
ABOUT APPLICATIONS OF TOPOLOGICAL STRUCTURES IN

COMPUTER SCIENCES AND COMMUNICATIONS

Mitrofan CHOBAN, academician, dr. hab., full prof.

Ivan BUDANAEV, PhD student

Tiraspol State University

Institute of Mathematics and Computer Sciences of ASM

Abstract. One of the central problems in computer science and, in particular, in programming is

the correctness problem which contains:

- the question of whether a program computes a given function;

- the problem to decide whether an element of the space is equal to a fixed element;

- whether two elements of a given space are equal and whether one approximates the other

in the specialization order.

In this article is examined the role of quasi-metrics and of Alexandroff spaces in the solving

of some problems in the design of systems of the computer science an communications.
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APLICAŢIILE STRUCTURILOR TOPOLOGICE

ÎN INFORMATICĂ ŞI COMUNICAŢII

Rezumat. Una din problemele centrale ale informaticii şi, ı̂n special, ale programării este problema

corectitudinii ce conţine:

- problema dacă un program calculează o funcţie dată;

- problema pentru a decide dacă un punct al spaţiului coincide cu un alt punct fixat;

- dacă doua puncte dintr-un spaţiu dat coincid şi dacă unul se apropie (formând o secvenţă)

de celalalt ı̂n careva ordine specificată.

În acest articol se examinează rolul cvasi-metricilor şi al spaţiilor Alexandroff la rezolvarea

unor probleme legate de proiectarea sistemelor din domeniile informaticii şi comunicaţiei.

Cuvinte chee: spaţiu Alexandroff, distanţă, spaţiu digital, quasi-metrică.

1. Introduction

The dynamic transition of our technological civilization to digital processing and data

transmission systems created many problems in the design of modern systems in computer

science and telecommunications. Providing robustness and noise immunity is one of the

most important and difficult tasks in data transmission, recording, playback, and storage.

The distance between information plays a paramount role in mathematics, computer science,

and other interdisciplinary research areas. The first among many scientists in the field, who

presented the theoretical solutions to error detection and error correction problems, were C.

Shannon, R. Hamming, and V. Levenshtein (see [44, 45, 23, 29]).

We begin this section with introductions into the field, focusing mainly on abstract

monoid of strings L(A).

A monoid is a semigroup with an identity element.

Fix a non-empty set A. The set A is called an alphabet. Let L0(A) be the set of

all finite strings a1a2 . . . an with a1, a2, . . . , an ∈ A. Let ε be the empty string and L(A) =

L0(A) ∪ {ε}. Consider the strings a1a2 . . . an such that ai = ε for some i ≤ n. We consider

that n = 1 if each ai = ε. Denote by L∗(A) the set of such strings.
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If ai 6= ε, for any i ≤ n or n = 1 and a1 = ε, the string a1a2 . . . an is called a canonical

string or a word. Hence L(A) ⊆ L∗(A) and L(A) is the set of all canonical strings. We

consider that

The set
Sup(a1a2 . . . an) = {a1, a2, . . . , an} ∩ A

is the support of the string a1a2 . . . an,
l∗(a1 . . . an) = max{i : ai 6= ε}

is the duration of the string a1a2 . . . an and
l(a1 . . . an) = |Sup(a1 . . . an)|

is the length of the string a1a2 . . . an.

For any string a1a2 . . . an we have l(a1 . . . an) ≤ l∗(a1 . . . an). By definition, l(ε) =

l∗(ε) = 0.

For two strings a1 . . . an and b1 . . . bm, their product(concatenation) is a1 . . . anb1 . . . bm.

We put ε · a = a · ε = a for any a ∈ L∗(A). If a = a1a2...an ∈ L∗(A) and n ≥ 2, then

Ψ(b) = a1 ·a2 · ... ·an is the canonical word equivalent with the string a. If Ψ(a) = Ψ(b),then

the strings a, b are called equivalent. In this case any string is equivalent to one unique

canonical string.

The sets L(A) and L∗(A) become the monoids with identity ε. The mapping

Ψ : L∗(A) −→ L(A) is a homomorphism. Let G be a finite set of generators of a monoid M .

