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Abstract. The Lotka-Volterra cubicdifferential systems with (1:-2)-singularity possessing invariant 

straight lines of two direction and total multiplicity six are classified. There are obtained fifteen distinct 

classes modulo the affine transformations and time rescaling. The Darboux first integrals are constructed. 
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1. Introduction 

 

We consider the real polynomial system of differential equations 
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 ),(),(  associated to system (1.1). Here 

GCD(P,Q)R[x; y] is the greatest common divisor of the polynomials P and Q. 

Denote  )deg(),deg(max QPn  . If  32  nn , then the system (1.1) is called 

quadratic (cubic). 

A curve    yxCfyxf ,,0,   (a function  hgf /exp ;  ),, yxChg   is said to be 

an invariant algebraic curve (an invariant exponential function) of (1.1) if there exists a 

polynomial       1deg,,,  nKyxCyxK ff , such that the identity 
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holds. If (1.1) has an invariant curve f  of degree one, i.e. 

,0,),(   yxyxf  then the curve  f  is called the invariant straight line 

of the system (1.1). 

Definition 1. An invariant algebraic curve 0f  of degree d of system (1.1) is called of 

algebraic multiplicity m , if m  is the greatest positive integer such that the 
mf  divide 

 XEd , where 
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det ,             (1.2) 

and the system lvvv ,...,, 21  is a basis of  yxCd ,  (see [1]). 

In the case of the invariant straight lines ( 1d )  we can take yvxvv  321 ,,1  and 

the polynomial  XE1  
has the form: 

     PXQQXPXE 1 . 

Definition 2.Let D be a domain in 2R and     RDCRDCF ,, 11   . 

A function  yxF ,  (  yx, ) is called a first integral (an integrating factor) of the system 

(1.1)  if the following identity 
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holds in D . 

     Let the system  (1.1) have algebraic invariant curves   ,,...,1,0, sjyxf j   i.e.  there 

exist  the polynomials   sjyxK j ,...,1,,  , such that the following identities hold: 
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When system (1.1) has a first integral (an integrating factor) of the form 
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then we say that the system is Darboux integrable. Darboux proved that if the system (1.1) 

has at least   2/1 nns  distinct algebraic invariant curves, then this system is Darboux 

integrable [6]. 

These last years, a great number of works are dedicated to the investigation of the problem 

of integrabilityfor polynomial differential systems and, in particular, of Lotka-Volterra 

systems, with resonant singular points (see [1], [3], [5]-[13]).This problem was completely 

solved in [7] for quadratic system with 2:1   resonant singular points, but for cubic 

systems is still open. In this paper, the cubic systems with 2:1  rezonant singularity, 

having invariant straight lines of two direction of total multiplicity six, are classified. 

We consider the cubic system  
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                           (1.3) 

where the variables yx,  and coefficients iij ba ,  are real. 

Our main results are expressed in the following theorem. 

Main Theorem. The cubic system (1.3) has affine invariant straight lines of two directions 

of total algebraic multiplicity six if and only if it has one of the following fifteen forms: 

1) 








;2,0),2)(1(

,1,0),1)(1(

bbbyyyy

aaaxxxx




  2) 









;1,)1(2

,0),1)(1(

2 ayyy

aaxxxx




 

3) 









;2,0),2)(1(

,)1( 2

cccyyyy

xxx




  4)











;)1(2

,)1(

2

2

yyy

xxx




 

5)












,2),2)(1(

,0),23)2((
2

1 2

ccyyyy

ccyycxx




 6) 









;0),2(

,1),1)(1(

aaxxyy

aaxxxx




 

7) 









;2,0),2)(1(

),1)1(( 2

dddyyyy

ydxx




8) 









);)2(32(

,1,0),1)(1(

2xaxyy

aaaxxxx




 

9)









;08),2(

,1,0),1)(1(

22 pqqypyyy

aaaxxxx




10) 









;2,0),2)(1(

,04),1( 22

cccyyyy

pqqxpxxx




 

11)










