] and others, it was shown that the presence of corner points
on the integration contour affects some properties of singular operators. In particular,
if the integration contour contains one corner point with an angle equal to

𝜋

2
, then the

essential norm of the operator with the Cauchy kernel in the space 𝐿2 is equal to 1 +
√

2,
and in the case of the Lyapunov contour this norm is equal to 1. The conditions for the
Noetherian property of singular operators with shift or with complex conjugation also
depend on the presence of corner points on the integration contour. As usual, by the
Noether conditions of the operator 𝐴 we mean, firstly, obtaining conditions under which
the set of values of the operator 𝐴 is a subspace, or the equality holds

𝐼𝑚𝐴 = ∩ 𝑓 ∈𝐾𝑒𝑟 𝐴∗𝐾𝑒𝑟 𝑓 ,
and, secondly, the equations 𝐴𝑥 = 0 and 𝐴

∗
𝜑 = 0 have a finite number of linearly

independent solutions. As it is known, a linear bounded Noetherian operator is true if and
only if it has right and left regularizers. Obtaining the conditions for Noetherianity, as a
rule, leads to the concept of an operator symbol, first introduced by S. Mikhlin, and which
turned out to be fruitful in many branches of mathematics, including the construction of
the Noetherian theory of singular integral operators [4], [5].

Note that Gelfand’s theory of maximal ideals also played an important role in obtaining
the criterion for the Noether property of one-dimensional singular integral operators with
continuous coefficients, Wiener-Hopf operators, multidimensional singular operators,
and Toeplitz matrices. The results presented in this paper are a generalization of known
results to the case where the integration contour has corner points. Thus, in the case of
the absence of corner points on the integration contour, the proposed results of this work
agree with the results from [1].

Let us present some facts from the theory of Banach commutative algebras, which will
be used below.

Definition 1.1. A normed space 𝑋 is called a normed algebra if it is an algebra with unity
e and two more axioms are satisfied:

∥𝑒∥ = 1; ∥𝑥𝑦∥ ≤ ∥𝑥∥∥𝑦∥ ∀𝑥, 𝑦 ∈ 𝑋.

If the normed algebra 𝑋 is also complete, then it is called a Banach algebra.

56



Neagu V. and Moloşnic P.

Let 𝑋 be a commutative Banach algebra. An ideal 𝑀 is called maximal if 𝑀 is not
contained in any other nontrivial ideal. Any ideal 𝐼 (nontrivial) consists only of non-
invertible elements. Any ideal is contained in a maximal ideal. According to I. Gelfand’s
Theorem [7], a Banach algebra over the field of complex numbers, which is a field, is
isometrically isomorphic to the field C.

A linear continuous functional 𝑓 defined on a Banach algebra 𝑋 is called multiplicative
if for any 𝑥 and 𝑦 the equality holds

𝑓 (𝑥𝑦) = 𝑓 (𝑥) · 𝑓 (𝑦) .

The zero subspace of the functional 𝑓 (i.e. the totality of those 𝑥 ∈ 𝑋 for which
𝑓 (𝑥) = 0) is denoted by Kerf and is called the kernel of 𝑓 .

Theorem 1.1. The kernel Kerf for any multiplicative functional 𝑓 is a maximal ideal.

Theorem 1.2. For any maximal ideal 𝑀 , one can construct a unique multiplicative
functional 𝑓 such that Kerf=M.

Conclusion. Thus, there is a one-to-one correspondence between the set of maximal ideals
{𝑀} and the set of multiplicative functionals 𝑓 defined on the algebra 𝑋 . Therefore, the
corresponding functionals are denoted 𝑓𝑀 , ( 𝑓 ↔ 𝑀).

Theorem 1.3. (Gelfand (see [7]. An element 𝑥 ∈ 𝑋 is invertible in 𝑋 if and only if it is not
contained in any maximal ideal (equivalent to 𝑓 (𝑥) ≠ 0 for any multiplicative functional).

Thus, the problem of invertibility in the algebra 𝑋 can be reduced to determining all
maximal ideals or to determining all multiplicative functionals defined on 𝑋 .

2. Algebra U𝒑𝜷

Let U be some algebra (commutative or non-commutative). Recall that a set { 𝑓𝑀 } of
multiplicative functionals is called sufficient if an element 𝑥 is invertible in U if and only
if 𝑓𝑀 (𝑥) ≠ 0 for any M. According to I. Gelfand’s theorem, every commutative Banach
algebra has a sufficient set of multiplicative functionals. The set of functionals of the form
{ 𝑓𝑀 }, where 𝑀 runs over the set of maximal ideals, forms a sufficient set of functionals.

A simple example of a non-commutative Banach algebra that has a sufficient set of
multiplicative functionals is the algebra of upper triangular numerical matrices

U =

{(
𝑎11 𝑎12

0 𝑎22

)} (
𝑎 𝑗𝑘 ∈ 𝐶

)
.

Two functionals 𝑓1(𝑎) = 𝑎11 and 𝑓2(𝑎) = 𝑎22 form a sufficient set.
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Let 𝐸 = 𝐿2(𝑎, 𝑏) and letU be a subalgebra of 𝐿 (𝐸), generated by one singular operator
𝑆: (

𝑆𝜑
)
(𝑡) = 1

𝜋𝑖

∫ 𝑏

𝑎

𝜑(𝜏)
𝜏 − 𝑡 𝑑𝜏 (𝑡 ∈ [𝑎, 𝑏]) .

Since 𝑆∗ = 𝑆, then U is a 𝑐∗ subalgebra of 𝐿 (𝐸) and, in particular, it is symmetric.
The spectrum of the element 𝑆 in the algebra U coincides with its spectrum in the algebra
𝐿 (𝐸), i.e. with the segment [−1, 1]. Each multiplicative functional is defined by a point
𝜏 ∈ [−1, 1].

𝑓𝜏

(
𝑛∑︁
𝑘=0

𝛼𝑘𝑆
𝑘

)
=

𝑛∑︁
𝑘=0

𝛼𝑘𝜏
𝑘 .

In particular, the operator 𝐴 = 𝛼𝐼 + 𝛽𝑆 (𝛼, 𝛽 ∈ 𝐶) is invertible in U if and only if
𝛼 + 𝛽𝜏 ≠ 0, ∀𝜏 ∈ [−1, 1].