In this case unity is an element of G. If M is a group,then for convenience we suppose that

the inverse of a generator is a generator. Any word a = a1a2...an ∈ L∗(G) determine the

element g(a) = a1 · a2 · ... · an ∈M and g : L∗(G) −→M is a homomorphism of L∗(G) onto

M . A monoid M is said to have a solvable word problem with respect to the set of generators

G if one can effectively determine whether or not two words a, b ∈ L∗(G) represent the same

element in M . A monoid (group) M is said to be computable if it has a recursive realization

{M, ξ} - i.e. it is isomorphic to the monoid formed by a recursive subset S of the positive

integers and a recursive function ξ(i, j) on S that satisfies the monoid (group) multiplication

axioms. The monoid L∗(A) is computable and has a solvable word problem.

M. O. Rabin [36] has proved that a finitely generated group (monoid) has a solvable

word problem (with respect to a given system of generators) if and only if it is computable.

In 1947 Post [34, 35] showed the word problem for semigroups to be undecidable. This result

was strengthened in 1950 by Turing [51], who showed the word problem to be undecidable

for cancellation semigroups,i.e. semigroups satisfying the cancellation property: if xy = xz

or yx = zx, then y = z.

In 1966 Gurevich [22] showed the word problem to be undecidable for finite semi-

groups. In [50] by him were proved:

(G1) The undecidability of the word problem for the finite monoid A with the gen-

erators {a, h, , d, } and identical correlations: ac = ca, ad = da, bc = cb, bd = db, eca = ce,

edb = de, cca = ccae;

(G2) The undecidability of the word problem for the finite monoid B with the gen-

erators {a, h, , d, } and identical correlations: ac = ca, ad = da, bc = cb, bd = db, eca = ce,

edb = de, cdca = cdcae, caaa = aaa, daaa = aaa. In the monoid is undecidable the word

problem for the strings equivalent with the word .
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Throughout the history of the subject, computations in groups have been carried out

using various normal forms. These usually implicitly solve the word problem for the groups

in question. In 1911 Max Dehn [11] proposed that the word problem was an important area

of study in its own right together with the conjugacy problem and the group isomorphism

problem. In 1912 he gave an algorithm that solves both the word and conjugacy problem

for the fundamental groups of closed orientable two-dimensional manifolds of genus greater

than or equal to 2 [12]. Subsequent authors have greatly extended Dehn’s algorithm and

applied it to a wide range of group theoretic decision problems [2, 7, 30, 49].

It was shown by Pyotr Novikov [32] in 1955 that there exists a finitely presented

group G such that the word problem for G is undecidable. A different proof was obtained

by William Boone in 1958 (see [2, 6, 7, 32]).

One of the central problems in computer science and, in particular, in programming

is the correctness problem which contains:

- the question of whether a program computes a given function;

- the problem to decide whether an element of the space is equal to a fixed element;

- whether two elements of a given space are equal and whether one approximates the

other in the specialization order.As a rule, a database system maintain items in the form of

sequences of special type.

The similarity search process is obtained by defining a similarity function. In many

applications a distance function can be easily and more intuitively defined than a similarity

function. Moreover,it easy to obtain a similarity function by given a distance function and

vice versa. For that we apply the principle: the smaller the distance the higher the similarity.

2. Alexandroff spaces

For a topological space X and the points a, b ∈ X we put O(a) = ∩{U ⊂ X : x ∈ U,U
is open in X} and a � b if and only if a ∈ clX{b}. Then � is a preordering on X. A binary

relation � on a space X is a a preorder, or quasiorder, if it is reflexive and transitive, i.e.,

for all a, b and c in X, we have that:

- a � a (reflexivity);

- if a � b and b � c, then a � c(transitivity).

If X is a T0-space, then � is an ordering on X: if a �� b and b � a, then a = b

(anti-symmetry).

A topological space X is called a pseudo-discrete space if the intersection of any family

of open sets is open. By definition, the space X is a pseudo-discrete space if and only if the

sets O(x), x ∈ X, are open in X. A topological space X is called an Alexandroff space if

it is a pseudo-discrete T0-space [3, 4]. A connected Alexandroff space is called a topological

digital space.

