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Affine invariant conditions for a class of differential polynomial
cubic systems

Cristina Bujac

Abstract. In this article the affine invariant criteria constructed in terms of algebraic
polynomials with coefficients �̃� ∈ R20 for a class of cubic systems are established.
We are focused on non-degenerate real cubic systems with 7 invariant straight lines,
considering the line at infinity and their multiplicities and possesing four real singularities
at infinity. Additionally, the only configurations of the type (3, 3) of mentioned systems
are considered and we denote this class by 𝐶𝑆𝐿4𝑟∞

(3,3) . In [5] the existence of exactly 14
configurations of invariant straight lines for systems in 𝐶𝑆𝐿4𝑟∞

(3,3) was proved. Here we
complete this classification by determining necessary and sufficient conditions for the
realization of each one of the 14 configurations in terms of affine invariant polynomials.
2020 Mathematics Subject Classification: 34C23, 34A34.
Keywords: polynomial cubic system, invariant straight line, finite/infinite singular point,
configuration of invariant straight lines, affine invariant conditions.

Condiţii afin invariante pentru o clasă de sisteme polinomiale
diferenţiale cubice

Rezumat. În acest articol sunt stabilite criterii invariante construite ı̂n termeni de poli-
noame algebrice cu coeficienţi �̃� ∈ R20 pentru o clasă de sisteme cubice. Ne concentrăm
pe sisteme cubice reale, nedegenerate, cu 7 drepte invariante, luând ı̂n consideraţie dreapta
de la infinit şi multiplicităţile acesteia, care posedă patru singularităţi reale la infinit. În
plus, sunt analizate doar configuraţiile de tipul (3, 3) ale sistemelor menţionate, iar această
clasă este notată cu 𝐶𝑆𝐿4𝑟∞

(3,3) . În [5] a fost demonstrată existenţa exact a 14 configuraţii
de drepte invariante pentru sistemele din 𝐶𝑆𝐿4𝑟∞

(3,3) . În acest articol, completăm această
clasificare prin determinarea condiţiilor necesare şi suficiente afin-invarinate pentru rea-
lizarea fiecăreia dintre cele 14 configuraţii depistate.
Cuvinte-cheie: sistem cubic polinomial, dreaptă invariantă, punct singular finit/infinit,
configuraţie de drepte invariante, condiţii afin-invariante.
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AFFINE INVARIANT CONDITIONS FOR A CLASS OF DIFFERENTIAL
POLYNOMIAL CUBIC SYSTEMS

1. Introduction and preliminary results

Consider the family CS of real cubic systems, i.e. systems of the form:

¤𝑥 = 𝑝0 + 𝑝1(𝑥, 𝑦) + 𝑝2(𝑥, 𝑦) + 𝑝3(𝑥, 𝑦) ≡ 𝑃(𝑎, 𝑥, 𝑦),

¤𝑦 = 𝑞0 + 𝑞1(𝑥, 𝑦) + 𝑞2(𝑥, 𝑦) + 𝑞3(𝑥, 𝑦) ≡ 𝑄(𝑎, 𝑥, 𝑦)
(1)

with variables 𝑥 and 𝑦 and real coefficients such that gcd(𝑃,𝑄) = 1 and
max(deg(𝑃,𝑄)) = 3. The polynomials 𝑝𝑖 (𝑥, 𝑦) and 𝑞𝑖 (𝑥, 𝑦) for 𝑖 = 0, 1, 2, 3 are
homogeneous polynomials of degree 𝑖 in variables 𝑥 and 𝑦:

𝑝0 = 𝑎00, 𝑝1(𝑥, 𝑦) = 𝑎10𝑥 + 𝑎01𝑦,

𝑝2(𝑥, 𝑦) = 𝑎20𝑥
2 + 2𝑎11𝑥𝑦 + 𝑎02𝑦

2,

𝑝3(𝑥, 𝑦) = 𝑎30𝑥
3 + 3𝑎21𝑥

2𝑦 + 3𝑎12𝑥𝑦
2 + 𝑎03𝑦

3,

𝑞0 = 𝑏00, 𝑞1(𝑥, 𝑦) = 𝑏10𝑥 + 𝑏01𝑦,

𝑞2(𝑥, 𝑦) = 𝑏20𝑥
2 + 2𝑏11𝑥𝑦 + 𝑏02𝑦

2,

𝑞3(𝑥, 𝑦) = 𝑏30𝑥
3 + 3𝑏21𝑥

2𝑦 + 3𝑏12𝑥𝑦
2 + 𝑏03𝑦

3.

Let 𝑎 ∈ 𝑅20, i.e. 𝑎 = (𝑎00, 𝑎10, 𝑎01, . . . , 𝑎03, 𝑏00, 𝑏10, 𝑏01, . . . , 𝑏03) be the 20-tuple of
the coefficients of systems (1). We denote

R[𝑎, 𝑥, 𝑦] = R[𝑎00, 𝑎10, 𝑎01, . . . , 𝑎03, 𝑏00, 𝑏10, 𝑏01, . . . , 𝑏03, 𝑥, 𝑦] .

The set CS of cubic differential systems (1) depends on 20 parameters, and therefore
mathematicians began studying particular families of CS. Among these families, there
are cubic systems with invariant straight lines, and we denote such families of systems by
CSL.

A line 𝑓 (𝑥, 𝑦) = 𝑤 + 𝑢𝑥 + 𝑣𝑦 = 0 over C is an invariant line for a system (1) if and
only if there exists 𝐾 (𝑥, 𝑦) ∈ C[𝑥, 𝑦], which satisfies the following identity in C[𝑥, 𝑦]:

𝑢𝑃(𝑥, 𝑦) + 𝑣𝑄(𝑥, 𝑦) = (𝑤 + 𝑢𝑥 + 𝑣𝑦)𝐾 (𝑥, 𝑦).

According to [1] the maximum number of the invariant straight lines (including the line
at infinity 𝑍 = 0) for cubic differential systems with a finite number of infinite singularities
is 9. In paper [17], all the possible configurations of invariant lines are obtained in the
case, when the total multiplicity of these lines (including the line at infinity) equals nine.
If the total multiplicity of these lines (including the line at infinity) equals eight, then all
possible configurations of invariant lines are found in [7, 8, 9, 10, 11].

We continue our investigation on CSL with invariant lines of total multiplicity 7 (the
line at infinity is considered). To each system in CSL, we associate its configuration of
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invariant lines, i.e. the set of its invariant lines together with the real singular points of
the system located on the union of these lines.