Consider the operator 𝐵, defined by the equality

(𝐵𝜑) (𝑡) = 𝛼𝜑(𝑡) + 𝛽

𝜋𝑖

∫ 𝑏

𝑎

𝜑(𝜏)
𝜏 − 𝑡 𝑑𝜏 +

𝛾

(𝜋𝑖)2

∫ 𝑏

𝑎

𝐿𝑛
(𝑏 − 𝑡) (𝜏 − 𝑎)
(𝑡 − 𝑎) (𝑑 − 𝜏)

𝜑 (𝜏) 𝑑𝜏
𝜏 − 𝑡 .

The operator 𝐵 belongs to the algebraU. Indeed, using the Poincaré-Bertrand formula,
it is easy to deduce that 𝐵 = 𝛼𝐼 + 𝛽𝑆 + 𝛾

(
𝑆2 − 𝐼

)
. This implies:

Theorem 2.1. The operator 𝐵 is invertible if and only if the inequality 𝛾𝜏2+𝛽𝜏+(𝛼 − 𝛾) ≠
0 holds for all 𝜏 ∈ [−1, 1].

Let us introduce the following notation. We denote by 𝐿 (B) the algebra of all linear
bounded operators acting in a Banach spaceB. LetU𝑝𝛽 be the smallest Banach subalgebra
with algebra unit 𝐿

(
𝐿𝑝

(
𝑅+, 𝑡𝛽

) )
(𝑅+= [0, +∞)), containing the operator(

𝑆𝜑
)
(𝑡) = 1

𝜋𝑖

∫
𝑅+

𝜑(𝜏)
𝜏 − 𝑡 𝑑𝜏

(
𝑡 ∈ 𝑅+) .

We will assume that 1 < 𝑝 < ∞ and −1 < 𝛽 < 𝑝 − 1. Let 𝛿 be a number from the
interval

(
0, 1

2

)
. Let us denote by 𝑙 (𝛿) an arc of a circle containing points −1 and 1 having

the following property: from point 𝑧 (𝑧 ≠ ±1) of the arc 𝑙 (𝛿) the segment [−1, 1] is visible
at an angle of 2𝜋𝛿 and when going around the arc 𝑙 (𝛿) from point −1 to 1 this segment
remains to the left. For numbers 𝛿 from the interval

(
1
2 , 1

)
we set 𝑙 (𝛿) = −𝑙 (1 − 𝛿). Let

𝑙

(
1
2

)
denote the segment [−1, 1]. As, it is known [1], the spectrum of the operator 𝑆 in

the space 𝐿𝑝
(
𝑅+, |𝑡 |𝛽

)
coincides with the arc 𝑙

(
1+𝛽
𝑝

)
. Since the algebra U𝑝𝛽 is generated

by one element, then [1] takes place.

Theorem 2.2. The set of maximal ideals of the algebra U𝑝𝛽 is homeomorphic to the
arc 𝑙 = 𝑙

(
1+𝛽
𝑝

)
. If 𝑀𝑧 is the maximal ideal corresponding to the point 𝑧 (∈ 𝑙), then the

Gelfand transformation 𝑆 (𝑀𝑧) = 𝑧.

58



Neagu V. and Moloşnic P.

This theorem can be significantly expanded (see [6]).

Theorem 2.3. The algebra U𝑝𝛽 is an algebra without a radical with a symmetric invo-

lution 𝐴→
↼

𝐴. In particular,
↼

𝑆 = (cos 2𝜋𝛾𝑆 − 𝑖 sin 2𝜋𝛾𝐼) (cos 2𝜋𝛾𝐼 − 𝑖 sin 2𝜋𝛾𝑆)−1
(
𝛾 =

1 + 𝛽
𝑝

)
.

For 𝑝 = 2, the Gelfand transformation 𝐴(𝑧) = 𝐴(𝑀𝑧) satisfies the equality

∥𝐴∥ = max
𝑧∈𝑙 (𝛾)

|𝐴(𝑧) |, (1)

and for 𝑝 ≠ 2, the following estimates hold:

max
𝑧∈𝑙 (𝛾)

|𝐴(𝑧) | ≤ ∥𝐴∥ ≤ 𝑐 ·max
(

max
𝑧∈𝑙 (𝛾)

|𝐴(𝑧) |, max
𝑧∈𝑙 (𝛾)

����(1−𝑧2
)
𝐿𝑛

1−𝑧
1+𝑧

𝑑𝐴(𝑧)
𝑑𝑧

����) (2)

where the constant 𝑐 depends only on 𝑝 and 𝛽.

Proof. Let 𝛾 =
1+𝛽
𝑝

. The operator 𝐵, defined by the equality
(
𝐵𝜑

)
(𝑡) = 𝑒𝛾𝑡𝜑 (𝑒𝑡 ),

isometrically maps the space 𝐿𝑝
(
𝑅+, 𝑡𝛽

)
onto 𝐿𝑝 (𝑅). It is directly verified that the

operator 𝑆 = 𝐵𝑆𝐵−1 has the form(
𝑆𝜑

)
(𝑡) = 1

𝜋𝑖

∫ +∞

−∞

𝑒 (𝑡−𝑠)𝛾𝜑(𝑠)
1 − 𝑒𝑡−𝑠 𝑑𝑠.

Thus, the algebra U𝑝𝛽 , generated by one operator 𝑆, is isometric to some subalgebra
of the convolution algebra and, therefore, has no radical [7]. Let 𝜋𝑖𝑆(𝜉) be the Fourier
transform of the function 𝑒𝑡𝛾

1−𝑒𝑡 . It can be shown (we will not go into details) that

𝑆(𝜉) = 𝑒2𝜋 ( 𝜉+𝑖𝛾) + 1
𝑒2𝜋 ( 𝜉+𝑖𝛾) − 1

(−∞ ≤ 𝜉 ≤ +∞). (3)

The set of values of the function 𝑆(𝜉) runs along the arc 𝑙 (𝛾). We set 𝑧 = 𝑆(𝜉), then
the operator 𝐴 ∈ U𝑝𝛽 satisfies the equality

𝑨
(
𝑆(𝜉)

)
=

(
𝐹𝐵𝐴𝐵−1𝐹−1(𝜉)

)
,

where 𝐹 is the Fourier transform. This, in particular, implies equality (1) for 𝑝 = 2. For
𝑝 ≠ 2, a lower estimation for the norms of the operator 𝐴 follows from Theorem 2.2. The
upper estimation is obtained using theorem on multipliers of S. Mikhlin [4], in which it
is established that

∥𝐵𝐴𝐵−1∥ ≤ 𝑐𝑝 · max
(
max
𝜉 ∈𝑅

𝐴

(
𝑆(𝜉)

))
, max
𝜉 ∈𝑅

�������𝜉 ·
𝑑𝐴

(
𝑆(𝜉)

)
𝑑𝜉

������� ,
where the number 𝑐𝑝 depends only on 𝑝. The theorem has been proven. □
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Remark 2.1. Let us define the functional over 𝐿2
(
𝑅+, 𝑡𝛽

)
by the equality

𝑓 (𝜑) =
∫ ∞

0
𝜑(𝑡) 𝑓 (𝑡)𝑡𝛽𝑑𝑡,

then 𝑆∗ = 𝑡−𝛽𝑆𝑡𝛽 𝐼. It is directly verified that 𝐹𝐵𝑆∗𝐵−1𝐹−1 = 𝐹𝐵𝑆𝐵−1𝐹−1. Therefore,
for 𝑝 = 2, we have 𝑆 = 𝑆∗.