Quasi-metric [31] on a set X we call a function d : X ×X −→ R with the properties:

(M1): d(x, x) = 0 and d(x, y) ≥ 0 for all x, y ∈ X;

(M2): d(x, y) + d(y, x) = 0 if and only if x = y;

(M3): d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

If d(x, y) = d(y, x) for all x, y ∈ X, then the quasi-metric d is called a metric.
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A function d with the properties (M1) and (M2) is called a distance on a set X. A

function d with the property (M1) is called a pseudo-distance on a set X. A function d with

the properties (M1) and (M3) is called a pseudo-quasi-metric on a set X.

Let d be a pseudo-distance on X and B(x, d, r) = {y ∈ X : d(x, y) < r} be the ball

with the center x and radius r > 0. The set U ⊂ X is called d-open if for any x ∈ U there

exists r > 0 such that B(x, d, r) ⊂ U . The family T (d) of all d-open subsets is the topology

on X generated by d. A pseudo-distance space is a sequential space, i.e. a set B ⊂ X is

closed if and only if together with any sequence it contains all its limits [15].

If d is a quasi-metric,then T (d) is a T0-topology. For any distance that statement is

not true.

Example 2.1. Let n ≥ 3 and X = {a1, a2, ..., an}. We put d(x, x) = 0 for any x ∈ X,

d(ai, aj) = 1 for j < i, d(ai, ai+1) = 0 for any i < n and d(ai, aj = 1 for i < i + 2 ≤ j ≤ n.

In the topology T (d) we have O(ai) = {aj : i ≤ j ≤ n} for each i ≤ n. The family

{O(x) : x ∈ X} is a base of the T0-topology T (d).

Example 2.2. Let X = {a, b, c}. We put d(x, x) = 0 for any x ∈ X, d(a, b) = d(b, c) =

d(c, a) = 0 and d(a, c = d(c, b) = d(b, a) = 1. In the topology T (d) we have O(a) = X for

each x ∈ X and T (d) = {∅, X} is the anti-discrete topology.

The pseudo-distance d is discrete if there exist a number c = c(d) > 0 such that for

any two distinct points x, y ∈ X we have or d(x, y) = 0 or d(x, y) ≥ c [31, 8, 9]. If d is a

discrete quasi-metric on X, then O(a) = B(a, d, c(d)) for any point a ∈ X and the space

(X,T (d)) is an Alexandroff space. The pseudo-distance is an integer pseudo-distance, if

d(x, y) ∈ {0, 1, 2, ...} for any x, y ∈ X. The integer pseudo-distance is discrete with c(d) = 1.

If � is a preordering on a set X, then we define two pseudo-quasi-metrics dl and dr

on X, where:

- dl(x, y) = dr(y, x) for any x, y ∈ X with y � x and x � y;

- for x � y and x 6� y we put dl(x, y) = 1, dl(y, x) = 0, dr(x, y) = 0, dr(y, x) = 1;

- if x 6� y and y 6� X, then dl(x, y) = dr(x, y) = 1.

In this case ds(x, y) = dr(x, y) + dl(x, y) is a pseudo-metric. In general, a sum of

quasi-metrics is also a quasi-metric, and may not be a metric. If � is an ordering, then dr, dl

arequasi-metrics and ds a metric.

For any points a, b ∈ X we put (−, a] = {y ∈ X : y � a}, [a,+) = {y ∈ X : a � y}
and [a, b] = {y ∈ X : y � b} ∩ {y ∈ X : a � y}. The set L = [a,+) is called an ω-set and

oL = a.

For any point a ∈ X we have B(x, dl, r) = (−, a] and B(x, dl, r) = [a,+) for any

r ∈ (0, 1]. We say that T (�) = T (dr)) is the topology induced by the pre-ordering �.

Fix a space X. As in [17, 19, 18] we say that V is an f -set if V is open and there

exists a point oV ∈ V such that V = [oV ,+). Any f -set is an ω-set.

If X is an Alexandroff space, then any set V = O(x) is an f -set with oV = x.

