SOUSCATÉGORIES \mathcal{L} -SEMI-REFLEXIVES

Dumitru BOTNARU, prof. univ., dr. hab.

Universitatea de Stat din Tiraspol

Résumé. Dans la catégorie des espaces localement convexes, on démontre que, si $(\mathcal{K}, \mathcal{L})$ est une paire de souscatégories conjuguées, alors les latices $\mathbb{R}(\mathcal{K})$, $\mathbb{R}(\mathcal{L})$ et $\mathbb{R}_f^s(\varepsilon \mathcal{L})$ sont isomorphes, où $\mathbb{R}(\mathcal{K})$ et $\mathbb{R}(\mathcal{L})$ sont les classes des souscatégories reflectives des catégories \mathcal{K} et \mathcal{L} , et $\mathbb{R}_f^s(\varepsilon \mathcal{L})$ est la classe des souscatégories \mathcal{L} -semi-reflexives.

Mots clés: souscatégories reflectives, coreflectives, \mathcal{L} -semi-reflexives, espaces semi-reflexifs, inductif semi-reflectif.

SUBCATEGORIILE \mathcal{L} -SEMI-REFLEXIVE

Rezumat. În categoria spațiilor local convexe, s-a demonstrat că, dacă $(\mathcal{K}, \mathcal{L})$ este o pereche de subcategorii conjugate, atunci laticele $\mathbb{R}(\mathcal{K})$, $\mathbb{R}(\mathcal{L})$ și $\mathbb{R}_f^s(\varepsilon \mathcal{L})$ sunt isomorfe, unde $\mathbb{R}(\mathcal{K})$ și $\mathbb{R}(\mathcal{L})$ sunt clase de subcategorii reflective de categorii \mathcal{K} și \mathcal{L} , și $\mathbb{R}_f^s(\varepsilon \mathcal{L})$ este clasa de subcategorii \mathcal{L} -semi-reflexive.

Cuvinte cheie: subcategorii reflective, coreflective, \mathcal{L} -semi-reflexive, spații semi-reflexive, inductiv semi-reflectiv.

200 Mathematics subject classification: 46 M 15; 18 B 30.

1. Introduction

Notons avec C_2V la catégorie des espaces localement convexes topologiques vectoriels Hausdorff (voir [14, 20, 21]).

Dans cet article on va définir plusieurs notions. Nous utiliserons les notations suivantes.

Structures de factorisation:

 $(\mathcal{E}pi, \mathcal{M}_f)$ = (la classe des épimorphismes, la classe des noyaux) = (la classe des morphismes à image dense, les inclusions topologiques à image fermée);

 $(\mathcal{E}_u, \mathcal{M}_p)$ = (la classe des épimorphismes universels, la classe des monomorphismes précis)=(la classe des morphismes surjectifs, la classe des inclusions topologiques);

 $(\mathcal{E}_p, \mathcal{M}_u) =$ (la classe des épimorphismes précis, la classe des monomorphismes universels) (voir [4, 6]);

 $(\mathcal{E}_f, \mathcal{M}ono)$ =(la classe des conoyaux, la classe des monomorphismes)=(la classe des morphismes factoriels, la classe des morphismes injectifs).

Souscatégories coreflectives et reflectives:

 Σ = la souscatégorie coreflective des espaces avec la plus fine topologie localement convexe [20];

 \mathcal{M} = la souscatégorie coreflective des espaces avec la topologie Mackey [20];

S =la souscatégorie reflective des espaces avec la topologie faible [20];

 Π = la souscatégorie reflective des espaces complets avec la topologie faible [14];

 $u\mathcal{N} =$ la souscatégorie reflective des espaces ultranucléaires [8, 15];

 $\mathcal{N} =$ la souscatégorie reflective des espaces nucléaires [16];

Sh =la souscatégorie reflective des espaces Schwartz [14];

 $i\mathcal{R} = \text{la souscatégorie reflective des espaces inductifs semi-reflexifs [2]};$

 $s\mathcal{R} = \text{la souscatégorie reflective des espaces semi-reflexifs [14, 21]};$

 Γ_0 = la souscatégorie reflective des espaces complets;

 $l\Gamma_0$ = la souscatégorie reflective des espaces localement complets [19,24];

 $p\Gamma_0$ = la souscatégorie reflective des espaces p-complets [12];

 $q\Gamma_0$ = la souscatégorie reflective des espaces quasicomplets [21].

K la classe des souscatégories coreflectives non nulles;

 \mathbb{R} la classe des souscatégories reflectives non nulles;

- $\mathbb{R}(\mathcal{A})$ la classe des souscatégories reflectives de la catégorie \mathcal{A} , où $\mathcal{A} \in \mathbb{K}$, ou $\mathcal{A} \in \mathbb{R}$;
- $\mathbb{K}(\mathcal{A})$ la classe des souscatégories coreflectives de la catégorie \mathcal{A} ;
- $\mathbb{R}^s_f(\mathcal{B})$ la classe des souscatégories reflectives qui sont fermée par rapport aux \mathcal{B} sousobjects et \mathcal{B} -facteurobjects (voir [5]), où $\mathcal{B} \subset \mathcal{E}_u \cap \mathcal{M}_u$;
- $\mathbb{K}(\mathcal{B})$ (respectivement $\mathbb{R}(\mathcal{B})$) la classe des souscatégories \mathcal{B} -coreflectives (respectivement \mathcal{B} -reflectives);

 \mathbb{R}_{ex} (respectivement $\mathbb{R}_{ex}(\mathcal{E}_u)$) la classe des souscatégories reflectives (respectivement \mathcal{E}_u -reflectives) fermée par rapport aux extensions: $(\mathcal{E}pi \cap \mathcal{M}_p)$ -facteurobjets.

- 1.1. Soit \mathcal{A} et \mathcal{B} deux classes de morphismes. Alors:
 - 1. $A \circ B = \{a \cdot b | a \in A, b \in B \text{ et la composition } a \cdot b \text{ existe}\}.$
- 2. La classe \mathcal{A} se nomme \mathcal{B} -héréditaire, si du fait que $f \cdot g \in \mathcal{A}$ et $f \in \mathcal{B}$, il résulte que $g \in \mathcal{A}$.
- 2^0 . La classe \mathcal{A} se nomme \mathcal{B} -cohéréditaire, si du fait que $f \cdot g \in \mathcal{A}$ et $f \in \mathcal{B}$, il résulte que $f \in \mathcal{A}$.
- 3. \mathcal{A}^{\top} est la classe de tous les morphismes orthogonaux du dessus pour tout morphisme de \mathcal{A} , et $\mathcal{A}^{\top} = \mathcal{A}^{\top} \cap \mathcal{E}pi$ (voir [1,4,6]).
- 3^0 . \mathcal{A}^{\perp} est la classe de tous les morphismes orthogonaux du bas pour tout morphisme de \mathcal{A} , et $\mathcal{A}^{\perp} = \mathcal{A}^{\top} \cap \mathcal{M}ono$.
 - 4. La classe \mathcal{A} se nomme stable à gauche, si pour tout carré cartésien

$$f \cdot g' = g \cdot f'$$

du fait que $f \in \mathcal{A}$, il résulte que $f' \in \mathcal{A}$ aussi.

 4° . La classe stable à droite.

Dans la catégorie C_2V , les classes \mathcal{E}_f et \mathcal{E}_u sont stables à gauche, et les classes \mathcal{M}_f et \mathcal{M}_p et \mathcal{M}_u sont stables à droite (voir [4]).

1.2. Pour \mathcal{M} une classe de monomorphismes, et \mathcal{A} une classe d'objets (une souscatégorie), notons par $\mathbf{S}_{\mathcal{M}}(\mathcal{A})$ la souscatégorie pleine de tous les \mathcal{M} -sousobjets des objets de \mathcal{A} .

Notation duale: $\mathbf{Q}_{\mathcal{E}}(\mathcal{A})$, où $\mathcal{E} \subset \mathcal{E}pi$.

1.3. Couples de souscatégories conjuguées, souscatégories c-coreflective et c-reflective (voir [3]).

Soit $k: \mathcal{C}_2\mathcal{V} \to \mathcal{K}$ et $l: \mathcal{C}_2\mathcal{V} \to \mathcal{L}$ un foncteur coreflecteur et un foncteur reflecteur.

Notons $\mu \mathcal{K} = \{ m \in \mathcal{M}ono | k(m) \in \mathcal{I}so \}, \ \varepsilon \mathcal{L} = \{ e \in \mathcal{E}pi | l(e) \in \mathcal{I}so \}.$

Sot $b: X \to Y$, $Z \in |\mathcal{K}|$ et $r^X: X \to rX$ \mathcal{R} -replique de X. $b \in \varepsilon \mathcal{R}$, alors et seulement alors quand $b \in \mathcal{E}pi$ et

$$t^X = f \cdot b \tag{1}$$

pour un f (voir [4]).

Mentionons, si $b: X \to Y \in \mu \mathcal{K}, Z \in |\mathcal{K}|$, alors pour tout $f: Z \to Y$ a lieu

$$f = f \cdot b \tag{2}$$

pour un f (voir [4]).

Définition (voir [3,4]). Soit (K, \mathcal{L}) se nomme un couple de souscatégories conjuguées de la catégorie C_2V , si $\mu K = \varepsilon \mathcal{L}$.

Soit \mathbb{P}_c la classe des couples des souscatégories conjuguées. Chaque componente d'un couple de souscatégories conjuguées est unique déterminée. Si $(\mathcal{K}_1, \mathcal{L}_1)$ et $(\mathcal{K}_2, \mathcal{L}_2)$ appartiennent à la classe \mathbb{P}_c , alors

$$\mathcal{K}_1 \subset \mathcal{K}_2 \Leftrightarrow \mathcal{L}_1 \subset \mathcal{L}_2$$
.

 $(\tilde{\mathcal{M}}, \mathcal{S})$ est le plus petit élément, et $(\mathcal{C}_2 \mathcal{V}, \mathcal{C}_2 \mathcal{V})$ le plus grand élément de la classe \mathbb{P}_c .

Si $(\mathcal{K}, \mathcal{L}) \in \mathbb{P}_c$, alors \mathcal{K} se nomme la souscatégorie c-coreflective, et \mathcal{L} - la souscatégorie c-reflective. Soit \mathbb{K}_c (respectivement \mathbb{R}_c) la classe des souscatégories c-coreflectives (respectivement souscatégories c-reflectives), et $\mathcal{B}ic = \{\varepsilon \mathcal{L} | \mathcal{L} \in \mathbb{R}_c\}$.

- **1.4.** THÉORÈME ([4]). Soit $l: C_2V \to \mathcal{L}$ un foncteur reflecteur. Les affirmations suivantes sont équivalentes:
 - 1. $\mathcal{L} \in \mathbb{R}_c$.
 - 2. $S \subset \mathcal{L}$ et le foncteur l'est exactement à gauche.
 - 3. $\mathcal{S} \subset \mathcal{L}$ et $l(\mathcal{M}_f) \subset \mathcal{M}_f$.
 - 4. $\mathcal{S} \subset \mathcal{L}$ et $l(\mathcal{M}_p) \subset \mathcal{M}_p$.
 - 5. La classe $\varepsilon \mathcal{L}$ est stable à gauche.
 - 6. Le foncteur l'admet un adjoint à gauche.
 - 7. Il existe un foncteur coreflecteur $k: \mathcal{C}_2\mathcal{V} \to \mathcal{K}$ ainsi que:
 - a) $l \cdot k \sim l$; b) $k \cdot l \sim k$.
- **1.5.** La souscatégorie Sh des espaces Schwartz (voir [14]) et la souscatégorie $u\mathcal{N}$ des espaces ultranucléaires (voir [8,15]) sont des souscatégories c-reflectives (voir [8]).
- **1.6.** Pour \mathcal{A} une classe d'objets injectifs (\mathcal{M}_p -injectifs), la souscatégorie $\mathbf{S}_{\mathcal{M}_p}(\mathcal{A})$ est c-reflective (voir [4]). Ces souscatégories forment une classe propre de souscatégories (voir [4]).
- **1.7.** THÉORÈME ([4]). 1. Soit $K \in \mathbb{K}$. Alors $((\mathcal{M}_p \circ (\mu K))^{\neg}, \mathcal{M}_p \circ (\mu K))$ et $((\mathcal{M}_f \circ (\mu K))^{\neg}, \mathcal{M}_f \circ (\mu K))$ sont des structures de factorisation qu'on peut noter $(\mathcal{E}'(K), \mathcal{M}'(K))$ et $(\overline{\mathcal{E}}(K), \overline{\mathcal{M}}(K))$.
- 2. Le morphisme $p: X \to Y$ appartient à la classe $\mathcal{E}'(\mathcal{K})$ (respectivement: à la classe $\overline{\mathcal{E}}(\mathcal{K})$), alors et seulement alors quand $p \in \mathcal{E}_u$ (respectivement: $p \in \mathcal{E}pi$) et le carré

$$p \cdot k^X = k^Y \cdot k(p),\tag{1}$$

est cocartésien.