Corollary 2.1. Let the function 𝑓 be differentiable at each point 𝑧 ∈ 𝑙 (𝛾) \ {−1, 1}. If
there exists a sequence of polynomials 𝑃𝑛 such that

max
𝑧∈𝑙 (𝛾)

|𝑃𝑛 (𝑧) − 𝑓 (𝑧) | → 0; max
𝑧∈𝑙 (𝛾)

����(1 − 𝑧2)𝐿𝑛1 − 𝑧
1 + 𝑧 (𝑃

′
𝑛 (𝑧) − 𝑓 ′(𝑧)

���� → 0

as 𝑛→ ∞, then 𝑓 (𝑆) ∈ U𝑝𝛽 .

A more general corollary is the following.

Corollary 2.2. Let 𝐴0 ∈ U 𝑝𝛽 and let 𝜑 (𝑧) be the Gelfand’s transform of operator 𝐴0

and ℎ be differentiable at each point 𝑧 ∈ 𝑙 (𝛾) \ {−1, 1} . If there exists a sequence of
polynomials 𝑃𝑛 such that

𝑚𝑎𝑥
𝑧∈𝑙 (𝛾)

|𝑃𝑛 (𝑧) − ℎ(𝑧) | → 0; 𝑚𝑎𝑥
𝑧∈𝑙 (𝛾)

����(1 − 𝑧2) 𝑑
𝑑𝑧
𝐿𝑛

1 − 𝑧
1 + 𝑧 (𝑃𝑛 (𝜑 (𝑧)) − ℎ(𝑧)

���� → 0

as 𝑛→ ∞, then ℎ(𝐴0) ∈ U𝑝𝛽 .

In what follows, we will need the following theorem.

Theorem 2.4. Let 𝜔 = 𝑒𝜋𝑖𝛼, where 𝛼 is some complex number. If −1<𝑅𝑒𝛼<1, then the
operator 𝑁𝜔 , defined by the equality

(𝑁𝜔𝜑) (𝑥) =
1
𝜋𝑖

∫
𝑅+

𝜑 (𝑦)
𝑦 + 𝜔𝑥 𝑑𝑦,

(
𝑥 ∈ 𝑅+) ,

belongs to the algebra U𝑝𝛽 and its Gelfand transformation has the form

𝑁𝜔 (𝑧) = (𝑧 − 1)
1+𝛼

2 (𝑧 + 1)
1−𝛼

2 (𝑧 ∈ 𝑙 (𝛾)) . (4)

The branch of this function is chosen so that at 𝑧 = −𝑖𝑐𝑡𝑔𝜋𝛾 it takes the value

− 𝑖𝑒𝑥𝑝(−𝜋𝑖𝛾𝛼)
sin 𝜋𝛾

.

Proof. It is directly verified that

𝜋𝑖𝐵𝑁𝜔𝐵
−1𝜑 =

(
𝑒𝛾𝑡

(
1 + 𝜔𝑒𝑡

) )
∗ 𝜑.

It follows that

𝑓𝑧 (𝑁𝜔) =
1
𝜋𝑖

∫ +∞

−∞

𝑒𝛾𝑡−𝑖 𝜉 𝑡

𝑡 + 𝜔𝑒𝑡 𝑑𝑡 =
−𝑖𝑒𝑖 𝜉−𝛾

sin ((𝛾 − 𝑖𝜉) 𝜋) = (𝑧 − 1)
1+𝛼

2 (𝑧 + 1)
1−𝛼

2 .
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Let us show that the function ℎ(𝑧) = 𝑓𝑧 (𝑁𝜔) satisfies the conditions of Corollary 2.1 or
2.2. Let first

��𝛾 − 1
2
�� ≤ 1

4 , then |𝑧 | ≤ 1. In this case, for any 𝛿(𝑅𝑒𝛿 > 0), the function
(𝑧 + 1) 𝛿 satisfies the condition of Corollary 2.2 (for example, partial sums of the Taylor
series can be taken as the polynomials 𝑃𝑛 (𝑧). If |𝛾 − 1

2 | >
1
4 , then the function

𝑓𝑧 (𝑁𝜔) = 𝑧
(
1 − 𝑧−1

) 1+𝛼
2

(
1 + 𝑧−1

) 1−𝛼
2

satisfies the conditions of Corollary 2.1. The role of the operator 𝐴0 is played by the
operator 𝑆−1. The invertibility of the operator 𝑆 follows from the condition 𝛾 ≠ 1

2 . The
theorem is proved. □

3. Symbol of the operator 𝑎𝐼 + 𝑏𝑆Γ
Let the contour Γ𝛼 consist of two semi-axes starting from the point 𝑧 = 0. We denote

by 𝛼 (0 < 𝛼 ≤ 𝜋) the angle formed by these half-lines. We will assume that one of these
semi-straight lines coincides with the semi-axis 𝑅+ = [0, +∞) and that the contour Γ𝛼 is
oriented in such a way that on Γ𝛼 ∩ 𝑅+ the orientation coincides with that on 𝑅+.

Let 𝐵 = 𝐿𝑝
(
Γ𝛼, |𝑡 |𝛽

)
(−1 < 𝛽 < 𝑝 − 1) and denote by 𝜆0 (Γ𝛼) the set of constant

functions on portions that receive two values on Γ𝛼: one value on 𝑅+ and another value
on Γ𝛼\𝑅+. If ℎ ∈ 𝜆0 (Γ), then we write

ℎ(𝑡) =
{
ℎ1, 𝑓 𝑜𝑟 𝑡 ∈ 𝑅+

ℎ2, 𝑓 𝑜𝑟 𝑡 ∈ Γ𝛼\𝑅+ , ℎ 𝑗 ∈ C.