From the above reasoning follows:

Theorem 2.3. For a topological space X the following assertions are equivalent:

1. X is a pseudo-discrete space.
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2. Any ω-set is an f -set of X.

3. The topology of X is induced by some preordering.

4. The topology of X is generated by some discrete pseudo-quasi-metric.

5. The topology of X is generated by some integer pseudo-quasi-metric.

Corollary 2.4. For a topological space X the following assertions are equivalent:

1. X is an Alexandroff space.

2. X is a T0-space and any ω-set is an f -set of X.

3. The topology of X is induced by some ordering.

4. The topology of X is generated by some discrete quasi-metric.

5. The topology of X is generated by some integer quasi-metric.

3. Spaces and lattices

An ordered set X is called:

- an upper semi-lattices if for any two elements x, y ∈ X is determined the greatest

lower bound x ∨ y;

- a lower semi-lattices if for any two elements x, y ∈ X is determined the least upper

bound x ∧ y;

- a lattices if for any two elements x, y ∈ X are determined the greatest lower x ∨ y
and the least upper x ∧ y bounds.

Proposition 3.1. For an ordered set X the following assertions are equivalent:

1. X is an upper semi-lattice.

2. Intersection of two ω-sets is an ω-set.

Proof. Let U and V be two ω-sets of X and W = U ∩ V . If W is an ω-set, then oW =

oU ∨ oV . Inversely, if a = oU ∨ oV , then W is an ω-set with oW = a. The proof is complete.

Proposition 3.2. For an ordered set (X,≤) the following assertions are equivalent:

1. (X,≤) is a linearly ordered set.

2. Union of two ω-sets is an ω-set.

Proof. Let U and V be two f -sets of X and W = U ∪ V . If ≤ is a linear ordering, then or

U ⊂ V , or V ⊂ U and W is an f -set. Assume that W is an f -set. We have two cases:

Case 1. oW ∈ {oU , oV }.
If oW = oU , then V ⊆ U and oU ≤ oV . In this case ≤ is a linear ordering.

Case 2. oW 6∈ {oU , oV }.
In this case oW ∈ W and oW 6∈ U ∪ V = W , a contradiction. This case is impossible.

The proof is complete.

Let X be a T0-space and ≤ be the ordering induced by the topology of X: x ≤ y if

and only if x ∈ cl{y}. A space X is called an f -space if the f -sets form an open base of X

and the intersection of two f -sets is empty or an f -set [17]. If X is an f -space, then X0 =

{x ∈ X : [x,+) is open} is the base of X. The base X0 is dense in X and the weight w(X)

= |X0|.
A discrete space is an f -space and the f -sets are singleton sets.

Assume that X0 ⊂ X. As in [18], the pair (X0,≤) is called a subsaile of the space

X if for any two points x, y ∈ X0 for which [x,+) ∩ [y,+) 6= ∅ there exists the upper bound
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x ∨ y ∈ X0. The base X0 of the f -space X is a subsaile of the space X [17, 18].

If [x,+)∩ [y,+) 6= ∅ ( (−, x]∩ (−, y] 6= ∅), then we say that the points x, y are upper

(lower) compatible. If y ∈ IntX [x,+), then we put x ≺ y. By definition, from x ≺ y it

follows that x ≤ y. If X is an Alexandroff space, then from x ≤ y it follows that x ≺ y.

An Alexandroff space X is an f -space if and only if for any two upper compatible

points x, y ∈ X there exists x ∨ y ∈ X. If an f -space X is an Alexandroff space, then the

base of X is X.

Now we mention the following simple relations (see [18]):

(a) if x ≤ y and y ≺ z, then x ≺ z;

(b) if x ≺ y and y ≤ z, then x ≺ z;

(c) if x ≤ u ≤ z, y ≤ u ≤ z, x ≺ z and y ≺ z, then u ≺ z;

(d) if x1 ≺ y1 ≤ y, x2 ≺ y2 ≤ y and x = x1 ∨ x2, then x ≺ y;

(e) if g : X −→ Y is a continuous mapping, x, y ∈ X and x ≤ y, then g(x) ≤ g(y).

For the concept of the f -space there exists algebraical (abstract) description [17, 18].

An f -space is a triplet (X,X0,≤), where:

- X0 is a non-empty subset of X;

- ≤ is a partial ordering on X;

- if the elements x, y ∈ X0 are upper compatible, then in X0 there exists x ∨ y;

- if x, y ∈ X, y 6≤ x, then there exists z ∈ X0 such that z ≤ y and z 6≤ x;

- for any x ∈ X there exists y ∈ X0 such that y ≤ x.