More precisely, we call configuration of invariant straight lines of a real planar poly-
nomial differential system (1), the set of (complex) invariant straight lines (which may
have real coefficients) including the line at infinity of the system, each endowed with its
own multiplicity and together with all the real singular points of this system located on
these invariant straight lines, each one endowed with its own multiplicity.

The notion of configuration of invariant lines for a polynomial differential system was
first introduced in [15].

It is known that on CS (1), the group 𝐴 𝑓 𝑓 (2,R) of affine transformations of the plane
acts [14]. For every subgroup 𝐺 ⊆ 𝐴 𝑓 𝑓 (2,R) we have an induced action of 𝐺 on CS.
We can identify the set CS of cubic systems (1) with a subset of R20 via the map CS −→
R20, which associates to each cubic system (1) the 20-tuple �̃� = (𝑎00, 𝑎10, 𝑎01, . . . , 𝑎03,

𝑏00, 𝑏10, 𝑏01, . . . , 𝑏03) of its coefficients.
The definitions of an affine or 𝐺𝐿-comitant or invariant as well as the definitions of a

𝑇-comitant and 𝐶𝑇-comitant can be found in [15] (see also [2]).
Here, we construct the necessary invariant polynomials (𝑇-comitants) that we need

for detecting the existence of invariant lines for the family of cubic systems having four
distinct real singularities and exactly seven invariant straight lines including the line at
infinity and counting multiplicities.

We consider the polynomials

𝐶𝑖 (𝑎, 𝑥, 𝑦) = 𝑦𝑝𝑖 (𝑎, 𝑥, 𝑦) − 𝑥𝑞𝑖 (𝑎, 𝑥, 𝑦) ∈ R[𝑎, 𝑥, 𝑦], 𝑖 = 0, 1, 2, 3,

𝐷𝑖 (𝑎, 𝑥, 𝑦) =
𝜕

𝜕𝑥
𝑝𝑖 (𝑎, 𝑥, 𝑦) +

𝜕

𝜕𝑦
𝑞𝑖 (𝑎, 𝑥, 𝑦) ∈ R[𝑎, 𝑥, 𝑦], 𝑖 = 1, 2, 3.

In [16] it was shown that the following polynomials{
𝐶𝑖 (𝑎, 𝑥, 𝑦), 𝐷1(𝑎), 𝐷2(𝑎, 𝑥, 𝑦), 𝐷3(𝑎, 𝑥, 𝑦), 𝑖 = 0, 1, 2, 3

}
(2)

of degree one in the coefficients of systems (1) are 𝐺𝐿-comitants of these systems.
Notation 3. Let 𝑓 , 𝑔 ∈ 𝑅[𝑎, 𝑥, 𝑦] and

( 𝑓 , 𝑔) (𝑘 ) =
𝑘∑︁

ℎ=0
(−1)ℎ

(
𝑘

ℎ

)
𝜕𝑘 𝑓

𝜕𝑥𝑘−ℎ𝜕𝑦ℎ
𝜕𝑘𝑔

𝜕𝑥ℎ𝜕𝑦𝑘−ℎ
.

( 𝑓 , 𝑔) (𝑘 ) ∈ R[𝑎, 𝑥, 𝑦] is called the transvectant of index 𝑘 of ( 𝑓 , 𝑔) (cf. [12, 18]).
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To define the invariant polynomials, we first construct the comitants of the second
degree, with respect to the coefficients of the initial systems (1), of the form:

𝑆1 = (𝐶0, 𝐶1) (1) , 𝑆10 = (𝐶1, 𝐶3) (1) , 𝑆19 = (𝐶2, 𝐷3) (1) ,

𝑆2 = (𝐶0, 𝐶2) (1) , 𝑆11 = (𝐶1, 𝐶3) (2) , 𝑆20 = (𝐶2, 𝐷3) (2) ,

𝑆3 = (𝐶0, 𝐷2) (1) , 𝑆12 = (𝐶1, 𝐷3) (1) , 𝑆21 = (𝐷2, 𝐶3) (1) ,

𝑆4 = (𝐶0, 𝐶3) (1) , 𝑆13 = (𝐶1, 𝐷3) (2) , 𝑆22 = (𝐷2, 𝐷3) (1) ,

𝑆5 = (𝐶0, 𝐷3) (1) , 𝑆14 = (𝐶2, 𝐶2) (2) , 𝑆23 = (𝐶3, 𝐶3) (2) ,

𝑆6 = (𝐶1, 𝐶1) (2) , 𝑆15 = (𝐶2, 𝐷2) (1) , 𝑆24 = (𝐶3, 𝐶3) (4) ,

𝑆7 = (𝐶1, 𝐶2) (1) , 𝑆16 = (𝐶2, 𝐶3) (1) , 𝑆25 = (𝐶3, 𝐷3) (1) ,

𝑆8 = (𝐶1, 𝐶2) (2) , 𝑆17 = (𝐶2, 𝐶3) (2) , 𝑆26 = (𝐶3, 𝐷3) (2) ,

𝑆9 = (𝐶1, 𝐷2) (1) , 𝑆18 = (𝐶2, 𝐶3) (3) , 𝑆27 = (𝐷3, 𝐷3) (2) .

Next we determine the conditions for the existence of the couples of parallel invariant
straight lines which a cubic system can have (see Theorem 1.1). For this we use the
following invariant polynomials constructed in [17] and [8]:

V1(𝑎, 𝑥, 𝑦) = 𝑆23 + 2𝐷2
3,

V2(𝑎, 𝑥, 𝑦) = 𝑆26,

V3(𝑎, 𝑥, 𝑦) = 6𝑆25 − 3𝑆23 − 2𝐷2
3,

V4(𝑎, 𝑥, 𝑦) = 𝐶3

[
(𝐶3, 𝑆23) (4) + 36 (𝐷3, 𝑆26) (2)

]
,

V5(𝑎, 𝑥, 𝑦) = 6𝐶3(9𝐴5 − 7𝐴6) + 2𝐷3(4𝑇16 − 𝑇17) − 3𝑇3(3𝐴1 + 5𝐴2)+

+ 3𝐴2𝑇4 + 36𝑇2
5 − 3𝑇44,

U1(𝑎, 𝑥, 𝑦) = 𝑆24 − 4𝑆27,

U2(𝑎, 𝑥, 𝑦) = 6(𝑆23 − 3𝑆25, 𝑆26) (2) − 3𝑆23(𝑆24 − 8𝑆27)−

− 24𝑆2
26 + 2𝐶3(𝐶3, 𝑆23) (4) + 24𝐷3(𝐷3, 𝑆26) (1) + 24𝐷2

3𝑆27.
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In order to construct the needed affine invariant conditions, we will use the following
polynomials:

H1 = 48𝐷4
1𝑆24

[
2𝐷2

1 + 3𝑆6
]
+ 192𝐷5

1(𝑆18, 𝐷2) (1) + 12𝑆2
6𝑆24

[
6𝐷2

1 + 𝑆6
]

+ 216𝑆3𝑆24
[
4𝐷4

1 − 𝑆
2
6 − 16𝑆2

3
]
− 108𝑆24(𝑆5, 𝐶0) (1)

[
8𝐷3

1 − 12𝐷1𝑆6

+ 72𝐷1𝑆3−9(𝑆5, 𝐶0) (1)
]
− 216𝑆24(𝑆8, 𝐶0) (1)

[
4𝐷3

1+2𝐷1𝑆6+9(𝑆5, 𝐶0) (1)
]

− 192
[
(𝑆18, 𝐶0) (1)

]2 [13𝐷2
1+9𝑆6+24𝑆3

]
−24(𝑆18, 𝐶0) (1) (𝑆14, 𝐶1) (2)

[
66𝐷2

1

+ 17𝑆6−72𝑆3
]
+16(𝑆18, 𝐷2) (1)

[
12𝐷3

1𝑆6+3𝐷1𝑆
2
6+104𝐷3

1𝑆3 − 45𝐷1𝑆3𝑆6

+288𝐷1𝑆
2
3+360𝐷1

2(𝑆5,𝐶0)(1)+189𝑆6(𝑆5,𝐶0)(1)+24𝑆6(𝑆8,𝐶0)(1)−144𝑆3(𝑆8,𝐶0)(1)
]

+216𝑆24
(
(𝑆11, 𝐶0) (1) , 𝐶0

) (1) [6𝐷2
1 − 𝑆6 + 9𝑆3

]
+ 36

(
(𝑆14,𝐶0) (1),𝐶0

) (1)
×
[
15𝐷2

1𝑆24+12𝑆3𝑆24+(𝑆18,𝐷2)(1)
]
+1152𝐷1(𝑆18,𝐶0

(1) (𝑆18,𝐶1) (1),𝐶0
)(1)

− 768
[ (
(𝑆14,𝐶0)(1),𝐷2

)(1) ]2+24
(
(𝑆18, 𝐶2) (1) , 𝐶1

) (2) [4𝐷4
1+4𝐷2

1𝑆6+𝑆2
6

+96𝐷2
1𝑆3−33𝐷1(𝑆8,𝐶0)(1)−63

(
(𝑆11,𝐶0)(1),𝐶0

) (1)]+3
(
(𝑆14,𝐶2)(1),𝐶2

)(3)×[
4𝐷4

1 + 4𝐷2
1𝑆6 + 𝑆2

6 + 32𝐷2
1𝑆3 − 16𝑆3𝑆6 − 32𝐷1(𝑆8, 𝐶0) (1)

− 64
(
(𝑆14, 𝐶0) (1) , 𝐶0

) (1) ] − 144
[
9𝐷1𝑆24 + 16(𝑆18, 𝐷2) (1)

]
×( (

(𝑆17, 𝐶0) (1) , 𝐶0
) (1)

, 𝐶0
) (1) − 64

( (
(𝑆18, 𝐶2) (1) , 𝐶2

) (2)
, 𝐶0

) (1) [
𝐷3

1

− 18(𝑆8, 𝐶0) (1)
]
+ 243𝑆24

( ( (
(𝑆25, 𝐶0) (1) , 𝐶0

) (1)
, 𝐶0

) (1)
, 𝐶0

) (1) ;
H2 = − 3𝑆24

[
4𝐷3

1−18(𝑆5, 𝐶0)(1)+9(𝑆8, 𝐶0)(1)+2(𝑆18, 𝐷2)(1)
[
6𝐷2

1+16𝑆3−3𝑆6
]

+18𝐷1𝑆24
[
3𝑆3−𝑆6

]
− 12𝐷1

(
(𝑆18,𝐶2)(1),𝐶1

)(2)+32
( (
(𝑆18,𝐶2)(1) ,𝐶2

)(2) ,𝐶0
)(1) ;

H3 = 72𝑇136(2307𝑇140 − 607𝑇141) + 𝑇74(13𝑇144 + 264𝑇145);

H4 = 𝑇74;

H5 = 12𝐷4
1𝑆24 − 18𝐷1𝑆6(𝑆18, 𝐷2) (1) + 128𝐷1𝑆3(𝑆18, 𝐷2) (1)

− 48(𝑆8, 𝐶0) (1) (𝑆18, 𝐷2) (1) + 27𝑆24((𝑆11, 𝐶0) (1) , 𝐶0) (1)

− 9𝑆24((𝑆14, 𝐶0) (1) , 𝐶0) (1) + 18𝐷2
1((𝑆18, 𝐶2) (1) , 𝐶1) (2)

−7𝑆6((𝑆18, 𝐶2) (1) ,𝐶1) (2)+2𝐷2
1((𝑆14, 𝐶2) (1) , 𝐶2) (3) − 𝑆6((𝑆14, 𝐶2) (1) ,𝐶2) (3)

+ 8𝑆3((𝑆14, 𝐶2) (1) , 𝐶2) (3) − 3𝑆2
6𝑆24 − 16𝐷1(((𝑆18, 𝐶2) (1) , 𝐶2) (2) , 𝐶0) (1)

+ 54𝐷2
1𝑆3𝑆24 + 27𝑆6𝑆3𝑆24 − 36𝑆2

3𝑆24 − 54𝐷1𝑆24(𝑆5, 𝐶0) (1)

− 48(𝑆18, 𝐶0) (1) )2 + 60(𝑆18, 𝐶0) (1) (𝑆14, 𝐶1) (2) + 28𝐷3
1(𝑆18, 𝐷2) (1) .
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Here the polynomials

𝐴1 = 𝑆24/288, 𝐴2 = 𝑆27/72,

𝐴5 = (𝑆23, 𝐶3) (4)/27/35, 𝐴6 = (𝑆26, 𝐷3) (2)/25/33

are affine invariants and

𝑇3 =𝑆23/18, 𝑇4 = 𝑆25/6, 𝑇5 = 𝑆26/72,

𝑇6 =(3𝐶1𝐷
2
3 − 27𝐶1𝑇3 + 54𝐶1𝑇4 + 4𝐶3𝐷

2
2 − 2𝐶3𝑆14+

+ 16𝐶3𝑆14 − 4𝐶2𝐷2𝐷3 + 2𝐶2𝑆17 + 12𝐶2𝑆21 − 4𝐶2𝑆19)/24/32,

𝑇11 =(𝐷2
3, 𝐶2) (2) − 9(𝑇3, 𝐶2) (2) + 18(𝑇4, 𝐶2) (2) − 6(𝐷2

3, 𝐷2) (1)+

+ 54(𝑇3, 𝐷2) (1) − 108(𝑇4, 𝐷2) (1) + 12𝐷2𝑆26 − 12(𝑆26, 𝐶2) (1)+

+ 432𝐶2𝐴1 − 2160𝐶2𝐴2)/27/34,

𝑇16 =(𝑆23, 𝐷3) (2)/2633, 𝑇17 = (𝑆26, 𝐷3) (1)/25/33,

𝑇74 =(2187𝑇2
3𝐶0 + 8748𝑇2

4𝐶0 + 20736𝑇11𝐶
2
2 − 62208𝑇11𝐶1𝐶3+

+ 108𝐶3𝐷1𝐷2𝐷
2
3 − 8𝐶2𝐷

2
2𝐷

2
3 − 54𝐶2𝐷1𝐷

3
3 + 6𝐶1𝐷2𝐷

3
3+

+ 27𝐶0𝐷
4
3 − 54𝐶3𝐷

2
3𝑆8 + 108𝐶3𝐷

2
3𝑆9 + 27𝐶2𝐷

2
3𝑆11 − 27𝐶2𝐷

2
3𝑆12+

+ 4𝐶2𝐷
2
3𝑆14 − 32𝐶2𝐷

2
3𝑆15 + 54𝐷1𝐷

2
3𝑆16 − 3𝐶1𝐷

2
3𝑆17 + 6𝐶1𝐷

2
3𝑆19−

− 9𝑇3(54𝐶0(18𝑇4 + 𝐷2
3) + 54𝐶3(2𝐷1𝐷2 − 𝑆8 + 2𝑆9) − 𝐶2(8𝐷2

2+

+ 54𝐷1𝐷3 − 27𝑆11 + 27𝑆12 − 4𝑆14 + 32𝑆15) + 54𝐷1𝑆16 + 3𝐶1(2𝐷2𝐷3−

−𝑆17+2𝑆19−6𝑆21))−576𝑇6(2𝐷2𝐷3−𝑆17+2𝑆19−6𝑆21)−18𝐶1𝐷
2
3𝑆21+

+ 18𝑇4(6𝐶1𝐷2𝐷3 + 54𝐶0𝐷
2
3 + 54𝐶3(2𝐷1𝐷2 − 𝑆8 + 2𝑆9) − 𝐶2(8𝐷2

2+

+ 54𝐷1𝐷3 − 27𝑆11 + 27𝑆12 − 4𝑆14 + 32𝑆15) + 54𝐷1𝑆16 − 3𝐶1𝑆17+

+ 6𝐶1𝑆19 − 18𝐶1𝑆21))/28/34,

𝑇44 =((𝑆23, 𝐶3) (1) , 𝐷3) (2) , 𝑇133 =
(
𝑇74,𝐶3

) (1)
, 𝑇137 =

(
𝑇74,𝐷3

) (1)/6,

𝑇136 =
(
𝑇74, 𝐶3

) (2)/24, 𝑇140 =
(
𝑇74, 𝐷3

) (2)/12,

𝑇141 =
(
𝑇74, 𝐶3

) (3)/36, 𝑇144 =
(
𝑇133, 𝐶3

) (4)
, 𝑇145 =

(
𝑇137, 𝐶3

) (3)
are 𝑇-comitants of cubic systems (1) (see [15] for the definition of a 𝑇-comitant). We
note that for the above invariant polynomials, we preserve the notations introduced in [8].
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Using a different notation for the coefficients, we rewrite the cubic systems (1) as:

¤𝑥 = 𝑎+𝑐𝑥+𝑑𝑦+𝑔𝑥2+2ℎ𝑥𝑦+𝑘𝑦2+𝑝𝑥3+3𝑞𝑥2𝑦+3𝑟𝑥𝑦2+𝑠𝑦3 ≡ 𝑃(𝑥, 𝑦),

¤𝑦 = 𝑏+𝑒𝑥+ 𝑓 𝑦+𝑙𝑥2+2𝑚𝑥𝑦+𝑛𝑦2+𝑡𝑥3+3𝑢𝑥2𝑦+3𝑣𝑥𝑦2+𝑤𝑦3 ≡ 𝑄(𝑥, 𝑦).
(3)

Let 𝐿 (𝑥, 𝑦) = 𝑊 + 𝑈𝑥 + 𝑉𝑦 = 0 be an invariant straight line of this family of cubic
systems. Then, we get

𝑈𝑃(𝑥, 𝑦) +𝑉𝑄(𝑥, 𝑦) = (𝑊 +𝑈𝑥 +𝑉𝑦) (𝐹 + 𝐷𝑥 + 𝐸𝑦 + 𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2),

and this identity yields the following equations:

𝐸𝑞1 = 𝑡𝑉 + (𝑝 − 𝐴)𝑈 = 0,
𝐸𝑞2 = (3𝑢 − 𝐴)𝑉 + (3𝑞 − 2𝐵)𝑈 = 0,
𝐸𝑞3 = (3𝑣 − 2𝐵)𝑉 + (3𝑟 − 𝐶)𝑈 = 0,
𝐸𝑞4 = (𝑠 − 𝐶)𝑈 +𝑉𝑤 = 0,
𝐸𝑞5 = 𝑙𝑉 + (𝑔 − 𝐷)𝑈 − 𝐴𝑊 = 0,
𝐸𝑞6 = (2𝑚 − 𝐷)𝑉 + (2ℎ − 𝐸)𝑈 − 2𝐵𝑊 = 0,
𝐸𝑞7 = (𝑛 − 𝐸)𝑉 + 𝑘𝑈 − 𝐶𝑊 = 0,
𝐸𝑞8 = 𝑒𝑉 + (𝑐 − 𝐹)𝑈 − 𝐷𝑊 = 0,
𝐸𝑞9 = ( 𝑓 − 𝐹)𝑉 + 𝑑𝑈 − 𝐸𝑊 = 0,
𝐸𝑞10 = 𝑏𝑉 + 𝑎𝑈 − 𝐹𝑊 = 0.

(4)

The infinite singularities (real or complex) of systems (3) are determined by the linear
factors in the factorization over C of the polynomial

𝐶3 = 𝑦𝑝3(𝑥, 𝑦) − 𝑥𝑞3(𝑥, 𝑦).

All possible configurations of invariant lines, in the case, when the total multiplicity of
these lines (including the line at infinity) equals seven possessing at infinity four distinct
infinite singularities (all real, or two real and two complex), are determined in [5, 4, 3, 6].
In these papers, the author studied the above-mentioned systems according to the type of
configurations of invariant straight lines. Additionally, the affine invariant conditions for
the class of cubic systems possessing two real and two complex singularities at infinity
was constructed.

In this paper, the class of cubic systems with four real distinct infinite singularities and
invariant straight lines in the configuration of the type (3, 3) is considered. All possible
configurations of invariant straight lines for this class were constructed in [5] (see Figure
1). Our goal is to determine the affine invariant conditions for the realization of each one
of these 14 configurations.
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According to [17] (see also [19]) we have the following results ( Lemma 1.1, Lemma
1.2 and Theorem 1.1).

Lemma 1.1. A cubic system 𝑆 ∈ CS has 4 real distinct infinite singularities if and only if

D1 > 0, D2 > 0, D3 > 0.

Lemma 1.2. If a cubic system 𝑆 ∈ CS has 4 real distinct infinite singularities, then this
system could be brought via a linear transformation to the canonical form{

𝑥′ = 𝑝0 + 𝑝1(𝑥, 𝑦) + 𝑝2(𝑥, 𝑦) + (𝑝 + 𝑟)𝑥3 + (𝑠 + 𝑣)𝑥2𝑦 + 𝑞𝑥𝑦2,

𝑦′ = 𝑞0 + 𝑞1(𝑥, 𝑦) + 𝑞2(𝑥, 𝑦) + 𝑝𝑥2𝑦 + (𝑟 + 𝑣)𝑥𝑦2 + (𝑞 + 𝑠)𝑦3,
(5)

with 𝑟𝑠(𝑟 + 𝑠) ≠ 0 and 𝐶3 = 𝑥𝑦(𝑥 − 𝑦) (𝑟𝑥 + 𝑠𝑦).

Theorem 1.1 ([3]). Assume that a cubic system 𝑆 ∈ CS possesses a given number of
triplets or/and couples of invariant parallel lines real or/and complex. Then the following
conditions are satisfied, respectively:

(i) two triplets ⇒ V1 = V2 = U1 = 0;
(ii) one triplet and one couple ⇒ V4 = V5 = U2 = 0;
(iii) one triplet ⇒ V4 = U2 = 0;
(iv) 3 couples ⇒ V3 = 0;
(v) 2 couples ⇒ V5 = 0.

According to [5] the following lemma is valid:

Lemma 1.3. Assume the family of cubic system possessing 4 real distinct infinite singu-
larities, i.e. the conditions D1 > 0, D2 > 0, D3 > 0 hold. We additionally consider that
for this family the condition V1 = V2 = 0 is satisfied. Then:

(A) this family of cubic systems could be brought via an affine transformation and
time rescaling to the systems

¤𝑥 = 𝑎 + 𝑐𝑥 + 𝑑𝑦 + 2ℎ𝑥𝑦 + 𝑘𝑦2 + 𝑥3,

¤𝑦 = 𝑏 + 𝑒𝑥 + 𝑓 𝑦 + 𝑙𝑥2 + 2𝑚𝑥𝑦 + 𝑦3;
(6)

(B) a cubic system (6) has invariant straight lines of total multiplicity 7 (including the
line at infinity) in the configuration of the type (3, 3) if and only if the following
conditions hold:

𝑘 = 𝑑 = ℎ = 𝑒 = 𝑙 = 𝑚 = 0, (𝑐 − 𝑓 )2 + (𝑎2 − 𝑏2)2 ≠ 0. (7)

So, according to (7) systems (6) became of the form

¤𝑥 = 𝑎 + 𝑐𝑥 + 𝑥3, ¤𝑦 = 𝑏 + 𝑓 𝑦 + 𝑦3. (8)
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We denote

𝜉1 = −(27𝑎2 + 4𝑐3), 𝜉2 = −(27𝑏2 + 4 𝑓 3), 𝜈1 = 𝑎2 + 𝑐2, 𝜈2 = 𝑏2 + 𝑓 2.

According to [5, Theorem 3.2, Subsection 3.1] we have the following lemma:

Lemma 1.4. Assume that for a system (8) the conditions given below in terms of the
polynomials 𝜉1, 𝜉2, 𝜈1 and 𝜈2 are satisfied. Then this system could be brought via an
affine transformation and time rescaling to one of the presented below canonical systems
(9)–(17). Moreover, this system possesses one of the configurations Config. 7.1a –
7.14a (see Figure 1) if and only if the conditions under the parameters 𝑎 and 𝑏 of the
corresponding canonical system (when these conditions exist) are satisfied, respectively:

𝜉1𝜉2 > 0, 𝜉1 + 𝜉2 > 0 ⇒ (9) ⇔ Config. 7.1a;

𝜉1𝜉2 > 0, 𝜉1 + 𝜉2 < 0 ⇒ (10),


𝑎𝑏≠0 ⇔Config. 7.2a;
𝑎𝑏=0,𝑎+𝑏≠0 ⇔Config. 7. 3a;
𝑎=𝑏= 0 ⇔ Config. 7.4a;

𝜉1𝜉2 < 0 ⇒ (11) with

[
𝑏 ≠ 0 ⇔ Config. 7.5a;
𝑏 = 0 ⇔ Config. 7.6a;

𝜉1𝜉2 = 0, 𝜉1 + 𝜉2 > 0, 𝜈1𝜈2 ≠ 0 ⇔ (12) ⇒ Config. 7.7a;

𝜉1𝜉2 = 0, 𝜉1 + 𝜉2 < 0, 𝜈1𝜈2 ≠ 0 ⇒ (13) with

[
𝑏 ≠ 0 ⇔ Config. 7.8a;
𝑏 = 0 ⇔ Config. 7.9a;

𝜉1𝜉2 = 0, 𝜉1 + 𝜉2 > 0, 𝜈1𝜈2 = 0 ⇒ (14) ⇔ Config. 7.10a;

𝜉1𝜉2 = 0, 𝜉1 + 𝜉2 < 0, 𝜈1𝜈2 = 0 ⇒ (15) with

[
𝑏≠0 ⇔ Config. 7.11a;
𝑏=0 ⇔ Config. 7.12a;

𝜉1𝜉2 = 0, 𝜉1 + 𝜉2 = 0, 𝜈1𝜈2 ≠ 0 ⇒ (16) ⇔ Config. 7.13a;

𝜉1𝜉2 = 0, 𝜉1 + 𝜉2 = 0, 𝜈1𝜈2 = 0 ⇒ (17) ⇔ Config. 7.14a.

The canonical systems indicated in the statement of the above lemma are the following
ones:

¤𝑥 = 𝑥(𝑥 − 1) (𝑥 − 𝑎), ¤𝑦 = 𝑦(𝑦 − 𝑏) (𝑦 − 𝑐), 𝑎(𝑎 + 1)𝑏𝑐(𝑏 − 𝑐) ≠ 0, (9)

¤𝑥 = 𝑥
[
(𝑥 + 𝑎)2 + 𝑐

]
, ¤𝑦 = 𝑦

[
(𝑦 + 𝑏)2 + 𝑓

]
, 𝑐 > 0, 𝑓 > 0. (10)

¤𝑥 = 𝑥(𝑥 − 1) (𝑥 − 𝑎), ¤𝑦 = 𝑦
[
(𝑦 + 𝑏)2 + 𝑐

]
, 𝑎(𝑎 − 1) ≠ 0 𝑐 > 0. (11)

¤𝑥 = 𝑥2(𝑥 − 1), ¤𝑦 = 𝑦(𝑦 − 𝑏) (𝑦 − 𝑐), 𝑏𝑐(𝑏 − 𝑐) ≠ 0. (12)

¤𝑥 = 𝑥2(𝑥 − 1), ¤𝑦 = 𝑦
[
(𝑦 + 𝑏)2 + 𝑐

]
, 𝑐 > 0. (13)
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Figure 1. Configurations of invariant straght lines for systems in 𝐶𝑆𝐿4𝑟∞
(3,3)

¤𝑥 = 𝑥3, ¤𝑦 = 𝑦(𝑦 − 1) (𝑦 − 𝑏), 𝑏(𝑏 − 1) ≠ 0. (14)

¤𝑥 = 𝑥3, ¤𝑦 = 𝑦
[
1 + (𝑦 + 𝑏)2] . (15)

¤𝑥 = 𝑥2(𝑥 − 1), ¤𝑦 = 𝑦2(𝑦 − 𝑏), 𝑏 ≠ 0. (16)

¤𝑥 = 𝑥3, ¤𝑦 = 𝑦2(𝑦 − 1). (17)
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2. Invariant criteria for the realization of the configurations Config.
7.1a - Config. 7.14a of systems belonging to 𝐶𝐿𝑆4𝑟∞

(3,3)

First we prove the following lemma.

Lemma 2.1. An arbitrary non-degenerate cubic system belongs to the class 𝐶𝐿𝑆4𝑟∞
(3,3) if

and only if the following conditions hold:

D1 > 0,D2 > 0,D3 > 0,V1 = V2 = U1 = L1 = L8 = 0,L2
2 + K2

1 ≠ 0. (18)

Proof. According to Lemma 1.3 systems (6) could have two triplets of invariant straight
line if and only if the conditions (7) are satisfied.

For systems (6) we calculate:

L1 = −20736(𝑙𝑥3 + 2𝑚𝑥2𝑦 − 2ℎ𝑥𝑦2 − 𝑘𝑦3).

Evidently L1 = 0 is equivalent to 𝑙 = 𝑚 = ℎ = 𝑘 = 0.
We define the new invariant polynomial

L8 = 𝑇15 − 2𝑇14

and evaluate it for systems (6) in the case 𝑙 = 𝑚 = ℎ = 𝑘 = 0:

L8 = 3𝑒𝑥2 − 3𝑑𝑦2.

It is evident that the condition L8 = 0 is equivalent to 𝑑 = 𝑒 = 0. Therefore, we have
found out the invariant conditions which are equivalent with the first part of the conditions
(7). So, applying L1 = L8 = 0 to systems (6) we arrive at systems (8) for which we
calculate

L2 = −186624(𝑐 − 𝑓 )𝑥𝑦, K1 = 2173155474 · 817(𝑎2 − 𝑏2) (𝑥2 − 𝑦2).

Therefore, we deduce that the condition L2
2 + K2

1 ≠ 0 is equivalent to

(𝑐 − 𝑓 )2 + (𝑎2 − 𝑏2)2 ≠ 0.

The proof is complete. □

Next, we prove our main result.

Theorem 2.1. Assume that for a generic cubic system (3) the conditions (18) are satisfied,
i.e. this system belongs to the class 𝐶𝐿𝑆4𝑟∞

(3,3) . Then this system has one of the configura-
tions Config. 7.1 – 7.14 if and only if one of the following sets of conditions is satisfied,
correspondingly:
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(𝐴1) H1 > 0, H2 > 0 ⇔ Config. 7.1a;

(𝐴2) H1 > 0, H2 < 0, H3 ≠ 0 ⇔ Config. 7.2a;

(𝐴3) H1 > 0, H2 < 0, H3 = 0, H4 ≠ 0 ⇔ Config. 7.3a;

(𝐴4) H1 > 0, H2 < 0, H3 = H4 = 0 ⇔ Config. 7.4a;

(𝐴5) H1 < 0, H3 ≠ 0 ⇔ Config. 7.5a;

(𝐴6) H1 < 0, H3 = 0 ⇒ Config. 7.5a or 7.6a;

(𝐴7) H1 = 0, H2 > 0, H5 ≠ 0 ⇔ Config. 7.7a;

(𝐴8) H1 = 0, H2 < 0, H5 ≠ 0, H3 ≠ 0 ⇔ Config. 7.8a;

(𝐴9) H1 = 0, H2 < 0, H5 ≠ 0, H3 = 0 ⇔ Config. 7.9a;

(𝐴10) H1 = 0, H2 > 0, H5 = 0 ⇔ Config. 7.10a;

(𝐴11) H1 = 0, H2 < 0, H5 = 0, K2 ≠ 0 ⇔ Config. 7.11a;

(𝐴12) H1 = 0, H2 < 0, H5 = 0, K2 = 0 ⇔ Config. 7.12a;

(𝐴13) H1 = 0, H2 = 0, H3 ≠ 0 ⇔ Config. 7.13a;

(𝐴14) H1 = 0, H2 = 0, H3 = 0 ⇔ Config. 7.14a.

Proof. Consider a cubic system belonging to 𝐶𝐿𝑆4𝑟∞
(3,3) . As it was prove earlier, such a

system via an affine transformation an time rescaling could be brought to the canonical
form (8). For these systems we calculate

H1 =21233(27𝑎2 + 4𝑐3) (27𝑏2 + 4 𝑓 3) = 21233𝜉1𝜉2;

H2 =2734(27𝑎2 + 27𝑏2 + 4𝑐3 + 4 𝑓 3) (𝑥2 + 𝑦2) = 2734(𝜉1 + 𝜉2) (𝑥2 + 𝑦2).
(19)

The statement (𝐴1). According to Theorem 2.1, we have H1 > 0, H2 > 0 and by (19)
these conditions are equivalent to 𝜉1𝜉2 > 0 and 𝜉1 + 𝜉2 > 0, respectively. As a result,
according to Lemma 1.4, we get systems (9) for which we calculate:

H1 = 21233𝑎2𝑏2𝑐2(𝑎 − 1)2(𝑏 − 𝑐)2.

Therefore, the condition H1 > 0 imply 𝑎(𝑎+1)𝑏𝑐(𝑏−𝑐) ≠ 0. Thus, according to Lemma
1.4 we arrive at configuration Config. 7.1a. This completes the proof of the statemant
(𝐴1) of the theorem.

The statements (𝐴2) − (𝐴4). We observe that the conditions H1 > 0, H2 < 0 are
common for all these three statements. On the other hand these conditions are equivalent
to 𝜉1𝜉2 > 0 and 𝜉1+𝜉2 < 0. By [5] via an affine transformation and time rescaling systems
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(8) could be brought to the form (10) for which we calculate

H1 =21633𝑐 𝑓 (𝑎2 + 𝑐)2(𝑏2 + 𝑓 )2;

H2 = − 2934 [𝑐(𝑎2 + 𝑐)2 + 𝑓 (𝑏2 + 𝑓 )2)] (𝑥2 + 𝑦2).

It is evident that H1 > 0 implies 𝑐 𝑓 > 0 and due to H2 < 0 we get 𝑐 > 0 and 𝑓 > 0.
For systems (10) we calculate:

H3 =21015217𝑎𝑏(𝑎2 + 9𝑐) (𝑏2 + 9 𝑓 )𝑥6𝑦6(𝑥4 − 𝑦4);

H4 =2𝑥4𝑦4 [𝑏(𝑏2 + 9 𝑓 )𝑥 − 𝑎(𝑎2 + 9𝑐)𝑦
]
.

Assume first that the condition H3 ≠ 0 is satisfied. Since 𝑐 > 0 and 𝑓 > 0 we conclude
that this condition is equivalent to 𝑎𝑏 ≠ 0. So, according to Lemma 1.4 in this case we
get the configuration Config. 7.2a and the statement (𝐴2) of our theorem is proved.

If H3 = 0 we get 𝑎𝑏 = 0 and we investigate two cases: H4 ≠ 0 and H4 = 0.
The condition H4 ≠ 0 implies 𝑎2 + 𝑏2 ≠ 0. So, according to Lemma 1.4 in this case

we get configurations Config. 7.3a and hence, the statement (𝐴3) is proved.
Assume finally H3 = H4 = 0. This implies 𝑎 = 𝑏 = 0 and by Lemma 1.4 we get

Config. 7.4a. Thus, we proved the statement (𝐴4) of the theorem.

The statements (𝐴5), (𝐴6). In this case we have 𝜉1𝜉2 < 0 and according to [5] via an
affine transformation and time rescaling systems (8) could be brought to the form (11) for
which we calculate

H1 = − 21433(𝑎 − 1)2𝑎2𝑐(𝑏2 + 𝑐)2,

H3 =29325217𝑏(𝑎 − 2) (𝑎 + 1) (2𝑎 − 1) (𝑏2 + 9𝑐)𝑥6𝑦6(𝑥4 − 𝑦4).

We observe that the condition H1 < 0 guarantees 𝑎(𝑎 − 1) ≠ 0 and 𝑐 > 0, i.e. the
conditions mentioned in (11) hold. At the same time due to 𝑐 > 0 the condition H3 ≠ 0
imply 𝑏 ≠ 0. So according to Lemma (1.4) the conditions H1 < 0 and H3 ≠ 0 give us
Config. 7.5a

Assume now H3 = 0. In this case, we get two possibilities: 𝑏 = 0 or 𝑏 ≠ 0 and
(𝑎 − 2) (𝑎 + 1) (2𝑎 − 1). In the first case, by Lemma 1.4 we have the configuration Config.
7.6a, whereas in the second case we arrive at the configuration Config. 7.5a. So we
conclude that the statements (𝐴5) and (𝐴6) of Theorem 2.1 are valid.

We point out that the problem of determining of an invariant polynomial which gou-
verns the condition 𝑏 = 0 remains open.

The statement (𝐴7). In this case for systems (8) the conditions H1 = 0, H2 > 0 and
H5 ≠ 0 are satisfied. The first two conditions give us 𝜉1𝜉2 = 0 and 𝜉1 + 𝜉2 > 0 for systems
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(8) for which we have
H5 = −2833(𝑐𝜉2 + 𝑓 𝜉1). (20)

We claim that the condition H5 ≠ 0 implies 𝜈1𝜈2 ≠ 0. Indeed, supposing the contrary
that 𝜈1 = 0 (respectively 𝜈2 = 0) we get 𝑎 = 𝑐 = 0 (respectively 𝑏 = 𝑓 = 0) and this
leads to the condition H5 = 0. This proves our claim and hence, we have the condition
𝜈1𝜈2 ≠ 0. Then according to Lemma 1.4 via an affine transformation and time rescaling
systems (8) could be brought to the form (13) for which we calculate:

H5 =2832𝑏2(𝑏 − 𝑐)2𝑐2.

Evidently the condition H5 ≠ 0 implies 𝑏𝑐(𝑏 − 𝑐) ≠ 0 and we get the condition required
for systems (13).

So, accoridng to Lemma 1.4 in this case we get configuration Config. 7.7a and hence,
the statement (𝐴7) is proved.

The statements (𝐴8), (𝐴9). In both cases the conditions H1 = 0, H2 < 0 and H5 ≠ 0
are satisfied. Then for systems (8) the first two conditions give us 𝜉1𝜉2 = 0 and 𝜉1+𝜉2 < 0.
Moreover, as it was shown in the case of the statement (𝐴7) the condition H5 ≠ 0 implies
𝜈1𝜈2 ≠ 0. So according to Lemma 1.4 via an affine transformation and time rescaling
systems (8) could be brought to the form (14) for which we calculate:

H2 = − 2934𝑐(𝑏2 + 𝑐)2(𝑥2 + 𝑦2).

Clearly the condition H2 < 0 yields 𝑐 > 0, i. e. we get the condition required for systems
(14).

In order to distinguish the conditions 𝑏 ≠ 0 (the statement (𝐴8)) and 𝑏 = 0 (the
statement (𝐴9)) for systems (14) we evaluate the invariant polynomial H3:

H3 =210385217𝑏(𝑏2 + 9𝑐)𝑥6(𝑥 − 𝑦)𝑦6(𝑥 + 𝑦) (𝑥2 + 𝑦2).

Since 𝑐 > 0, we obtain that the conditions 𝑏 = 0 is equivalent to H3 = 0. Therefore by
Lemma 1.4 we arrive at the configuration Config. 7.8a if 𝑏 ≠ 0 (i. e. H3 ≠ 0) and Config.
7.9a if 𝑏 = 0 (i. e. H3 = 0).

The statement (𝐴10). As earlier we determine that for systems (8) the conditions
H1 = 0, H2 > 0 imply 𝜉1𝜉2 = 0 and 𝜉1 + 𝜉2 > 0.

We claim that the condition H5 = 0 implies 𝜈1𝜈2 = 0. Indeed, since 𝜉1𝜉2 = 0, we may
assume that 𝜉1 = 0 due to the change (𝑥, 𝑦, 𝑎, 𝑏, 𝑐, 𝑓 ) ↦→ (𝑦, 𝑥, 𝑏, 𝑎, 𝑓 , 𝑐). Then we have
𝜉1 = −(25𝑎2 +4𝑐3) = 0. According to (20) the condition 𝜉1 = 0 and 𝜉2 ≠ 0 implies 𝑐 = 0
and then, we have 𝜉1 = 27𝑎2 = 0, i. e. we get 𝑎 = 0. Evidently we arrive at the codnition
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𝜈1 = 0 and this complete the prove of our claim. Then according to Lemma 1.4 via an
affine transformation and time rescaling systems (8) could be brought to the form (14) for
which we calculate:

H2 = 2734𝑏2(𝑏 − 1)2(𝑥2 + 𝑦2).

Evidently the condition H2 > 0 implies 𝑏(𝑏 − 1) ≠ 0, i. e we get the condition required
for systems (14).

So, accoridng to Lemma 1.4 in this case we get configuration Config. 7.10a and hence,
the statement (𝐴10) is proved.

The statements (𝐴11), (𝐴12). In both cases the conditions H1 = 0, H2 < 0 and
H5 = 0 are satisfied. Simillary as in the case of statement (𝐴10) it can be proved that
the condition H5 = 0 implies 𝜈1𝜈2 = 0. So according to Lemma 1.4 via an affine
transformation and time rescaling systems (8) could be brought to the form (15) for which
we calculate:

H1 = H5 = 0, H2 = −2934(𝑏2 + 1)2(𝑥2 + 𝑦2).

In order to distinguish the conditions 𝑏 ≠ 0 (the statement (𝐴11)) and 𝑏 = 0 (the
statement (𝐴12)) for systems (15) we evaluate the invariant polynomial K2:

K2 =2𝑏(9 + 𝑏2)𝑥5𝑦4.

We get that the conditions 𝑏 = 0 is equivalent to K2 = 0. Therefore by Lemma (1.4) we
arrive at the configuration Config. 7.11a if 𝑏 ≠ 0 (i. e. K2 ≠ 0) and Config. 7.12a if
𝑏 = 0 (i. e. K2 = 0).

The statements (𝐴13), (𝐴14). We observe that in both cases the conditions H1 =

0, H2 = 0 are satified and this is equivalent with 𝜉1𝜉2 = 0 and 𝜉1 + 𝜉2 = 0. For systems
(8) with 𝜉1 = 𝜉2 = 0, we set two new parameters 𝑢 and 𝑣 as follows: 𝑎 = 2𝑢3, 𝑏 = 2𝑣3

and then we get 𝑐 = −3𝑢2, 𝑓 = −3𝑣2. In this case we calculate:

H3 =210325217𝑢3𝑣3𝑥6𝑦6(𝑥4 − 𝑦4),

H4 = − 54𝑥4𝑦4(𝑣3𝑥 − 𝑢3𝑦),
(21)

and 𝜈1 = 𝑢4(9 + 4𝑢2), 𝜈2 = 𝑣4(9 + 4𝑣2). It is clear that 𝜈1𝜈2 ≠ 0 is equivalent to H3 ≠ 0.
Thus by Lemma 1.4 via an affine transformation of coordinates and time rescaling

systems (8) could be brought to the form (16) for which we calculate:

H3 =210325217𝑏3𝑥6𝑦6(𝑥4 − 𝑦4) ≠ 0 ⇒ 𝑏 ≠ 0.

Therefore by Lemma 1.4 we arrive at the configuration Config. 7.13a.
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Let now H3 = 0, i. e. 𝜈1𝜈2 = 0. This implies 𝑢𝑣 = 0 and we claim that 𝑢2 + 𝑣2 ≠ 0
due to the condition K2

1 + L2
2 ≠ 0. Indeed, for systems (8) with the parameters 𝑎, 𝑏, 𝑐, 𝑓

given above, we calculate L2 = 559872(𝑢2 − 𝑣2)𝑥𝑦 ≠ 0 and this proves our claim.
Thus we have 𝜈1𝜈2 = 0 and 𝜈2

1 + 𝜈2
2 ≠ 0 and according to Lemma 1.4 via an affine

transformation and time rescaling systems (8) could be brought to the form (17) and
consequently we obtain the configuration Config. 7.14a. □
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