LOTKA-VOLTERRA CUBICDIFFERENTIAL SYSTEMS WITH (1:-2)-
SINGULARITY AND INVARIANT AFFINE STRAIGHT LINES OF TWO
DIRECTIONS OF TOTAL ALGEBRAIC
MULTIPLICITY SIX
Silvia TURUTA, doctorand

Abstract. The Lotka-Volterra cubicdifferential systems with (1:-2)-singularity possessing invariant
straight lines of two direction and total multiplicity six are classified. There are obtained fifteen distinct
classes modulo the affine transformations and time rescaling. The Darboux first integrals are constructed.
Keywords: differential cubic system, invariant straight line, Darboux integral.

1. Introduction

We consider the real polynomial system of differential equations

dx_ & _ =
dt - P(X! y)’ dt - Q(X’ y)’ GCD(P’Q ) 1 (11)

and the vector field X = P(X, y) aﬁ + Q(X, y)% associated to system (1.1). Here
X

GCD(P,Q) eR[x; y] is the greatest common divisor of the polynomials P and Q.

Denote n =max{deg(P),deg(Q)}. If n=2 (n=3), then the system (1.1) is called
quadratic (cubic).

Acurve f(x,y)=0, f eC[x,y] (afunction f =exp(g/h); g,h e C[x,y]) is said to be
an invariant algebraic curve (an invariant exponential function) of (1.1) if there exists a
polynomial K (x,y)e C[x, y] deg(K; )<n—1, such that the identity

arixy) (8):( y) P(x, y)+%’y)-Q(X, y)=f(xy)-Ki(xy)

holds. If (1.1) bhas an invariant curve f of degree one, ...

f(X,y)=ax+py+y, |a|+|B#0, then the curve f is called the invariant straight line

of the system (1.1).
Definition 1. An invariant algebraic curve f =0 of degree d of system (1.1) is called of

algebraic multiplicity m, if m is the greatest positive integer such that the f™ divide
E4(X), where
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A v, . V|

£, (X)= det X(v,)  X(v,) ... X(v) | 12)

X)) X)) e XTHy)
and the system V;,V,,...,V, is a basis of C, [x, y] (see [1D).

In the case of the invariant straight lines (d =1) we can take v; =1,v, =X,v; =Y and
the polynomial E,(X ) has the form:

E(X)=P-X(Q)-Q-X(P).
Definition 2.Let D be a domain inR?and F € C*(D,R) (,u e CY(D, R))

A function F(x,y) (z(x,y)) is called a first integral (an integrating factor) of the system
(1.1) if the following identity

holds in D.
Let the system (1.1) have algebraic invariant curves fj(x, y):O, j=1....s, i.e. there

exist the polynomials Kj(x, y), j =1,...,s, such that the following identities hold:
of(x,y) of(x,y)

T-P(x,y)Jr By Qx,y)=fi(xy)-K;(x,y).

When system (1.1) has a first integral (an integrating factor) of the form
S S
()= [T 1760) sty T 7009 |
=l j=1

then we say that the system is Darboux integrable. Darboux proved that if the system (1.1)
has at least s > n(n+1)/2 distinct algebraic invariant curves, then this system is Darboux

integrable [6].

These last years, a great number of works are dedicated to the investigation of the problem
of integrabilityfor polynomial differential systems and, in particular, of Lotka-Volterra
systems, with resonant singular points (see [1], [3], [5]-[13]).This problem was completely
solved in [7] for quadratic system with 1:-2 resonant singular points, but for cubic
systems is still open. In this paper, the cubic systems with 1:-2rezonant singularity,
having invariant straight lines of two direction of total multiplicity six, are classified.

We consider the cubic system
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{)‘(: X(L+ 8,0X + 8y, Y + 8goX” + 8y, XY + 8, Y%), 19

Y= y(=2+by X +by,y + b21X2 +hy,xy + b03y2),

where the variables x, y and coefficients a;;, b; are real.

ij?

Our main results are expressed in the following theorem.

Main Theorem. The cubic system (1.3) has affine invariant straight lines of two directions

of total algebraic multiplicity six if and only if it has one of the following fifteen forms:
{)‘( =x(x-D(ax-1),a=0,a=1, {X =X(x-1)(ax-1), a=0,

y=y(y-1)(by+2),b=0,b=-2 y=-2y(y-1?% a=l
X=X(X— 1)

y==-2y(y -

{x x(x—1)2, 2

y=y(y-1(cy+2),c#0,c+-2

6)
y=y(y-1(cy +2),c#-2, y(x+ax—2),a#0;

- {x x(L+d)y? +1), .
y=y(y-D(dy+2),d=0,d = -2

9){><=><(><—1)(<':1><—1),a:«tO,a:ftL 10) {xzx(px +gx+1),q° —4p <0,

y=y(py® +qy—2),q° +8p<O0; y=y(y-D(cy+2),c#0,c#-2
. _ 2 2 . 12

1) X=X(px°+0gx+1),q°—-4p<0, 12) X=Xx(x-1)°,
y=Yy(ry* +sy —2), s* +8r<0; y=y(py* +ay-2),9° +8p<0;

X=xX(x-1(ax-1),a=0,a=1,

5){ =—x((2 C)y+30y +2),c =0, {X=x(x (ax-1), a=1,

y=y(=2+3x+ (a—2)x?);

14)

1
13 {X=x(px2+qx+1),q2—4p<0, X:EX(Spy2+qy+2),

v . 2. .

y=-2y(y-D% y=Yy(py® +qy—2),q° +8p <0;

15){5(: x(px? +gx+1), > —4p <0,
y=-y(2+0ax),

where a,b,c,d,q, p,r,s € R. The systems 1) — 15) are Darboux integrable and have the
following first integrals, respectively:

2(2+b)  2(2+b) 2a(2+b) 2 2+b
) FOLy)=(x-)@Px b (ax—1) @V (y_1by b (by+2);
ai—l
2) F(x, y)=eV %" 2 (ax-1)* (y-D)* y (x-1) %;
2c+4

3) F(x,y)=e *1 x4 2 (x—1)*2 (y—1)2y 2 (cy + 2)°;
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2 1
HF(x,y)=e* eV x*(x-1) 2 (y -1 ty;
1 5c+2¢2 c2450-4
5) F(x,y)=e*¥ e 0D x3(y-1) 2 (cy+2)y;
1 3a-4a’®
6) F(x,y)=e®L.¢ x1 x2(x—1)% 6alig_ 1y
2+d
7) F(xy)=x2y(dy+2) 9 (y-1)72;
2-2a
8) F(x,y)=x’y(ax-1) 2 (x-1)7

-1 1-a l-a

9) F(X,y)=(x _1)3 x a (ax _1)y7a (y+ %)(a—l)(ﬁ—q)é (y + %)(a—l)(\/;+q)ﬂ ,

128p° —q’yy +0°%y ,_128p°+a’r\y —a*Yfy
512ap®\[y ’ 512ap°[y '

2 4-2c —2—C \/_ \/_
10) F (X’ y) = (y _ 1) C X C (Cy + 2) y C (X + q;—i) _(C+2)(\/Z_q)ﬁ (X + q;—ﬁ) (2+C)(ﬁ+q)7 ,
p p

where y =q°+8p, & =

where
~16p° +4pgVi -q°v1 + 932 16p3 +4pg®Va-g°Vi+q3¥a
3 ) 7/: 3 b
16cp3v 2 16¢cp>/2
]_]_) F(X, y):i.X_SZpSM .(X+M)_(q_ﬁ)(16p3_7)5 (2 px+q_ﬂ‘).
4pr 2p
Jij

3 P
S _ﬂ)—le s(q—1)o+

"y Y+2— S+ﬂ‘(2ry+3+,3)1

r
Where ﬂ,=\/q2—4p,ﬁ=\/8r+82, 7/=4pq3/t—q5/1+q3/13,

A=q°-4p, B=

~16p345 (

1
o= 5 :
(q+A)A6p° +y)
£ 42-4p-q° —ap
12) F(x, y):eX—l,(X_]_)ﬁ’ x P ,y—q/1+8p+q2 '(Y+q2+lj -(y+q2_’1j |
P p

where 1 =+/8p+q%, B=2q4 —16p —2q°>;

B gA+5-q° 4p
_ _ _ A g-—4

13) F(x, :eyl. _113.)(25. ’B-X qL .| X :
) F(X,y) (y-1 y + 2p + 2p
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where i:w/q2—4p,ﬂ=q/1—/12;
1 )
14) F(x,y)= 1P 2(py? +qy —2) 2x%y;

15) F(x, y)=(px? +gx+1)1x%y.

2.Algebraic maximal multiplicity of the invariant straight linesx =a,y =a,a € C
2.1.Multiplicity of the line x=0(y=0)

In this subsection, we compute the maximal algebraic multiplicity of the invariant straight
line X =0(y =0)of the system (1.3). For this purpose, we calculate the determinant
E,(X). It has the form E;(X) = xy(6 + w(x,y)), where w(x,y) is a polynomial of

degree six and w(0,0) # 0. It is evident that the invariant straight line x = 0 (y = 0) has

the algebraic multiplicity one. In this way we have proved the following lemma.

Lemma 1. For system(1.3) the algebraic multiplicity of the invariant straight line x=0
(y=0) is one.

*
2.2.Multiplicity of the line X=a, ¢ € R

Without loss of generality, we consider a = 1. Then system (1.3) can be written in the

following form
X=x(x=1)(ax+by 1) = P(x, ), (2.1)
Y =—y(2+cx+dy+mx* +nxy +sy*) =Q(x,Y). |

For (1.3) the polynomial E, (X) looks as
E (X)) =xy(x=1) (A, (¥) + Ay (Y)(x =) + A, (V) (x~1)* +
A(Y)(x=D)* + A (V) (x=D)* + A (V) (x=1)°),
where A;(y),j = 2,..,7 are polynomials in y. For example, A,(y) = A,1(Y)A(Y),
where A, (Y)=2+c+m+dy+ny+sy?and A,,(y)=-1+a*—c+ac—m+am+

2(-b+ab—d+ad —n+an)y+ (b* +bd +bn—3s+3as)y? + 2bsy>.

The algebraic multiplicity of the invariant straight line X =1is at least two if the identity
A,(y)=0holds. Let A,(y)=0. AsGCD(P,Q) =1, then the polynomial A,,(y)is not
identically zero and therefore Ay, (Y)is identically zero. The identity A,,(y) = 0holds if
one of the following three sets of conditions is satisfied:

21) b=0,a=1;

22) a=1s=0,n=-b—-d;
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23)s=0,n=-b—-d, m=-1-a-c.
In each of the cases 2.1), 2.2) and 2.3) the algebraic multiplicity of the line X =1is at least
three if the polynomial A;(y) is identicaly zero. Indeed,
In Case 2.1) we obtain A;(y) = Ay (V) As1(Y), where Ag;(y) =2+Cc+m+2dy+2ny

+3sy®. If Ay (y) =0, then deg(GCD(P,Q)) > 0. Therefore, Ay, (Yy) is not identicaly

zero. Thus, in this case the multiplicity of x =1 is two.
In Case 2.2) we get

{A;(y) =4 +4c+c? +4m+2cm+m? + (b* — 2bd —bed —b*m —bdm)y? + 2b%dy® =0,
GCD(P,Q) =1}=c=-3,d=0,m=1=
A, (y) = -4b*y?% 0.
The system (1.3) has the form
X =X(Xx-1)(x+by—1), y=y(-2+3x—x*+bxy),b=0. (2.2)
In Case 2.3) we have
{As(y) = (-1+a+by)(—6+6a—2c + 2ac + (3b + bc —3d + 3ad) y + 2bdy?) =0,
GCD(P,Q)=1}={d =0,c=-3,GCD(P,Q) =1} =
A, (y) =—-2(-1+a+by)(—3+3a+ 2by) 0.
The system(1.3) looks as
x=x(x-1)(ax+by —1), y=y(-2+3x+ (a—2)x> +bxy), (a,b) = (1,0) (2.3)
and has the invariant straight lines: ; =x=0, I,,, =x-1=0,l;=y=0.
Note that the system (2.2) is a particular case of the system (2.3).
Lemma 2.The maximal algebraic multiplicity of the real invariant straight linel = x —
a =0, a € R*insystem (1.3) is three. If I=0 has the algebraic multiplicity three for (1.3),
then via an affine transformation of coordinates and time rescaling the system (1.3) can

be writing in the form (2.3) and | = x—1=0 is the unique invariant straight line parallel
tox = 0.

2.3. Multiplicity of the line y =1

The straight line y = 1 is the invariant straight line for system (1.3) if and only if (1.3)
looks as

: (2.5)
y=y(y-D(ex+dy+2)=Q(x,Y).
To determine the maximal algebraic multiplicity of the line Yy =1for (2.5), we write

E,(X) inthe form

{)‘( = X(kx® + jxy +ry? +ax+by +1) = P(x, y),
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E1(X)=xy(y =1)(B, (¥) + By (x)(y =) + B, ()(y —1)* +
Bs ()(y —1)° +Bs () (y —D* + B, ()(y -1)°) .
Taking into acountthat GCD(P, Q) =1, the polynomial B, (x) = B,,(x)B,,(x), where
B,,(X) =1+b+r+ax+ jx+kx’andB,,(x) =—2+2b—3d +bd —d? + 2r +dr +

+2(2a—2c+ad —cd +2j +dj)x + (ac —c? + 6k + 3dk +¢j)x* + 2ckx®,
is identically zero if one of the following three sets of conditions is satisfied:

24) c=0,d =-2;

25)d=-2,k=0,c=a+j;

26) k=0,c=a+j,r=1-b+d.
In Case 2.4) the condition GCD(P,Q) =1 gives

B, (X) = 2x*(a+ j +kx)(2a+ 2 j + 3kx) Z0.

In Case 2.5) we have{B,(x) = (a+ j)*(b+2ax)x* =0, GCD(P,Q) =1} =
{a=b=0,GCP(P,Q) =1} = B,(x) = 2j°x*20. The system (2.5) has the form

x=x(py—y*+1), y=y(y-)@+jx-2y), j#0. (26)
In Case 2.6) we find that B;(X) = B3;(X)B;,(X), where B;;(X)=2+d +ax+ jxand
B,,(X) = 4b+2bd + (6a + ab +3ad +bj)x + (2a° + 2aj)x*. Assume B,(x)=0. As
GCD(P,Q) =1the polynomial Bs,(X) is not identicaly zero and therefore B,,(X) is
identically zero.{a=b =0, GCD(P,Q)=1}= B,(X) =(2+d + jx)(6+3d + 2 jx) ZO0.
The system (2.5) looks as
x=x(jxy +@+d)y*+1), y=y(y-D@+ jx+dy),(d,j) = (-20) (27)
which possesses the invariant straight lines: I, =x=0, I, =y =0, l;,5=y-1=0.
Note that (2.6) is a particular case of the system (2.7).
Lemma 3. The maximal algebraic multiplicity of the real invariant straightlinel = y —
a =0, a € R* in system (1.3) is three. If I=0 has algebraic multiplicity threefor (1.3),

then via an affine transformation of coordinates and time rescaling, the system (1.3) can
be brought tothe form (2.7) and | = y —1=0 is the unique invariant straight line parallel

toy =0.

2.4. Multiplicity of the line Xx=a, 2 € C\R
The straight line X =a, @ € C\R s the invariant straight line for system (1.3) if and
only if (1.3) looks as
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{sz(px2+qX+1)EP(X, y), 9°-4p<0, (2.8)

Y =—y(2+cx+dy +mx? +nxy +sy?) =Q(x, y).
To determine the maximal algebraic multiplicity of the linex =a, « € C\ R, we write
E,(X) in the form:

E (X)) = xy(px* + ax+D (A, (X, ¥) + Ay (X, Y)(pPX* +gx +1)).
where

A, (X, y) = i?,(m2 p—c®p?—2mp® +2cmpg +cp®g—m*q® —mpg” +
p

(—2cmp? + 2¢p® + 2m? pg — ¢ p?q + mp2q — 2pq + 2cmpg? + cp?g? —m?q® — mpg®)x +
(-3dmp? —3cnp? +4dp* + 3mnpg + np2q)y + (-2n*p? + 2d 2 p* —4mp?s + 6sp>)y? +
(=3mnp? + 3cdp® + 4np® — 3dmp?q — 3cnp?q — dp>q + 3mnpg? + np?q?)xy +
(4dnp® —2n2 p2q + 4cp3s — 4mp2gs — p3gs)xy? +5p3s(d + n)xy® +3p3s2y?).
The algebraic multiplicity of the invariant straight line X =, o € C/Ris at least two
if the identity A, (x,Yy)=0holds. Taking into account that the system’s coefficients are
real numbers and GCD(P,Q) =1, the last identity yields the following set of conditions:
d=n=m=s=0,c=q.
In this case we obtain the system 15) from the main theoremwith the invariant straight

lines:
q+va’-4p o _ . a-Ja -4p__
=0, 1,5 =X+ =0, l;=y=0.
2p ' 2p
The polinomial E, (X ) has the form E; (X) = 2xy(3+ qx)(L+ gx + px?)?and it does not

l,=x=0, l,; =x+

divide the polynomial (px? + gx +1)°.
Lemma 4.The maximal algebraic multiplicity of the non-real invariant straight line
X=a, a € C\ Rinsystem (1.3) is two.

2.5. Multiplicity of the line y=a, a € C\R
The straight line Y = a, & € C \ R is the invariant straight line for system (1.3) if and only
if (1.3) look as

{X:x(kx2 +jxy +ry? +ax+by +1) =P(x, y), 29

y=y(py* +ay -2)=Q(xy), 9° +8p <0.
We write E; (X)in the form
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E, (X) = xy(py® +ay —2)(A, (X, y) + Ay (x, Y)(py* +ay —2)).
The polynomial A, (x, y) looks as

A, (X, y):%(Zb2 p? —3p°% +2bp2q—4p?r —4bpar —2pq’r + 4pr? +2q°r? +

(6bjp? —ap® +2jp?q+6ap?r —6 jpar)x+2p%(2j% +a%p +4kr)x? + 5akp®x® + 3k p3x* +
(—2bp® —b?p2q+ p3q—bp3q? + 4bp?r + 4p?qr + 2bpg’r + pa’r —4pgr? —q3r?)y +

(3abp® — jp° —3bjp®q +ap®q - jp®q”® +6jp*r —3ap®ar +3jpg®r)xy + 5kjp> x>y +

(4bkp® + 4ajp® — 22 p2q + kp3q — 4kp?qgr)x2y.

The algebraic multiplicity of the invariant straight line ¥ = a, « € C \ Riis at least two if
the identity A, (X,y) = 0holds. Under condition GCD(P, Q) =1and taking into acount
that the coefficients of thedifferentialsystem are real, the identity A, (X, y) = Oholds if the

: 3
following conditions are satisfied: a=k=]J=0,b= % r= 7p .In this case we get the

system 14) of the main theorem possessing the invariant straight lines:

q+4a°+8p _ . _ . . 4-4q°+8p
2p | 2p
The multiplicity of the lines I5 ¢ is exactly two as(py2 +qy — 2)3 does not divide the

=0.

|1§X:O, I25y=0, |3,4Ey

. 1
polynomial E; (X) =—Z>w(py2 +qy—2)*(-6-qy+3py?).

Lemma 5. In the class of systems (1.3) the maximal algebraic multiplicity of the non-real
invariant straight line y =, @ € C\R is two.

3. Configurations of the invariant straight lines

Taking into acount Lemmas 1-5 we have for system (1.3) the following twelve
configurations of six invariant real straight lines of two directions:

Al) (3r;3r); Ab5) (4(1,2)r ; 2r); A9) (2r;4(3)r);
A2) (3r;3(2)r); AB) (3(2)r ; 3(2)r); A10) (4(3)r; 2r);
A3) (3(2)r; 3r); AT)(1r; 5(2,2)r); Al1l) (1r ;5(1,3)r);
A4) (2r ;4(1,2)r); A8) (5(2,2)r ; 1r); A12) (5(1,3)r; 1r),

79



And the following seven configurations of six invariant straight lines, two of wich are non-
real:

B1) (3r; 1r+2c); B4) (3(2)r; 1r+2c); B6) (1r ;1r+4(2,2)c);B7)
B2) (1r+2c; 3r); B5) (1r+2c; 3(2)r); (1r+4(2,2)c; 1r).

B3) (1r+2c ;1r+2c);

We denote by 3(2)r(4(3)r) two parallel and distinct real straight lines one of which is

counted twice (thrice) and we say that it has multiplicity equal to two (three). By5(1,3)rwe
denote three parallel and distinct real straight lines one of which has multiplicity three and
by 1r+2c is denoted a triplet of distinct and parallel straight lines, one of which is real and
two are complex (non-real).
We denote by (3r ; 1r+2c) the configuration consisting of six affine straight lines of two
directions: a triplet of real distinct parallel straight lines in one direction; a real straight
line and a pair of parallel complex (non-real) lines in the second direction. By (1r;5(2,2)r)
is denoted the configuration of six straight lines of two directions consisting of: a real
straight line (in one direction) and five real parallel straight lines two of which have
multiplicity equal to two (in the second direction)

3.1. Unrealisable configurations
In this subsection we show that in the class of cubic systems of the form (1.3) the
configurations A4), A5), A9)and A10) are not realisable.

Configuration A4) (2r;4(1, 2)r). Via an affine transformations of coordinates and time
rescaling, the cubic system (1.3) with two real invariant straight lines in the direction of
the axe Oy and three real invariant straight lines in the direction Ox, can be writen in the
form

{x = x(x—1)(ax+by—1),b=0,a® + (b—1D(b—c))? =0, 31)

y=y(y-D(cy+2),c=0, c=-2

Without loss of generality, we consider that the invariant straight y =1 has the
multiplicity two. For system (3.1) the polynomial E; (X) look as
E;(X) = (1 -x)x(y — Dy(2

+ ¢cy)[(4 — b? + ¢ — bc — 4ax — 4bx — 3abx + 2b*x — acx + 5abx?

— 2by — b?y + 3¢y — bey + 2b*xy — 3acxy — 2bcy?)(y — 1) + o(x)],
where (x) = (1= b)(1+ b +¢) — (alc +3b—1) — 2(1 — b)?)x — a(2a +
5(1 — b))x? + 3a%x3. Asp(x) is not identically zero, the polynomial (y — 1)2does not
divide E; (X)and therefore the invariant straight line y = 1 does not have the multiplicity
two. In this way we proved that the configurationsA4)is not realisable.
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Configuration A5) (4(1,2)r ; 2r). The system (1.3) can by writen in the form
X=X(x-1)(ax—-1),a=0,a =1
{y = y(y-1)(bx+cy +2),(b+2)*(b+2a)* +c? =0.
Suppose that the invariant straight line x = 1 has the multiplicity two for (3.2). In this
assumption the polynomial E; (X) looks as

E,(X) = —xy(x-1)(ax-1)(y —-1)[(-4+2a—5b+ab—b* + (6a—b +ab—b?)x+ 2abx? + (8b +
+2b? — 2c +ac —3bc)y + (2b? +3ac)xy + 5bey?)(x —1) + ¢(y)],

(3.2)

where ¢(y) = (2+ 2b +cy)(-3+a—b+4y+ 2by — 2cy + 3cy?).
This implies the polynomial ¢(y) to be not identically zero for the system (3.2), which

contradicts the assumption that the invariant straight line x = 1 has the multiplicity two.
We have proved that the configurations A5) is not realisable.

Configuration A9) (2r; 4(3)r) (Configuration A10) (4(3)r; 2r)). According to
Lemma 3 (Lemma 2) we consider the system (2.7) ((2.3)). This system does not have any
invariant straight line described by an equation of the form x = a (y=a), a € R".
Therefore, the configuration A9) (A10)) is not realisable.

4. Classification of cubic systems (1.3) with invariant straight lines of total
multiplicity six and of two directions
Configuration A1) (3r;3r). Via an affine transformation of coordinates and time rescaling
each system which realise this configuration can be written in the form 1) of the Main
Theorem.The system 1) has the invariant straight lines:

l,=x=0, l,=x-1=0, l;=ax-1=0,1,=y=0,l; =y-1=0, I, =by +2=0

and is Darboux integrable.

Configuration A2) (3r ;3(2)r). Any cubic system with a triplet of distinct parallel
invariant straight lines and a couple of distinct parallel invariant straight lines modulo an
affine transformation of coordinates can be writen in the form

{)’( =x(x-D(ax-1) =P(x,y),a=0,a=1,
y =y(y-Dx+cy+2)=Q(x,Y).
For this system we have E,(X)=xy(y —D)(x—1)(ax—1)(A, (x) + A, (X)(y —1)),

A, (X)=—2—-3c—c% — (4+4a+4b+ 2c + 2ac + 2bc)x + (6a — b —ab —b? + 3ac)x* + 2abx°,
where and A;(X)is a polynomial in X. In order the straight line y—1=0 to have

(4.1)

multiplicity two, we require the A,(x)=0 and this yieldsb=0,c=-2. In these
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conditions the system (4.1) becomes the system 2) of the Main Theorem. It has the
invariant straight lines:

l,=x=0, I, =x-1=0,  =ax-1=0, I, =y=0,l;5,=y-1=0

and it is Darboux integrable.

Configuration A3) (3(2)r ; 3r). In this case the system (1.3) can be written as
{)‘( =x(x—=1)(ax+by -1) = P(x, ),
y=y(y-1(y+2)=0Q(x,y), c=0,c#-2.
For (4.2) the polynomial E; (X) looks as

E,(X)=xy(y ~D(x=1)(cy + 2)(A, (y) + Ay (Y)(x 1)),

(4.2)

where
A, (y)=—1+a° +(4—4a—2b+2ab—2c+2ac)y + (b* — 2b+3c —3ac + bc) y* — 2bey®.
The identity A, (y) = 0holds if and only ifa =1, b =0. Under these conditions the

system (4.2) is of the form 3) of the Main Theorem andit has the invariant straight lines

Configuration A6) (3(2)r ; 3(2)r). We write the system (1.3) in the form
{X = X(x=1)(ax+by -1) = P(x,y),
y=y(y-D(ex+dy+2)=Q(x,Y).
For this system the polynomial E; (X )is

E, (X)=xy(y ~1)(x=1)(A;(y) + Ay (x, y)(x~D)

where
A (y) =(2+c+dy)((1—a) (1+a+c—4y+2by —2cy + 2dy — 3dy? ) +

by2(2—b+c-d +2dy)
and
Ay (X,Y) =4 + 2a%? — 3¢ + 2ac + a’c — ¢ + ac? — 10ax + 2a®x + cx + 2acx +
a’cx — c?x + ac*x + 6a*x? — 3acx? + a’*cx? + ac’x? + 2a*cx® — 8ay — 8by +
4aby + 8cy — 8acy — 2bcy + 2abcy + 2¢?y — 2ac?y + 2dy + 4ady + a*dy —
3cdy + 3acdy + 10abxy — 8acxy — 2bcxy + 2abcxy + 2¢?xy — 2ac?xy —
Sadxy + a’*dxy + 3acdxy + 3abcx?y — 2ac?x?y + 3a?dx?y + 4b%y? — 4bcy? +
b?cy? — bc?y? — 10ady? — 4bdy? + 2abdy? + 5¢dy? — 5acdy? + bedy? +
2ad?y? + b?cxy?® — bc?xy? + 5abdxy? — 5acdxy? + 2b*dy?® — 3bcdy?® — 3ad?*y?
The straight line x —1=0will have the multiplicity two, only if A, (y) isidenticaly zero:
{A,(y)=0,GCD(P,Q)=}=>a=1,b=0ora=1,c=b-2,d=0,b=0.
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If a=1, b=0, thenwe have the system
., _1\2
{f(_ x(x=1)% 4.3)
y =y(y -D(cx+dy+2),
For(4.3)the polynomial E, (X) has the form
E, (X) = xy(y ~1)(x=1)*(B,(x) + B; ()(y ~1).
where B,(X)=2+3d +d?* + (8+4c+4d +2cd)x + (2c —6+c? —3d)x* — 2cx°.

The straight line y —1=0has the multiplicity twoif B,(x)=0and this is realizedwhen
c =0, d =-2. Thus, the system (4.3) will have the form 4) of the Main Theorem. This
system has the invariant straight lines:

l,=x=0, l,;,=x-1=0, I, =y=0,l;5,=y-1=0.
When a=1, c=b-2, d =0, the polynomial B, (X) looks
B, (X) =2-2b% — (2b+2b%)x + (4b—6—2b%)x* + (4 — 2b)X°.
Obviously, B, (x)is not identicaly zero. So, in this case, the multiplicity of the invariant

straight line y —1 = 0 can not be equal to two.

Configuration A7) ( 1r; 5(2,2)r) .We rewrite the system (1.3) into the form
(4.4)
y=Yy(y-D(cy+2)=Q(x,y),c#0, c=-2.
For (4.4) we have El(X ) =xy(y-D(cy + 2)(A, (X) + A, (X)(y —1)), where
Ao (X) ==Ay1(X) - Axp(X)
A (X) =1+b+h+ax+gx+ fx°and Ay, (x) = —1+b—c+h+2ax+2gx +3fx°.
Taking into consideration the condition GCD(P,Q) =1, we obtain Ay, (x) #0, and

{)‘(: x( X% + gxy + hy? + ax+by +1) = P(x, y),

therefore A,, (x)is identicallyzero. This is realized when f =0, g =—a, h=1-b+c. In

these conditions, the system (4.4) looks as

{xz x(—axy + (L—b+c)y? +ax+by +1), @3

y=y(y-1(cy+2),c=0,c#-2.
For (4.5) we have E, (X )= xy(y —1)2(cy + 2)(B, (X) + B3 (X)(cy + 2)), where

B,(x) = %((2+c)(2—2b+c+acx)(2—2b—c+2acx).
C
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The implication{B, (x) =0, GCD(P,Q) =} = {a =0,b= %} reduces (4.5) to the

system 5) of the Main Theorem, which has the following invariant straight lines:
l,=x=0,1,=y=0,1;,=y-1=0,l;5 =cy+2=0.

Configuration A8) (5(2,2)r ; 1r).We consider the system

Xx=xX(x-1)(ax-1)=P(x,y), a=0,a=1, e
y = y(fy? + gxy + hx? +bx +cy —2) = Q(x, ). (4.6)

In this case
E, (X) = xy(y ~D(x=1)(A, (y) + Ay (y)(x-D),
where A, () = Ay (y) Ap(Y), An(y)=1+a—b—h-2cy —2gy -3fy*and
A, (Y)=-2+b+h+cy+gy+ fy?. The straight line x —1 = Ohas the multiplicitytwo,
only if the polinomial A, () is identically zero. We have
{A,(y)=0,GCD(P,Q) =1}=> A,; =0={f =0, g=-c, h=1+a—b}. The system
(4.6) obtains the form
Xx=x(x-1)(ax—-1),a=0,a=l,
{y— y(—cxy + (L+a—b)x? + bx +cy — 2). (@7)

We will require for system (4.7) to have the invariant straight lineax —1= 0 ofthe
multiplicity two. We computethe polynomial E; (X ) for (4.7)

E(X)=xy(x~1D)*(ax~1)(B,(y) + By(y)(@x~1),
where B, (y) = is (@a—1)(-1-2a+b+acy)(-1—-a+ b+ 2acy) .Taking into account
a

that GCD(P,Q) =1, the polynomial B,(y) will be identical zero if and only if
c=0,b=a+1. In these conditions (4.7) becomes the system 6) of the Main Theorem

wich has the following invariant straight lines

Configuration A11) (1r ;5(1,3)r). For realisation of this configuration it is sufficient to
put | =0in (2.7). In this way, we obtain the system 7) of the Main Theorem which has
the invariant straight lines:

lL,=x=0,1,=y=0,l3,5=y-1=0,lg=dy+2=0.



Configuration A12) (5(1,3)r; 1r). In this case we put b =0, a # 0 in (2.3) and obtain the
system 8) of the Main Theorem which possesses the invariant straight lines:

Configuration B1) (3r; 1r+2c). By an affine transformation of coordinates the system
(1.3) can be brought to the form 9) of the Main Theorem, which has the following invariant
straight lines:

l,=x=0, I, =x-1=0, l;, =ax-1=0,1, =y =0,

2 [
Laat+8p o a-Va"+8p

=0, where g°> +8p <0.
20 2p q p

s =y

Configuration B2) (1r+2c; 3r). In this casethe system (1.3) can be brought to the
system10) of the Main Theorem and it admits the following invariant straight lines:

2 - 2
Q4G =4 o, 9=Na" 4p
2p 2p
l,=y=0,l;=y-1=0,l;=cy+2=0, where q> —4p <0.

:O’

Configuration B3) (1r+2c ;1r+2c). The system (1.3) can be brought to the form 11) of
the Main Theorem and it has the fallowing invariant straight lines:

2 _Jg? —
q+m:0,|3EX+q d 4p:0’ I4Ey:O’
2p 2p

+S+\/32+8I’_0 | _y+s—w/sz+8p
STNS ¥O ), =

2r 2r

l, =x=0, I, =x+

=0, where q> —4p <0, s> +8r<0

l5

Configuration B4) (3(2)r; 1r+2c). In this case the system (1.3) can be written:
{)‘( = Xx(x-1)(ax+hby -1),
y=y(py*+ay-2),9* +8p <0.
The polynomial E(X ) has the form

E(X)=xy(x=D)(py* +ay —2)(A,(y) + A, (Y)(x-1)),

(4.8)

where
A, (y) =1—a® +(2b—2ab —2q+2aq)y + (3ap + bg —b* —3p)y* + 2bpy°.
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The straight line x —1=Owill have the multiplicity two only if A, (y)is identicaly zero,
and this will be realized when b =0, a=1. In this condition, the system (4.8) has the
form12) of the Main Theorem having the following invariant straight lines:

2 42
gra’+8p o\ _ a0 +8p_

| =x=0,l,3,=x-1=0, I;=y=0 l;=y+ 2p 2p

Configuration B5) (1r+2c ; 3(2)r). We write the system (1.3) as follows:

{)‘( =x(px? +0x+1), q°—-4p<0,
y=y(y-1(cx+dy+2).
The polynomial E(X ) for (4.9) has the form

E(X)=xy(y —1)(px* + ax+1)(A, (X) + A (X)(y 1)),

(4.9)

where

A, (X) =2+3d +d?* + (4c + 2cd —4q — 2dq)x + (c* —6p —3dp —cq)x* — 2cpx°.

The expresion A, (x) will be identicaly zero if the condition ¢ =0, d =-2 is fulfilled.
Thus, the system (4.9) has the form 13) from the Main Theorem. The system has the

following invariant straight lines:
2
—q° -4
9——3———BEQI4Ey:OJ565y—1:0
2p ‘

q++9q° —4p
Configuration B6) (1r ;1r+4(2,2)c). The system (1.3), which admits the configuration

L=x=0, 1, =x+
1 2 2 p
B6), is the system 14) from the Main Theorem, obtained in Section 2.5.

=0, l;=x+

Configuration B7) (1r+4(2,2)c; 1r). The system having the configuration of the invariant
straight lines B7) was determined in Section2.4. It represents the system 15) from the Main
Theorem.
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