A space X is called an A-space if X is a T0-space and there exists a subsaile (X0,≤)

for which:

(A1) the family {IntX [x,+) : x ∈ X0} is an open base of the space X;

(A2) if x ∈ X0, y ∈ X and x ≺ y, then there exists z ∈ X0 such that x ≺ z ≺ y.

The subspace X0 is called a base of the A-space X.

The following two examples are simple, but reflect clearly the structure of A-spaces

and f -spaces.

Example 3.3. Let X be the closed interval [0, 1] with the topology T = {∅, X}∪{(t, 1] : t ∈
X}, where (t, 1] is semi-open interval {x : t < x ≤ 1}. The space X is a compact T0-space

and the topological ordering on X coincide with the usual linear order on the numerical

interval. We have [0,+) = IntX [0,+) = X and [x,+) = [x, 1), IntX [x,+) = (x, 1] for any

x > 0. The space X is an A-space. If X0 is dense in X and 0 ∈ X0, then X0 is a base of X.

Example 3.4. Let X be the space of reals Y be a subset of X and on X we consider the

topology T = {∅, X} ∪ {(t,+∞) : t ∈ X} ∪ {[t,+∞) : t ∈ Y }. The space X is a T0-space

and the topological ordering on X coincide with the usual linear order on the space of real

numbers. We have [y,+) = IntX [y,+) [x,+∞) for y ∈ Y and [x,+) = [x,+∞), IntX [x,+)

= (x,+∞) for any x ∈ X \ Y . The space X is an A-space. If X0 is a dense subset of the

reals and Y ⊂ X0, then X0 is a base. If Y is dense in the space of reals, then Y is a base

and X is an f -space. If Y is not dense in the space of reals, then X is not an f -space. If

Y = X, then X is the unique base of X and X is an Alexandroff space too. For Y 6= X the

space X is not an Alexandroff space.
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Proposition 3.5. Let X0 be the base of an A-space X. If a ∈ X is a minimal element of

the ordered set (X,≤), then a ∈ X0 and a ∈ IntX [a,+) ⊂ U provided U is open in X and

a ∈ U .

Proof. Since a is a minimal element, a ∈ [x,+) if and only if a = x. Let U be an open

subset of X and a ∈ U . then there exists x ∈ X0 such that a ∈ IntX [x,+) ⊂ U . Thus

a = x, a ∈ X0 and a ∈ IntX [a,+) ⊂ U . The proof is complete.

The following assertion for T1-spaces was proved in [18].

Proposition 3.6. For any T0-space X there exists an f -space Xf which contains X as a

dense subspace and weight w(Xf = w(X).

Proof. Let T be the topology of the space X. Fix an open base B of the space X. Suppose

that |B| = w(X). We assume that U ∩ V ∈ B for all U, V ∈ B with U ∩ V 6= ∅. If U ∈ B is

an open f -set, then is determined the point oU . We put Bf = {U ∈ B : U is an f -set} and

B+ = B \Bf . Let Xf
0 = {oU : U ∈ Bf}. Fix a set X+

0 = {oU : U ∈ B+} for which X+
0 ∩X

= ∅ and the correspondence oU → U is a one-to-one mapping of X+
0 onto B+. Now we put

Xf = X ∪ X+
0 , X0 = Xf

0 ∪ X
+
0 and U+ = U ∪ {oV : V ⊂ U, V ∈ B} for each U ∈ B. If

U, V B and the set W = U ∩ V is non-empty, then W ∈ B, W+ = U+ ∩ V + and U+ ∩ X
=U . Hence B+ = {U+ : U ∈ B} is an open base of some topology Tf on Xf and (X,T ) is

a dense subspace of the space (Xf , Tf ). The ordering x ≤ y on Xf is the following:

- if x, y ∈ X, then the relation between x, y in Xf is as in X;

- if x = oU ∈ Xf \X and y ∈ X, then y 6≤ x and x ≤ y if and only if y ∈ U ;

- if x = oU ∈ Xf \X and y = oV ∈ Xf \X, then x ≤ y if and only if V ⊂ U .