So, ℎ(0) = ℎ2, ℎ(0 + 0) = ℎ1, ℎ(∞ − 0) = ℎ1, ℎ(∞ + 0) = ℎ2.
We will consider the contour Γ𝛼 compactified with a point at infinity, whose neighbor-

hoods are complementary to the neighborhoods of 𝑧0 = 0. Obviously, the contour Γ𝛼 is
homeomorphic to a bounded contour Γ̃, which has two angular points.

We denote by 𝐾𝛼 the Banach algebra generated by the singular integration operator 𝑆Γ
and by all multiplication operators on the functions ℎ ∈ 𝜆0(Γ𝛼). By 𝐾+ we denote the
subalgebra of the algebra 𝐿

(
𝐿𝑝

(
𝑅+, |𝑡 |𝛽

) )
generated by the singular integral operators

𝑎𝐼 + 𝑏𝑆 (𝑆 = 𝑆𝑅+) with constant coefficients on 𝑅+. As 𝐾+ is commutative, then it
possesses [5] a sufficient system of multiplicative functionals. The operator 𝜈,

(𝜈𝜑) (𝑥) =
(
𝜑(𝑥), 𝜑

(
𝑒𝑖𝛼𝑥

) ) (
𝑥 ∈ 𝑅+) ,

is linear and bounded and acts from the space 𝐿𝑝
(
Γ𝛼, |𝑡 |𝛽

)
to the space 𝐿2

𝑝

(
𝑅+, 𝑡𝛽

)
. Let

𝜑 ∈ 𝐿𝑝
(
Γ𝛼, |𝑡 |𝛽

)
and consider the equation

𝐴𝜑 = 𝑎𝜑 + 𝑏𝑆Γ𝛼
𝜑 = 𝜓,
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𝑎(𝑡) =
{
𝑎1, 𝑓 𝑜𝑟 𝑡 ∈ 𝑅+

𝑎2, 𝑓 𝑜𝑟 𝑡 ∈ Γ𝛼\𝑅+ , 𝑏(𝑡) =
{
𝑏1, 𝑓 𝑜𝑟 𝑡 ∈ 𝑅+

𝑏2, 𝑓 𝑜𝑟 𝑡 ∈ Γ𝛼\𝑅+ , 𝑎 𝑗 , 𝑏 𝑗 ∈ C.

This equation can be written as a system of equations: in one equation 𝑡 ∈ 𝑅+ , and in
the second equation 𝑡 ∈ Γ𝛼\𝑅+. We get,

𝑎(𝑡)𝜑(𝑡) + 𝑏 (𝑡 )
𝜋𝑖

∫
𝑅+

𝜑 (𝜏 )
𝜏−𝑡 𝑑𝜏 +

𝑏 (𝜏 )
𝜋𝑖

∫
Γ𝛼\𝑅+

𝜑 (𝜏 )
𝜏−𝑡 𝑑𝜏 = 𝜓(𝑡), 𝑡 ∈ 𝑅+,

𝑎(𝑡)𝜑(𝑡) + 𝑏 (𝑡 )
𝜋𝑖

∫
𝑅+

𝜑 (𝜏 )
𝜏−𝑡 𝑑𝜏 +

𝑏 (𝜏 )
𝜋𝑖

∫
Γ𝛼\𝑅+

𝜑 (𝜏 )
𝜏−𝑡 𝑑𝜏 = 𝜓(𝑡), 𝑡 ∈ Γ𝛼 \ 𝑅+.

In the integral ∫
Γ𝛼\𝑅+

𝜑(𝜏)
𝜏 − 𝑡 𝑑𝜏

we change the variable 𝜏 → 𝑒𝑖𝛼𝜏 and in the second equation of the obtained system, we
change 𝑡 by 𝑒𝑖𝛼𝑡. Then, we obtain

𝑎1𝜑1(𝑡) + 𝑏1
𝜋𝑖

∫
𝑅+

𝜑1 (𝜏 )
𝜏−𝑡 𝑑𝜏 −

𝑏1
𝜋𝑖

∫
𝑅+

𝜑2 (𝜏 )
𝜏−𝑒−𝑖𝛼𝑡 𝑑𝜏 = 𝜓1(𝑡), 𝑡 ∈ 𝑅+,

𝑎2𝜑2(𝑡) + 𝑏2
𝜋𝑖

∫
𝑅+

𝜑1 (𝜏 )
𝜏−𝑒𝑖𝛼𝑡 𝑑𝜏 −

𝑏2
𝜋𝑖

∫
𝑅+

𝜑2 (𝜏 )
𝜏−𝑡 𝑑𝜏 = 𝜓2(𝑡), 𝑡 ∈ 𝑅+.

in which the notations were used: 𝑓1(𝑡) = 𝑓 (𝑡), 𝑓2(𝑡) = 𝑓
(
𝑒𝑖𝛼𝑡

)
(𝑡 ∈ 𝑅+).

Thus, the operator 𝜈𝐴𝜈−1 has the form

𝜈𝐴𝜈−1 =

 𝑎1𝐼 + 𝑏1𝑆, −𝑏1𝑀

𝑏2𝑁, 𝑎2𝐼 − 𝑏2𝑆

 ,
where

(𝑆𝜑) (𝑡) = 1
𝜋𝑖

∫
𝑅+

𝜑(𝜏)
𝜏 − 𝑡 𝑑𝜏, (𝑀𝜑) (𝑡) = 1

𝜋𝑖

∫
𝑅+

𝜑(𝜏)
𝜏 − 𝑒−𝑖𝛼𝑡 𝑑𝜏,

(𝑁𝜑) (𝑡) = 1
𝜋𝑖

∫
𝑅+

𝜑(𝜏)
𝜏 − 𝑒𝑖𝛼𝑡 𝑑𝜏

(
𝑡 ∈ 𝑅+) .

From Theorems 2.2 and 2.3 it follows that operators 𝑀 and 𝑁 belong to the algebra
𝐾+ generated by the operator 𝑆(= 𝑆𝑅+) and the multiplication operators to the constant
functions. Therefore, 𝜈𝐾𝛼𝜈−1 ⊂ (𝐾+)2×2. Let {𝛾𝑀 } be the homeomorphism system that
determines the symbol on the algebra 𝐾+. For any operator 𝐴 ∈ 𝐾𝛼 we put

�̃�𝑀 (𝐴) =
𝛾𝑀 (

𝐴 𝑗𝑘
)2
𝑗 ,𝑘=1 , where

𝐴 𝑗𝑘2
𝑗 ,𝑘=1 = 𝜈𝐴𝜈−1.

