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Center conditions for a cubic differential system with one
invariant straight line and one invariant conic

Dumitru Cozma

Abstract. In this work we find the center conditions for a cubic system of differential
equations with a critical point of a center or a focus type having one invariant straight
line and one invariant conic. The center-focus problem is studied by using the Darboux
integrability and the rational reversibility methods.
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Condiţii de existenţă a centrului pentru un sistem diferenţial
cubic cu o dreaptă invariantă şi o conică invariantă

Rezumat. În lucrare se determină condiţii de existenţă a centrului pentru un sistem
cubic de ecuaţii diferenţiale, cu punct critic de tip centru sau focar, care posedă o dreaptă
invariantă şi o conică invariantă. Problema deosebirii centrului de focar se studiază
aplicând integrabilitatea Darboux şi reversibilitatea raţională.
Cuvinte-cheie: sistem cubic de ecuaţii diferenţiale, problema centrului şi focarului,
curbă algebrică invariantă, integrabilitatea Darboux, reversibilitate raţională.

1. Introduction

We consider the cubic system of differential equations{
¤𝑥 = 𝑦 + 𝑎𝑥2 + 𝑐𝑥𝑦 + 𝑓 𝑦2 + 𝑘𝑥3 + 𝑚𝑥2𝑦 + 𝑝𝑥𝑦2 + 𝑟𝑦3 ≡ 𝑃(𝑥, 𝑦),
¤𝑦 = −(𝑥 + 𝑔𝑥2 + 𝑑𝑥𝑦 + 𝑏𝑦2 + 𝑠𝑥3 + 𝑞𝑥2𝑦 + 𝑛𝑥𝑦2 + 𝑙𝑦3) ≡ 𝑄(𝑥, 𝑦),

(1)

where 𝑃(𝑥, 𝑦) and𝑄(𝑥, 𝑦) are relatively prime polynomials in the ring of real polynomials
in the variables 𝑥, 𝑦 and ¤𝑥 = 𝑑𝑥/𝑑𝑡, ¤𝑦 = 𝑑𝑦/𝑑𝑡. The origin of coordinates 𝑂 (0, 0) is a
critical point which is a center or focus (a fine focus) for (1).

The problem of distinguishing between a center and a focus (the center-focus problem)
is open for cubic systems (1). It is completely solved for: quadratic systems, cubic
symmetric systems, the Kukles system, and some families of polynomial differential
systems of higher degree.
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The center-focus problem was solved for some subclasses of cubic differential systems
(1) with algebraic solutions: two parallel invariant straight lines [5], [25]; three invariant
straight lines [8], [26], [27]; four invariant straight lines [8], [19], [22]; two invariant
straight lines and one invariant cubic [13], [14]; two invariant straight lines and one
invariant conic [10], [11], [12].

An approach to the center-focus problem is based on the theory of integrability. It
means investigating the integrability of (1) in some neighborhood of the critical point
𝑂 (0, 0). The integrability conditions were found for some subclasses of cubic differential
systems (1) with invariant algebraic curves in [4], [6], [7], [16], [21]. It was found that
every center in a cubic differential system (1) is provided by the Darboux integrability if
the system has four invariant straight lines [19] or the system has two invariant straight
lines and one invariant conic [8].

The Darboux integrability conditions were determined for: cubic systems (1) with
two parallel invariant straight lines [5], a class of reversible cubic systems [1] and some
complex cubic systems [20].

The purpose of this work is to find the center conditions for a cubic system (1) that
has two invariant algebraic curves. The paper is structured as follows. In Section 2, we
review established results related to the existence of invariant algebraic curves and the
Darboux integrability. Section 3 examines the existence of Darboux first integrals that
consist of an invariant straight line and an irreducible invariant conic. In Section 4, we
apply the method of rational reversibility to determine the center conditions for a cubic
system (1) that contains an invariant straight line and an invariant conic.

2. Invariant algebraic curves and Darboux integrability

Invariant algebraic curves play a crucial role in the study of the integrability of polyno-
mial differential systems. They provide significant insights into the qualitative behavior
of solutions and help in identifying the first integrals.

Definition 2.1. An algebraic curve Φ(𝑥, 𝑦) = 0 in C2 with Φ ∈ C[𝑥, 𝑦] is an invariant
algebraic curve of a differential system (1) if there exists a polynomial 𝐾 (𝑥, 𝑦) ∈ C[𝑥, 𝑦]
such that

𝜕Φ

𝜕𝑥
𝑃(𝑥, 𝑦) + 𝜕Φ

𝜕𝑦
𝑄(𝑥, 𝑦) = Φ(𝑥, 𝑦)𝐾 (𝑥, 𝑦). (2)

The polynomial𝐾 (𝑥, 𝑦) is called the cofactor of the invariant algebraic curveΦ(𝑥, 𝑦) = 0.

It is a very hard problem to find invariant algebraic curves for a given system (1)
because, in general, we do not have any evidence about the degree of a curve [24]. Not
all polynomial differential systems admit invariant algebraic curves.
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We analyze the center-focus problem for the cubic system (1) under the assumption
that it possesses irreducible invariant algebraic curves in C[𝑥, 𝑦]. The notation C[𝑥, 𝑦]
denotes the ring of polynomials in two variables with complex coefficients [13].

Definition 2.2 ([8]). The invariant algebraic curve Φ(𝑥, 𝑦) = 0 is said to be an algebraic
solution of system (1) if and only if Φ(𝑥, 𝑦) is an irreducible element of C[𝑥, 𝑦].

Knowledge of invariant algebraic curves is fundamental in the study of polynomial
differential systems. They provide key information about integrability, phase portraits,
stability, and global dynamics. The necessary and sufficient conditions for the existence
of invariant algebraic curves in a cubic system (1) were determined when the curves are:
straight lines [8], [18], [19], [27]; straight lines and conics [10], [11], [9], [8]; straight
lines and cubics [13], [14]; conics [15]; cubics [17].

According to [7], [8], system (1) is considered integrable on an open set 𝐷 of R2 if
there exists a nonconstant analytic function 𝐹 : 𝐷 → R that remains constant along all
solution curves (𝑥(𝑡), 𝑦(𝑡)) within 𝐷, meaning that 𝐹 (𝑥(𝑡), 𝑦(𝑡)) = 𝐶 for all 𝑡 where the
solution is defined. This function 𝐹 is called a first integral of the system on 𝐷.

Suppose that the function 𝐹 exists in 𝐷. Then all the solutions of the cubic system (1)
in 𝐷 are known [24] and 𝐹 (𝑥, 𝑦) = 𝐶 gives every solution of (1) for some 𝐶 ∈ R. Clearly
𝐹 is a first integral if and only if 𝐹 solves the partial differential equation

𝑃
𝜕𝐹

𝜕𝑥
+𝑄𝜕𝐹

𝜕𝑦
≡ 0. (3)

For cubic system (1), we study the algebraic integrability which is called the Darboux
integrability [2], [24]. Darboux’s method provides a systematic way to construct a first
integral or an integrating factor. Suppose that the curves Φ 𝑗 = 0, 𝑗 = 1, 𝑘 are invariant
algebraic curves of (1) and 𝛼 𝑗 ∈ C. A first integral of the form

Φ
𝛼1
1 Φ

𝛼2
2 · · ·Φ𝛼𝑘

𝑘
, (4)

is called a Darboux first integral.
We mention that for cubic systems (1), the conditions for the existence of integrating

factors of the form 𝜇 = Φ𝛽 were obtained in [17] when Φ = 0 is an invariant cubic and in
[15] when Φ = 0 is an invariant conic. First integrals and integrating factors of the form
𝑙
𝛼1
1 Φ𝛼2 , composed of one invariant straight line 𝑙1 = 0 and one invariant cubic Φ = 0,

were determined in [7], [16]. In this paper, we study for cubic system (1) the problem of
the existence of first integrals of the form

𝑙𝛼1 Φ
𝛽 = 𝐶, (5)

where 𝑙1 = 0 is an invariant straight line and Φ = 0 is an invariant conic.
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It is known [24] that the origin will be a center for system (1) if and only if there exists
a nonconstant analytic first integral

𝑥2 + 𝑦2 + 𝐹3(𝑥, 𝑦) + · · · + 𝐹𝑚(𝑥, 𝑦) + · · · = 𝐶

in some neighborhood of 𝑂 (0, 0), where 𝐹𝑚 are homogeneous polynomials of degree 𝑚.

3. Cubic systems with two invariant algebraic curves

Assume that 𝐴𝑥 + 𝐵𝑦 + 1 = 0 is a real invariant straight line of the cubic differential
system (1). Then, by a transformation of the form 𝑥 → 𝜔(𝑥 cos𝛼 − 𝑦 sin𝛼), 𝑦 →
𝜔(𝑥 sin𝛼+ 𝑦 cos𝛼), we can bring this line to the form 𝑥 = 1. In [16] the following lemma
was proved.

Lemma 3.1. A straight line 𝑥 = 1 is an invariant straight line for cubic system (1) if and
only if the following set of conditions is satisfied

𝑟 = 0, 𝑝 = − 𝑓 , 𝑚 = −𝑐 − 1, 𝑘 = −𝑎. (6)

When conditions (6) are satisfied, we obtain a cubic system of the form{
¤𝑥 = (1 − 𝑥) (𝑦 + 𝑥𝑦 + 𝑎𝑥2 + 𝑐𝑥𝑦 + 𝑓 𝑦2) ≡ 𝑃(𝑥, 𝑦),
¤𝑦 = −(𝑥 + 𝑔𝑥2 + 𝑑𝑥𝑦 + 𝑏𝑦2 + 𝑠𝑥3 + 𝑞𝑥2𝑦 + 𝑛𝑥𝑦2 + 𝑙𝑦3) ≡ 𝑄(𝑥, 𝑦).

(7)

Let us assume that the cubic differential system (7) has an irreducible invariant conic

Φ(𝑥, 𝑦) ≡ 𝑎20𝑥
2 + 𝑎11𝑥𝑦 + 𝑎02𝑦

2 + 𝑎10𝑥 + 𝑎01𝑦 + 1 = 0, (8)

where 𝑎01, 𝑎10, 𝑎02, 𝑎11, 𝑎20 are real parameters and (𝑎02, 𝑎11, 𝑎20) ≠ 0. For every conic
curve (8) the following quantities [8] are invariants

𝐼1 = 𝑎02 + 𝑎20, 𝐼2 = (4𝑎20𝑎02 − 𝑎2
11)/4,

𝐼3 = (4𝑎20𝑎02 − 𝑎20𝑎
2
01 + 𝑎11𝑎01𝑎10 − 𝑎2

10𝑎02 − 𝑎2
11)/4

(9)

with respect to the rotation of axes. The conic (8) is: a parabola when 𝐼2 = 0, an ellipse
when 𝐼2 > 0 and a hyperbola when 𝐼2 < 0. If 𝐼3 = 0, then the conic (8) is reducible into
two straight lines.

By Definition 2.1, the curve (8) is an invariant conic for cubic system (7) if and only if
there exists a cofactor 𝐾 (𝑥, 𝑦) = 𝑐10𝑥 + 𝑐01𝑦 + 𝑐20𝑥

2 + 𝑐11𝑥𝑦 + 𝑐02𝑦
2 such that

𝑃(𝑥, 𝑦) 𝜕Φ
𝜕𝑥

+𝑄(𝑥, 𝑦) 𝜕Φ
𝜕𝑦

≡ Φ(𝑥, 𝑦)𝐾 (𝑥, 𝑦), (10)

where 𝑐10, 𝑐01, 𝑐20, 𝑐11, 𝑐02 ∈ R.
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The identity (10) yields a system {𝐹𝑖 𝑗 = 0, 𝑖 + 𝑗 = 1, 2, 3, 4} of fourteen equations for
the unknowns 𝑐𝑘𝑙 , 𝑎𝑘𝑙 , 𝑘 + 𝑙 = 1, 2. When 𝑖 + 𝑗 = 1, 2, we find from (10) that

𝑐10 = −𝑎01, 𝑐01 = 𝑎10, 𝑐11 = 𝑎2
01 − 𝑑𝑎01 − 𝑎2

10 + 𝑐𝑎10 − 2𝑎02 + 2𝑎20,

𝑐20 = 𝑎𝑎10 + 𝑎01𝑎10 − 𝑔𝑎01 − 𝑎11, 𝑐02 = 𝑎11 − 𝑏𝑎01 + 𝑓 𝑎10 − 𝑎01𝑎10

and when 𝑖 + 𝑗 = 3, 4, we obtain from (10) the system of algebraic equations

𝐹40 ≡ (𝑎20 − 𝑠)𝑎11 + (𝑔𝑎01 − 𝑎𝑎10 − 2𝑎 − 𝑎01𝑎10)𝑎20 = 0,

𝐹31 ≡ (2𝑎20 − 2𝑠)𝑎02 + (𝑎2
10 − 𝑎

2
01 + 𝑑𝑎01 − 𝑐𝑎10 − 2𝑐 − 2)𝑎20+

+ (𝑎11 + 𝑔𝑎01 − 𝑎𝑎10 − 𝑎 − 𝑎01𝑎10 − 𝑞)𝑎11 − 2𝑎2
20 = 0,

𝐹22 ≡ (3𝑎11 − 𝑎𝑎10 − 𝑎01𝑎10 + 𝑔𝑎01 − 2𝑞)𝑎02 − 3𝑎11𝑎20+
+ 𝑎11(𝑎2

10 − 𝑎
2
01 + 𝑑𝑎01 − 𝑐𝑎10 − 𝑐 − 𝑛 − 1)+

+ ((𝑎10 + 𝑏)𝑎01 − 𝑓 (𝑎10 + 2))𝑎20 = 0,

𝐹13 ≡ (2𝑎02 + 𝑎2
10 − 𝑎

2
01 − 2𝑎20 + 𝑑𝑎01 − 𝑐𝑎10 − 2𝑛)𝑎02 − 𝑎2

11+
+ ((𝑎10 + 𝑏)𝑎01 − 𝑓 (𝑎10 + 1) − 𝑙)𝑎11 = 0,

𝐹04 ≡ ((𝑎10 + 𝑏)𝑎01 − 2𝑙 − 𝑓 𝑎10 − 𝑎11)𝑎02 = 0,

𝐹30 ≡ (𝑎11 − 𝑎)𝑎10 + (𝑎01 + 2𝑎)𝑎20 − 𝑔𝑎11+
+ 𝑔𝑎01𝑎10 − 𝑎𝑎2

10 − 𝑎01𝑎
2
10 − 𝑠𝑎01 = 0,

𝐹21 ≡ 𝑎3
10 + (𝑎 − 𝑑 + 2𝑎01)𝑎11 − 𝑎𝑎10𝑎01 + (2𝑐 − 3𝑎10)𝑎20+

+ 2(𝑎10 − 𝑔)𝑎02 − 𝑐𝑎2
10 − 𝑐𝑎10 − 𝑎10 + 𝑑𝑎01𝑎10+

+ 𝑔𝑎2
01 − 2𝑎2

01𝑎10 − 𝑞𝑎01 = 0,

𝐹12 ≡ (3𝑎01 − 2𝑑)𝑎02 + (𝑐 − 𝑏 − 2𝑎10)𝑎11 + 2( 𝑓 − 𝑎01)𝑎20 − 𝑎3
01+

+ 𝑑𝑎2
01 + (2𝑎10 + 𝑏 − 𝑐)𝑎01𝑎10 − 𝑛𝑎01 − 𝑓 𝑎2

10 − 𝑓 𝑎10 = 0,

𝐹03 ≡ ( 𝑓 − 𝑎01)𝑎11 − (𝑎10 + 2𝑏)𝑎02+
+ (𝑎01𝑎10 + 𝑏𝑎01 − 𝑓 𝑎10 − 𝑙)𝑎01 = 0.

(11)

We shall study the consistency of (11) in 𝑎10, 𝑎01, 𝑎20, 𝑎11, 𝑎02 and establish the
conditions under which the system has one solution.

4. Cubic systems and first integrals

In this section, we study for cubic system (1) the problem of the existence of first
integrals of the form

𝐹 (𝑥, 𝑦) ≡ (𝑥 − 1)𝛼 (𝑎20𝑥
2 + 𝑎11𝑥𝑦 + 𝑎02𝑦

2 + 𝑎10𝑥 + 𝑎01𝑦 + 1)𝛽 = 𝐶, (12)

where the invariant conic is irreducible and 𝛼, 𝛽 are nonzero real exponents.
According to [8], the relation (12) is a first integral for the system (1) if and only if the

identity (3) holds. We will use this identity to find the first integrals (12) of system (1).
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Theorem 4.1. The cubic differential system (1), where 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) are relatively
prime polynomials, does not possess Darboux first integrals in the form of (12).

Proof. The identity (3) being applied to (12) yields the following system of equations

{𝐻𝑖 𝑗 = 0, 𝑖 + 𝑗 = 1, 2, 3, 4} (13)

in the coefficients of (1) and the parameters 𝑎10, 𝑎01, 𝑎20, 𝑎11, 𝑎02, 𝛼, 𝛽, 𝛼𝛽 ≠ 0.
From equations 𝐻01 = 0 and 𝐻10 = 0 of the system (13) we obtain 𝛼 = 𝑎10𝛽 and

𝑎01 = 0. Then the equations 𝐻02 = 0, 𝐻11 = 0, and 𝐻20 = 0 of (13) yield the following
𝑎11 = 0, 𝑎20 = (𝑎10 + 2𝑎02 + 𝑎2

10)/2.
From equations 𝐻𝑖 𝑗 = 0, 𝑖 + 𝑗 = 3 of the system (13) we find

𝑎 = 0, 𝑑 = 𝑓 , 𝑎10 = −2𝑏, 𝑔 = [(] (𝑏 + 𝑐)𝑎02 + 𝑏(2𝑏2 − 3𝑏 + 1)]/𝑎02.
Then the equations 𝐻𝑖 𝑗 = 0, 𝑖 + 𝑗 = 4 of (13) imply

𝑙 = 𝑏 𝑓 , 𝑎10 = −2𝑏, 𝑞 = [ 𝑓 (𝑏𝑎02 − 𝑎02 + 2𝑏3 − 3𝑏2 + 𝑏)]/𝑎02,
𝑛 = 𝑏𝑐 + 𝑏, 𝑠 = [(𝑎02 − 𝑏 + 2𝑏2) (𝑏 − 1) (𝑐 + 1)]/𝑎02.

We find that right-hand sides of (1) have a common factor 1 + (𝑐 + 1)𝑥 + 𝑓 𝑦 = 0 in
contradictions to the assumption of Theorem. ■

Remark 4.1. There exists quadratic differential systems with first integrals containing
one invariant straight line and one invariant conic. For example, in [3] it was shown that
for quadratic system

¤𝑥 = −𝑦 − 𝑥2 − 𝑦2, ¤𝑦 = 𝑥(1 + 𝑦)
the straight line 𝑦 + 1 = 0 and the conic 6𝑥2 + 3𝑦2 + 2𝑦 − 1 = 0 are invariants. This
system has a first integral (𝑦 + 1)2(6𝑥2 + 3𝑦2 + 2𝑦 − 1) = 𝐶.

5. Cubic systems and rational reversibility

As established in [28], if the differential system (1) has a critical point𝑂 (0, 0) of center
or focus type and remains invariant under reflection with respect to the axis 𝑋 = 0 and
reversion of time, then 𝑂 (0, 0) is a center for system (1).

It is evident that the critical point (𝑂 (0, 0) is a center for the system (1) if a diffeo-
morphism exists 𝐻 : 𝑈 → 𝑉, 𝐻 = {𝑋 = 𝑔(𝑥, 𝑦), 𝑌 = ℎ(𝑥, 𝑦)}, 𝐻 (0, 0) = (0, 0), which
brings the system (1) to a system that has an axis of symmetry [28].

In this paper, we obtain centers by rational reversibility. We seek a rational transfor-
mation, invertible in a neighborhood of 𝑂 (0, 0), of the form [6], [23]

𝑥 =
𝑎1𝑋 + 𝑏1𝑌

𝑎3𝑋 + 𝑏3𝑌 − 1
, 𝑦 =

𝑎2𝑋 + 𝑏2𝑌

𝑎3𝑋 + 𝑏3𝑌 − 1
(14)

with 𝑎 𝑗 , 𝑏 𝑗 ∈ R, 𝑗 = 1, 2, 3, which maps the critical point 𝑂 (0, 0) to 𝑋 = 𝑌 = 0.
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Applying this transformation to system (7) we get a quartic system

¤𝑋 =

4∑︁
𝑖+ 𝑗=0

𝐴𝑖 𝑗𝑋
𝑖𝑌 𝑗 , 𝑌 =

4∑︁
𝑖+ 𝑗=0

𝐵𝑖 𝑗𝑋
𝑖𝑌 𝑗 , (15)

where 𝐴𝑖 𝑗 , 𝐵𝑖 𝑗 are polynomials that depend on both the coefficients of system (1) and the
parameters 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3 from the mapping (14).

We will show that the parameters in (14) can be found such that the system (15) is
equivalent, in some neighborhood of 𝑂 (0, 0), with a polynomial system [6]

¤𝑋 = 𝑌 + 𝑀 (𝑋2, 𝑌 ), ¤𝑌 = −𝑋 (1 + 𝑁 (𝑋2, 𝑌 )). (16)

This system is symmetric with respect to the axis 𝑋 = 0 and the critical point𝑂 (0, 0) is a
center. The systems (15) and (16) are equivalent if the following conditions are fulfilled:

𝐵40 = 0, 𝐴13 ≡ 𝐵04 = 0, 𝐴31 ≡ 𝐵22 = 0, 𝐴10 ≡ 𝐵01 = 0, 𝐴00 = 𝐵00 = 0,

and

𝐴30 ≡ 2𝑎𝑎3𝑏2𝑎
2
1 + [2𝑎3(𝑐 − 𝑔) − (𝑐 + 𝑠 + 1)𝑎1 − 𝑎2(𝑞 + 𝑓 )]𝑏2𝑎2𝑎1+

+ 𝑎3
2(𝑙𝑏1 − 𝑛𝑏2) − 𝑎𝑏2𝑎

3
1 + 2𝑎2

2𝑎3(𝑏𝑏1 + ( 𝑓 − 𝑑)𝑏2) = 0,

𝐴12 ≡ 𝑏3
1(𝑞𝑎2 + 2𝑎3𝑔) + [2(𝑑 + 𝑎)𝑎3 + 𝑎2(2𝑛 − 𝑐 − 3𝑠 − 1)]𝑏2𝑏

2
1+

+ [𝑎2(3𝑙 − 2 𝑓 + 3𝑎 − 2𝑞) + 2𝑎3(𝑐 + 𝑏)]𝑏2
2𝑏1+

+ [2 𝑓 𝑎3 − 𝑓 𝑎1 − (𝑛 − 2𝑐 − 2)𝑎2]𝑏3
2 = 0,

𝐴11 ≡ [𝑑𝑏1 + 𝑏2(𝑐 + 2𝑏 − 2𝑔)]𝑏1𝑎2+
+ 3𝑎3 + 𝑏2

2 [𝑐𝑎1 − 𝑎2(𝑑 − 2 𝑓 + 2𝑎)] = 0,

𝐴01 ≡ 𝑏2
2 + 𝑏

2
1 − 1 = 0, 𝐴10 ≡ 𝑏2𝑎2 + 𝑏1𝑎1 = 0,

𝐵04 ≡ [𝑠𝑏4
1 + 𝑏2𝑏1(𝑏2

1(𝑞 − 𝑎) + 𝑏2𝑏1(𝑛 − 𝑐 − 1) + 𝑏2
2(𝑙 − 𝑓 ))]𝑎3 = 0,

𝐵22 ≡ [𝑎2𝑏
2
2𝑎1(−2 𝑓 + 3𝑎 − 𝑞) + 𝑑𝑎2𝑏

2
1𝑎3 + 𝑛𝑎2

2𝑏
2
1 + 𝑐𝑎1𝑏

2
2𝑎3+

+ (3𝑙 − 𝑓 − 2𝑞)𝑎2
2𝑏1𝑏2 + (3𝑠 − 2(𝑛 − 𝑐 − 1))𝑎2

2𝑏
2
2 − (𝑐 + 1)𝑏2

2𝑎
2
1+

+ (𝑐 + 2𝑏 − 2𝑔)𝑎2𝑎3𝑏1𝑏2 − (𝑑 + 2𝑎 − 2 𝑓 )𝑎2𝑏
2
2𝑎3 + 𝑎2

3]𝑎3 = 0,

𝐵03 ≡ (−𝑎𝑎2 − 𝑔𝑎3)𝑏3
1 − [(𝑐 + 𝑠 + 1)𝑎2 + (𝑑 + 𝑎)𝑎3]𝑏2

1𝑏2+
+ [(− 𝑓 − 𝑞)𝑎2 − (𝑐 + 𝑏)𝑎3]𝑏1𝑏

2
2 + [𝑙𝑎1 − 𝑛𝑎2 − 𝑓 𝑎3]𝑏3

2 = 0,

𝐵21 ≡ − 𝑓 𝑎3
1𝑏2 + (2𝑛 − 𝑐 − 3𝑠 − 1)𝑎2

1𝑎2𝑏2 + (𝑑 − 𝑎)𝑎2
1𝑎3𝑏2−

− (2𝑞 − 3𝑎 − 3𝑙 + 2 𝑓 )𝑏2𝑎
2
2𝑎1 + [− 𝑓 𝑏1 − (𝑛 + 2𝑐 + 2)𝑏2]𝑎3

2+
+ 𝑏2𝑎3𝑎2𝑎1(2𝑏 − 𝑔) + [𝑏2( 𝑓 − 2𝑎) + 𝑏1(𝑐 − 𝑏)]𝑎3𝑎

2
2 = 0,

𝐵02 ≡ 𝑎𝑏2
1𝑎2 − (𝑔 − 𝑐)𝑏2𝑎2𝑏1 − 𝑏2

2(𝑑𝑎2 − 𝑏𝑎1 − 𝑓 𝑎2) − 𝑎3 = 0,

𝐵20 ≡ 2𝑎3 + 𝑔𝑎3
1 + 𝑓 𝑎3

2 + (𝑑 + 𝑎)𝑎2𝑎
2
1 + (𝑐 + 𝑏)𝑎2

2𝑎1 = 0,

𝐵10 ≡ 𝑎2
2 + 𝑎

2
1 − 1 = 0.

(17)
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Theorem 5.1. The cubic differential system (1) with two algebraic solutions 𝑥 − 1 = 0,
𝑎20𝑥

2 + 𝑎11𝑥𝑦+ 𝑎02𝑦
2 + 𝑎10𝑥 + 𝑎01𝑦+1 = 0 is rationally reversible if one of the following

conditions (i), (ii), (iii) holds:

(i) 𝑐 = −3/2, 𝑏 = 𝑚 = 1/2, 𝑔 = −1, 𝑓 = 𝑙 = 𝑝 = 𝑟 = 0, 𝑘 = −𝑎, 𝑞 = (𝑎 − 𝑑)/2,
𝑠 = −(2𝑎 + 𝑎01) (𝑎2

01 − 𝑑𝑎01 + 𝑛)/(2𝑎01), 2𝑛𝑎2
01 − (𝑎 + 2𝑑𝑛)𝑎01 + 2𝑛2 + 𝑛) = 0;

(ii) 𝑐 = −3/2, 𝑏 = 𝑚 = 1/2, 𝑔 = −1, 𝑙 = 𝑓 /2, 𝑘 = −𝑎, 𝑝 = − 𝑓 , 𝑟 = 0,
𝑑 = [(8𝑎02 + 1)𝑎01]/(8𝑎02), 𝑞 = (𝑎 − 𝑑)/2, 𝑛 = ( 𝑓 𝑎01 + 8𝑎2

02 − 2𝑎02)/(8𝑎02),
𝑠 = [(2𝑎 + 𝑎01)𝑎01]/(16𝑎02);

(iii) 𝑐 = −3/2, 𝑏 = 𝑚 = 1/2, 𝑔 = −1, 𝑙 = 𝑓 /2, 𝑘 = −𝑎, 𝑝 = − 𝑓 , 𝑞 =

(𝑎 − 𝑑)/2, 𝑎 = [(𝑎2
01 − 𝑑𝑎01 + 2𝑎20) (4𝑎20 − 1)𝑎01]/(𝑎2

01 − 16𝑎02𝑎20), 𝑓 =

[4(𝑑 − 𝑎01)𝑎2
01𝑎02 + 2𝑎01𝑎02(8𝑎02 − 4𝑎20 + 1) − 16𝑑𝑎2

02]/(𝑎
2
01 − 16𝑎02𝑎20), 𝑛 =

[(𝑑−𝑎3
01)𝑎01+𝑎2

01(8𝑎02𝑎20+3𝑎02−2𝑎20)−2𝑑𝑎01𝑎02(4𝑎20+1) +4𝑎02𝑎20(4𝑎20−
4𝑎02 + 1)]/(𝑎2

01 − 16𝑎02𝑎20), 𝑠 = [𝑎2
01𝑎20(8𝑎20 − 1) + 2𝑑𝑎01𝑎20(1 − 4𝑎20) +

4𝑎2
20(4𝑎20 − 4𝑎02 − 1)]/(𝑎2

01 − 16𝑎02𝑎20), 𝑟 = 0.

Proof. We study the consistency of systems {(17), (11)} considering two cases: 𝑎3 = 0
and 𝑎3 ≠ 0. According to [6], the equations 𝐴01 = 0 and 𝐵10 = 0 from (17) can be
parametrized as follows:

𝑎1 =
2𝑢

𝑢2 + 1
, 𝑎2 =

𝑢2 − 1
𝑢2 + 1

, 𝑏1 =
2𝑣

𝑣2 + 1
, 𝑏2 =

𝑣2 − 1
𝑣2 + 1

, (18)

where 𝑢 and 𝑣 are real parameters. Then 𝐴10 = 0 becomes 𝐴10 ≡ 𝑒1𝑒2 = 0, where
𝑒1 = 𝑢 − 𝑣 + 𝑢𝑣 + 1, 𝑒2 = 𝑣 − 𝑢 + 𝑢𝑣 + 1.

Assume that 𝑒1 = 0. Then the equation 𝑒1 = 0 yields 𝑣 = (1+ 𝑢)/(1− 𝑢) and 𝐴10 ≡ 0.

1. Let 𝑎3 = 0. Then 𝐵04 ≡ 0 and 𝐵22 ≡ 0. When 𝑢 = 0, the equations of (17) yield
𝑟 = 𝑞 = 𝑝 = 𝑙 = 𝑘 = 𝑓 = 𝑑 = 𝑎 = 0, 𝑚 = −1 − 𝑐.

In this case, the cubic system has two parallel invariant straight lines 1 − 𝑥 = 0,
1 + (𝑐 + 1)𝑥 = 0 and the center-focus problem was solved in [5], [25].

When 𝑢 = −1, the equations of (17) imply
𝑟 = 𝑞 = 𝑝 = 𝑙 = 𝑘 = 𝑔 = 𝑓 = 𝑐 = 𝑏 = 𝑎 = 0, 𝑚 = −1.

The cubic system has the invariant straight lines 1 − 𝑥 = 0, 1 + 𝑥 = 0 and center-focus
problem was solved in [5], [25].

If 𝑢(𝑢 + 1) ≠ 0, then the equations of (17) yield

𝑟 = 0, 𝑝 = − 𝑓 , 𝑚 = −𝑐 − 1, 𝑘 = −𝑎, 𝑎 = [𝑏𝑢(20𝑢2 − 6𝑢4 − 6) + ( 𝑓 − 𝑑) (𝑢2(𝑢4 −
7𝑢2 + 7) − 1)]/[2(1− 𝑢2)3], 𝑐 = [2𝑏(6𝑢3 − 𝑢5 − 𝑢) − 𝑓 (𝑢6 − 1) + (4𝑑 − 7 𝑓 ) (𝑢2 −
𝑢4)]/[2𝑢(𝑢2 − 1)2], 𝑔 = [( 𝑓 + 𝑑) (1 − 𝑢6) + ( 𝑓 − 7𝑑) (𝑢2 − 𝑢4) + 𝑏(2𝑢5 + 2𝑢 −
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12𝑢3)]/[4𝑢(1−𝑢2)2], 𝑛 = [ 𝑓 (1−𝑢14)−4(𝑏−1) (𝑢+𝑢13)− (15 𝑓 +4𝑑) (𝑢2−𝑢12)+
8(4𝑏−11) (𝑢3+𝑢11)−3(15 𝑓 −4𝑑) (𝑢4−𝑢10)+4(95−7𝑏) (𝑢5+𝑢9)+(61 𝑓 −8𝑑) (𝑢6−
𝑢8) −16𝑢7(37+8𝑏)]/[2𝑢(1+𝑢2)4(𝑢2−1)2], 𝑙 = [ 𝑓 (𝑢8−10𝑢4−4𝑢2−4𝑢6+1) +
(7+𝑏) (4𝑢5−4𝑢3) + (1−𝑏) (4𝑢−4𝑢7)]/[(1+𝑢2)4], 𝑞 = [6(124−15𝑏) (𝑢5+𝑢9) −
6(𝑏−4) (𝑢13+𝑢−10𝑢3−10𝑢11)−24(44+13𝑏)𝑢7−(31 𝑓 +9𝑑) (𝑢2−𝑢12)+3(23 𝑓 −
15𝑑) (𝑢4−𝑢10)+(3𝑑+5 𝑓 ) (1−𝑢14)+3(35 𝑓 −11𝑑) (𝑢6−𝑢8)]/[2(𝑢2+1)4(𝑢2−1)3],
𝑠 = [( 𝑓 + 𝑑) (9𝑢2 + 𝑢18 − 9𝑢16 − 1) − 2(2 + 𝑏) (𝑢 + 𝑢17) + 64(𝑢3 + 𝑢15) + 4(9 𝑓 +
𝑑) (𝑢14−𝑢4) +8(13𝑏−46) (𝑢5+𝑢13) +4(21 𝑓 −19𝑑) (𝑢6−𝑢12) −64(2𝑏−15) (𝑢7+
𝑢11) + 2(65 𝑓 − 31𝑑) (𝑢8 − 𝑢10) − 4𝑢9(326 + 115𝑏)]/[4𝑢(1 − 𝑢4)4] .

In this case the cubic system possesses two invariant straight lines 1 − 𝑥 = 0, (1 +
𝑢2)2 − (1 + 𝑢4 − 6𝑢2)𝑥 + 4(𝑢3 − 𝑢)𝑦 = 0 and center-focus problem was solved in [6].

2. Let 𝑎3 ≠ 0. Then from the equation 𝐵20 = 0 of (17) we get

𝑎3 = [𝑢2(3 𝑓 − 4𝑑 − 4𝑎) (𝑢2 − 1) − 2𝑢(𝑐 + 𝑏) (𝑢4 + 1) − 𝑓 (𝑢6 − 1)+
+ 4(𝑐 + 𝑏 − 2𝑔)𝑢3]/[2(1 + 𝑢2)3] .

Assume that 𝑢 = 0. If 𝑎 = 0, then the equations of (17) yield
𝑠 = 𝑟 = 𝑞 = 𝑝 = 𝑛 = 𝑙 = 𝑘 = 𝑑 = 𝑎 = 0, 𝑚 = −𝑐 − 1.

The cubic system has the invariant straight lines 1−𝑥 = 0, 1+(𝑐+1)𝑥 = 0 and center-focus
problem was solved in [5], [25].

Assume that 𝑢 = 0 and let 𝑎 ≠ 0. Then the equations of (17) yield

𝑑 = −3𝑎, 𝑓 = −2𝑎, 𝑐 = 𝑏 − 2, 𝑔 = −1, 𝑙 = −2𝑎𝑏, 𝑘 = −𝑎, 𝑚 = 1 − 𝑏, 𝑛 = 2𝑎2,

𝑝 = 𝑞 = 2𝑎, 𝑟 = 𝑠 = 0.

The cubic system has three invariant straight lines 1− 𝑥 = 0, 1− 2𝑎𝑦 = 0, 1− 𝑥 − 2𝑎𝑦 = 0
and center-focus problem was solved in [26].

Assume that 𝑢 = −1. If 𝑔 = −1, then from the equations of (17) we get

𝑐 = −3/2, 𝑏 = 𝑚 = 1/2, 𝑔 = −1, 𝑙 = 𝑓 /2, 𝑘 = −𝑎, 𝑝 = − 𝑓 , 𝑞 = (𝑎 − 𝑑)/2, 𝑟 = 0.

The equation 𝐹04 = 0 of (11) implies two cases to be investigated: 𝑎02 = 0 and 𝑎02 ≠ 0.
Let 𝑎02 = 0. If 𝑎11 = 0, then 𝑎01𝑎20 ≠ 0 and 𝐹03 ≡ (𝑎01 − 𝑓 ) (2𝑎10 + 1) = 0. When

𝑎01 = 𝑓 , the equations 𝐹22 ≠ 0 and when 𝑎10 = (−1)/2, we obtain that 𝐹21 ≠ 0.
Assume that 𝑎11 ≠ 0. We express 𝑠, 𝑛 and 𝑎11 from the equations 𝐹40 = 0, 𝐹22 = 0

and 𝐹13 = 0, respectively. In this case we have 𝐹03 ≡ 𝑖1𝑖2𝑖3 = 0, where
𝑖1 = 𝑎01 − 𝑓 , 𝑖2 = 2𝑎10 + 3, 𝑖3 = 𝑓 .

If 𝑖1 = 0, then 𝑎01 = 𝑓 and 𝐹12 = 0 yields 𝑎10 = −1 − 𝑎20. In this case the conic is
reducible.
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If 𝑖1 ≠ 0 and 𝑖2 = 0, then 𝑎10 = (−3)/2 and 𝐹21 = 0 implies 𝑎20 = 1/2. In this case
the conic is also reducible.

If 𝑖1𝑖2 ≠ 0 and 𝑖3 = 0, then 𝑓 = 0 and 𝐹12 = 0 implies 𝑎10 = −1. In this case we obtain
the set of conditions (i) for the existence of an invariant conic

(𝑎2
01 − 𝑑𝑎01 + 𝑛)𝑥2 + 𝑎01𝑥𝑦 + 2(𝑥 − 𝑎01𝑦 − 1) = 0.

Let now 𝑎02 ≠ 0. We express 𝑎11, 𝑠 and 𝑛 from equations 𝐹04 = 0, 𝐹31 = 0 and 𝐹13 = 0
of (11), respectively. Then 𝐹03 ≡ 𝑗1 𝑗2 = 0, where 𝑗1 = 𝑎10 + 1, 𝑗2 = 𝑓 𝑎01 − 𝑓 2 − 𝑎02.

Assume that 𝑗1 = 0, then 𝑎10 = −1. If 𝑎20 = 𝑎2
01/(16𝑎02), then 𝐹22 = 𝐹40 = 0 yields

𝑑 = [(8𝑎02 + 1)𝑎01]/(8𝑎02).
In this case we get the set of conditions (ii) for the existence of an invariant conic

(𝑎01𝑥 − 4𝑎02𝑦)2 − 16𝑎02𝑥 + 16𝑎01𝑎02𝑦 + 16𝑎02 = 0.

If 𝑎20 ≠ 𝑎2
01/(16𝑎02), then we express 𝑎 and 𝑓 from the equations 𝐹40 = 𝐹30 = 0 and

𝐹12 = 𝐹22 = 0 of (11). In this case we have the set of conditions (iii) for the existence of
an invariant conic

2𝑎20𝑥
2 − 𝑎01𝑥𝑦 + 2𝑎02𝑦

2 − 2𝑥 + 2𝑎01𝑦 + 2 = 0.

Assume that 𝑗1 ≠ 0 and let 𝑗2 = 0. Then 𝑎10 = 𝑓 𝑎01 − 𝑓 2 and 𝐹21 = 0 yields
𝑑 = (6𝑎20 − 2𝑎2

10 − 𝑎10 + 4 𝑓 2 + 2𝑎 𝑓 )/(2 𝑓 ).
If 𝑎01 = 2 𝑓 , then 𝐹22 = 0 implies 𝑎20 = 𝑎2

10/4 and the conic is reducible.
Let 𝑎01 ≠ 2 𝑓 . Then we express 𝑎 from 𝐹12 = 0 and 𝐹22 = 0 yields 𝑎20 = (−2𝑎10−1)/4.

In this case the conic is also reducible.

Assume that 𝑢 = 0 and let 𝑔 ≠ −1. Then the equations of (17) yield

𝑟 = 𝑝 = 𝑙 = 𝑘 = 𝑓 = 𝑎 = 0, 𝑞 = −𝑑, 𝑚 = 2, 𝑔 = −2, 𝑐 = −3, 𝑏 = 1.

In this case the cubic system has the invariant straight lines 1 − 𝑥 = 0, 1 − 2𝑥 = 0 and
center-focus problem was solved in [5], [25].

Assume now 𝑢(𝑢 + 1) ≠ 0. We express 𝑎, 𝑠, 𝑙, 𝑔, 𝑛, 𝑞, from the equations 𝐴11 =

0, 𝐴12 = 0, 𝐴30 = 0, 𝐵02 = 0, 𝐵04 = 0, 𝐵21 = 0 of (17), respectively. In this case we
obtain that 𝐵03 ≡ ℎ 𝑓1 = 0, 𝐵22 ≡ ℎ 𝑓2 = 0, where

ℎ = (7 𝑓 − 4𝑑) (𝑢2 − 𝑢4) + 𝑓 (𝑢6 − 1) + 2(𝑐 + 𝑏 + 2) (𝑢 + 𝑢5) − 4(𝑐 + 3𝑏)𝑢3,

𝑓1 = (2𝑑 − 3 𝑓 ) (1 + 14𝑢4 + 𝑢8) − 2(11𝑐 + 25𝑏 + 4) (𝑢3 − 𝑢5)+
+ 2(5𝑐 + 7𝑏 + 4) (𝑢 − 𝑢7) − 8(2𝑑 − 5 𝑓 ) (𝑢2 + 𝑢6),

𝑓2 = 2(𝑏 − 2 − 𝑐) (1 + 𝑢8) + (2𝑑 − 15 𝑓 ) (𝑢 − 𝑢7) − 8(6𝑐 + 16𝑏 + 1)𝑢4+
+ 2(11𝑐 + 17𝑏 + 8) (𝑢2 + 𝑢6) + (81 𝑓 − 46𝑑) (𝑢3 − 𝑢5).

If ℎ = 0, then the equation of (17) imply
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𝑟 = 0, 𝑝 = − 𝑓 , 𝑚 = −𝑐 − 1, 𝑘 = −𝑎, 𝑎 = [ 𝑓 (1 + 7𝑢4 − 7𝑢2 − 𝑢6) − 2(𝑐 + 𝑏 +
2) (𝑢+𝑢5) +4(3𝑐−𝑏+10)𝑢3]/[8(𝑢2−1)𝑢2], 𝑑 = 2𝑎+ [2(𝑐+5−2𝑏)𝑢]/(1−𝑢2),
𝑔 = [ 𝑓 (15𝑢2−15𝑢4+𝑢6−1) +2𝑢(2+𝑐+𝑏) (1+𝑢4) −4(3𝑐+3𝑏+14)𝑢3]/(16𝑢3),
𝑙 = [4𝑏𝑢(1 − 𝑢6) + 8 𝑓 (𝑢2 + 2𝑢4 + 𝑢6) + 4(𝑏 − 8) (𝑢3 − 𝑢5)]/(1 + 𝑢2)4, 𝑛 =

[ 𝑓 (𝑢12 − 8𝑢10 + 32𝑢6 + 7𝑢8 + 7𝑢4 + 1− 8𝑢2) − 2(𝑐 + 𝑏 + 2)𝑢 − 𝑢11) − 6(𝑐 − 3𝑏 −
2) (𝑢3−𝑢9)−4(𝑐−5𝑏+44) (𝑢5−𝑢7)]/[𝑢(𝑢2−1) (1+𝑢2)4], 𝑞 = [ 𝑓 (1+19𝑢12−19𝑢2+
33𝑢4−33𝑢10+53𝑢6−53𝑢8−𝑢14)+2(33𝑐−46−47𝑏) (𝑢5+𝑢9)+4(3𝑐+5𝑏+16) (𝑢3+
𝑢11) −2(𝑐+ 𝑏+2) (𝑢+𝑢13) +8𝑢7(13𝑐+152−29𝑏)]/[4(𝑢2 −1) (1+𝑢2)4𝑢2], 𝑠 =
[ 𝑓 (1+𝑢4−19𝑢2+21𝑢6−𝑢10−21𝑢8+19𝑢12−𝑢14)+2(17𝑐−62−15𝑏) (𝑢5+𝑢9)+4(𝑐+
5𝑏+14) (𝑢3+𝑢11)−2(𝑐+𝑏+2) (𝑢+𝑢13)+8𝑢7(7𝑐+82−13𝑏)]/[4𝑢(1−𝑢2)2(1+𝑢2)4] .

We have two invariant straight lines 1 − 𝑥 = 0, (1 + 𝑢2)2 − 8𝑢2𝑥 − 4(𝑢2 − 1)𝑢𝑦 = 0 and
center-focus problem was solved in [6].

Assume that ℎ ≠ 0. We find the resultant of the polynomials 𝑓1, 𝑓2 with respect to 𝑑
and obtain that 𝑅𝑒𝑠( 𝑓1, 𝑓2, 𝑑) = 0, if
𝑏 = [(𝑐+2) (𝑢6−1) − 𝑓 (6𝑢5−52𝑢3+6𝑢) + (15𝑐+22)𝑢2(1−𝑢2)]/[(1+𝑢2)2(𝑢2−1)] .
In this case we express 𝑑 from the equations 𝐵03 ≡ 𝐵22 = 0 and the equations of (17)

yield

𝑟 = 0, 𝑝 = − 𝑓 , 𝑚 = −𝑐 − 1,, 𝑘 = −𝑎, 𝑎 = [(6𝑢2 − 𝑢4 − 1) 𝑓 ]/[2(1 − 𝑢2)2],
𝑏 = [(2+𝑐) (𝑢6−1)− 𝑓 (6𝑢−52𝑢3+6𝑢5)+(22+15𝑐) (𝑢2−𝑢4)]/[(1+𝑢2)2(𝑢2−1)],
𝑑 = [ 𝑓 (3 + 3𝑢8 − 100𝑢2 − 100𝑢6 + 306𝑢4) + (3 + 2𝑐) (12𝑢7 + 52𝑢3 − 52𝑢5 −
12𝑢)]/[2(1−𝑢4)2], 𝑔 = [1−𝑢6+2 𝑓 (𝑢−30𝑢3+𝑢5) + (23+16𝑐) (𝑢4−𝑢2)]/[(1+
𝑢2)2(𝑢2−1)], 𝑙 = [(2+𝑐) (𝑢6+7𝑢2−7𝑢4−1) + 𝑓 𝑢(20𝑢2−6𝑢4−6)] [ 𝑓 (1−14𝑢2+
𝑢4) +4(1+ 𝑐) (𝑢3 −𝑢)]/[(1+𝑢2)4(𝑢2 −1)], 𝑛 = [4 𝑓 (9+5𝑐) (𝑢11 −𝑢) +2(32𝑐2 +
104𝑐+72−49 𝑓 2) (𝑢2+𝑢10) +92 𝑓 (11+7𝑐) (𝑢3−𝑢9) + (1391 𝑓 2−1152𝑐−384𝑐2−
768) (𝑢4 + 𝑢8) + 8 𝑓 (445+ 301𝑐) (𝑢7 − 𝑢5) + 4(160𝑐2 + 472𝑐 − 791 𝑓 2 + 312)𝑢6 +
𝑓 2(𝑢12+1)]/[2(1−𝑢2)2(1+𝑢2)4], 𝑞 = [4 𝑓 (567+394𝑐)𝑢6+2(87+127𝑐+40𝑐2−
61 𝑓 2) (𝑢9−𝑢3)− 𝑓 (1103+720𝑐) (𝑢4+𝑢8)+4(353 𝑓 2−223𝑐−76𝑐2−147) (𝑢7−𝑢5)+
2( 𝑓 2−3𝑐−3) (𝑢11−𝑢)− 𝑓 (1+𝑢12)+2 𝑓 (33+14𝑐) (𝑢2+𝑢10)]/[(1−𝑢2)2(1+𝑢2)4],
𝑠 = 𝑢[ 𝑓 (1 − 36𝑢2 + 54𝑢4 − 36𝑢6 + 𝑢8) + 8(1 + 𝑐) (𝑢7 + 3𝑢3 − 3𝑢5 − 𝑢)] [ 𝑓 (2𝑢5 +
2𝑢 − 28𝑢3) − (15 + 8𝑐) (𝑢2 − 𝑢4) − 𝑢6 + 1)]/[(1 − 𝑢4)4] .

The cubic system has three invariant straight lines 1 − 𝑥 = 0, ( 𝑓 𝑢4 + 4𝑐𝑢3 − 14 𝑓 𝑢2 −
4𝑐𝑢 + 𝑓 ) (2𝑢𝑥 + 𝑢2𝑦 − 𝑦) + (𝑢4𝑥 − 14𝑢2𝑥 + 𝑥 − 8𝑢3𝑦 + 8𝑢𝑦 − 𝑢4 − 2𝑢2 − 1) (1 − 𝑢2) =
0, ( 𝑓 𝑢4−14 𝑓 𝑢2+4𝑐𝑢3−4𝑐𝑢+ 𝑓 ) (2𝑢𝑥+𝑢2𝑦−𝑦)+(8𝑢2𝑥+4𝑢3𝑦−4𝑢𝑦+(1+𝑢2)2) (𝑢2−1) = 0
and center-focus problem was solved in [26].
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Assume that 𝑒2 = 0. It is easy to see that 𝑒2(𝑢, 𝑣) = 𝑒1(−𝑢,−𝑣) and the case 𝑒2 = 0 is
equivalent to the case 𝑒1 = 0. ■

Theorem 5.2. The critical point 𝑂 (0, 0) is a center for a cubic differential system (1),
with two algebraic solutions 𝑥 − 1 = 0, 𝑎20𝑥

2 + 𝑎11𝑥𝑦 + 𝑎02𝑦
2 + 𝑎10𝑥 + 𝑎01𝑦 + 1 = 0, if

one of the conditions (i), (ii), (iii) is satisfied.

The proof of Theorem 5.2 follows directly from Theorem 5.1, if the cubic system (1)
is rationally reversible, then the critical point 𝑂 (0, 0) is a center [23], [28].
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