In this case for any U ∈ B the set U+ is an f -set and U+ = [oU ,+). By construction,

Xf is an T0-space. Hence Xf is an f -space and an A-space with the base X0. The proof is

complete.

A space X is called an A0-space if X is an A-space with the the lower bound, i.e.

there exists a point a ∈ X such that [a,+) = X. In this case X is an f -set and oX = a.

If X ∈ B, then oX is the the lower bound of the space Xf .

Hence, from the proof of Proposition 3.6 it follows:

Proposition 3.7. For any T0-space X there exists an A0-space Xf which contains X as a

dense subspace and weight w(Xf = w(X). Moreover, if X is an A-space, then X is a dense

subspace of an A0-space Xf for which |Xf \X| = 1.

Example 3.8. Let X be an infinite non-discrete T1-space. Then X is not an A-space. By

virtue of Proposition 3.6 X is a dense subspace of the f -space Xf . Therefore the subspace

of an f -space is nt obligatory A-space.

We mention that a closed subspace of an A-space is an A-space. Similarly, an open

subspace of an A-space is an A-space.

An ordered set X is directed is any two elements x, y ∈ X are upper compatible, i.

e. there exists z ∈ X such that xx ≤ z and y ≤ z.

In [18] was proposed the following useful construction. Let X be an A-space with the

base X0. Denote by Π(X0) the family of all subsets S of X0 with the following properties:

- S is a non-empty directed subset of X0;
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- for any x ∈ S there exists y ∈ S such that x ≺ y;

- if x ∈ S, z ∈ X0 and z ≤ x, then z ∈ S.

The elements of Π(X0 are called s-points. If x ∈ X, then η(x) = (−, x] ∩ X0 is an

s-point. The mapping η : X −→ Π(X0) is a mapping of X into Π(X0). For any x ∈ X0

we put θ(x) = {S ∈ Π(X0) : x ∈ S}. The family {θ(x) : x ∈ X0} is an open base of the

topology on Π(X0). In this case η : X −→ Π(X0) is a topological embedding.

A space X is called a complete A-space if X is an A-space and for any base X0 of X

the mapping η : X −→ Π(X0) is a homeomorphism of X onto Π(X0).

By virtue of Theorem 1 from [18], an A-space X is a complete A-space if and only

if for each A-space Y , any base Y0 of Y and every continuous mapping ϕ : Y0 −→ X there

exists a continuous mapping ψ : Y −→ X such that ϕ = ψ|Y0.
Any T0-space X can be embedded in a T0-space Xb with the upper bound and |Xb \

X| ≤ 1. If X 6= (−, x] for any point x ∈ X, then fix a point b 6∈ X and put Xb = X ∪ {b}
and with the topology Tb = {∅} ∪ {U ∪ {b} : U ∈ T}, where T is the topology of X. In this

case the set {b} is open and dense in Xb.

An injective space is a complete A0-space with the upper bound [38, 41, 18].

The A-spaces and injective spaces were introduced by Dana Scott [38, 41] and Yurii

L. Ershov [17, 19, 18] with the aims:

- of the construction of a model for Lambda calculus Alonzo Church [38, 41];

- of the analysis of the concept ”data types” [38, 41];

- of the investigation the semantics of programming languages [38, 41];

- of the study of computable functionals [17, 19, 18].

If X is a complete A-space, then any non-empty upper directed set have the greatest

lower bound (supremum) [18]. From this assertion immediately follows:

- in a complete A0-space, then any non-empty set have the least upper bound (infi-

mum) [18];

- an injective space is a complete lattice (any non-empty set have the least upper and

the the greatest lower bounds) [38, 41].

The following theorem affirmatively solve one Yu. L. Ershov’s question ([18], p. 396).

Proposition 3.9. Assume that Y is a retract of an A-space X. Then Y is an A-space.

Moreover, if X is an A0-space, then Y is an A0-space too.

Proof. Let X0 be the base of the space X.