3. Le morphisme $p: X \to Y$ appartient à la classe \mathcal{E}_p , alors et seulement alors quand $p \in \mathcal{E}_u$ et le carré

$$p \cdot m^X = m^Y \cdot m(p),\tag{2}$$

est cocartésien, où $m: \mathcal{C}_2\mathcal{V} \to \widetilde{\mathcal{M}}$ est le foncteur coreflecteur.

- 4. $\mathcal{M}_u = \mathcal{M}_p \circ (\varepsilon S) = \mathcal{M}_p \circ (\mu \widetilde{\mathcal{M}}).$
- 5. Soit $\mathcal{R} \in \mathbb{R}$. Alors $((\varepsilon \mathcal{R}) \circ \mathcal{E}_p, ((\varepsilon \mathcal{R}) \circ \mathcal{E}_p)^{\perp})$ est une structure de factorisation que l'on va noter $(\mathcal{P}''(\mathcal{R}), \mathcal{I}''(\mathcal{R}))$.
- 6. Le morphisme $m: X \to Y$ appartient à la classe $\mathcal{I}''(\mathcal{R})$, alors et seulement alors quand $m \in \mathcal{M}_u$ et le carré

$$r(m) \cdot r^X = r^Y \cdot m,\tag{3}$$

est cartésien.

- 7. Soit $K \in \mathbb{K}_c$, et $\mathcal{B} = \mu K$. Alors $((\mathcal{M}_f \circ \mathcal{B})^{\mathsf{T}}, \mathcal{M}_f \circ \mathcal{B})$ et $((\mathcal{M}_p \circ \mathcal{B})^{\mathsf{T}}, \mathcal{M}_p \circ \mathcal{B})$ sont des structures de factorisation avec les classes d'injections stables à droite.
 - 8. $\mathbb{R}_c \subset \mathbb{R}_{ex}(\mathcal{E}_u)$.
- **1.8.** THÉORÈME. 1. Pour toute souscatégorie \mathcal{R} \mathcal{E}_u -reflective $(\mathcal{S} \subset \mathcal{R})$ existe la plus grande souscatégorie c-reflective $c\mathcal{R}$ qui se contient en \mathcal{R} .
- 2. La souscatégorie des espaces ultranucléaires uN est la plus grande souscatégorie c-reflective qui se contient dans la souscatégorie des espaces nucléaires $\mathcal{N}.\square$
- **1.9.** Le suprême de deux souscatégories reflectives de la catégorie C_2V .

Soit $\mathcal{L}, \mathcal{R} \in \mathbb{R}$, et $X \in |\mathcal{C}_2 \mathcal{V}|$. Examinons \mathcal{L}, \mathcal{R} et Π -répliques de l'objet $X: l^X:$ $X \to lX, r^X : X \to rX$ et $\pi^X : X \to \pi X$. Aussi, soit $l^{rX} : rX \to lrX$ \mathcal{L} -réplique de rX. Alors

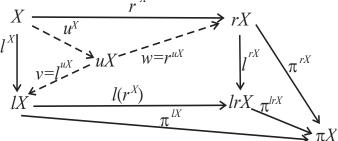
$$l^{rX} \cdot r^X = l(r^X) \cdot l^X \tag{1}$$

(2)

 Π -répliques des objets lX, rX, et lrX nous permettent d'écrire les égalités suivantes:

$$X \xrightarrow{r^{X}} rX$$

$$\downarrow^{X} \downarrow^{uX} \xrightarrow{uX} uX \xrightarrow{r^{W}} uX \xrightarrow{r^{W}} x$$



 $\pi^{lX} = \pi^{lrX} \cdot l(r^X).$

$$\pi^{rX} = \pi^{lrX} \cdot l^{rX}. \tag{3}$$

Soit

$$l(r^X) \cdot v = l^{rX} \cdot w \tag{4}$$

le carré cartésien construit sur les morphismes $l(r^X)$ et l^{rX} . Alors

$$l^X = v \cdot u^X, \tag{5}$$

$$r^X = w \cdot u^X,\tag{6}$$

pour un u^X . Puisque $l^{rX} \in \mathcal{M}_u$, il résulte aussi que $v \in \mathcal{M}_u$. En tenant compte que la classe $\mathcal{P}''(\mathcal{L})$ est \mathcal{M}_u -héréditaire de l'égalité (5), on déduit que $u^X \in \mathcal{P}''(\mathcal{L})$. Alors v est \mathcal{L} -réplique de uX: $v = l^{uX}$, et v est v-réplique de v

$$\pi^{lX} \cdot v = \pi^{rX} \cdot w \tag{7}$$

est cartésien. Ainsi $v \in \mathcal{I}''(\mathcal{R})$, $w \in \mathcal{I}''(\mathcal{L})$, et $u^X \in \mathcal{P}''(\mathcal{L}) \cap \mathcal{P}''(\mathcal{R})$. L'égalité (6) est $(\mathcal{P}''(\mathcal{L}), \mathcal{I}''(\mathcal{L}))$ -factorisation, et l'égalité (5) est $(\mathcal{P}''(\mathcal{R}), \mathcal{I}''(\mathcal{R}))$ -factorisation des morphismes respectifs.

On a $\pi^{lX} \in \mathcal{I}''(\mathcal{L})$, $l^{uX} \in \mathcal{I}''(\mathcal{R})$, donc $\pi^{lX} \cdot l^{uX} \in \mathcal{I}''(\mathcal{L}) \circ \mathcal{I}''(\mathcal{R}) \subset (\mathcal{P}''(\mathcal{L}) \cap \mathcal{P}''(\mathcal{R}))^{\perp}$. Soit $(\mathcal{P}, \mathcal{I}) = (\mathcal{P}''(\mathcal{L}) \cap \mathcal{P}''(\mathcal{R}), (\mathcal{P}''(\mathcal{L}) \cap \mathcal{P}''(\mathcal{R}))^{\perp})$. Alors

$$\pi^X = (\pi^{lX} \cdot l^{uX}) \cdot u^X \tag{8}$$

est $(\mathcal{P}, \mathcal{I})$ -factorisation du morphisme π^X , et la souscatégorie $\mathcal{U} = \mathbf{S}_{\mathcal{I}}(\Pi)$ est \mathcal{P} -reflective et $u^X : X \to uX$ est \mathcal{U} -réplique de X. De l'égalité $\mathcal{P} = \mathcal{P}''(\mathcal{U})$, c'est-à-dire $\mathcal{P}''(\mathcal{L}) \cap \mathcal{P}''(\mathcal{R}) = \mathcal{P}''(\mathcal{U})$, il résulte que \mathcal{U} est le suprême des souscatégories \mathcal{L} et \mathcal{R} : $\mathcal{U} = \mathcal{L} \vee \mathcal{R}$.

On a démontré le résultat suivant.

THÉORÈME. Soit \mathcal{L} , $\mathcal{R} \in \mathbb{R}$ et $(\mathcal{P}, \mathcal{I}) = (\mathcal{P}''(\mathcal{L}) \cap \mathcal{P}''(\mathcal{R}), (\mathcal{P}''(\mathcal{L}) \cap \mathcal{P}''(\mathcal{R}))^{\perp})$. Alors 1. La souscatégorie $\mathcal{U} = \mathbf{S}_{\mathcal{I}}(\Pi)$ est le suprême des éléments \mathcal{L} et \mathcal{R} dans la latice \mathbb{R} : $\mathcal{U} = \mathcal{L} \vee \mathcal{R}$.

- 2. $(\mathcal{P}, \mathcal{I}) = (\mathcal{P}''(\mathcal{U}), \mathcal{I}''(\mathcal{U})).$
- 3. $u^X: X \to uX$ est \mathcal{U} -réplique de l'objet X.

Les résultats principaux de l'ouvrage

Dans le paragraphe deux, on introduit la notation de souscatégories \mathcal{L} -semi-reflexives ($D\acute{e}finition~2.6$), on indique les conditions nécessaires et suffisantes pour que le produit semi-reflexif nous mène à sa souscatégorie semi-reflexive donnée (THÉORÈME 2.8). Les THÉORÈMES 2.10 et 2.11 permettent de construire des exemples des souscatégories semi-reflexives.

Dans le paragraphe trois on démontre que les latices $\mathbb{R}(\mathcal{K})$, $\mathbb{R}^s_f(\varepsilon \mathcal{L})$ et $\mathbb{R}(\mathcal{L})$ sont isomorphes si $(\mathcal{K}, \mathcal{L})$ est une paire de souscatégories conjuguées (THÉORÈME 3.1) et sa duale (THÉORÈME 3.2).

Dans le paragraphe quatre, si \mathcal{T} , \mathcal{R} et \mathcal{H} sont trois éléments qui correspondent dans le THÉORÈME 3.1, alors conformément à un élément de ce trois, on construit les autres répliques de tout objet.

Dans le paragraphe cing, on démontre que si $(\mathcal{K}, \mathcal{L}) \in \mathbb{P}_c$ et $\mathcal{R} \in \mathbb{R}^s_f(\varepsilon \mathcal{L})$, alors les foncteurs $k : \mathcal{C}_2 \mathcal{V} \to \mathcal{K}$ et $r : \mathcal{C}_2 \mathcal{V} \to \mathcal{R}$ commutent: $k \cdot r = r \cdot k$ (THÉORÈME 5.2).

Si de plus $r(\mathcal{L}) \subset \mathcal{L}$, alors les foncteurs $l: \mathcal{C}_2\mathcal{V} \to \mathcal{L}$ et r commutent: $l \cdot r = r \cdot l$ (THÉORÈME 5.3).

Toutes les conditions énumérées plus haut sont vraies dans les cas suivants:

a)
$$(\widetilde{\mathcal{M}}, \mathcal{S}) \in \mathbb{P}_c$$
 et $\mathcal{R} \in \mathbb{R}_f^s(\varepsilon \mathcal{S})$ (COROLLAIRE 5.5 p.2);

- b) $(\widetilde{\mathcal{M}}, \mathcal{S}) \in \mathbb{P}_c$ et $s\mathcal{R} \in \mathbb{R}^s_f(\varepsilon \mathcal{S})$ (PROPOSITION 6.2 p.5-6);
- c) $(\widetilde{\mathcal{M}}, \mathcal{S}) \in \mathbb{P}_c$ et $l\Gamma_0 \in \mathbb{R}^s_f(\varepsilon \mathcal{S})$ (PROPOSITION 6.3 p.5-6);
- d) $(Ch, Sh) \in \mathbb{P}_c$ et $i\mathcal{R} \in \mathbb{R}_f^s(\varepsilon Sh)$ (PROPOSITION 6.4).

2. Souscatégories semi-reflexives

Les souscatégories semi-reflexives et leurs diverses propriétés ont été étudiées dans les ouvrages [5, 7, 9-12, 17, 18, 22, 23].

Dans l'ouvrage [19], le professeur D. Raïkov a examiné des topologies localement convexes sur les espaces vectoriels de $\mathcal{L}(X,Y)$ et $Z\otimes X$ de manière que l'isomorphisme algébrique

$$\mathcal{L}(\mathcal{Z}, \mathcal{L}(X, Y)) \to \mathcal{L}(\mathcal{Z} \otimes X, Y)$$

devienne isomorphisme de la catégorie C_2V (la loi exponentielle). Se rapportant aux souscatégories semi-reflexives, M. M. Bouneaev a examiné autant la loi exponentielle [9] et les problèmes du graphe fermé [10, 11].

2.1. Définition [5]. Soit \mathcal{A} une souscatégorie et \mathcal{L} une souscatégorie reflective de la catégorie $\mathcal{C}_2\mathcal{V}$. L'objet X se nomme $(\mathcal{L}, \mathcal{A})$ -semi-reflexif, si sa \mathcal{L} -réplique appartient à la souscatégorie \mathcal{A} . La souscatégorie pleine de tous les objets $(\mathcal{L}, \mathcal{A})$ -semi-reflexifs se nomme produit semi-reflexif des souscatégories \mathcal{L} et \mathcal{A} , notée

$$\mathcal{R} = \mathcal{L} *_{sr} \mathcal{A}.$$

- **2.2.** Mentionnons les propriétés suivantes du produit semi-reflexif (voir [5]). THÉORÈME 1. $\mathcal{L} *_{sr} \mathcal{A} = \mathcal{L} *_{sr} (\mathcal{L} \cap \mathcal{A})$.
 - 2. Si $A_1 \subset A_2$, alors $\mathcal{L} *_{sr} A_1 \subset \mathcal{L} *_{sr} A_2$.
 - 3. Si $\mathcal{L} \subset \mathcal{A}$, alors $\mathcal{L} *_{sr} \mathcal{A} = \mathcal{C}_2 \mathcal{V}$.
 - 4. Si $A \subset \mathcal{L}$, alors $A \subset \mathcal{L} *_{sr} A$.
 - 5. La souscatégorie $\mathcal{L} *_{sr} \mathcal{A}$ est fermée par rapport aux produits.
 - 6. Soit \mathcal{L} et Γ deux souscatégories reflectives, $\mathcal{S} \subset \mathcal{L}$ et $\Gamma_0 \subset \Gamma$. Alors $\mathcal{L} *_{sr} \Gamma \subset \Gamma$.
- 7. Soit $(\mathcal{E}, \mathcal{M})$ une structure de factorisation dans la catégorie $\mathcal{C}_2\mathcal{V}$, \mathcal{A} une sous-catégorie \mathcal{E} -reflective et le foncteur reflecteur $l: \mathcal{C}_2\mathcal{V} \to \mathcal{L}$ possède la propriéte $l(\mathcal{M}) \subset \mathcal{M}$. Alors le produit semireflexif $\mathcal{L} *_{sr} \mathcal{A}$ est une souscatécorie reflective de la catégorie $\mathcal{C}_2\mathcal{V}$.
- **2.3.** PROPOSITION. Le produit semi-reflexif $\mathcal{L}*_{sr}\mathcal{A}$ est fermé par rapport à $(\varepsilon\mathcal{L})$ -sousobjets et $(\varepsilon\mathcal{L})$ -facteurobjets.

Démonstration. Soit $\mathcal{R} = \mathcal{L} *_{sr} \mathcal{A}$, $A \in |\mathcal{R}|$, $b : X \to A \in \varepsilon \mathcal{L}$, et $l^A : A \to lA$ \mathcal{L} -réplique de A. Alors $l^A \cdot b$ est \mathcal{L} -réplique de A. Donc $lX \in |\mathcal{A}|$, et $X \in |\mathcal{R}|$.

Vérifions que \mathcal{R} est fermée par rapport à $(\varepsilon \mathcal{L})$ -facteurobjets. Soit $A \in |\mathcal{R}|$, $t: A \to Y \in \varepsilon \mathcal{L}$, et $l^Y: Y \to lY$ \mathcal{L} -réplique de Y. Alors $l^Y \cdot t$ est \mathcal{L} -réplique de Y. Donc $lY \in |\mathcal{A}|$ et $Y \in |\mathcal{R}|$. \square

2.4. PROPOSITION. Soit $\mathcal{L} \in \mathbb{R}$, et \mathcal{A} une souscatégorie de la catégorie $\mathcal{C}_2\mathcal{V}$. Alors $\mathcal{L} *_{sr} \mathcal{A} = \mathbf{S}_{\varepsilon\mathcal{L}}(\mathcal{L} \cap \mathcal{A})$.

Démonstration. Soit $X \in |\mathcal{L} *_{sr} \mathcal{A}|$, et $l^X : X \to lX$ \mathcal{L} -réplique de X. Alors $lX \in |\mathcal{A}|$, c'est-à-dire $lX \in |\mathcal{L} \cap \mathcal{A}|$, et $l^X \in \mathcal{E}\mathcal{L}$. Donc $X \in \mathbf{S}_{\mathcal{E}\mathcal{L}}|\mathcal{L} \cap \mathcal{A}|$.

Maintenant soit que $X \in |\mathcal{S}_{\varepsilon\mathcal{L}}(\mathcal{L} \cap \mathcal{A})|$. Alors il existe un objet $Z \in |\mathcal{L} \cap \mathcal{A}|$ et un morphisme $b: X \to Z \in \varepsilon\mathcal{L}$. Il est clair que b est \mathcal{L} -réplique de X et $lX = Z \in |\mathcal{A}|$. Donc $X \in |\mathcal{L} *_{sr} \mathcal{A}|$. \square

2.5. COROLLAIRE [5]. Soit \mathcal{L} une souscatégorie c-reflective, et \mathcal{A} une souscatégorie reflective de la catégorie $\mathcal{C}_2\mathcal{V}$. Alors $\mathcal{L} *_{sr} \mathcal{A}$ est une souscatégorie reflective de la catégorie $\mathcal{C}_2\mathcal{V}$.

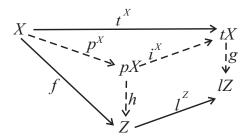
Démonstration. Vraiment, $((\varepsilon \mathcal{L})^{\top}, \varepsilon \mathcal{L})$ est une structure de factorisation à gauche, et $\mathcal{L} \cap \mathcal{A}$ est une souscatégorie reflective de la catégorie $\mathcal{C}_2 \mathcal{V}$. Si $t^X : X \to tX$ est $(\mathcal{L} \cap \mathcal{A})$ -réplique de X, et

$$t^X = i^X \cdot p^X \tag{1}$$

est $((\varepsilon \mathcal{L})^{\top}, \varepsilon \mathcal{L})$ -factorisation de t^X , alors p^X est $(\mathcal{L} *_{sr} \mathcal{A})$ -réplique de X.

Vraiment, $tX \in |\mathcal{L} \cap \mathcal{A}|$, $\mathcal{L} \cap \mathcal{A} \subset \mathcal{L} *_{sr} A$ et $i^X \in \varepsilon \mathcal{L}$. Donc $pX \in |\mathcal{L} *_{sr} A|$. Soit $Z \in |\mathcal{L} *_{sr} A|$ et $f: X \to Z$. Si $l^Z: Z \to lZ$ est \mathcal{L} -réplique de Z, alors $lZ \in |\mathcal{L} \cap \mathcal{A}|$. Ainsi

$$l^Z \cdot f = g \cdot t^X, \tag{2}$$



pour un g. L'égalité (2) peut être écrit

$$(g \cdot i^X) \cdot p^X = l^Z \cdot f,\tag{3}$$

où $p^X \in (\varepsilon \mathcal{L})^{\top}$, et $l^Z \in \varepsilon \mathcal{L}$. Donc $p^X \perp l^Z$. Alors

$$f = h \cdot p^X, \tag{4}$$

$$(g \cdot i^X) = l^Z \cdot h,\tag{5}$$

pour un h. Ainsi f s'exteint par p^X . $t^X \in \mathcal{E}pi$ et $i^X \in \mathcal{M}_u$. Comme la classe $\mathcal{E}pi$ est \mathcal{M}_u -hérédidaire, de légalité (1) résulte que $p^X \in \mathcal{E}pi$. \square

- **2.6.** Définition. Soit \mathcal{L} et \mathcal{R} deux souscatégories reflectives de la catégorie $\mathcal{C}_2\mathcal{V}$. \mathcal{R} se nomme une souscatégorie \mathcal{L} -semi-reflexive, si elle est fermée par rapport à $(\varepsilon \mathcal{L})$ -sousobjets et $(\varepsilon \mathcal{L})$ -facteurobjets. La classe de toutes les souscatégories \mathcal{L} -semi-reflexives est notée $\mathbb{R}_f^s(\varepsilon \mathcal{L})$.
- **2.7.** Exemple. 1. Soit $\mathcal{L}_1 \subset \mathcal{L}_2$. Alors $\varepsilon \mathcal{L}_2 \subset \varepsilon \mathcal{L}_1$, et $\mathbb{R}^s_f(\varepsilon \mathcal{L}_1) \subset \mathbb{R}^s_f(\varepsilon \mathcal{L}_2)$.
 - 2. $\mathbb{R}_f^s(\varepsilon \mathcal{C}_2 \mathcal{V}) = \mathbb{R}$.
 - 3. Soit $\mathcal{S} \subset \mathcal{L}$. Alors $\Pi \in \mathbb{R}_f^s(\varepsilon \mathcal{L})$.
 - 4. Si $\mathcal{L} *_{sr} \mathcal{A} \in \mathbb{R}$, alors $\mathcal{L} *_{sr} \mathcal{A} \in \mathbb{R}_f^s(\varepsilon \mathcal{L})$.
 - 5. Si $\mathcal{R} \in \mathbb{R}_f^s(\varepsilon \mathcal{L})$, alors $\mathcal{R} = \mathcal{L} *_{sr} \mathcal{R}$.
- **2.8.** THÉORÈME. Soit $\mathcal{R} \in \mathbb{R}^s_f(\varepsilon \mathcal{L})$, et $\mathcal{H} \in \mathbb{R}$. Alors les affirmations suivantes sont équivalentes:

- 1. $\mathcal{L} *_{sr} \mathcal{H} = \mathcal{R}$.
- 2. $\mathcal{L} \cap \mathcal{R} = \mathcal{L} \cap \mathcal{H}$.

Démonstration. $1 \Rightarrow 2$. $\mathcal{L} \cap \mathcal{R} \subset \mathcal{L} \cap \mathcal{H}$. Vraiment, soit $A \in |\mathcal{L} \cap \mathcal{R}|$. Alors $lA = A \in |\mathcal{R}|$. Donc $lA \in |\mathcal{H}|$ c'est-à-dire $A \in |\mathcal{H}|$. Donc $A \in |\mathcal{L} \cap \mathcal{H}|$.

 $\mathcal{L} \cap \mathcal{H} \subset \mathcal{L} \cap \mathcal{R}$. Soit $A \in |\mathcal{L} \cap \mathcal{H}|$. Alors $A \in |\mathcal{R}|$, c'est-à-dire $A \in |\mathcal{L} \cap \mathcal{R}|$.

 $2 \Rightarrow 1$. $\mathcal{L} *_{sr} \mathcal{H} \subset \mathbb{R}$. Soit $A \in |\mathcal{L} *_{sr} \mathcal{H}|$, et $l^A : A \to lA$ est \mathcal{L} -réplique de A. Alors $lA \in |\mathcal{L} \cap \mathcal{H}| = |\mathcal{L} \cap \mathcal{R}|$. Donc $lA \in |\mathcal{R}|$ et comme $\mathcal{R} \in \mathbb{R}^s_f(\varepsilon \mathcal{L})$, il résulte que $A \in |\mathcal{R}|$.

 $\mathcal{R} \subset \mathcal{L} *_{sr} \mathcal{H}$. Soit $A \in |\mathcal{R}|$, et $l^A : A \to lA$ est \mathcal{L} -réplique de A. Comme $\mathcal{R} \in \mathbb{R}^s_f(\varepsilon \mathcal{L})$, il résulte que $lA \in |\mathcal{R}|$. $lA \in |\mathcal{L} \cap \mathcal{R}| = |\mathcal{L} \cap \mathcal{H}|$ c'est-à-dire $A \in |\mathcal{L} *_{sr} \mathcal{H}|$. \square

- **2.9.** COROLLAIRE. Soit $\mathcal{R} \in \mathbb{R}^s_f(\varepsilon \mathcal{L})$. Les affirmations suivantes sont équivalentes:
 - 1. $\mathcal{R} = \mathcal{L} *_{sr} (\mathcal{L} \cap \mathcal{R})$.
 - 2. Soit $\mathcal{R} = \mathcal{L} *_{sr} \mathcal{H}$. Alors $\mathcal{L} \cap \mathcal{R} = \mathcal{L} \cap \mathcal{H} \subset \mathcal{H}$.
 - 3. Soit $\mathcal{R} = \mathcal{L} *_{sr} \mathcal{H}$, $\mathcal{T} \in \mathbb{R}$, et $\mathcal{L} \cap \mathcal{R} \subset \mathcal{T} \subset \mathcal{H}$. Alors $\mathcal{R} = \mathcal{L} *_{sr} \mathcal{T}$.
- **2.10.** THÉORÈME. Soit $\mathcal{R} \in \mathbb{R}$, $\mathcal{B} \in \mathbb{B}ic$ et $\mathcal{B} \subset \varepsilon \mathcal{R}$. Alors $\mathbf{S}_{\mathcal{B}}(\mathcal{R}) \in \mathbb{R}_f^s(\mathcal{R})$.

Démonstration. Soit $r^X: X \to rX$ est \mathcal{R} -réplique de l'objet X, et

$$r^X = b^X \cdot t^X,\tag{1}$$

la $(\mathcal{B}^{\top}, \mathcal{B})$ -factorisation de r^X . Comme la classe $\mathcal{E}pi$ est \mathcal{M}_u -héréditaire ([4], LEMME 2.6), il résulte que $t^X \in \mathcal{E}pi$ et t^X est $\mathbf{S}_{\mathcal{B}}(\mathcal{R})$ -réplique du X.

Vérifions que $\mathbf{S}_{\mathcal{B}}(\mathcal{R})$ est fermé par rapport aux \mathcal{B} -facteurobjets. Soit $A \in |\mathbf{S}_{\mathcal{B}}(\mathcal{R})|$ et $b: A \longrightarrow X \in \mathcal{B}$. Si r^A est \mathcal{R} -réplique de l'objet A, alors $b \in \mathcal{B} \subset \varepsilon \mathcal{R}$ et

$$r^A = f \cdot b, \tag{2}$$

pour un f. Comme $A \in |\mathbf{S}_{\mathcal{B}}(\mathcal{R})|$, il résulte que $r^A \in \mathcal{B}$. Donc $f \in \mathcal{B}$ aussi.

Mentionnons que la condition $\mathcal{B} \subset \varepsilon \mathcal{R}$ est équivalente avec la condition $\mathcal{R} \subset \lambda(\mathcal{B})$. \square 2.11. THÉORÈME. Soit $\mathcal{B} \in \mathbb{B}ic$ et $\mathcal{R} \in \mathbb{R}^s(\mathcal{B})$. Alors $\mathbf{Q}_{\mathcal{B}}(\mathcal{R}) \in \mathbb{R}^s_f(\mathcal{B})$.

Démonstration. Tout foncteur reflecteur de la catégorie C_2V commute avec les produits ([5], THÉORÈME 1.12), et la classe \mathcal{B} est fermée par rapport aux produits. Donc $\mathbf{Q}_{\mathcal{B}}(\mathcal{R})$ est fermée par rapport aux produits.

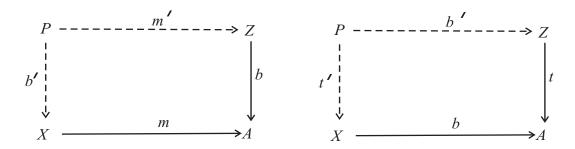
Démontrons que $\mathbf{Q}_{\mathcal{B}}(\mathcal{R})$ est fermé par rapport aux \mathcal{M}_f -sousobjets. Soit $A \in |\mathbf{Q}_{\mathcal{B}}(\mathcal{R})|$, et $m: X \to A \in \mathcal{M}_f$. Il existe un objet $Z \in |\mathcal{R}|$ et un morphisme $b: Z \longrightarrow A \in \mathcal{B}$. Soit

$$m \cdot b' = b \cdot m',\tag{1}$$

le carré cartésien construit sur les morphismes m et b, où $m': P \longrightarrow Z$. Alors $m' \in \mathcal{M}_f$, et $b' \in \mathcal{B}$. Donc $P \in |\mathcal{R}|$, et $X \in |\mathbf{Q}_{\mathcal{B}}(\mathcal{R})|$.

Vérifions que $\mathbf{Q}_{\mathcal{B}}(\mathcal{R})$ est fermé par rapport aux \mathcal{B} -sousobjets. Soit $A \in |\mathbf{Q}_{\mathcal{B}}(\mathcal{R})|$, et $b: X \to A \in \mathcal{B}$. Il existe un objet $Z \in |\mathcal{R}|$ et un morphisme $t: Z \longrightarrow A \in \mathcal{B}$. Soit

$$t \cdot b' = b \cdot t',\tag{2}$$



le carré cartésien construit sur les morphismes b et t. Alors b', $t' \in \mathcal{B}$, et $Z \in |\mathcal{R}|$. Donc $P \in |\mathcal{R}|$, et $X \in |\mathbf{Q}_{\mathcal{B}}(\mathcal{R})|$.

2.12. COROLLAIRE. Soit $\mathcal{B} \in \mathbb{B}ic$ et $\mathcal{R} \in \mathbb{R}(\mathcal{M}p)$. Alors $\mathbf{Q}_{\mathcal{B}}(\mathcal{R}) \in \mathbb{R}_f^s(\mathcal{B})$. Démonstration. En vertu du LEMME 3.2 [5] $\mathcal{R} \in \mathbb{R}^s(\mathcal{E}_u \cap \mathcal{M}_u)$, et $\mathcal{B} \subset \mathcal{E}_u \cap \mathcal{M}_p$.

- 3. Les isomorphismes de latice $\mathbb{R}(\mathcal{K})$, $\mathbb{R}^s_f(\varepsilon \mathcal{L})$ et $\mathbb{R}(\mathcal{L})$, $(\mathcal{K}, \mathcal{L}) \in \mathbb{P}_c$
- **3.1.** THÉORÈME. Soit $(\mathcal{K}, \mathcal{L}) \in \mathbb{P}_c$, mais $\mathcal{B} = \varepsilon \mathcal{L}$.
- 1. L'application $\mathcal{T} \longmapsto \varphi_1(\mathcal{T}) = \mathbb{Q}_{\mathcal{B}}(\mathcal{T})$ pour $\mathcal{T} \in \mathbb{R}(\mathcal{K})$ prend des valeurs dans la classe $\mathbb{R}_f^s(\mathcal{B})$.
- 2. L'application $\mathcal{R} \longmapsto \psi_1(\mathcal{R}) = \mathcal{K} \cap \mathcal{R}$ pour $\mathcal{R} \in \mathbb{R}_f^s(\mathcal{B})$ prend des valeurs dans la classe $\mathbb{R}(\mathcal{K})$.
 - 3. Les applications φ_1 et ψ_1 sont réciproquement inverses.
- 4. L'application $\mathcal{H} \longmapsto \varphi(\mathcal{H}) = \mathbb{S}_{\mathcal{B}}(\mathcal{H})$ pour $\mathcal{H} \in \mathbb{R}(\mathcal{L})$ prend des valeurs dans la classe $\mathbb{R}_f^s(\mathcal{B})$.
- 5. L'application $\mathcal{R} \longmapsto \psi(\mathcal{R}) = \mathcal{L} \cap \mathcal{R}$ pour $\mathcal{R} \in \mathbb{R}_f^s(\mathcal{B})$ prend des valeurs dans la classe $\mathbb{R}(\mathcal{L})$.
 - 6. Les applications φ et ψ sont réciproquement inverses.

$$\mathbb{R}(\mathcal{K}) \xrightarrow{\varphi_1} \mathbb{R}_f^s(\mathcal{B}) \xrightarrow{\psi} \mathbb{R}(\mathcal{L})$$

Démonstration. On va indiquer, chaque fois, ce qu'on démontrera.

1. Soit $\mathcal{T} \in \mathbb{R}(\mathcal{K})$ et $\mathcal{R} = \mathbb{Q}_{\mathcal{B}}(\mathcal{T})$. On construira \mathcal{R} -réplique pour tout objet $X \in |\mathcal{C}_2\mathcal{V}|$. Soit $k^X : kX \longrightarrow X$ \mathcal{K} -coréplique de $X, t^{kX} : kX \longrightarrow tkX$ \mathcal{T} -réplique de kX, et

$$u^X \cdot t^{kX} = \overline{v}^X \cdot k^X \tag{1}$$

le carré cocartésien construit sur les morphismes k^X et t^{kX} . Comme $k^X \in \mathcal{\mu}\mathcal{K} = \mathcal{B}$, alors $u^X \in \mathcal{B}$, et $\overline{v}X \in |\mathcal{R}|$. Vérifions que \overline{v}^X est \mathcal{R} -réplique de l'objet X. Vraiment, soit $Z \in |\mathcal{R}|$, mais $f: X \longrightarrow Z$. Il existe un objet $A \in |\mathcal{T}|$ et un morphisme $b: A \longrightarrow Z \in \mathcal{B}$. Comme $b \in \mathcal{B}$, il existe un morphisme $g: kX \longrightarrow A$ ainsi que

$$f \cdot k^X = b \cdot g. \tag{2}$$

Alors

$$g = h \cdot t^{kX} \tag{3}$$

pour un $h: tkX \longrightarrow A$. Des égalités écrites on a

$$b \cdot f \cdot k^X = b \cdot g = b \cdot h \cdot t^{kX},$$

i.e.

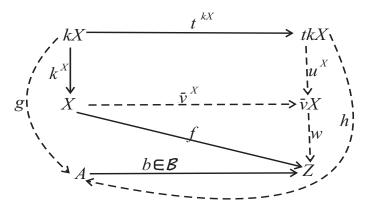
$$f \cdot k^X = h \cdot t^{kX} \tag{4}$$

et puisque (1) est un carré cocartésien, il résulte que

$$f = w \cdot \overline{v}^X, \tag{5}$$

$$b \cdot h = w \cdot u^X \tag{6}$$

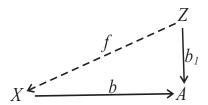
pour un w. L'égalité (5) montre que f s'existeint par \overline{v}^X . L'unisité de w résulte du fait que \overline{v}^X est un epi.



 $\mathcal{R} \in \mathbb{R}^s(\mathcal{B})$. Soit $A \in |\mathcal{T}|$, mais $b: X \longrightarrow A \in \mathcal{B}$. Il existe un objet $Z \in |\mathcal{T}|$ et un morphisme $b_1: Z \longrightarrow A$. Puisque $Z \in |\mathcal{T}| \subset |\mathcal{K}|$ et $b \in \mathcal{B}$, il résulte que

$$b_1 = b \cdot f \tag{7}$$

pour un f. Alors $f \in \mathcal{B}$, et $X \in |\mathcal{R}|$.



 $\mathcal{R} \in \mathbb{R}_f(\mathcal{B})$. Evidemment. Ainsi on a démontré que $\varphi_1(\mathcal{T}) \in \mathbb{R}_f^s(\mathcal{R})$.

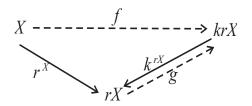
2. Soit $\mathcal{R} \in \mathbb{R}^s_f(\mathcal{B})$ et on démontrera que $\mathcal{K} \cap \mathcal{R} \in \mathbb{R}(\mathcal{K})$. Il est suffisant de montrer que pour $X \in |\mathcal{K}|$, l'objet rX appartient aussi à la catégorie \mathcal{K} . Vraiment soit $r^X : X \longrightarrow rX$ \mathcal{R} -réplique de X, mais $k^{rX} : krX \longrightarrow rX$ \mathcal{K} -coréplique de rX. Alors

$$r^X = k^{rX} \cdot f \tag{8}$$

pour un f. Puisque $rX \in |\mathcal{R}|$, et $k^{rX} \in \mathcal{B}$, il résulte que $krX \in |\mathcal{R}|$. Alors

$$f = g \cdot r^X \tag{9}$$

pour un g. Dans l'égalité (8) $k^{rX} \in \mathcal{B} \subset \mathcal{M}_u$,



et $r^X \in \mathcal{E}pi$. La classe $\mathcal{E}pi$ est \mathcal{M}_u -héréditaire. Ainsi $f \in \mathcal{E}pi$. On a

$$g \cdot k^{rX} \cdot f = g \cdot r^X = f,$$

ou

$$g \cdot k^{rX} = 1. \tag{10}$$

Donc $k^{rX} = g^{-1}$, et $rX \in |\mathcal{K} \cap \mathcal{R}|$.

3. $\varphi_1 \cdot \psi_1 = 1$. Soit $\mathcal{R} \in \mathbb{R}^s_f(\mathcal{R})$. Alors $\varphi_1 \psi_1(\mathcal{R}) = \varphi_1(\mathcal{K} \cap \mathcal{R}) = \mathbf{Q}_{\mathcal{B}}(\mathcal{K} \cap \mathcal{R})$.

 $\mathcal{R} \subset \mathbf{Q}_{\mathcal{B}}(\mathcal{K} \cap \mathcal{R})$. Soit $A \in |\mathcal{R}|$. Alors $kA \in |\mathcal{K} \cap \mathcal{R}|$, et $k^A \in \mathcal{B}$. Ainsi $A \in |\mathbf{Q}_{\mathcal{B}}(\mathcal{K} \cap \mathcal{R})|$.

 $\mathbf{Q}_{\mathcal{B}}(\mathcal{K} \cap \mathcal{R}) \subset \mathcal{R}$. Soit $A \in |\mathbf{Q}_{\mathcal{B}}(\mathcal{K} \cap \mathcal{R})$. Alors il existe un objet $Z \in |\mathcal{K} \cap \mathcal{R}|$ et un morphisme $b: Z \longrightarrow A$. Puisque $\mathcal{R} \in \mathbb{R}^s_f(\mathcal{R})$, il résulte que $A \in |\mathcal{R}|$.

 $\psi_1 \cdot \varphi_1 = 1$. Soit $\mathcal{T} \in \mathbb{R}(\mathcal{K})$. Alors $\psi_1 \varphi_1(\mathcal{T}) = \psi_1(\mathbf{Q}_{\mathcal{B}}(\mathcal{T})) = \mathcal{K} \cap \mathbf{Q}_{\mathcal{B}}(\mathcal{T})$.

 $\mathcal{T} \subset \mathcal{K} \cap \mathbf{Q}_{\mathcal{B}}(\mathcal{T})$. Evidemment.

 $\mathcal{K} \cap \mathbf{Q}_{\mathcal{B}}(\mathcal{T}) \subset \mathcal{T}$. Soit $A \in |\mathcal{K} \cap \mathbf{Q}_{\mathcal{B}}(\mathcal{T})|$. Alors $A \in |\mathcal{K}|$ et il existe un objet $Z \in |\mathcal{T}|$ et un morphisme $b : Z \longrightarrow A \in \mathcal{B}$. Alors $b \in \mathcal{I}so$ et $A \in |\mathcal{T}|$.

4. Soit $\mathcal{H} \in \mathbb{R}(\mathcal{L})$, et $\mathcal{R} = \mathbf{S}_{\mathcal{B}}(\mathcal{H})$. Examinons un objet arbitraire $X \in |\mathcal{C}_2\mathcal{V}|$: $h^X : X \to hX$, $k^X : kX \to X$ et $k^{hX} : khX \to hX$ \mathcal{H} -répliques \mathcal{K} -corépliques des objets correspondants. Alors

$$h^X \cdot k^X = k^{hX} \cdot k(h^X). \tag{11}$$

Soit

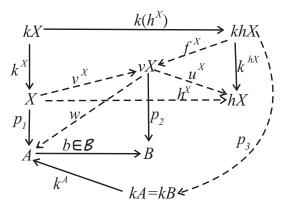
$$v^X \cdot k^X = f^X \cdot k(h^X), \tag{12}$$

le carré cocartésien construit sur les morphismes k^X et $k(h^X)$. Alors

$$h^X = u^X \cdot v^X,\tag{13}$$

$$k^{hX} = u^X \cdot f^X, \tag{14}$$

pour un morphisme $u^X : vX \to rX$. On a k^X , $k^{hX} \in \mathcal{B}$. Donc f^X , $u^X \in \mathcal{B}$, et $vX \in \mathbf{S}_B(\mathcal{R})$.



Démontrons que $v^X \perp \mathcal{B}$ (voir [4]). Vraiment soit $b: A \longrightarrow B \in \mathcal{B}$ et

$$b \cdot p_1 = p_2 \cdot v^X, \tag{15}$$

Si $k^A: kA \longrightarrow A$ est \mathcal{K} -coréplique de A, alors $b \cdot k^A: kA \longrightarrow B$ est \mathcal{K} -coréplique de B. Il existe un morphisme $p_3: krX \longrightarrow kB$ ainsi que

$$p_2 \cdot f^X = b \cdot k^A \cdot p_3. \tag{16}$$

De telle manière

$$b \cdot p_1 \cdot k^X = p_2 \cdot v^X \cdot k^X = p_2 \cdot f^X \cdot k(h^X) = b \cdot k^A \cdot p_3 \cdot k(h^X),$$

i.e.

$$b \cdot p_1 \cdot k^X = b \cdot k^A \cdot p_3 \cdot k(h^X), \tag{17}$$

ou

$$p_1 \cdot k^X = k^A \cdot p_3 \cdot k(h^X),\tag{18}$$

Puisque (12) est carré cocartésien, il existe un morphisme $w: vX \longrightarrow A$, ainsi que

$$p_1 = w \cdot v^X, \tag{19}$$

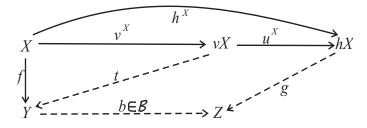
$$p_2 = b \cdot w. \tag{20}$$

De l'égalité (13), en tenant compte que $u^X \in \mathcal{B}$, on déduit que $v^X \in \mathcal{E}pi$. Ainsi, de l'égalité (15) et (19), il résulte que

$$b \cdot w = p_2. \tag{21}$$

Ainsi $v^X \perp \mathcal{B}$, et l'égalité (13) est $(\mathcal{B}^{\mathsf{T}}, \mathcal{B})$ est une structure de factorisation de gauche.

Démontrons maintenant que v^X est \mathcal{R} -réplique de l'objet X. Soit $Y \in |\mathcal{R}|$, et $f: X \to Y$. Il existe un objet $Z \in |\mathcal{H}|$ et un morphisme $b: Y \to Z \in \mathcal{B}$.



On a

$$b \cdot f = g \cdot h^X \tag{22}$$

pour un morphisme g. Alors

$$b \cdot f = (g \cdot u^X) \cdot v^X \tag{23}$$

avec $v^X \perp b$. Ainsi

$$f = t \cdot v^X, \tag{24}$$

$$g \cdot u^X = b \cdot t \tag{25}$$

pour un t. On a démontré que $\mathcal{R} \in \mathbb{R}$.

 $\mathcal{R} \in \mathbb{R}^s(\mathcal{B})$. Evidemment.

 $\mathcal{R} \in \mathbb{R}_f(\mathcal{B})$. Soit $A \in |\mathcal{R}|$, et $b : A \to X \in \mathcal{B}$. Il existe un objet $Z \in |\mathcal{H}| \subset |\mathcal{L}|$ et un morphisme $b_1 : A \to Z$. Alors b_1 est \mathcal{L} -réplique de A. Ainsi

$$b_1 = f \cdot b \tag{26}$$

pour un f. Il est clair que $f \in \mathcal{B}$, est $X \in |\mathcal{R}|$.

5. Soit $\mathcal{R} \in \mathbb{R}^s_f(\mathcal{B})$. Alors $\mathcal{L} \cap \mathcal{R} \subset \mathcal{L}$ et $\mathcal{L} \cap \mathcal{R}$ est une catégorie reflective de la catégorie $\mathcal{C}_2\mathcal{V}$, donc de la catégorie \mathcal{L} aussi.

6. $\varphi \cdot \psi = 1$. Soit $\mathcal{R} \in \mathbb{R}_f^s(\mathcal{R})$. Alors $\varphi \psi(\mathcal{R}) = \varphi(\mathcal{L} \cap \mathcal{R}) = \mathbf{S}_{\mathcal{B}}(\mathcal{L} \cap \mathcal{R})$.

 $\mathcal{R} \subset \mathbf{S}_{\mathcal{B}}(\mathcal{L} \cap \mathcal{R})$. Soit $A \in |\mathcal{R}|$, et $l^A : A \to lA$ \mathcal{L} -réplique de A. Alors $lA \in |\mathcal{L} \cap \mathcal{R}|$, et $l^A \in \mathcal{B}$. Ainsi $A \in |\mathbf{S}_{\mathcal{B}}(\mathcal{L} \cap \mathcal{R})|$.

 $\mathbf{S}_{\mathcal{B}}(\mathcal{L} \cap \mathcal{R}) \subset \mathcal{R}$. Soit $A \in |\mathbf{S}_{\mathcal{B}}(\mathcal{L} \cap \mathcal{R})$. Il existe un objet $Z \in |\mathcal{L} \cap \mathcal{R}|$ et un morphisme $b: A \longrightarrow Z \in \mathcal{B}$. Ainsi $A \in |\mathcal{R}|$, puisque \mathcal{R} est fermée par rapport à \mathcal{B} -sousobjets.

 $\psi \cdot \varphi = 1$. Soit $\mathcal{H} \in \mathbb{R}(\mathcal{L})$. Alors $\psi \varphi(\mathcal{H}) = \psi(\mathbf{S}_{\mathcal{B}}(\mathcal{H})) = \mathcal{L} \cap \mathbf{S}_{\mathcal{B}}(\mathcal{H})$.

 $\mathcal{H} \subset \mathcal{L} \cap \mathbf{S}_{\mathcal{B}}(\mathcal{H})$. Soit $A \in |\mathcal{H}| \subset |\mathcal{L}|$. Donc $A \in |\mathcal{L} \cap \mathcal{H}| \subset |\mathcal{L} \cap \mathbf{S}_{\mathcal{B}}(\mathcal{H})|$.

 $\mathcal{L} \cap \mathbf{S}_{\mathcal{B}}(\mathcal{H}) \subset \mathcal{H}$. Soit $A \in |\mathcal{L} \cap \mathbf{S}_{\mathcal{B}}(\mathcal{T})|$. Alors $A \in |\mathcal{L}|$ et $A \in |\mathbf{S}_{\mathcal{B}}(\mathcal{H})|$. Il existe un objet $Z \in |\mathcal{H}|$ et un morphisme $b : A \longrightarrow Z \in \mathcal{B}$. Puisque $A \in |\mathcal{L}|$, il résulte que $b \in \mathcal{I}$ so et $A \in |\mathcal{H}|$. \square

3.2. Le résultat dual est aussi juste.

THÉORÈME. Soit $(\mathcal{K}, \mathcal{L}) \in \mathbb{P}_c$, et $\mathcal{B} = \varepsilon \mathcal{L}$.

- 1. L'application $\mathcal{T} \mapsto \overline{\varphi_1}(\mathcal{T}) = \mathbf{Q}_{\mathcal{B}}(\mathcal{T})$ pour $\mathcal{T} \in \mathbb{K}(\mathcal{K})$ prend des valeurs dans la class $\mathbb{K}_f^s(\mathcal{B})$.
- 2. L'application $\mathcal{U} \mapsto \overline{\psi_1}(\mathcal{U}) = \mathcal{K} \cap \mathcal{U}$ pour $\mathcal{U} \in \mathbb{K}_f^s(\mathcal{B})$ prend des valeurs dans la class $\mathbb{K}(\mathcal{K})$.
 - 3. Les applications $\overline{\varphi_1}$ et $\overline{\psi_1}$ sont réciproquement inverses.
- 4. L'application $\mathcal{V} \longmapsto \overline{\varphi}(\mathcal{V}) = \mathbb{S}_{\mathcal{B}}(\mathcal{V})$ pour $\mathcal{V} \in \mathbb{K}(\mathcal{L})$ prend des valeurs dans la classe $\mathbb{K}_f^s(\mathcal{B})$.
- 5. L'application $\mathcal{H} \longmapsto \overline{\psi}(\mathcal{H}) = \mathcal{L} \cap \mathcal{H}$ pour $\mathcal{H} \in \mathbb{K}_f^s(\mathcal{B})$ prend des valeurs dans la classe $\mathbb{K}(\mathcal{L})$.
 - 6. Les applications $\overline{\varphi}$ et $\overline{\psi}$ sont réciproquement inverses.

$$\mathbb{K}(\mathcal{K}) \xrightarrow{\overline{\varphi}_1} \mathbb{K}_f^s(\mathcal{B}) \xrightarrow{\overline{\psi}} \mathbb{K}(\mathcal{L})$$

4. Réconstruction des repliques et corepliques

- **4.1.** Pour $(\mathcal{K}, \mathcal{L}) \in \mathbb{P}_c$ en vertu du THÉORÈME 3.1, chaque élément $\mathcal{T} \in \mathbb{R}(\mathcal{K})$, $\mathcal{R} \in \mathbb{R}^s_f(\varepsilon \mathcal{L})$ et $\mathcal{H} \in \mathbb{R}(\mathcal{L})$ définit par un triplet.
 - 1. $\mathcal{T} \longmapsto (\mathcal{T}, \varphi_1(\mathcal{T}), \psi \varphi_1(\mathcal{T})), \mathcal{T} \in \mathbb{R}(\mathcal{K}).$
 - 2. $\mathcal{R} \longmapsto (\psi_1(\mathcal{R}), \mathcal{R}, \psi(\mathcal{R})), \mathcal{R} \in \mathbb{R}_f^s(\varepsilon \mathcal{L}).$
 - 3. $\mathcal{H} \longmapsto (\psi_1 \varphi(\mathcal{H}), \varphi(\mathcal{H}), \mathcal{H}), \mathcal{H} \in \mathbb{R}(\mathcal{L}).$

Voyons, par exemple, dans chacun de ces cas comment peuvent être construites $\varphi_1(\mathcal{T})$ et $\psi \varphi_1(\mathcal{T})$ -répliques d'un objet arbitraire.

4.2. Le cas $\mathcal{T} \in \mathbb{R}(\mathcal{K})$. Soit $A \in |\mathcal{C}_2\mathcal{V}|$, $k^A : kA \to A$, $l^A : A \to lA$ et $t^{kA} : kA \to tkA$ coréplique et réplique des objet correspondants. Plus loin, soit

$$b_1^A \cdot t^{kA} = u_1^A \cdot k^A, \tag{1}$$

$$b_2^A \cdot u_1^A = u_2^A \cdot l^A \tag{2}$$

les carrés cocartésiens construit sur les morphismes t^{kA} , k^A et $k^A u_1^A$, l^A , et l^T \mathcal{L} -réplique de T.

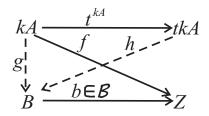
$$kA \xrightarrow{k^{A}} A \xrightarrow{l^{A}} lA$$

$$t^{kA} \downarrow Carr\acute{e} \qquad u_{l}^{A} \downarrow Carr\acute{e} \qquad u_{l}^{A} \downarrow cocart\acute{e}sien \qquad U$$

THÉORÈME. Sont vraies les affirmations suivantes:

- 1. $t^{kA}: kA \to tkA \text{ est } \varphi_1(\mathcal{T})\text{-réplique de } kA.$
- 2. $u_1^A: A \to P$ est $\varphi_1(\mathcal{T})$ -réplique de A.
- 3. $b_1^A: tkA \to P$ est \mathcal{K} -coréplique de P.
- 4. $l^T \cdot b_2^A : P \to lT$ est \mathcal{L} -réplique de P.
- 5. $l^T \cdot u_2^A : lA \to lT \text{ est } \psi \varphi_1(\mathcal{T})\text{-réplique de } lA.$
- 6. $l^T \cdot u_2^A \cdot l^A : A \to lT \text{ est } \psi \varphi_1(\mathcal{T})\text{-réplique de } A.$

Démonstration. 1. Premièrement, mentionnons que $tkA \in |\mathcal{T}| \subset |\varphi_1(\mathcal{T})|$. Soit $Z \in |\varphi_1(\mathcal{T})|$, et $f: kA \to Z$. Il existe un objet $B \in |\mathcal{T}|$ et un morphisme $b: B \to Z \in \varepsilon \mathcal{L}$.



Puisque $\varepsilon \mathcal{L} = \mu \mathcal{K}$, il existe un morphisme $g: kA \to B$ ainsi que .

$$f = b \cdot g. \tag{3}$$

Alors

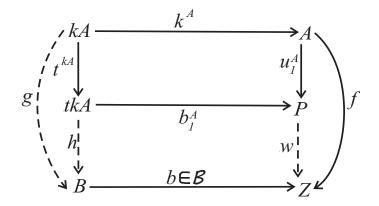
$$g = h \cdot t^{kA},\tag{4}$$

et

$$f = (b \cdot h) \cdot t^{kA}. \tag{5}$$

Ainsi le morphisme f s'éxteint par t^{kA} .

2. Puisque $k^A \in \mathcal{B}$, il résulte que $b_1^A \in \mathcal{B}$ aussi. Ainsi $P \in |\mathcal{R}|$, où $\mathcal{R} = \varphi_1(\mathcal{T})$. Soit maintenent $Z \in |\mathcal{R}|$, et $f : A \to Z$. Il existe un objet $B \in |\mathcal{T}|$ et un morphisme $b : B \to Z \in \mathcal{B}$.



Puisque $\mathcal{B} = \mu \mathcal{K}$ pour le morpfisme $f \cdot k^A$, il existe un morphisme g ainsi que .

$$f \cdot k^A = b \cdot g,\tag{6}$$

qui, à son tour, s'éxteint par \mathcal{T} -réplique de kA:

$$g = h \cdot t^{kA},\tag{7}$$

pour un h. On a

$$b \cdot h \cdot t^{kA} = f \cdot k^A. \tag{8}$$

Ainsi le morphisme f s'éxteint par t^{kA} .

Puisque (1) est un carré cocartésien, il résulte que

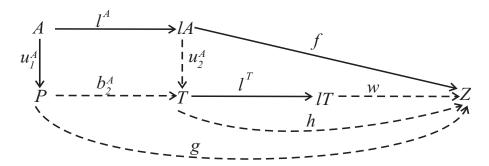
$$b \cdot h = w \cdot b_1^A, \tag{9}$$

$$f = w \cdot u_1^A, \tag{10}$$

pour un w. L'unicité de w qui exteint le morphisme f par u_1^A résulte du fait que u_1^A est un epi.

- 3. Premièrement, $t^{kA} \in |\mathcal{T}| \subset |\mathcal{K}|$. Deuxièmement, $b_1^A \in \varepsilon \mathcal{L} = \mu \mathcal{K}$.
- 4. En vertu du fait que $lT \in |\mathcal{L}|$, et $l^T \cdot b_2^A \in \varepsilon \mathcal{L}$.
- 5. Puisque $P \in |\varphi_1(\mathcal{T})|$, et lT = lP, il résulte que $lT \in |\mathcal{L} \cap \varphi_1(\mathcal{T})|$. Soit $Z \in |\psi\varphi_1(\mathcal{T})|$, et $f: lA \to Z$. Ayant en vue que u_1^A est $\varphi_1(\mathcal{T})$ -réplique de A, on a

$$f \cdot l^A = g \cdot u_1^A,\tag{11}$$



pour un g. Le carré (2) est cocartésien. Il résulte que

$$g = h \cdot b_2^A, \tag{12}$$

$$f = h \cdot u_2^A \tag{13}$$

pour un h. Mais $Z \in |\psi \varphi_1(\mathcal{T})| \subset |\mathcal{L}|$, donc

$$h = w \cdot l^T. \tag{14}$$

pour un w.

6. Cela résulte de p.6.□

 4.2° . Examinons la situation duale.

Le cas $\mathcal{V} \in \mathbb{K}(\mathcal{L})$.

Soit $A \in |\mathcal{C}_2\mathcal{V}|$, $k^A : kA \to A$, $l^A : A \to lA$ et $v^{lA} : vlA \to lA$ corépliques et répliques des objets correspondants. Plus loin,

$$l^A \cdot u_1^A = v^{lA} \cdot b_1^A, \tag{1}$$

$$k^A \cdot u_2^A = u_1^A \cdot b_2^A \tag{2}$$

les carrés cocartésiens construits sur les morphismes l^A , v^{lA} et k^A , u_1^A , et k^T \mathcal{K} -coréplique de T.

$$kT \xrightarrow{k^{T}} T \xrightarrow{---b_{2}^{A}} P \xrightarrow{b_{1}^{A}} vlA$$

$$\downarrow u_{2}^{A} \qquad \downarrow u_{1}^{A} \qquad \downarrow vlA$$

$$\downarrow u_{1}^{A} \qquad \downarrow vlA$$

$$\downarrow u_{1}^{A} \qquad \downarrow vlA$$

$$\downarrow vlA$$

$$\downarrow$$

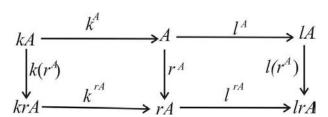
THÉORÈME. Sont vraies les affirmations suivantes:

- 1. $v^{lA}: vlA \rightarrow lA \ est \ \overline{\varphi}(\mathcal{V})$ -coréplique de lA.
- 2. $u_1^A: P \to A$ est $\overline{\varphi}(\mathcal{V})$ -coréplique de A.
- 3. $b_1^A: P \to vlA \text{ est } \mathcal{L}\text{-r\'eplique de } P.$
- 4. $b_2^A \cdot k^T : kT \to P$ est \mathcal{K} -coréplique de P.
- 5. $u_2^A \cdot k^T : kT \to kA \text{ est } \overline{\psi_1} \overline{\varphi}(\mathcal{V}) \text{-coréplique de } kA.$
- 6. $k^A \cdot u_2^A \cdot k^T : kT \to A \text{ est } \overline{\psi_1} \overline{\varphi}(\mathcal{V})\text{-coréplique de } lA.$

4.3. Le cas $\mathcal{R} \in \mathbb{R}^s_f(\varepsilon \mathcal{L})$. Soit $A \in |\mathcal{C}_2 \mathcal{V}|$, $k^A : kA \to A$, $l^A : A \to lA$ \mathcal{K} -coréplique et \mathcal{L} -réplique de A, mais $r^A : A \to rA$, $k^{rA} : krA \to rA$ et $l^{rA} : rA \to lrA$ \mathcal{R} -réplique, \mathcal{L} -réplique et \mathcal{K} -coréplique des objets correspondants. Alors

$$r^A \cdot k^A = k^{rA} \cdot k(r^A),\tag{1}$$

$$l^{rA} \cdot r^A = l(r^A) \cdot l^A \tag{2}$$



THÉORÈME. Sont vraies les affirmations suivantes:

- 1. $k(r^A): kA \to krA \text{ est } \psi_1(\mathcal{R})\text{-r\'eplique de } kA.$
- 2. $l(r^A): lA \to lrA \ est \ \psi(\mathcal{R})$ -réplique de lA.
- 3. $l(r^A) \cdot l^A : A \to lrA$ est $\psi(\mathcal{R})$ -réplique de A.

Démonstration. 1. Puisque $k^{rA} \in \mu \mathcal{K} = \varepsilon \mathcal{L}$, et $rA \in |\mathcal{R}|$, il résulte que $krA \in |\mathcal{K} \cap \mathcal{R}| = |\psi_1(\mathcal{R})|$. Vérifions que $k(r^A) : kA \to krA$ est $\psi_1(\mathcal{R})$ -réplique de kA. Soit $Z \in |\mathcal{K} \cap \mathcal{R}| = |\psi_1(\mathcal{R})|$ et $f : kA \to Z$. Alors $lZ \in |\mathcal{L} \cap \mathcal{R}|$. Donc

$$l^Z \cdot f = g \cdot l^A \cdot k^A \tag{3}$$

pour un g, et

$$g \cdot l^A = u \cdot r^A \tag{4}$$

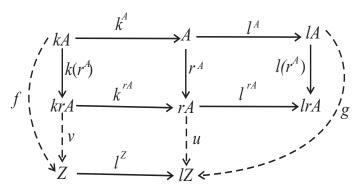
pour un u. Plus loin, $l^Z \in \mu \mathcal{K} = \varepsilon \mathcal{L}$, donc

$$u \cdot k^{rA} = l^Z \cdot v \tag{5}$$

pour un v. On vérifie facilement que

$$f = v \cdot k(r^A),\tag{6}$$

et de l'égalité (1) il résulte que $k(r^A) \in \mathcal{E}pi$, puisque $r^A \cdot k^A \in \mathcal{E}pi$ et $k^{rA} \in \mathcal{M}_u$.



- 2. Premièrement, $lrA \in |\mathcal{L} \cap \mathcal{R}| = |\varphi(\mathcal{R})|$, et de l'égalité (2) il résulte que $l(r^A) \in \mathcal{E}pi$. On vérifie facilement que $\varphi(\mathcal{R})$ -réplique de lA.
 - 3. Il résulte de p.2.□
 - 4.3°. Le cas $\mathcal{H} \in \mathbb{K}_f^s(\mu \mathcal{K})$.

Soit $A \in |\mathcal{C}_2\mathcal{V}|$, k^A : $kA \to A$, $l^A : A \to lA$ \mathcal{K} -coréplique et \mathcal{L} -réplique de A, et $h^A : hA \to A$, $k^{hA} : khA \to hA$ et $l^{hA} : lA \to lhA$ sont les répliques et les corépliques des objets correspondants. Alors

$$l^A \cdot h^A = l(h^A) \cdot l^{hA},\tag{1}$$

$$h^A \cdot k^{hA} = k^A \cdot k(h^A). \tag{2}$$

$$khA \xrightarrow{k^{hA}} hA \xrightarrow{l^{hA}} lhA$$

$$\downarrow k(h^{A}) \qquad \downarrow h^{A} \qquad \downarrow l(h^{A})$$

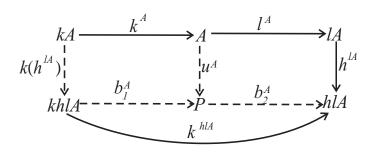
$$kA \xrightarrow{k^{A}} A \xrightarrow{l^{A}} lA$$

THÉORÈME. Sont vraies les affirmations suivantes:

- 1. $l(h^A): lhA \to lA \ est \ \varphi(\mathcal{H})$ -coréplique de lA.
- 2. $k(h^A): khA \to kA \text{ est } \overline{\psi_1}(\mathcal{H})\text{-coréplique de } kA.$
- 3. $k^A \cdot k(h^A) : khA \to A \text{ est } \overline{\psi_1}(\mathcal{H})\text{-coréplique de } A.$

4.4. Le cas $\mathcal{H} \in \mathbb{R}(\mathcal{L})$. Soit $A \in |\mathcal{C}_2\mathcal{V}|$, $l^A : A \to lA$ et $h^{lA} : lA \to hlA$ \mathcal{L} - et \mathcal{H} -répliques, et $k^A : kA \to A$, et $k^{hlA} : khlA \to hlA$ \mathcal{K} -corépliques des objet correspondants. Alors

$$h^{lA} \cdot l^A \cdot k^A = k^{hlA} \cdot k(h^{lA}). \tag{1}$$



Plus loin, soit

$$b_1^A \cdot k(h^{lA}) = u^A \cdot k^A \tag{2}$$

le carré cocartésien construit sur les morphismes k^A et $k(h^{lA})$. Alors

$$k^{hlA} = b_2^A \cdot b_1^A, \tag{3}$$

$$h^{lA} \cdot l^A = b_2^A \cdot u^A. \tag{4}$$

pour un b_2^A .

THÉORÈME. Sont vraies les affirmations suivantes:

- 1. $k(h^{lA}): kA \to khlA \text{ est } \psi_1\varphi(\mathcal{H})\text{-réplique de } kA.$
- 2. $u^A: A \to P$ est $\varphi(\mathcal{H})$ -réplique de A.

Démonstration. 1. Puisque $k^{hlA} \in \mu \mathcal{K}$, et $hlA \in |\mathcal{H}|$, il résulte que $khlA \in |\mathcal{K} \cap \varphi(\mathcal{H})| = |\psi_1 \varphi(\mathcal{H})|$. Soit $B \in |\psi_1 \varphi(\mathcal{H})|$ et $f : kA \to B$. Démontrons que f s'exteint par $k(h^{lA})$. Soit $l^B : B \to lB$ \mathcal{L} -réplique de B. Puisque $l^A \cdot k^A$ est \mathcal{L} -réplique de l'objet kA, on a

$$l^B \cdot f = g \cdot l^A \cdot k^A \tag{5}$$

pour un g. On a $B \in |\varphi(\mathcal{H})|$, donc $lB \in |\mathcal{L} \cap \varphi(\mathcal{H})| = |\mathcal{H}|$. Ainsi le morphisme g s'exteint par h^{lA} :

$$g = v \cdot h^{lA} \tag{6}$$

pour un v. Donc, $l^B \in \mu \mathcal{K} = \varepsilon \mathcal{L}$, et $khlA \in |\mathcal{K}|$. Donc

$$v \cdot b_2 \cdot b_1 = l^B \cdot w \tag{7}$$

pour un w. Des formules (7), (2), (4), (6), (5) nous avons

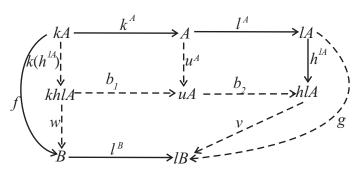
$$l^B \cdot w \cdot k(h^{lA}) = v \cdot b_2 \cdot b_1 \cdot k(h^{lA}) = v \cdot b_2 \cdot u^A \cdot k^A = v \cdot h^{lA} \cdot l^A \cdot k^A = g \cdot l^A \cdot k^A = l^B \cdot f,$$

i.e

$$l^B \cdot w \cdot k(h^{lA}) = l^B \cdot f,\tag{8}$$

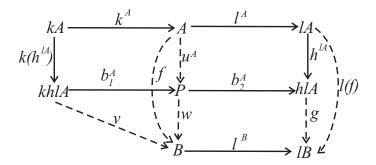
qui nous mène à l'égalité

$$w \cdot k(h^{lA}) = f. (9)$$



Vérifions que $k(h^{lA})$ est un epi. De l'égalité (1) $k^{hlA} \cdot k(h^{lA}) \in \mathcal{E}pi$, et $k^{hlA} \in \mathcal{M}_u$. Puisque la classe $\mathcal{E}pi$, est \mathcal{M}_u -héréditaire ([4], LEMME 2.6), il résulte que $k(h^{lA}) \in \mathcal{E}pi$.

2. De l'égalité (3) il résulte que $b_2^A \in \varepsilon \mathcal{L}$. Donc $P \in |\varphi(\mathcal{H})|$. De l'égalité (2) déduisons que $u^A \in \mathcal{E}pi$. Soit maintenant $B \in |\varphi(\mathcal{H})|$, et $f : A \to B$.



Alors

$$l^B \cdot f = l(f) \cdot l^A. \tag{10}$$

Puisque $B \in |\varphi(\mathcal{H})|$, il résulte que $lB \in |\varphi(\mathcal{H})|$. Donc

$$l(f) = g \cdot h^{lA} \tag{11}$$

pour un g. Plus loin, $l^B \in \varepsilon \mathcal{L} = \mu \mathcal{K}$, et $khlA \in |\mathcal{K}|$. Ainsi

$$g \cdot b_2^A \cdot b_1^A = l^B \cdot v \tag{12}$$

pour un v. On vérifie facilement l'égalité

$$l^B \cdot v \cdot k(h^{lA}) = l^B \cdot f \cdot k^A, \tag{13}$$

i.e.

$$v \cdot k(h^{lA}) = f \cdot k^{A}. \tag{14}$$

En tenant compte que (2) est un carré cocartésien, concluons que

$$v = w \cdot b_1^A, \tag{15}$$

$$f = w \cdot u^A \tag{16}$$

pour un w. L'égalité (16) démontre l'affirmation. \square

4.4°. Le cas $\mathcal{T} \in \mathbb{K}(\mathcal{K})$. Soit $A \in |\mathcal{C}_2\mathcal{V}|$, $k^A : kA \to A$ et $t^{kA} : tkA \to kA$ \mathcal{K} et \mathcal{T} -corépliques, et $l^A : A \to lA$, et $l^{tkA} : tkA \to ltkA$ \mathcal{L} -répliques des objets correspondants. Alors

$$l^A \cdot k^A \cdot t^{kA} = l(t^{kA}) \cdot l^{tkA}. \tag{1}$$

Plus loin, soit

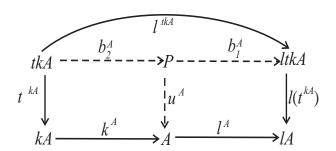
$$l^A \cdot u^A = l(t^{kA}) \cdot b_1^A \tag{2}$$

le carré cocartésien construit sur les morphismes l^A et $l(t^{kA})$. Alors

$$l^{tkA} = b_1^A \cdot b_2^A, \tag{3}$$

$$k^A \cdot t^{kA} = u^A \cdot b_2^A \tag{4}$$

pour un b_2^A .



THÉORÈME. Sont vraies les affirmations suivantes:

- 1. $l(t^{kA}): ltkA \to lA \ est \ \overline{\psi}\overline{\varphi_1}(\mathcal{T})$ -coréplique de lA.
- 2. $u^A: P \to A \text{ est } \overline{\varphi_1}(\mathcal{T})\text{-coréplique de } A.$
- **4.5.** COROLLAIRE. 1. Soit $(\mathcal{K}, \mathcal{L}) \in \mathbb{P}_c$, et $\mathcal{R} \in \mathbb{R}^s_f(\varepsilon \mathcal{L})$, mais $\mathcal{T} = \mathcal{K} \cap \mathcal{R}$ et $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$. Alors:
 - 1. $r \cdot k = t \cdot k$.
 - $2. l \cdot r = h.$
 - $3. \ h \cdot l = h.$

5. Foncteurs commutatifs

- **5.1.** On examinera deux foncteurs t_1 , t_2 tous les deux coreflecteurs, tous les deux reflecteurs, ou l'un coreflecteur et l'autre reflecteur. Dans la catégorie C_2V $t_1t_2A \sim t_2t_1A$ pour tout $A \in |C_2V|$, alors on peut facilement vérifier que les foncteurs $t_1 \cdot t_2$ et $t_2 \cdot t_1$ sont isomorphes.
- **5.2.** THÉORÈME. Soit $(\mathcal{K}, \mathcal{L}) \in \mathbb{P}_c$, et $\mathcal{R} \in \mathbb{R}^s_f(\varepsilon \mathcal{L})$. Alors les foncteurs coreflecteur $k : \mathcal{C}_2 \mathcal{V} \to \mathcal{K}$ et celui reflecteur $r : \mathcal{C}_2 \mathcal{V} \to \mathcal{R}$ commutent: $k \cdot r = r \cdot k$.

Démonstration. Revenons au THÉORÈME 4.2. On a rA = P et kP = tkA, et rkA = tkA. Ainsi pour tout $A \in |\mathcal{C}_2\mathcal{V}|$ rkA = krA = tkA. \square

5.3. THÉORÈME. Soit $\mathcal{L} \in \mathbb{R}$, $\mathcal{R} \in \mathbb{R}_f(\varepsilon \mathcal{L})$ et $r(\mathcal{L}) \subset \mathcal{L}$. Alors les foncteurs l et r commutent: $l \cdot r = r \cdot l$.

Démonstration. Soit $A \in |\mathcal{C}_2\mathcal{V}|$, $l^A : A \to lA$ et $r^A : A \to rA$ \mathcal{L} - et \mathcal{R} -réplique de A. Examinons le carré cocartésien

$$b \cdot r^A = u \cdot l^A \tag{1}$$

construit sur les morphismes r^A et l^A . Alors $b \in \varepsilon \mathcal{L}$. Donc $T \in |\mathcal{R}|$. Ainsi $u \in \varepsilon \mathcal{R}$, mais $T \in |\mathcal{R}|$, il résulte que u est \mathcal{R} -réplique de lA. Ainsi $T \in |\mathcal{L} \cap \mathcal{R}|$ et $b \in \varepsilon \mathcal{L}$. Donc b est \mathcal{L} -réplique de rA et lrA = rlA. \square

- **5.4.** THÉORÈME. Soit \mathcal{L} souscatégorie fermée par rapport aux extensions: $(\mathcal{E}pi \cap \mathcal{M}_p)$ -facteurobjets et $\mathcal{R} \in \mathbb{R}^s_f(\varepsilon \mathcal{L})$. Examinons les conditions suivantes:
- 1. $\mathcal{R} = \mathcal{L} *_{sr} (\mathcal{R} \vee \Gamma_0)$, où $\mathcal{R} \vee \Gamma_0$ est le suprême dans la latice \mathbb{R} des éléments \mathcal{R} et Γ_0 -souscatégorie des espaces complets.
 - 2. $\mathcal{L} \cap \Gamma_0 \subset \mathcal{R}$.
 - 3. $r(\mathcal{L}) \subset \mathcal{L}$.

Alors $1 \Leftrightarrow 2 \Rightarrow 3$.

Démonstration. $1 \Rightarrow 2$. En vertu du THÉORÈME 2.8. $\mathcal{L} \cap \mathcal{R} = \mathcal{L} \cap (\mathcal{R} \vee \Gamma_0)$. Ainsi $\mathcal{L} \cap \Gamma_0 \subset \mathcal{L} \cap (\mathcal{R} \vee \Gamma_0) = \mathcal{L} \cap \mathcal{R} \subset \mathcal{R}$.

 $2 \Rightarrow 1$. $\mathcal{R} \subset \mathcal{L} *_{sr} (\mathcal{R} \vee \Gamma_0)$. Evidenment.

 $\mathcal{L} *_{sr} (\mathcal{R} \vee \Gamma_0) \subset \mathcal{R}$. Soit $A \in |\mathcal{L} *_{sr} (\mathcal{R} \vee \Gamma_0)|$. Alors $lA \in |\mathcal{R} \vee \Gamma_0|$. Examinons $r^{lA}: lA \to rlA$ et $g_0^{lA}: lA \to g_0 lA$ \mathcal{R} - et Γ_0 -réplique de lA, mais $\pi^{rlA}: rlA \to \pi A$ et $\pi^{g_0 lA}: g_0 lA \to \pi A$ Γ_0 -réplique des objets correspondants. Alors

$$\pi^{g_0lA} \cdot g_0^{lA} = \pi^{rlA} \cdot r^{lA}. \tag{1}$$

Soit

$$\pi^{g_0lA} \cdot v = \pi^{rlA} \cdot w. \tag{2}$$

le carré cartésien construit sur les morphismes π^{g_0lA} et π^{rlA} . Alors

$$g_0^{lA} = v \cdot g_1^{lA},\tag{3}$$

$$r^{lA} = w \cdot g_1^{lA},\tag{4}$$

pour un $g_1^{lA}: lA \to g_1 lA$. On vérifie facilement que $g_1 lA$ est $(\mathcal{R} \vee \Gamma_0)$ -réplique des lA, mais v est Γ_0 -réplique de g_1^{lA} . Puisque $lA \in |\mathcal{R} \vee \Gamma_0|$, il résulte que $g_1^{lA} \in \mathcal{I}so$. Plus loin, $g_0 lA \in |\mathcal{L} \cap \Gamma_0| \subset |\mathcal{R}|$. Donc $w \in \mathcal{I}so$. Ainsi $g_1 lA \in |\mathcal{R}|$, c'est-à-dire $lA \in |\mathcal{R}|$. En vertu de l'hipothèse que $\mathcal{R} \in \mathbb{R}_f^s(\varepsilon \mathcal{L})$, on déduit que $A \in |\mathcal{R}|$.

$$A \xrightarrow{l^{A}} lA \xrightarrow{r} rlA$$

$$g_{0}^{lA} \downarrow v \xrightarrow{\pi^{g_{0}lA}} \pi^{rlA}$$

$$g_{0}lA \xrightarrow{r} \pi^{A}$$

 $2 \Rightarrow 3$. Soit $A \in |\mathcal{L}|$, mais $r^A : A \to rA$ et $g_0^A : A \to g_0A$ \mathcal{R} - et Γ_0 -réplique de A. Alors $g_0A \in |\mathcal{L} \cap \Gamma_0| \subset |\mathcal{R}|$. Donc

$$g_0^A = f \cdot r^A \tag{5}$$

pour un f. De l'égalité écrite il résulte que $r^A \in \mathcal{E}pi \cap \mathcal{M}_p$. Donc $rA \in |\mathcal{L}|$ aussi. \square

- **5.5.** Une souscatégorie \mathcal{L} est c-reflective, si et seulement si elle est $\mathcal{S} \subset \mathcal{L}$ et $l(\mathcal{M}_p) \subset \mathcal{M}_p$. Ainsi toute catégorie c-reflective est fermée par rapport aux extensions: $(\mathcal{E}pi \cap \mathcal{M}_p)$ -facteurobjets. La souscatégorie \mathcal{N} des espaces nucléaires n'est pas c-reflective, mais elle est fermée par rapport aux extensions.
- Si \mathcal{L} est une souscatégorie \mathcal{E}_u -reflective $(\mathcal{S} \subset \mathcal{R})$, alors $\Pi \in \mathbb{R}^s_f(\varepsilon \mathcal{L})$. Ainsi \mathcal{S} est l'unique souscatégorie c-reflective pour laquelle $\Pi = \mathcal{S} \cap \Gamma_0$.

COROLLAIRE. 1. Soit $(\mathcal{K}, \mathcal{L}) \in \mathbb{P}_c$, et $\mathcal{R} \in \mathbb{R}_f^s(\varepsilon \mathcal{L})$. Sont vraies les affirmations suivantes:

- a) Les foncteurs $k: \mathcal{C}_2\mathcal{V} \to \mathcal{K}$ et $r: \mathcal{C}_2\mathcal{V} \to \mathcal{R}$ commutent: $k \cdot r = r \cdot k$.
- b) Si $\mathcal{L} \cap \Gamma_0 \subset \mathcal{R}$, alors les foncteurs $l : \mathcal{C}_2 \mathcal{V} \to \mathcal{L}$ et r commutent: $l \cdot r = r \cdot l$.
- 2. Soit $\widetilde{\mathcal{M}}$ la souscatégorie des espaces à topologie Mackey et \mathcal{S} des espaces à topologie faible, mais $\mathcal{R} \in \mathbb{R}_f^s(\varepsilon \mathcal{S})$. Alors
 - a) Les foncteurs $m: \mathcal{C}_2\mathcal{V} \to \widetilde{\mathcal{M}}$ et $r: \mathcal{C}_2\mathcal{V} \to \mathcal{R}$ commutent: $m \cdot r = r \cdot m$.
 - b) Les foncteurs $s: \mathcal{C}_2 \mathcal{V} \to \mathcal{S}$ et r commutent: $s \cdot r = r \cdot s$.

6. Exemples

- **6.1.** Examinons la souscatégorie Π des espaces complets à topologie faible, et $(\mathcal{K}, \mathcal{L}) \in \mathbb{P}_c$. PROPOSITION. 1. $\Pi \in \mathbb{R}(\mathcal{L})$.
 - 2. $\Pi \in \mathbb{R}^s_f(\varepsilon \mathcal{L})$.
 - 3. $\Pi \in \mathbb{R}(\mathcal{K})$.
 - 4. Les applications $\varphi,\,\psi,\,\varphi_1$ et ψ_1 transforment l'élément Π en lui-même.

 $D\'{e}monstration$. 1. La souscat\'egorie Π est fermée par rapport aux produits et aux sousespaces fermés (voir [14]).

- 2. Puisque $\mathcal{S} \subset \mathcal{L}$, il résulte que $\varepsilon \mathcal{L} \subset \varepsilon \mathcal{S} = \mathcal{E}_u \cap \mathcal{M}_u$. En vertu de la description de la classe \mathcal{M}_u (voir [4]), $\Pi \in \mathbb{R}_f^s(\varepsilon \mathcal{L})$.
 - 3. On a $\Pi \subset \widetilde{\mathcal{M}} \subset \mathcal{K}$.
 - 4. Evidemment.
- **6.2.** La souscatégorie $s\mathcal{R}$ des espaces semi-reflexifs est une souscatégorie S-semi-reflexive, où S est une souscatégorie des espaces à topologie faible (voir [21], cap. IV, Proposition 5.5).

PROPOSITION. Sont vraies les affirmations suivantes:

- 1. $s\mathcal{R} \in \mathbb{R}_f^s(\varepsilon \mathcal{S})$.
- 2. $s\mathcal{R} = \mathcal{S} *_{sr} q\Gamma_0$, où $q\Gamma_0$ est une souscatégorie des espaces quasicomplets.
- 3. $\psi(s\mathcal{R}) = \widetilde{\mathcal{M}} \cap s\mathcal{R}$ est une souscatégorie des espaces quasicomplets à topologie Mackey.
 - 4. $\psi(s\mathcal{R}) = \mathcal{S} \cap \mathcal{R}$ est une souscatégorie des espaces quasicomplets à topologie faible.
 - 5. Les foncteurs $m: \mathcal{C}_2\mathcal{V} \to \widetilde{\mathcal{M}}$ et $s_r: \mathcal{C}_2\mathcal{V} \to s\mathcal{R}$ commutent: $m \cdot s_r = s_r \cdot m$.
 - 6. Les foncteurs $s: \mathcal{C}_2\mathcal{V} \to \mathcal{S}$ et s_r commutent: $s \cdot s_r = s_r \cdot s$.

- **6.3.** Dans les ouvrages [24] et [19], on a examiné les espaces localement complets, dont la souscatégorie sera notée par $l\Gamma_0$. Avec les notations ci-dessus, on a PROPOSITION. 1. $l\Gamma_0 \in \mathbb{R}_f^s(\varepsilon S)$.
 - 2. $l\Gamma_0 = \mathcal{S} *_{sr} l\Gamma_0 = \mathcal{S} *_{sr} (\mathcal{S} \cap l\Gamma_0)$.
- 3. $\psi_1(l\Gamma_0) = \mathcal{M} \cap l\Gamma_0$ est la souscatégorie des espaces localement complets à topologie Mackey.
- 4. $\psi(l\Gamma_0) = \mathcal{S} \cap l\Gamma_0$ est la souscatégorie des espaces localement complets à topologie faible.
 - 5. Les foncteurs m et $g_l: \mathcal{C}_2\mathcal{V} \to l\Gamma_0$ commutent: $m \cdot g_l = g_l \cdot m$.
 - 6. Les foncteurs s et g_l commutent: $s \cdot g_l = g_l \cdot s$.
- **6.4.** La souscatégorie Sh des espaces Schwartz (voir [14]) est c-reflective (voir [2]). Notons par Ch la souscatégorie conjuguée de la souscatégorie Sh et les foncteurs correspondents $c_h: C_2V \to Ch$ et $s_h: C_2V \to Sh$. Concernant la souscatégorie Ch(voir [13]). Dans le même ouvrage [2] sont définis les espaces inductivement semi-reflexifs dont la souscatégorie sera notée par $i\mathcal{R}$ avec le foncteurs reflecteur $i_r: C_2V \to i\mathcal{R}$. A partir des résultats exposés dans cet-ouvrage-là, on peut écrire

$$i\mathcal{R} = \mathcal{S}h *_{sr} \Gamma_0.$$

PROPOSITION. 1. Les foncteurs c_h et i_r commutent: $c_h \cdot i_r = i_r \cdot c_h$.

2. Les foncteurs s_h et i_r commutent: $s_h \cdot i_r = i_r \cdot s_h$.

Références

- 1. Adåmek J., Herrlich H., Strecker G. S. Abstract and concrete categories. Boston, 2005.
- 2. Berezansky J.A. Les espaces inductivment reflexifs localement convexes. Doklady Ak. Nauk. SSSR, 182-1, 1966. p. 20-22 (en russe).
- 3. Botnaru D. Couples des souscatégories conjugées. Uspehi Math. Nauk., XXXI-3(189), 1976. p. 203-204 (en russe).
- 4. Botnaru D. Structures bicatégorielles complementaires. ROMAI J. 5-2(2009), p. 5-27.
- 5. Botnaru D., Cerbu O. Semireflexif product of two subcategories. Proc. Sixth Congress of Romanian Math. Bucharest, 1(2007). p. 5-19.
- 6. Botnaru D., Gysin V.B. Monomorphismes stables de la catégorie des espaces localement convexes. Bulletin. Acad. Sc. R.S.S.Moldova., 1(1973). p. 3-7 (en russe).
- 7. Brudovsky B.S. Sur k- et c-reflexivité des espaces localement convexes. Lietuvos Math. Bulletin, VII-1(1967). p. 17-21 (en russe).
- 8. Brudovsky B.S. Applications du type s des espaces localement convexes. Dokl. Ak. Nauk SSSR, 180-1(1968). p. 15-17 (en russe).
- 9. Bouneaev M.M. Loi exponentielle pour quelques souscatégories de la catégorie des espaces localement convexes. Func. an. Mejvouz. sb., Oulianovsk, 8(1977). p. 40-44 (en russe).
- 10. Bouneaev M.M. Sur le théorème des graphes fermés, Func. an. Mejvouz. sb., Oulianovsk, 19(1982). p. 26-34 (en russe).

- 11. Bouneaev M.M. C-ferméture dans les espaces localement convexes et le théorème du graphe fermé. Izvestia VUZ, Seria Matematica, 10(1990). p. 58-61 (en russe).
- 12. Dazord J., Jourlin U. Sur quelques classes des espaces localement convexes. Publ. Dep. Math., Lyon, 8-2(1971). p. 39-69.
- 13. Gheyler V.A., Ghisin V.B. Dualité généralisée pour les espaces localement convexes. Func. an., Mejvouz. sb., Oulianovsk, 11(1978). p. 41-50 (en russe).
- Grothendieck A. Topological vector spaces. Gordon and Breach, New York London Paris, 1973.
- Martineau A. Sur une propriété universelle de l'espace de distributions de M. Schwartz.
 C. R. Acad. Sci. Paris, 259 (1964). p. 3162-3164.
- 16. Pietsch A. Nukleare local konvex räume. Academie-Verlad, Berlin, 1965.
- 17. Radenović S. Some properties of *c*-reflexive locally convex spaces. Univ. Belgrad Publ. Electrotehn. Fak. Ser. Mat., 18 (2007). p. 52-58.
- 18. Radenović S., Kadelburg Z. Three-spaces-problem for inductively (semi)-reflexive locally convex spaces. Pub. de l'Institut Math., 77(91), 2005. p. 1-6.
- 19. Raïkov D.A. Loi exponentielle pour les espaces des applications linéaires continues Mat.sb.,7(109), 2(1965). p. 279-302 (en russe).
- 20. Robertson A. P., Robertson W. J. Topological vector spaces. Cambridge University Press, 1964.
- 21. Schaefer H.H. Topological vector spaces. Macmillan Company, New York, 1966.
- 22. Sekevanov V.S. Espaces localement convexes \mathcal{B} -inductifs reflexifs. Func. an. Mejvouz. sb., Oulianovsk, 14(1980). p. 128-131 (en russe).
- 23. Sekevanov V.S. Sur les deux généralités de le reflexivité des espaces localement convexes. Math. Zametki, 35-3(1984). p. 415-424 (en russe).
- 24. Slawikowski W. On continuity of invers operators. Bull. Amer. Math. Soc., 67-5(1961). p. 467-470.