4. Conditions for Noetherianity

Theorem 4.1. The operator 𝐴 ∈ 𝐾𝛼 is Noetherian in the space 𝐿𝑝
(
Γ𝛼, |𝑡 |𝛽

)
if and only

if

𝑑𝑒𝑡�̃�
𝑀
(𝐴) ≠ 0.
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Indeed, the factor algebra 𝐾+ with respect to all compact operators in 𝐿
(
𝐿𝑝

(
𝑅+, 𝑡𝛽

) )
is commutative, therefore, the elements of the matrix operator

𝐴 𝑗𝑘2
𝑗 ,𝑘=1 = 𝜈𝐴𝜈−1

commute up to compact. Then, according to [5], the operator
𝐴 𝑗𝑘2

𝑗 ,𝑘=1 is Noetherian in
𝐿𝑝

(
𝑅+, 𝑡𝛽

)
, if and only if the operatorΔ = 𝑑𝑒𝑡

𝐴 𝑗𝑘 is Noetherian in 𝐿𝑝
(
𝑅+, 𝑡𝛽

)
. But the

operator 𝑑𝑒𝑡
𝐴 𝑗𝑘 is Noetherian if and only if 𝛾

𝑀

(
𝑑𝑒𝑡

(𝐴 𝑗𝑘)) . As 𝛾
𝑀

(
𝑑𝑒𝑡

(𝐴 𝑗𝑘)) =
𝑑𝑒𝑡

𝛾
𝑀

(
𝐴 𝑗𝑘

), it follows that 𝐴 is Noetherian if and only if 𝑑𝑒𝑡�̃�
𝑀
(𝐴) ≠ 0.

The theorem is proved.
Conclusion. Theorem 4.1 allows us to define a symbol on the algebra K. Namely, it is
natural to call the matrix �̃�

𝑀
(𝐴) a symbol of the operators 𝐴 ∈ 𝐾 . Taking into account

formulas (3) and (4), the symbol of the operators 𝐻 = ℎ𝐼, ℎ ∈ 𝜆0(Γ) and 𝑆Γ will have the
form:

�̃�
𝑀
(𝐻)=

 ℎ1 0
0 ℎ2

 , �̃�𝑀
(𝑆Γ)=

 𝑧 (𝑧 − 1)1− 𝛼
2𝜋 (𝑧 + 1)

𝛼
2𝜋

(𝑧 − 1)
𝛼

2𝜋 (𝑧 + 1)1− 𝛼
2𝜋 −𝑧

 . (5)

We will write the symbol of the operator 𝑆Γ in a more convenient form. For this let us
put

𝑧 =
𝑒2𝜋 ( 𝜉+𝑖𝛾) + 1
𝑒2𝜋 ( 𝜉+𝑖𝛾) − 1

= 𝑐𝑡ℎ (𝜋 (𝜉 + 𝑖𝛾))
(
−∞ ≤ 𝜉 ≤ +∞, 𝛾 =

1 + 𝛽
𝑝

)
.

Then

(𝑧 − 1)1− 𝛼
2𝜋 (𝑧 + 1)

𝛼
2𝜋 = 2

𝑒 (𝛼−𝜋 ) ( 𝜉+𝑖𝛾)

𝑒𝜋 ( 𝜉+𝑖𝛾) − 𝑒−𝜋 ( 𝜉+𝑖𝛾)
=
𝑒 (𝛼−𝜋 ) ( 𝜉+𝑖𝛾)

𝑠ℎ𝜋(𝜉 + 𝑖𝛾) ,

(𝑧 − 1)
𝛼

2𝜋 (𝑧 + 1)1− 𝛼
2𝜋 = 2

𝑒 (𝜋−𝛼) ( 𝜉+𝑖𝛾)

𝑒𝜋 ( 𝜉+𝑖𝛾) − 𝑒−𝜋 ( 𝜉+𝑖𝛾)
=
𝑒 (𝜋−𝛼) ( 𝜉+𝑖𝛾)

𝑠ℎ𝜋(𝜉 + 𝑖𝛾) .

Therefore the symbol of the operator 𝑆Γ takes the form

�̃�
𝑀
(𝑆Γ) =

 𝑐𝑡ℎ (𝜋(𝜉 + 𝑖𝛾)) 𝑒 (𝛼−𝜋) (𝜉+𝑖𝛾)

𝑠ℎ𝜋 ( 𝜉+𝑖𝛾)
𝑒 (𝜋−𝛼) (𝜉+𝑖𝛾)

𝑠ℎ𝜋 ( 𝜉+𝑖𝛾) −𝑐𝑡ℎ (𝜋(𝜉 + 𝑖𝛾))

 . (6)

Remark 4.1. If 𝛼 = 𝜋, that is, the contour Γ satisfies the Lyapunov conditions at the point
𝑧0 = 0, then the symbol of the operator 𝐻 = ℎ𝐼 remains the same, and the symbol of the
operator 𝑆Γ has the form

�̃�
𝑀
(𝑆Γ) =

 𝑧
√
𝑧2 − 1√

𝑧2 − 1 −𝑧

 =
 𝑐𝑡ℎ𝜋 (𝜉 + 𝑖𝛾) (𝑠ℎ𝜋(𝜉 + 𝑖𝛾))−1

(𝑠ℎ𝜋(𝜉 + 𝑖𝛾))−1 −𝑐𝑡ℎ𝜋 (𝜉 + 𝑖𝛾)

 . (7)

Now we have what it is needed to define the symbol of the singular integral operators
with coefficients in 𝐶𝑃(Γ) in the case of the piecewise Lyapunov contour.
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So, let Γ be a piecewise closed Lyapunov contour. We denote by 𝑡1, . . . , 𝑡𝑛 all angular
points with angles 𝛼𝑘 (0 < 𝛼𝑘 < 𝜋) (𝑘 = 1, . . . , 𝑛) and

𝑝(𝑡) =
𝑛∏
𝑘=1

|𝑡 − 𝑡𝑘 |𝛽𝑘 (1 < 𝑝 < ∞, −1 < 𝛽𝑘 < 𝑝 − 1) .

We denote byΣ(Γ, 𝑝) (⊂ 𝐿 (𝐿𝑝 (Γ, 𝑝))) the algebra generated by the operators (𝐻𝜑) (𝑡) =
ℎ(𝑡)𝜑(𝑡), ℎ(𝑡) ∈ 𝐶𝑃(Γ) and the operator 𝑆Γ. We mention, that the ideal formed by the
compact operators acting in the space 𝐿𝑝 (Γ, 𝑝) is contained in the algebra Σ(Γ, 𝑝).

𝐻 (𝑡, 𝜉) =
 ℎ(𝑡 + 0) 0

0 ℎ(𝑡 − 0)

 . (8)

We define the symbol 𝑆Γ (𝑡, 𝜉) of the operator 𝑆Γ as follows:

𝑆(𝑡, 𝜉) =
 𝑐𝑡ℎ𝜋(𝜉 + 𝑖𝛾(𝑡)) − 𝑒𝑥𝑝 ( (𝛼(𝑡 )−𝜋 ) ( 𝜉+𝑖𝛾 (𝑡 ) ) )

𝑠ℎ𝜋 ( 𝜉+𝑖𝛾 (𝑡 ) )
𝑒𝑥𝑝 ( (𝜋−𝛼(𝑡 ) ) ( 𝜉+𝑖𝛾 (𝑡 ) ) )

𝑠ℎ𝜋 ( 𝜉+𝑖𝛾 (𝑡 ) ) −𝑐𝑡ℎ𝜋(𝜉 + 𝑖𝛾(𝑡))

 , (9)

where

𝛼(𝑡) =
{
𝛼𝑘 , 𝑖 𝑓 𝑡 = 𝑡𝑘 (𝑘 = 1, 2, . . . , 𝑛)
𝜋, 𝑖 𝑓 𝑡 ∈ Γ \ {𝑡1, 𝑡2, . . . , 𝑡𝑛}

and

𝛾(𝑡) =
{ 1+𝛽𝑘

𝑝
, 𝑖 𝑓 𝑡 = 𝑡𝑘 (𝑘 = 1, 2, . . . , 𝑛)

1
𝑝
, 𝑖 𝑓 𝑡 ∈ Γ \ {𝑡1, 𝑡2, . . . , 𝑡𝑛}

Theorem 4.2. Let and 𝐴 ∈ Σ(Γ, 𝜌) and 𝐴(𝑡, 𝜉) be its symbol. The operator 𝐴 is
Noetherian in the space 𝐿𝑝 (Γ, 𝜌) if and only if

𝑑𝑒𝑡𝐴(𝑡, 𝜉) ≠ 0 (𝑡 ∈ Γ,−∞ ≤ 𝜉 ≤ +∞).

The proof of Theorem 4.2 follows from Theorem 4.1, using the results from [8].
Theorems 4.1 and 4.2 can be generalized to the case where the integration contour

is complex. More precisely, let Γ consist of 𝑛 rays: Γ =
⋃𝑛
𝑚=1 Γ𝑚, where Γ𝑚 =

(𝜀𝑚𝑥 : 𝑥 ∈ 𝑅+, 𝜀𝑚 ∈ C, | |𝜀𝑚 | = 1), 𝑃𝐶0(Γ) is the set of functions continuous on Γ \ {0}
and having finite limits as 𝑡 → 0 and 𝑡 → ∞ along each ray Γ𝑚 and 𝐾𝑝 (⊂ 𝐿 (𝐿𝑝 (Γ))) is
the algebra generated by singular operators with coefficients from 𝑃𝐶0(Γ). We assume
that 𝜀1 = 1, i.e. that Γ1 = 𝑅+. Let 𝜇 denote the isometry 𝐿𝑝 (Γ) → 𝐿𝑛𝑝 (Γ1), defined by
the equality 𝜇𝜑 = (𝜑1, 𝜑2, . . . , 𝜑𝑛), where 𝜑𝑘 (𝑡) = 𝜑(𝜀𝑘𝑡) (𝑘 = 1, 2, . . . , 𝑛; 𝑡 ≥ 0). In
this case

𝜇𝐻𝜇−1 =


𝐻1 0 . . . 0
0 𝐻2 . . . 0
. . . .

0 0 . . . 𝐻𝑛

 , 𝜇𝑆Γ𝜇
−1 =

𝑅 𝑗𝑘𝑛𝑗,𝑘=1 .
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Here
(𝐻𝜑) (𝑡) = ℎ(𝑡)𝜑(𝑡), (𝐻𝑘𝜑) (𝑡) = ℎ(𝜀𝑘𝑡)𝜑(𝑡) (𝑡 ∈ Γ1)

and
(𝑅 𝑗𝑘𝜑) =

1
𝜋𝑖

∫ ∞

0

𝜑(𝜏)𝑑𝜏
𝜏 − 𝜀−1

𝑗
𝜀𝑘𝑡

.

It follows from Theorem 2.4 that 𝑅 𝑗𝑘 ∈ 𝐾+, hence 𝜇𝐾𝑝𝜇−1 ⊂ (𝐾+)𝑛×𝑛. As in Theorem
4.1, it can be shown that the operator 𝐴 ∈ 𝐾𝑝 is Noetherian if and only if the condition

𝑑𝑒𝑡
�̃�

𝑀

(
𝐴 𝑗𝑘

)𝑛
𝑗,𝑘=1 ≠ 0,

where 𝜇𝐴𝜇−1 =
𝐴 𝑗𝑘𝑛𝑗,𝑘=1. Thus,

�̃�
𝑀

(
𝐴 𝑗𝑘

)𝑛
𝑗,𝑘=1 defines a matrix symbol

on 𝐾𝑝.

5. Calculation of essential norms of singular operators

Recall (see [9]) that for any operator 𝐴 from some Banach algebra U with symmetric
symbol the following relation holds:

inf
𝑇∈T

∥𝐴 + 𝑇 ∥ = max
𝑥
𝑆1 (A(𝑥)) , (10)

where A(𝑥) is the symbol of the operator 𝐴, and 𝑆2
1 (A(𝑥)) denotes the largest eigenvalue

of the matrix A(𝑥) · (A(𝑥))∗ . Equality (10) is equivalent to the following equality

inf
𝑇∈J

∥𝐴 + 𝑇 ∥2 = max
𝜆∈ �̂� (𝐴𝐴∗ )

𝜆, (11)

where �̂�(𝐴𝐴∗) denotes the spectrum of the residue class {𝐴𝐴∗ + 𝑇} in the quotient
algebra U/T . The set �̂�(𝐴𝐴∗) coincides with the set of numbers 𝜆 for which the operator
𝐴𝐴

∗ − 𝜆𝐼 is not Noetherian.
Applying equality (11) to the operator 𝑆Γ𝛼

, taking into account formula (7), we obtain,

|𝑆Γ𝛼
|2𝛽 = lim

𝜉 ∈𝑅

(
𝑓 (𝜉) +

√︁
𝑓 2(𝜉) − 1

)
, (12)

where

𝑓 (𝜉) =
𝑒4𝜋 𝜉 + 2

(
𝑒 (4𝜋−2𝛼) 𝜉 + 𝑒2𝛼𝜉 − cos 𝜋𝛽𝑒2𝜋 𝜉

)
+ 1

𝑒4𝜋 𝜉 + 2 cos 𝜋𝛽𝑒2𝜋 𝜉 + 1
.

Let us give some examples. Suppose 𝛼 = 𝜋, i.e. Γ𝛼 is the real axis R, then from
equality (12) we obtain

|𝑆Γ𝛼
|𝛽 = ctg

𝜋(1 − |𝛽 |)
4

.

Assume that 𝛽 = 0 and let

𝑧 =
1 − 𝑒2𝜋 𝜉

1 + 𝑒2𝜋 𝜉 (−∞ ≤ 𝜉 ≤ +∞),
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then from equality (12) follows the following formula for the essential norm of the operator
𝑆Γ𝛼

:

|𝑆Γ𝛼
|0 = ctg

(
𝜃 (𝛼)

2

)
,

where

2 ctg 𝜃 (𝛼) = max
−1≤𝑧≤1

�����(1 + 𝑧)
(
1 − 𝑧
1 + 𝑧

) 𝛼
2𝜋

+ (1 − 𝑧)
(

1 + 𝑧
1 − 𝑧

) 𝛼
2𝜋

����� .
In particular, for 𝛼 = 𝜋

3 , 𝛼 = 𝜋
2 , we obtain |𝑆Γ𝛼

|0 = 1+
√

5
2 , |𝑆Γ𝛼

|0 =
√

2.
Thus, in the case of a contour with corner points, the essential norm of the singular

operator also depends on the values of the angles formed by the contour at its corner
points. We also note that for any 𝛼 (0 < 𝛼 ≤ 𝜋), the inequalities hold

1 ≤ |𝑆Γ𝛼
|0 < 1 +

√
2. (13)

Next, we will consider the case where the integration contour Γ has a finite number of
corner points.

Let Γ be a piecewise Lyapunov contour, 𝜏1, 𝜏2, . . . , 𝜏𝑠 be all corner points of the
contour Γ, and 𝛼1, 𝛼2, . . . , 𝛼𝑠 be the angles between the one-sided tangents to Γ at the
points 𝜏1, 𝜏2, . . . , 𝜏𝑠, respectively. In the space 𝐿2(Γ), we will consider the operator 𝐴
defined by the equality

𝐴 = 𝑆Γ𝑆
∗
Γ − 𝜆𝐼.

The symbol of the operator 𝐴 is the matrix function 𝐴(𝑡, 𝜉) (𝑡 ∈ Γ,−∞ ≤ 𝜉 ≤ ∞) of
the second order, defined as follows:

At points 𝑡 that do not coincide with any of the points 𝜏1, 𝜏2, . . . , 𝜏𝑠, we have

𝐴(𝑡, 𝜉) = (1 − 𝜆)𝐸2, (14)

where 𝐸2 is the identity matrix of the second order. But, at the points 𝜏𝑘 (𝑘 = 1, 2, . . . , 𝑠)
we obtain

𝐴(𝜏𝑘 , 𝜉) = 𝑆𝑘 (𝜉) (𝑆𝑘 (𝜉))∗ − 𝜆𝐸2, (15)

where 𝑆𝑘 (𝜉) coincides with the right-hand side of equality (9), in which 𝑝 = 2 and 𝛽𝑘 = 0.

Theorem 5.1. An operator 𝐴 = 𝑆Γ𝑆
∗
Γ
− 𝜆𝐼 is Noetherian in the space 𝐿2(Γ) if and only

if the determinant of its symbol is nonzero:

𝑑𝑒𝑡𝐴(𝑡, 𝜉) ≠ 0(𝑡 ∈ Γ,−∞ ≤ 𝜉 ≤ ∞).

To prove this theorem, we need the following lemma.
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Lemma 5.1. An operator 𝐴𝛼 = 𝑆𝛼𝑆
∗
𝛼 − 𝜆𝐼 (𝑆𝛼 = 𝑆Γ𝛼

), acting in the space 𝐿2(Γ𝛼), is
a local Noetherian operator∗ at 𝑡 = 0 if and only if it is a local Noetherian operator at
𝑡 = ∞.

Proof. Let the operator 𝐴𝛼 be local Noetherian at 𝑡 = 0. This means (see [9]) that it
has left and right local regularizers at this point, i.e. there exist operators 𝑅1, 𝑅2 and a
neighborhood𝑈0(∋ 0) such that. □

𝑅1𝐴𝛼𝑃𝑈0 = 𝑃𝑈0 + 𝑇1, 𝑃𝑈0𝐴𝛼𝑅2 = 𝑃𝑈0 + 𝑇2, (16)

where 𝑇1 and 𝑇2 are compact operators and 𝑃𝑈0 is an operator acting according to the rule(
𝑃𝑈0𝜑

)
(𝑡) =

{
𝜑(𝑡), 𝑖 𝑓 𝑡 ∈ 𝑈𝑜
0, 𝑖 𝑓 𝑡 ∈ 𝑈0\Γ𝛼

.

Let us consider the operator 𝑀 defined by the equality(
𝑀𝜑

)
(𝑡) = 𝑒𝑖𝛼

𝑡
𝜑

(
𝑒𝑖𝛼

𝑡

)
(𝑡 ∈ Γ𝛼) .

It is easy to prove that the operator 𝑀 acts in the space 𝐿2(Γ𝛼), ∥𝑀 ∥ = 1 and the
following equalities holds:

𝑀𝑆𝛼𝑀
−1 = 𝑆𝛼, 𝑀𝑆∗𝛼𝑀

−1 = 𝑆∗𝛼. (17)

Applying the operator 𝑀 to the equality (15) on the left and 𝑀−1 on the right and
taking into account the equality (16), we obtain

𝑅1𝐴𝛼𝑃𝑈∞ = 𝑃𝑈∞ + 𝑇1, 𝑃𝑈∞𝐴𝛼𝑅2 = 𝑃𝑈∞ + 𝑇2, (18)

where 𝑅𝑖 = 𝑀𝑃𝑖𝑀
−1 and 𝑇𝑖 = 𝑀𝑃𝑖𝑀

−1 (𝑖 = 1, 2), and 𝑈∞ is a neighborhood of the
point 𝑡 = ∞. The equality (18) means that the operator 𝐴𝛼 is locally Noetherian at the
point 𝑡 = ∞. The converse statement of the lemma is proved similarly. The lemma is
proved.

Proof of the Theorem 5.1. Let 𝐴 be a Noetherian operator and𝑈𝜏 be some neighborhood
of a point 𝜏(∈ Γ) that does not contain points 𝜏𝑘 ≠ 𝜏. By 𝜑𝜏 we denote a function defined
on 𝑈𝜏 as follows. If 𝜏 ≠ 𝜏𝑘 , then we set 𝜑𝜏 (𝑡) ≡ 𝑡 (𝑡 ∈ 𝑈𝜏). If 𝜏 = 𝜏𝑘 (𝑘 = 1, 2, . . . , 𝑠),
then 𝜑𝜏𝑘 is a function that maps one-to-one the neighborhood𝑈𝜏𝑘 onto some neighborhood
𝑉𝑘 (Γ𝛼𝑘 ) of the point 𝑡 = 0, where 𝜑𝜏𝑘 = 0 (𝑘 = 1, 2, . . . , 𝑠). Since Γ is a piecewise
Lyapunov contour, it is possible to achieve that the derivatives 𝜑′𝜏𝑘 (𝑡) (𝑡 ∈ 𝑈𝜏𝑘 ) satisfy
the Hölder. condition.

∗For the definition of 𝜑 - equivalence, see [9] on page 576.
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At each point 𝜏 ≠ 𝜏𝑘 the operator 𝐴 is 𝜑𝜏 equivalent to the operator
𝐶 = (1 − 𝜆)𝐼 acting in the space 𝐿2(Γ). Since 𝐴 is Noetherian, then (see [9] Theo-
rem 1.4) the operator 𝐶 is locally Noetherian at the point 𝜏, hence 𝜆 ≠ 1.

At the point 𝜏𝑘 , the operator 𝐴 is 𝜑𝜏𝑘 equivalent to the operator 𝐴𝑘 = 𝑆𝛼𝑘𝑆
∗
𝛼𝑘

− 𝜆𝐼,
acting in the space 𝐿2(Γ𝛼𝑘 ). It also follows that 𝐴𝑘 is a local Noetherian operator at the
point 𝑡 = 0. By Lemma 5.1, 𝐴𝑘 is a local Noetherian operator at the point 𝑡 = ∞. At
points 𝑡 ∈ Γ𝛼𝑘 other than zero and infinity, the operator 𝐴𝑘 is equivalent to the operator
(1− 𝜆)𝐼. Since 𝜆 ≠ 1, 𝐴𝑘 is local Noetherian at these points as well. Hence, by Theorem
1.6, it follows from [9] that 𝐴𝑘 is Noetherian in 𝐿2(Γ𝛼𝑘 ). It follows from Theorem 4.2
that 𝑑𝑒𝑡𝐴𝑘 (𝑡, 𝜉) ≠ 0 (𝑡 ∈ Γ𝛼𝑘 ,−∞ ≤ 𝜉 ≤ ∞). It is easy to see that 𝐴𝑘 (0, 𝜉) = 𝐴(𝜏𝑘 , 𝜉).
Therefore, 𝑑𝑒𝑡𝐴(𝑡, 𝜉) ≠ 0 (𝑡 ∈ Γ,−∞ ≤ 𝜉 ≤ ∞).

The necessity of the theorem is proved.
Sufficiency. Let 𝑑𝑒𝑡𝐴(𝑡, 𝜉) ≠ 0 (𝑡 ∈ Γ,−∞ ≤ 𝜉 ≤ ∞). Then 𝜆 ≠ 1 and

𝑑𝑒𝑡 (𝑆𝑘 (0, 𝜉) (𝑆𝑘 (0, 𝜉))∗ − 𝜆𝐸2) ≠ 0 (𝑘 = 1, 2, . . . , 𝑠).

From this and Lemma 5.1 it follows that the operators 𝐴𝑘 (𝑘 = 1, 2, . . . , 𝑠) and 𝐶 =

(1 − 𝜆)𝐼 are Noetherian. Since the operator 𝐴 at each point 𝜏 is 𝜑𝜏 equivalent to one of
these operators, it follows (see [9], Theorem 2.4) that 𝐴 is Noetherian. The theorem is
proved.

From Theorem 5.1 follows

Corollary 5.1. The operator 𝑆∗ does not belong to the algebra Σ(Γ) generated by the
operators 𝑎𝐼 (𝑎 ∈ 𝐶 (Γ)) and 𝑆Γ.

Indeed, let us assume that 𝑆∗ belongs to the algebra Σ(Γ). Since the symbols of the
operators from Σ(Γ) commute, the symbol of the operator 𝑅 = 𝜆𝐼 − (𝑆∗

Γ
𝑆Γ − 𝑆Γ𝑆∗Γ) is

equal to 𝜆. Consequently, for all 𝜆 ≠ 0 the operator 𝑅 is Noetherian. It is easy to verify
that this contradicts Theorem 5.1.

From Theorem 5.1 and equality (10) it is easy to deduce that the essential norm |𝑆Γ |
of the operator 𝑆Γ in the space 𝐿2(Γ) is defined by the equality

|𝑆Γ | = max
1≤𝑘≤𝑠

��𝑆𝛼𝑘 �� . (19)

From this and from equality (12) we conclude that the essential norm of the operator
𝑆Γ in the space 𝐿2(Γ) satisfies the conditions

1 ≤ |𝑆Γ | < 1 +
√

2.

Note that similarly, using the symbol and equality (13), we can calculate the essential
norms of the Riesz operators 𝑃Γ = (𝐼 + 𝑆Γ)/2 and 𝑄Γ = (𝐼 − 𝑆Γ)/2. It turns out that for
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these operators the following relation holds:

|𝑃Γ | = |𝑄Γ | =
|𝑆Γ |2 + 1
2|𝑆Γ |2

. (20)

Remark 5.1. The equality (20) confirms the following hypothesis of the mathematician
S. Marcus: let 𝐵 be some Banach space and 𝐿1, 𝐿2 subspaces from 𝐵 such that 𝐿1

⋂
𝐿2 =

0 and 𝐵 = 𝐿1 + 𝐿2, then equality

|𝑃 | = |𝑄 | = |𝑆Γ |2 + 1
2|𝑆Γ |2

takes place, where 𝑃 and 𝑄 are projectors projecting the space 𝐵 onto 𝐿1, respectively,
on 𝐿2 and 𝑆 = 𝑃 +𝑄.
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