For the concept of the A-space there exists algebraical (abstract) description. An

A-space is a quadruple (X,X0,≤,≺), where:

- ≤ is a partial ordering on X;

- X0 is a subsaile of X;

- ≺ is a binary relation on X;

- if x, y ∈ X and x ≺ y, then x ≤ y;

- if x, y, z ∈ X, x ≺ y and y ≤ z, then x ≺ z;

- if x, y, z ∈ X, x ≤ y and y ≺ z, then x ≺ z;

- if x, y ∈ X0, a ∈ X, x ≺ a and y ≺ a, then x ∨ y ∈ X0 and x ∨ y ≺ a;
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- if x, y ∈ X, y 6≤ x, then there exists z ∈ X0 such that z ≺ y and z 6≤ x;

- for any x ∈ X there exists y ∈ X0 such that y ≺ x.

If (X,X0,≤,≺) is an abstract A-space, then {U(x) = {y ∈ X : x ≺ y} : x ∈ X0} is

the open base of the topology on X and X0 is the base of X.

That permit to evolve the abstract concept of ”approximation” of the elements by

the elements with the ”visible” properties. Let (X,X0,≤,≺) be an abstract A-space. If

x, y ∈ X and x ≤ y, then x is called an ”approximation” of y [38, 41]. If x ∈ X0, y ∈ X and

x ≤ y, then xis an ”best approximation” of y. If x ≺ y and x ∈ X0, then x is a ”recognized

approximation” of y [18].

4. Spaces of strings

Fix a non-empty T0-space A with a fixed point ε such that ε ≤ x for each point

x ∈ X. On N consider the discrete topology. Denote by C(N, A) the family of all mappings

s : N −→ A in the topology of pointwise convergence. The elements of C(N, A) are called

sequences.

Consider that d is a quasi-metric on A. For any two sequences a, b : N −→ A we

determine the distance d∗(a, b) = Σ{d(a(i), b(i)) :∈ N}. For some a, b ∈ C(N, A) we have

d∗(a, b) =∞. The distance d∗ has the properties:

- d∗(a, b) ≥ 0;

- d∗(a, b) + d∗(b, a) = 0 if and only if a = b;

- d∗(a, c) ≤ d∗(a, b) + d∗(b, c).

If s ∈ C(N, A) is a sequence and {sn ∈ C(N, A) : n ∈ N} is a sequence of elements

from C(N, A), then:

- s = limn→∞sn if s(i) = limn→∞sn(i) for any i ∈ N (pointwise convergence);

- s = lu− limn→∞sn if limn→∞d
∗(s, sn) = 0 (uniform convergence)

- s = u− limn→∞sn if limn→∞(d∗(s, sn) + d∗(sn, s)) = 0 (uniform convergence).

If the topology of A is generated by the quasi-metric d, then from s = u− limn→∞sn

it follows that s = limn→∞sn.

Fix s ∈ C(N, A). The set

Sup(s) = s(N) \ {ε}
is the support of the sequence s,

l∗(s) = max{i : ai 6= ε}
is the duration of the sequence s and

l(s) = |{i : s(i) 6= ε}|
is the length of the sequence s.

If the set {i : s(i) 6= ε} is infinite, then we put l(s) = ∞. Hence l(s) ≤ l∗(s). If

s(N) = {ε}, then Sup(s) = ∅ and l∗(s) = l(s) = 0.

Denote by S∗(A) the subspace of all sequences s ∈ C(N, A) with finite length. The

elements of S∗(A) are called strings. If l(s) = l(s) = n <∞ then we say that s is a canonical

string. Let S(A) be the space of all canonical strings.

We have d∗(a, b) <∞ for all a, b ∈ S∗(A).

If a, b ∈ S∗(A) and l∗(s) = n, then c = a · b is the string with the following properties:

- c(i) = a(i) for i ≤ n;
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- c(n+ i) = b(i) for each i ∈ N.

Then S∗(A) is a semigroup and (S(A), ·) is a monoid with the identity ε, where

ε(i) = ε for each i ∈ N. We observe that S(A) is not a subsemigroup of the semigroup

S∗(A) and that S(A) \ {ε} is a subsemigroup of the semigroups S∗(A) and S(A).

If s ∈ S∗(A) and l∗(s) = n, then we put Λ(s) = s(1)s(2)...s(n) ∈ L∗(A). Then

Λ : S∗(A) −→ L∗(A) is an isomorphism of S∗(A) onto L∗(A) and Λ(S(A)) = L(A).

If d is an integer quasi-metric and s ∈ S∗(A), then:

- from s = lu− limn→∞sn it follows that s = limn→∞sn;

- from s = u− limn→∞sn it follows that s = lu− limn→∞sn and there exists k ∈ N
such that sn = s for any n ≥ k.

Let (A,A0,≤,≺) be an A0-space with the topology T . Then the space C(N, A) in

the topology of pointwise convergence is an A0-space ([18], Theorem 2). If A is a complete

A0-space (injective space), then the space C(N, A) in the topology of pointwise convergence

is a complete A0-space (injective space) ([18], Theorem 3).

Let G be a monoid. The quasimetric ρ on G is stable if ρ(x ·u, y ·v) ≤ ρ(x, y)+ρ(u, v)

for all x, y, u, v ∈ G. The topology T (ρ) generate by a stable quasi-metric on a monoid G

is compatible with the multiplication, i.e. the multiplication is continuous relatively to the

topology T (ρ).

Let d be quasi-metric on A. Any element x ∈ A is identified with the string

a1a2...an..., where a1 = x and ai = ε for any i ≥ 2. Thus A ⊂ S(A). In [8, 9] was

proved that on S(A) there exists a quasi-metric d̂ with the properties:

- d̂(x, y) = d(x, y) for all x, y ∈ A ⊂ S(A);

- d̂ is a stable quasi-metric on S(A);

- if ρ is a stable quasi-metric on S(A) and ρ(x, y) ≤ d(x, y) for all x, y ∈ A, then

ρ(x, y) ≤ d̂(x, y) for all x, y ∈ S(A);

- if d is an integer quasi-metric, then d̂ is an integer quasi-metric to.

On quasi-metric space we consider the ordering induced by the distance function: if

ρ is a quasi-metric on X, then x ≤ y if and only if ρ(x, y) = 0.

Proposition 4.1. Let (A, d) be a quasi-metric space. Then:

(i) (C(N, A), d∗) is a quasi-metric space and S∗(A) is an open subset of C(N, A);

(ii) If the space A is connected, then the subspace S∗(A) is connected too.

Proof. Assertion (i) is proved in [8, 9]. Fix n ∈ N. For any a = (a1, a2, .., an) ∈ An we put

ψn(a) = (x1, x2, ...) ∈ S∗(A), where xi = ai for i ≤ n and ≤ xi = ε for i ≥ n + 1. Then

ψn : An −→ S∗(A) is a continuous mapping and ψn(An) ⊂ ψn+1(A
n+1). Assume that the

space A is connected. Since S∗(A) = ∪{ψn(A∗) : n ∈ N} the space S∗(A) is connected too.

Corollary 4.2. Let A be an Alexandroff space. Then S∗(A) and S(A) are Alexandroff

spaces too.

Proposition 4.3. Let (A, d) be a quasi-metric space, r > 0, a, b ∈ A and B(a, r, d) ∩
B(b, r, d) = ∅. Then there exists a family {Uµ : µ ∈ M} of open non-empty subsets of

C(N, A), d∗) such that:

1. |M | ≥ 2ℵ0 and Uµ ∩ Uη = ∅ for any distinct elements µ, η ∈ M . For any µ ∈ M
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there exists a point cµ ∈ C(N, A) such that Uµ = {y ∈ C(N, A) : d∗(cµ, y) <∞}.
2. If (A, d) is a space, then the sets Uµ are connected and the set U(x) = {y ∈

C(N, A) : d∗(x, y) <∞} is connected for any x ∈ C(N, A).

3. If d is a metric, then C(N, A) = ∪{Uµ : µ ∈M}.
Proof. There exists a family {Nµ : µ ∈ M} of infinite subsets of N such that |M | ≥ 2ℵ0

and Nµ ∩Nη is a finite set for any distinct elements µ, η ∈M .

For any µ ∈M we construct the point cµ = (c(µ,1), c(µ,2), ..., c(µn), ...) ∈ C(N, A) such

that c(µ,i) = a for i ∈ Nµ and c(µ,j) = b for j ∈ N \ Nµ. We put Uµ = {x ∈ C(N, A) :

d(cµ, x) <∞}.
Fix two distinct elements µ, η ∈ M . Assume that x = (x1, x2, ..., xn, ...) ∈ Uµ. