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Abstract. We give a new example which illustrates the fact that some Picard orbits may have n

distinct accumulation points, where n is a given natural number.
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ORBITELE PICARD ALE APLICAŢIILOR DE TIP LIPSCHITZIAN ŞI

PUNCTELE LOR DE ACUMULARE PE SPAŢII CU DISTANŢĂ

Rezumat. Construim un nou exemplu care ilustrează faptul că unele orbite Picard pot avea n

puncte de acumulare distincte, unde n este un numar natural dat.

Cuvinte cheie: Spaţiu cu distanţă, spaţiu cu N -distanţă, spaţiu cu F -distanţă, spaţiu cu H-

distanţă, spaţiu quasimetric, contracţie, punct fix.

1. Preliminaries

In [2] the authors proposed the following two problems.

Problem 1. Let g : X −→ X be a contraction of a complete quasimetric sace (X, d). Is it

true that g have fixed points?

Problem 2. Let g : X −→ X be a contraction of a complete F -symmetric sace (X, d). Is it

true that g have fixed points?

These two problems were solved in [8]. Our aim in the present paper is to present an

example that illuminates the results in [2] and [8] to some extent. Distinct variants of the

fixed point problem in general distance spaces were examined in [1, 2, 4, 5, 6, 7, 8, 15] and

other articles.

Throughout the paper, by a space we understand a topological T0-space, and we use the

terminology from [9, 10, 14].

Let X be a non-empty set and d : X ×X → R be a mapping such that for all x, y ∈ X
we have:

(im) d(x, y) ≥ 0;

(iim) d(x, y) + d(y, x) = 0 if and only if x = y.

Then (X, d) is called a distance space and d is called a distance on X.

Let d be distance on X and let B(x, d, r) = {y ∈ X : d(x, y) < r} be the ball with the

center x and radius r > 0. The set U ⊂ X is called d-open if for any x ∈ U there exists

r > 0 such that B(x, d, r) ⊂ U . The family T(d) of all d-open subsets is the topology on X

generated by d. The space (X,T(d)) is a T0-space.

A distance space is a sequential space, i.e., a set B ⊆ X is closed if and only if for any

sequence {xn} in B, all limits of {xn} are in B [9].

Let (X, d) be a distance space, {xn : n ∈ N = {1, 2, ...}} be a sequence in X and x ∈ X.

We say that the sequence {xn : n ∈ N}:
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1) is convergent to x if and only if lim
n→∞

d(x, xn) = 0. We denote this by xn → x or

x = lim
n→∞

xn.

2) is Cauchy or fundamental if lim
n,m→∞

d(xn, xm) = 0.

We say that a distance space (X, d) is complete if every Cauchy sequence in X converges

to some point in X.

Let d be a distance on X such that for all x, y ∈ X we have:

(iiim) d(x, y) = d(y, x).

Then (X, d) is called a symmetric space and d is called a symmetric on X.

Let d be a distance on X such that for all x, y, z ∈ X we have:

(ivm) d(x, z) ≤ d(x, y) + d(y, z).

Then (X, d) is called a quasimetric space and d is called a quasimetric on X.

A distance d on a set X is called a metric if it is simultaneously a symmetric and a

quasimetric.

2. Conditions of existence of fixed points

Let X be a non-empty set and d(x, y) be a distance on X with the following property:

(N) for each point x ∈ X and any ε > 0 there exists δ = δ(x, ε) > 0 such that from

d(x, y) ≤ δ and d(y, z) ≤ δ it follows d(x, z) ≤ ε.

Then (X, d) is called an N-distance space and d is called an N-distance on X. If d is a

symmetric, then we say that d is an D-symmetric (see [11, 12, 13, 16, 17]).

If d satisfy the condition

(F) for any ε > 0 there exists δ = δ(ε) > 0 such that from d(x, y) ≤ δ and d(y, z) ≤ δ it

follows d(x, z) ≤ ε,

then d is called an F-distance or a Fréchet distance and (X, d) is called an F-distance space

(see [3, 11]).

Remark. Any F -distance is an N -distance.

A distance space (X, d) is called an H-distance space if for any two distinct points x, y ∈ X
there exists δ = δ(x, y) > 0 such that d(x, z)+ d(y, z) ≥ δ for each point z ∈ X, i.e.,

B(x, d, δ) ∩B(y, d, δ) = ∅.

Remark. Any N -symmetric is an H-distance.

A space (X, d) is a H-distance space if and only if any convergent sequence has a unique

limit point (see [11], Theorem 3).

Consider the mapping ϕ : X −→ X. and let ϕ1 = ϕ and ϕn+1 = ϕ ◦ ϕn for each n ∈ N
= {1, 2, ...} be its iterates. If x ∈ X, then put x0 = x and consider xn = ϕn(x0), for every

n ∈ N. The set O(x, ϕ) = {xn : n ∈ N} is called the Picard orbit of the point x.

In the paper [8] the following assertions were established.

Theorem 2.1. Let d be an N -distance and an H-distance on a space X and let ϕ : X −→ X

be a mapping with the following properties:

(i) the mapping ϕ is continuous or there exists a number λ > 0 such that d(ϕ(x), ϕ(y)) ≤
λ · d(x, y) for all points x, y ∈ X;

5



(ii) for some point e ∈ X the Picard orbit O(e, ϕ) = {en = ϕn(e) : n ∈ N} has an

accumulation point and lim
n→∞

d(en, en+1) = 0.

Then:

1. The mapping ϕ has fixed points. Any accumulation point of the orbit O(e, ϕ) is a

fixed point of ϕ.

2. The orbit of the point e has not periodic points.

3. If lim
n→∞

d(gn(y), gn+1(y)) = 0, for each point y ∈ X, then any periodic point of the

mapping ϕ is a fixed point of ϕ.

4. The space (X,T(d)) is first-countable and Hausdorff.

Corrolary 2.2. Let d be a quasimetric and an H-distance on a space X and let ϕ : X −→ X

be a mapping with properties:

(i) the mapping ϕ is continuous or there exists a number λ > 0 such that d(ϕ(x), ϕ(y)) ≤
λ · d(x, y) for all points x, y ∈ X;

(ii) for some point e ∈ X the Picard orbit O(e, ϕ) = {en = ϕn(e) : n ∈ N} has an

accumulation point and lim
n→∞

d(en, en+1) = 0 and lim
n→∞

d(en, en+1) = 0.

Then:

1. The mapping ϕ has fixed points. Any accumulation point of the orbit O(e, ϕ) is a

fixed point of ϕ.

2. The orbit of the point e has no periodic points.

3. If lim
n→∞

d(gn(y), gn+1(y)) = 0 for each point y ∈ X, then any periodic point of the

mapping ϕ is a fixed point of ϕ.

4. The space (X,T(d)) is first-countable and Hausdorff.

Corrolary 2.3. Let d be a complete quasimetric and an H-distance on a space X and

ϕ : X −→ X be a mapping with properties:

(i) the mapping ϕ is continuous or there exists a number λ > 0 such that d(ϕ(x), ϕ(y)) ≤
λ · d(x, y) for all points x, y ∈ X;

(ii) for each point x ∈ X and the Picard orbit O(x, ϕ) = {xn = ϕn(x) : n ∈ N} there

exists a non-negative number µ(x) < 1 such that d(ϕ(xn), ϕ(xm)) ≤ µ(x) · d(xn, xm) for all

n,m ∈ N.

Then:

1.The mapping ϕ has fixed points.

2.Any periodic point of the mapping ϕ is a fixed point of ϕ.

3.Any Picard orbit is a Cauchy convergent sequence to some fixed point of the

mapping ϕ.

4.The space (X,T(d)) is first-countable and Hausdorff.

Remark. The condition that d is an H-distance on X is essential (see [8]).

In connection with the above results it is important to answer the following question.

Problem 3. Let (X, d) be a complete quasimetric space, where d is an H-quasimetric, a ∈ X
and let g : X −→ X be a mapping such that d(gn(a), gn+1(a)) > d(gn+1(a), gn+2(a)) and

lim
n→∞

d(gn(a), gn+1(a)) = 0.

How many accumulations points does have the orbit of g at the point a?
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In [8] it was constructed an example to answer Problem 3, where the orbit of g at the

point a has two accumulation points.

The main aim of the next section is to show, by virtue of an appropriate example, that

the orbit of a point may have actually m distinct accumulation points, where m is a given

natural number.

3. An example of a Picard orbit possessing m ≥ 2 accumulation points

Example 3.1. Let m ≥ 2 and consider a set B = {b1, b2, ..., bm} with m distinct points. As-

sume thatB∩N = ∅ and letX = N∪B. In N consider a sequence {i(n,1), i(n,2), ..., i(n,m), i(n,m+1) :

n ∈ N} such that:

(i) 4 = i(1,1) < ... < i(1,m+1) < i(2,1) < ... < i(n−1,m+1) < i(n,1) < i(n,2) < ... < i(n,m) <

i(n,m+1) < i(n+1,1) < ...;

(ii) Σ{m−1 : m ∈ N, i(n,i) ≤ m < i(n,i+1)} < 2, Σ{m−1 : m ∈ N, i(n,i) ≤ m ≤ i(n,i+1)} ≥ 2

for each n ∈ N and i ≤ m;

(iii) Σ{m−1 : m ∈ N, i(n,m+1) ≤ m < i(n+1,1)} < 2, Σ{m−1 : m ∈ N, i(n,m+1) ≤ m ≤
i(n+1,1)} ≥ 2, for each n ∈ N.

Since 0 6∈ N and we need the numbers i(n−1,m+1) and i(n,0) for each n ∈ N, it is convenient

to put i(0,m+1) = 1 and i(n,0) = i(n−1,m+1).

Consider on N the function f(n) = Σ{m−1 : m ∈ N,m ≤ n}. The sets I(n,i) = {k ∈ N :

i(n,i) ≤ k ≤ i(n,i+1)}, I(n,m+1) = {k ∈ N : i(n,m+1) ≤ k ≤ i(n+1,1)} are called the m-intervals

of integers of the rank n.

Now we construct on X the distance d with the conditions:

(C1) d(x, x) = 0 for each x ∈ X;

(C2) d(bi, bj) = 1 for all distinct i, j ∈ {1, 2, ...,m};
(C3) d(n, bi) = 1 for all n ∈ N and i ∈ {1, 2, ...,m};
(C4) d(n,m) = min{1, |f(n)− f(m)|}, for all n,m ∈ N;

(C5) If y, n ∈ N, 1 ≤ i ≤ m, x = bi and i(n−1,m+1) ≤ y ≤ i(n,m+1), then d(x, y) = d(bi, y)

= (i(n,i))
−1 + |f(y)− f(i(n,i))|.

By construction, 0 ≤ d(x, y) ≤ 1, for all x, y ∈ X. Moreover, if x, y ∈ N ⊂ X and

d(x, y) < 1, then we have three possibilities:

(i) There exists n = n(x, y) ∈ N such that x, y ∈ [i(n−1,m+1), i(n,2)];

(ii) There exists n = n(x, y) ∈ N such that x, y ∈ [i(n,m), i(n+1,1)];

(iii) There exists n = n(x, y) ∈ N and i ≤ m such that i ≥ 2 and x, y ∈ [i(n,i−1), i(n,i+1)].

In the above cases, x, y are numbers belonging to an m-interval or to the union of two

adjacent m-intervals.

We put ϕ(bi) = bi, for each i ≤ m and ϕ(n) = n + 1, for each n ∈ N. By construction,

Fix (ϕ) = {b1, b2, ..., bm}. We prove the following claims.

Property 1. (X, d) is a complete distance space.

Proof. The space (X, d) has no non-trivial Cauchy sequences, i.e., if {xn ∈ X : n ∈ N} is a

Cauchy sequence, then there exists k ∈ N such that xk = xn for all n ≥ k and lim
n→∞

xn = xk.

Property 2. (X, d) is a quasimetric space.

Proof. Fix three distinct points x, y, z ∈ X.
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Case 1. x, y, z ∈ N.

On N the distance d is a metric. Hence d(x, z) ≤ d(x, y) + d(y, z).

Case 2. x, y, z ∈ B.

On M the distance d is a discrete metric. Hence 1 = d(x, z) ≤ d(x, y) + d(y, z) = 2.

Case 3. x, y ∈ B and z ∈ N.

In this case d(x, z) ≤ 1 = d(x, y) < d(x, y) + d(y, z).

Case 4. x, z ∈ B and y ∈ N.

In this case d(x, z) ≤ 1 = d(y, z) < d(x, y) + d(y, z).

Case 5. y, z ∈ B and x ∈ N.

In this case d(x, z) ≤ 1 = d(y, z) < d(x, y) + d(y, z) = 2.

Case 6. y ∈ B and x, z ∈ N.

In this case d(x, z) ≤ 1 = d(x, y) < d(x, y) + d(y, z).

Case 7. z ∈ B and x, y ∈ N.

In this case d(x, z) = 1 = d(y, z) < d(x, y) + d(y, z).

For x ∈ B and y, z ∈ N we consider the following cases.

Case 8. x ∈ B, y, z ∈ N and d(y, z) = 1.

In this case d(x, z) ≤ 1, d(x, y) ≤ 1 and d(x, z) < d(x, y) + d(y, z).

Case 9. x = bi ∈ B, y, z ∈ N, d(y, z) < 1, n ∈ N and y, z ∈ [i(n−1,m+1),≤ i(n,m+1)].

In this case d(x, z) = d(bi, z) = min{1, (i(n,1))−1+|f(z)−f(i(n,i))|} = . min{1, (i(n,1))−1+

|(f(z)− f(y)) + (f(y)− f(i(n,i)))|} ≤ min{1, (i(n,1))−1 + |f(z)− f(y)|+ |f(y)− f(i(n,i))|} ≤
min{1, (i(n,1))−1 + |f(y)− f(i(n,i))|} + |f(z)− f(y)| = d(x, y) + d(y, z).

Property 3. The mapping ϕ has the following properties:

1) d(ϕ(x), ϕ(y)) < 2d(x, y), for all distinct points x, y ∈ X;

2) if x, y ∈ X and d(x, y) = 1, then d(ϕ(x), ϕ(y)) ≤ d(x, y);

3) if x, y ∈ N and x 6= y, then d(ϕ(x), ϕ(y)) < d(x, y);

4) ϕ is a continuous mapping.

Proof. Let x, y ∈ X and x 6= y.

If d(x, y) = 1, then d(ϕ(x), ϕ(y)) ≤ 1 = d(x, y). Assertion 2 is proved.

Assume that d(x, y) < 1. We have the following two cases:

Case 1. x, y ∈ N.

Assume that x < y. In this case d(ϕ(x), ϕ(y)) = Σ{m−1 : x + 1 < m ≤ y + 1} ¡

Σ{m−1 : x < m ≤ y} ≤ d(x, y). Moreover, d(x, y)− d(ϕ(x), ϕ(y)) = |(x+ 1)−1− (y+ 1)−1|.
Assertion 3 is proved.

Case 2. x ∈ B and y ∈ N.

Let x = bi, 1 ≤ i ≤ m. In this case there exists n ∈ N such that i(n−1,m+1) ≤ y ≤ i(n,m+1)

and d(x, y) = d(bi, y) = (i(n,1))
−1 + |f(y)− f(i(n,i))|.

If y < i(n,i), then d(ϕ(x), ϕ(y)) = (i(n,1))
−1+f(i(n,i))−f(y+1) ¡ (i(n,1))

−1+f(i(n,i))−f(y)

= d(x, y).

If y ≥ i(n,i), then d(ϕ(x), ϕ(y)) = i(n,1))
−1 + f(y + 1) − f(i(n,i) = i(n,1))

−1 + f(y) −
f(i(n,i)) + (y + 1)−1 = d(x, y) + (y + 1)−1. Since (y + 1)−1 < (i(n,i))

−1 ≤ d(x, y), we have

d(ϕ(x), ϕ(y)) < 2d(x, y). Assertion 1 is proved. Assertion 4 follows from Assertion 1.
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Property 4. If x ∈ X, then lim
n→∞

d(ϕn(x), ϕn+1(x)) = 0.

Proof. If x ∈ B, then ϕ(x) = x and the assertion is proved. If x ∈ N, then d(ϕn(x), ϕn+1(x))

= Σ{z−1 : z ≤ x+n+1}−Σ{z−1 : z ≤ x+n}= (x+n+1)−1. Hence lim
n→∞

d(ϕn(x), ϕn+1(x))

= lim
n→∞

(x+ n+ 1)−1 = 0.

Property 5. The space (X,T(d)) is complete metrizable.

Proof. If x ∈ N, then Nnx = {x} for each n ∈ N. If x = bi ∈ B and n ∈ N, then Nnx =

{x} ∪ {y ∈ N : d(x, y) < 2−n}. For any ≤ i < j ≤ m we have N1bi ∩ N1bj = ∅. Then B

= {Nnx : x ∈ X,n ∈ N} is a base of open-and-closed subsets of the space (X,T(d)). The

proof is complete.

Property 6. If x ∈ N ⊂ X, then O(x, ϕ) = {n ∈ N : x ≤ n}. Moreover, if x, y ∈ N ⊂ X

and x < y, then O(y, ϕ) ⊂ O(x, ϕ) ⊂ O(1, ϕ).

Property 7. Let i ≤ m. Then lim
n→∞

d(bi, i(n,i)) = lim
n→∞

(i(n,i))
−1 = 0.

Property 8. The space (X,T (d)) is not locally compact.

Proof. Fix i ≤ m. Assume that U is an open neighbourhood of the point bi in X. There

exists k ∈ N such that {x ∈ X : d(bi, x) < 2k−1} ⊂ U . For each n ≥ k, fix xn ∈ I(n,i) such

that k−1 ≤ d(i(n,i), xn) < 2k−1. Then {xn ∈ N : n ∈ N, n ≥ k} is a closed discrete sequence

of the space (X,T(d)) such that xn ∈ U and xn < xn+1 for each n ∈ N, n ≥ k.

Property 9. All points x ∈ B are points of accumulation of the Picard orbit O(n, ϕ), n ∈ N.

Property 10. The Picard orbit O(x, ϕ) is not convergent in (X, d), for any x ∈ N.
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