;08),2(

,04),1(

22

22

rssyryyy

pqqxpxxx




 12) 











;08),2(

,)1(

22

2

pqqypyyy

xxx




 

13) 










;)1(2

,04),1(

2

22

yyy

pqqxpxxx




14)













;08),2(

),23(
2

1

22

2

pqqypyyy

qypyxx




 

15)









),2(

,04),1( 22

qxyy

pqqxpxxx




 

where Rsrpqdcba ,,,,,,, . The systems 1) – 15) are Darboux integrable and have the 

following first integrals, respectively: 
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where ,42 pq  2  q ; 

14) ),( yxF = yxqypyp 2222 )2(
16

1   ; 

15) ),( yxF = yxqxpx 212 )1(  . 

 

2.Algebraic maximal multiplicity of the invariant straight lines 𝒙 = 𝒂, 𝒚 = 𝒂, 𝒂 ∈ 𝑪 

2.1.Multiplicity of the line )0(0  yx  

 In this subsection, we compute the maximal algebraic multiplicity of the invariant straight 

line )0(0  yx of the system (1.3). For this purpose, we calculate the determinant 

)(1 XE . It has the form 𝐸1(𝑋) = 𝑥𝑦(6 + 𝜔(𝑥, 𝑦)), where 𝜔(𝑥, 𝑦) is a polynomial of 

degree six and 𝜔(0,0) ≠ 0. It is evident that the invariant straight line 𝑥 = 0 (𝑦 = 0) has 

the algebraic multiplicity one. In this way we have proved the following lemma. 

Lemma 1. For system(1.3) the algebraic multiplicity of the invariant straight line 0x

)0( y
 
is one. 

 

2.2.Multiplicity of the line 
*, Rx    

Without loss of generality, we consider 𝛼 = 1. Then system (1.3) can be written in the 

following form 
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              (2.1) 

For (1.3) the polynomial )(1 XE  looks as 

)(1 XE =  2
432 )1)(()1)(()()(1( xyAxyAyAxxy  

))1)(()1)(()1)(( 5
7

4
6

3
5  xyAxyAxyA , 

where 𝐴𝑗(𝑦), 𝑗 = 2, … ,7 are polynomials in 𝑦. For example, )()()( 22212 yAyAyA  , 

where 
2

21 2)( synydymcyA  and  ammaccayA 2
22 1)(  

322 2)33()(2 bsyyassbnbdbyannaddabb  . 

The algebraic multiplicity of the invariant straight line 1x is at least two if the identity 

0)(2 yA holds. Let .0)(2 yA
 
As 1),( QPGCD , then the polynomial )(21 yA is not 

identically zero and therefore )(22 yA is identically zero. The identity 0)(22 yA holds if 

one of the following three sets of conditions is satisfied: 

2.1) 1,0  ab ; 

2.2) dbnsa  ,0,1 ; 

75



2.3) camdbns  1,,0 . 

In each of the cases 2.1), 2.2) and 2.3) the algebraic multiplicity of the line 1x is at least 

three if the polynomial 𝐴3(𝑦) is identicaly zero. Indeed, 

In Case 2.1) we obtain ),()()( 31213 yAyAyA 
 
where nydymcyA 222)(31 

.3 2sy
 
If 0)(31 yA , then deg(𝐺𝐶𝐷( 𝑃, 𝑄)) > 0. Therefore, )(31 yA  is not identicaly 

zero. Thus, in this case the multiplicity of 1x  is two. 

In Case 2.2) we get  
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,02)2(2444)({ 3222222
3

mdcQPGCD

dybybdmmbbcdbdbmcmmccyA

22
4 4)( ybyA  ≢ 0. 

The system (1.3) has the form 

0),32(),1)(1( 2  bbxyxxyybyxxxx  .    (2.2) 

In Case 2.3) we have





}1),(,3,0{}1),(

,0)2)333(2266)(1()({ 2
3

QPGCDcdQPGCD
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)233)(1(2)(4 byabyayA  ≢0. 

 The system(1.3) looks as 

)0,1(),(),)2(32(),1)(1( 2  babxyxaxyybyaxxxx     (2.3) 

and has the invariant straight lines: .0,01,0 54,3,21  ylxlxl  

     Note that the system (2.2) is a particular case of the system (2.3). 

Lemma 2.The maximal algebraic multiplicity of the real invariant straight line𝑙 ≡ 𝑥 −

𝛼 = 0, 𝛼 ∈ 𝑅∗ in system (1.3) is three. If l=0 has the algebraic multiplicity three for (1.3), 

then via an affine transformation of coordinates and time rescaling the system (1.3) can 

be writing in the form (2.3) and 01 xl  is the unique invariant straight line parallel 

to 𝑥 = 0. 

 

2.3. Multiplicity of the line 1y  

The straight line 𝑦 = 1 is the invariant straight line for system (1.3) if and only if (1.3) 

looks as 
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                 (2.5) 

To determine the maximal algebraic multiplicity of the line 1y for (2.5), we write

)(1 XE  in the form 
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)(1 XE =  2
432 )1)(()1)(()()(1( yxByxBxByxy  

))1)(()1)(()1)(( 5
7

4
6

3
5  yxByxByxB . 

Taking into acountthat 1),( QPGCD , the polynomial ),()()( 22212 xBxBxB   where  

2
21 1)( kxjxaxrbxB  and  drrdbddbxB 2322)( 2

22  

,2)36()222(2 322 ckxxcjdkkcacxdjjcdadca   

is identically zero if one of the following three sets of conditions is satisfied: 

2.4) 2,0  dc ; 

2.5) jackd  ,0,2 ; 

2.6) dbrjack  1,,0 . 

In Case 2.4) the condition 1),( QPGCD  gives 

)322)((2)( 2
3 kxjakxjaxxB  ≢0. 

In Case 2.5) we have  }1),(,0)2()()({ 22
3 QPGCDxaxbjaxB

 }1),(,0{ QPGCPba 22
4 2)( xjxB  ≢0. The system (2.5) has the form 

.0),22)(1(),1( 2  jyjxyyyyjxyxx       (2.6) 

In Case 2.6) we find that )()()( 32313 xBxBxB  , where jxaxdxB  2)(31 and 

22
32 )22()36(24)( xajaxbjadababdbxB  . Assume .0)(3 xB  As 

1),( QPGCD the polynomial )(31 xB  is not identicaly zero and therefore )(32 xB
 
is 

identically zero. )236)(2()(}1),(,0{ 4 jxdjxdxBQPGCDba  ≢0. 

The system (2.5) looks as 

)0,2(),(),2)(1(),1)1(( 2  jddyjxyyyydjxyxx      (2.7) 

which possesses the invariant straight lines: .01,0,0 5,4,321  ylylxl  

     Note that (2.6) is a particular case of the system (2.7). 

Lemma 3. The maximal algebraic multiplicity of the real invariant straightline𝑙 ≡ 𝑦 −

𝛼 = 0, 𝛼 ∈ 𝑅∗ in system (1.3) is three. If l=0 has algebraic multiplicity threefor (1.3), 

then via an affine transformation of coordinates and time rescaling, the system (1.3) can 

be brought tothe form (2.7) and 01 yl  is the unique invariant straight line parallel 

to 𝑦 = 0. 

 

2.4. Multiplicity of the line RCx \,    

The straight line RCx \,    is the invariant straight line for system (1.3) if and 

only if (1.3) looks as 
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       (2.8) 

To determine the maximal algebraic multiplicity of the line RCx \,   , we write 

)(1 XE  in the form: 
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)3)(5)4424( 423332323223 yspxyndspxyqspqsmpscpqpndnp  . 

     The algebraic multiplicity of the invariant straight line RCx /,   is at least two 

if the identity 0),(2 yxA holds. Taking into account that the system’s coefficients are 

real numbers and ,1),( QPGCD  the last identity yields the following set of conditions:

qcsmnd  ,0 . 

In this case we obtain the system 15) from the main theoremwith the invariant straight 

lines:  
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The polinomial )(1 XE has the form
22

1 )1)(3(2)( pxqxqxxyXE  and it does not 

divide the polynomial
32 )1(  qxpx . 

Lemma 4.The maximal algebraic multiplicity of the non-real invariant straight line 

RCx \,   insystem (1.3) is two.  

 

2.5. Multiplicity of the line RCy \,    

The straight line RCy \,    is the invariant straight line for system (1.3) if and only 

if (1.3) look as 











.08),,()2(

),,()1(

22

22

pqyxQqypyyy

yxPbyaxryjxykxxx




 (2.9) 

We write )(1 XE in the form 
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))2)(,(),()(2()( 2
32

2
1  qypyyxAyxAqypyxyXE . 

The polynomial 𝐴2(𝑥, 𝑦) looks as 

 222222322
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 4323322222232 35)42(2)6626( xpkxakpxkrpajpxjpqrrapqjpapbjp
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 yxkjpxyrjpqqraprjpqjpqapqbjpjpabp 33222223233 5)33633(

 

yxqrkpqkpqpjajpbkp 2232233 )4244(  . 

The algebraic multiplicity of the invariant straight line RCy \,   is at least two if 

the identity 0),(2 yxA holds. Under condition 1),( QPGCD and taking into acount 

that the coefficients of thedifferentialsystem are real, the identity 0),(2 yxA holds if the 

following conditions are satisfied: 
2

3
,

2
,0

p
r

q
bjka  .In this case we get the 

system 14) of the main theorem possessing the invariant straight lines:  
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The multiplicity of the lines 𝑙5,6 is exactly two as
32 )2(  qypy  does not divide the 

polynomial )36()2(
4

1
)( 222

1 pyqyqypyxyXE  . 

Lemma 5. In the class of systems (1.3) the maximal algebraic multiplicity of the non-real 

invariant straight line RCy \,  
 
is two. 

 

3. Configurations of the invariant straight lines 

 

Taking into acount Lemmas 1-5 we have for system (1.3) the following twelve 

configurations of six invariant real straight lines of two directions: 

 

A1) (3r;3r); 

A2) (3r ;3(2)r); 

A3) (3(2)r ; 3r); 

A4) (2r ;4(1,2)r); 

A5) (4(1,2)r ; 2r); 

A6) (3(2)r ; 3(2)r); 

A7)( 1r; 5(2,2)r); 

A8) (5(2,2)r ; 1r); 

A9) (2r;4(3)r); 

A10) (4(3)r; 2r); 

A11) (1r ;5(1,3)r); 

A12) (5(1,3)r; 1r), 
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And the following seven configurations of six invariant straight lines, two of wich are non-

real: 

B1) (3r; 1r+2c); 

B2) (1r+2c; 3r); 

B3) (1r+2c ;1r+2c); 

B4) (3(2)r; 1r+2c); 

B5) (1r+2c ; 3(2)r); 

B6) (1r ;1r+4(2,2)c);B7) 

(1r+4(2,2)c; 1r). 

     We denote by 3(2)r(4(3)𝒓) two parallel and distinct real straight lines one of which is 

counted twice (thrice) and we say that it has multiplicity equal to two (three). By5(1,3)rwe 

denote three parallel and distinct real straight lines one of which has multiplicity  three and 

by 1r+2c is denoted a triplet of distinct and parallel straight lines, one of which is real and 

two are complex (non-real).  

We denote by (3r ; 1r+2c) the configuration consisting of six affine straight lines of  two 

directions: a triplet of real distinct parallel straight lines in one direction; a real straight 

line and a pair of parallel complex (non-real) lines in the second direction. By (1r;5(2,2)r)  

is denoted the configuration of six straight lines of two directions consisting of: a real 

straight line (in one direction) and five real parallel straight lines two of which have 

multiplicity equal to two (in the second direction) 

 

3.1. Unrealisable configurations 

In this subsection we show that in the class of cubic systems of the form (1.3) the 

configurations A4), A5), A9)and A10) are not realisable. 

 

Configuration A4) (𝟐𝒓; 𝟒(𝟏, 𝟐)𝒓). Via an affine transformations of coordinates and time 

rescaling, the cubic system (1.3) with two real invariant straight lines in the direction of 

the axe 𝑂𝑦 and three real invariant straight lines in the direction O𝑥, can be writen in the 

form 









.2,0),2)(1(

,0)))(1((,0),1)(1( 22

cccyyyy

cbbabbyaxxxx




    (3.1) 

Without loss of generality, we consider that the invariant straight 𝑦 = 1 has the 

multiplicity two. For system (3.1) the polynomial 𝐸1(𝑋) look as 

𝐸1(𝑋) = (1 − 𝑥)𝑥(𝑦 − 1)𝑦(2

+ 𝑐𝑦)[(4 − 𝑏2 + 𝑐 − 𝑏𝑐 − 4𝑎𝑥 − 4𝑏𝑥 − 3𝑎𝑏𝑥 + 2𝑏2𝑥 − 𝑎𝑐𝑥 + 5𝑎𝑏𝑥2

− 2𝑏𝑦 − 𝑏2𝑦 + 3𝑐𝑦 − 𝑏𝑐𝑦 + 2𝑏2𝑥𝑦 − 3𝑎𝑐𝑥𝑦 − 2𝑏𝑐𝑦2)(𝑦 − 1) + (𝑥)], 

where 𝜑(𝑥) = (1 − 𝑏)(1 + 𝑏 + 𝑐) − (𝑎(𝑐 + 3𝑏 − 1) − 2(1 − 𝑏)2)𝑥 − 𝑎(2𝑎 +

5(1 − 𝑏))𝑥2 + 3𝑎2𝑥3. As𝜑(𝑥) is not identically zero, the polynomial (𝑦 − 1)2does not 

divide 𝐸1(𝑋)and therefore the invariant straight line 𝑦 = 1 does not have the multiplicity 

two. In this way we proved that the configurationsA4)is not realisable. 
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Configuration A5) (4(1,2)r ; 2r). The system (1.3) can by writen in the form 









.0)2()2(),2)(1(
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222 cabbcybxyyy

aaaxxxx




                (3.2) 

Suppose that the invariant straight line 𝑥 = 1 has the multiplicity two for (3.2). In this 

assumption the polynomial 𝐸1(𝑋) looks as 

 babxxbabbababbayaxxxyXE 8(2)6(524)[(1)(1)(1()( 222
1

)]()1)(5)32()322 222 yxbcyxyacbybcaccb  ,  

where )32243)(22()( 2cycybyybacyby  . 

This implies the polynomial )(y to be not identically zero for the system (3.2), which 

contradicts the assumption that the invariant straight line 𝑥 = 1 has the multiplicity two. 

We have proved that the configurations A5) is not realisable. 

 

Configuration A9) (2𝒓;  4(3)𝒓) (Configuration A10) (4(3)𝒓;  2𝒓)). According to 

Lemma 3 (Lemma 2) we consider the system (2.7)  ((2.3)). This system does not have any 

invariant straight line described by an equation of the form 𝑥 = 𝛼 (y= 𝛼), 𝛼 ∈ 𝑅∗. 

Therefore, the configuration A9) (A10)) is not realisable. 

 

4. Classification of cubic systems (1.3) with invariant straight lines of total 

multiplicity six and of two directions 

Configuration A1) (3r;3r). Via an affine transformation of coordinates and time rescaling 

each system which realise this configuration can be written in the form 1) of the Main 

Theorem.The system 1) has the invariant straight lines: 

02,01,0,01,01,0 654321  bylylylaxlxlxl  

and is Darboux integrable. 

 

Configuration A2) (3r ;3(2)r). Any cubic system with a triplet of distinct parallel 

invariant straight lines and a couple of distinct parallel invariant straight lines modulo an 

affine transformation of coordinates can be writen in the form 









).,()2)(1(

,1,0),,()1)(1(

yxQcybxyyy

aayxPaxxxx




                    (4.1) 

For this system we have   ))1)(()()(1)(1)(1( 321  yxAxAaxxyxyXE , 

where and )(3 xA is a polynomial in x . In order the straight line 01y
 
to have 

multiplicity two, we require the 0)(2 xA
 

and this yields 2,0  cb . In these 

,2)36()222444(32)( 3222
2 abxxacbabbaxbcaccbaccxA 
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conditions the system (4.1) becomes the system 2) of the Main Theorem. It has the 

invariant straight lines: 

01,0,01,01,0 6,54321  ylylaxlxlxl  

and it is Darboux integrable. 

 

Configuration A3) (3(2)r ; 3r). In this case the system (1.3) can be written as 









.2,0),,()2)(1(

),,()1)(1(

ccyxQcyyyy

yxPbyaxxxx




                        (4.2) 

For (4.2) the polynomial𝐸1(𝑋) looks as 

  )),1)(()()(2)(1)(1( 321  xyAyAcyxyxyXE  

where

.2)332()222244(1)( 3222
2 bcyybcaccbbyaccabbaayA 

The identity 0)(2 yA holds if and only if 0,1  ba . Under these conditions the 

system (4.2) is of the form 3) of the Main Theorem andit has the invariant straight lines 

.02,01,0,01,0 6543,21  cylylylxlxl  

 

Configuration A6) (3(2)r ; 3(2)r). We write the system (1.3) in the form 









).,()2)(1(

),,()1)(1(

yxQdycxyyy

yxPbyaxxxx




 

For this system the polynomial  XE1 is 

  ))1)(,()()(11( 321  xyxAyA)(xyxyXE  

where 

dy)c-db(by 

)dydycybyycaa) (dy)((c(yA

222

232224112 )(2




 

and 

),(3 yxA 4 + 2𝑎2 − 3𝑐 + 2𝑎𝑐 + 𝑎2𝑐 − 𝑐2 + 𝑎𝑐2 − 10𝑎𝑥 + 2𝑎2𝑥 + 𝑐𝑥 + 2𝑎𝑐𝑥 +

𝑎2𝑐𝑥 − 𝑐2𝑥 + 𝑎𝑐2𝑥 + 6𝑎2𝑥2 − 3𝑎𝑐𝑥2 + 𝑎2𝑐𝑥2 + 𝑎𝑐2𝑥2 + 2𝑎2𝑐𝑥3 − 8𝑎𝑦 − 8𝑏𝑦 +

4𝑎𝑏𝑦 + 8𝑐𝑦 − 8𝑎𝑐𝑦 − 2𝑏𝑐𝑦 + 2𝑎𝑏𝑐𝑦 + 2𝑐2𝑦 − 2𝑎𝑐2𝑦 + 2𝑑𝑦 + 4𝑎𝑑𝑦 + 𝑎2𝑑𝑦 −

3𝑐𝑑𝑦 + 3𝑎𝑐𝑑𝑦 + 10𝑎𝑏𝑥𝑦 − 8𝑎𝑐𝑥𝑦 − 2𝑏𝑐𝑥𝑦 + 2𝑎𝑏𝑐𝑥𝑦 + 2𝑐2𝑥𝑦 − 2𝑎𝑐2𝑥𝑦 −

5𝑎𝑑𝑥𝑦 + 𝑎2𝑑𝑥𝑦 + 3𝑎𝑐𝑑𝑥𝑦 + 3𝑎𝑏𝑐𝑥2𝑦 − 2𝑎𝑐2𝑥2𝑦 + 3𝑎2𝑑𝑥2𝑦 + 4𝑏2𝑦2 − 4𝑏𝑐𝑦2 +

𝑏2𝑐𝑦2 − 𝑏𝑐2𝑦2 − 10𝑎𝑑𝑦2 − 4𝑏𝑑𝑦2 + 2𝑎𝑏𝑑𝑦2 + 5𝑐𝑑𝑦2 − 5𝑎𝑐𝑑𝑦2 + 𝑏𝑐𝑑𝑦2 +

2𝑎𝑑2𝑦2 + 𝑏2𝑐𝑥𝑦2 − 𝑏𝑐2𝑥𝑦2 + 5𝑎𝑏𝑑𝑥𝑦2 − 5𝑎𝑐𝑑𝑥𝑦2 + 2𝑏2𝑑𝑦3 − 3𝑏𝑐𝑑𝑦3 − 3𝑎𝑑2𝑦3 

The straight line 01x will have the multiplicity two, only if )(2 yA isidenticaly zero:

 }1),(,0)({ 2 QPGCDyA 0,1  ba or 0,0,2,1  bdbca . 
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If 0,1  ba , thenwe have the system 









),2)(1(

,)1( 2

dycxyyy

xxx




                                        (4.3) 

For(4.3)the polynomial )(1 XE has the form 

  ))1)(()(()1)(1( 32
2

1  yxBxBxyxyXE ,
 

where .2)362()2448(32)( 3222
2 cxxdccxcddcddxB   

The straight line 01y has the multiplicity twoif 0)(2 xB and this is realizedwhen

2,0  dc . Thus, the system (4.3) will have the form 4) of the Main Theorem. This 

system has the invariant straight lines:  

.01,0,01,0 6,543,21  ylylxlxl  

When 0,2,1  dbca , the polynomial )(2 xB looks 

.)24()264()22(22)( 32222
2 xbxbbxbbbxB   

Obviously, )(2 xB is not identicaly zero. So, in this case, the multiplicity of the invariant 

straight line 01y can not be equal to two. 

 

Configuration A7) ( 1r; 5(2,2)r) .We rewrite the system (1.3) into the form 









.2,0),,()2)(1(

),,()1( 22

ccyxQcyyyy

yxPbyaxhygxyfxxx




                 (4.4) 

For (4.4) we have   ))1)(()()(2)(1( 321  yxAxAcyyxyXE , where 

)()()( 22212 xAxAxA  , 

)(21 xA
21 fxgxaxhb  and )(22 xA

23221 fxgxaxhcb  . 

Taking into consideration the condition 1),( QPGCD , we obtain  xA21 ≢0, and 

therefore  xA22 is identicallyzero. This is realized when cbhagf  1,,0 . In 

these conditions, the system (4.4) looks as 









.2,0),2)(1(

),1)1(( 2

cccyyyy

byaxycbaxyxx




        (4.5) 

For (4.5) we have   )),2)(()()(2()1( 32
2

1  cyxBxBcyyxyXE
 
where 

)(2 xB )222)(22)(2((
1
3

acxcbacxcbc
c

 . 
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The implication  }1),(,0)({ 2 QPGCDxB






 


2

2
,0

c
ba  reduces (4.5) to the 

system 5) of the Main Theorem, which has the following invariant straight lines: 

02,01,0,0 6,54,321  cylylylxl . 

 

Configuration A8) (5(2,2)r ; 1r).We consider the system 









).,()2(

,1,0),,()1)(1(

22 yxQcybxhxgxyfyyy

aayxPaxxxx




                           (4.6) 

In this case 

  )),1)(()()(1)(1( 321  xyAyAxyxyXE  

where )()()( 22212 yAyAyA  , )(21 yA 23221 fygycyhba  and 

)(22 yA 22 fygycyhb  . The straight line 01x has the multiplicitytwo, 

only if the polinomial )(2 yA is identically zero. We have

   .1,,001),(,0)( 212 bahcgfAQPGCDyA 
 

The system 

(4.6) obtains the form 









).2)1((

,1,0),1)(1(

2 cybxxbacxyyy

aaaxxxx




                               (4.7) 

We will require for system (4.7) to have the invariant straight line 01ax ofthe 

multiplicity two. We computethe polynomial  XE1 for (4.7) 

  ))1)(()()(1()1( 32
2  axyByBaxxxyXE , 

where )21)(21)(1(
1

)(
32 acybaacybaa

a
yB  .Taking into account 

that 1),( QPGCD , the polynomial )(2 yB
 

will be identical zero if and only if

1,0  abc . In these conditions (4.7) becomes the system 6) of the Main Theorem 

wich has the following invariant straight lines 

.0,01,01,0 65,43,21  ylaxlxlxl  

 

Configuration A11)  (1r ;5(1,3)r). For realisation of this configuration it is sufficient to 

put 0l in (2.7).  In this way, we obtain the system 7) of the Main Theorem which has 

the invariant straight lines:  

.02,01,0,0 65,4,321  dylylylxl  

 

84



 

Configuration A12) (5(1,3)r; 1r). In this case we put 0b , 0a  in (2.3) and obtain the 

system 8) of the Main Theorem which possesses the invariant straight lines: 

.0,01,01,0 654,3,21  ylaxlxlxl  

 

Configuration B1) (3r; 1r+2c). By an affine transformation of coordinates the system 

(1.3) can be brought to the form 9) of the Main Theorem, which has the following invariant 

straight lines: 

,0,01,01,0 4321  ylaxlxlxl  

0
2

8
,0

2

8 2

6

2

5 






p

pqq
yl

p

pqq
yl , where 082  pq . 

 

Configuration B2) (1r+2c; 3r). In this casethe system (1.3) can be brought to the 

system10) of the Main Theorem and it admits the following invariant straight lines: 

,0
2

4
,0

2

4
,0

2

3

2

21 






p

pqq
xl

p

pqq
xlxl  

02,01,0 654  cylylyl , where 042  pq . 

 

Configuration B3) (1r+2c ;1r+2c).  The system (1.3) can be brought to the form 11)  of 

the Main Theorem and it has the fallowing invariant straight lines: 

,0,0
2

4
,0

2

4
,0 4

2

3

2

21 





 yl
p

pqq
xl

p

pqq
xlxl  

,0
2

8
,0

2

8
2

6

2

5 






r

pss
yl

r

rss
yl

 
where 08,04 22  rspq

. 

 

Configuration B4) (3(2)r; 1r+2c). In this case the system (1.3) can be written: 









.08),2(

),1)(1(

22 pqqypyyy

byaxxxx




                                (4.8) 

The polynomial  XE  has the form 

  ))1)(()()(2)(1( 32
2  xyAyAqypyxxyXE , 

where 

.2)33()2222(1)( 3222
2 bpyypbbqapyaqqabbayA   
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The straight line 01x will have the multiplicity two only if )(2 yA is identicaly zero, 

and this will be realized when 1,0  ab . In this condition, the system (4.8) has the 

form12) of the Main Theorem having the following invariant straight lines: 

.0
2

8
,0

2

8
,0,01,0

2

6

2

553,21 






p

pqq
yl

p

pqq
ylylxlxl

 

Configuration B5) (1r+2c ; 3(2)r). We write the system (1.3) as follows: 









).2)(1(

,04),1( 22

dycxyyy

pqqxpxxx




                                (4.9) 

The polynomial  XE  for (4.9) has the form 

  ))1)(()()(1)(1( 32
2  yxAxAqxpxyxyXE , 

where

.2)36()2424(32)( 3222
2 cpxxcqdppcxdqqcdcddxA   

The expresion )(2 xA will be identicaly zero if the condition 2,0  dc  is fulfilled. 

Thus, the system (4.9) has the form 13) from the Main Theorem. The system has the 

following invariant straight lines: 

.01,0,0
2

4
,0

2

4
,0 6,54

2

3

2

21 





 ylyl
p

pqq
xl

p

pqq
xlxl  

Configuration B6) (1r ;1r+4(2,2)c). The system (1.3), which admits the configuration 

B6), is the system 14) from the Main Theorem, obtained in Section 2.5.  

 

Configuration B7) (1r+4(2,2)c; 1r). The system having the configuration of the invariant 

straight lines B7) was determined in Section2.4. It represents the system 15) from the Main 

Theorem. 
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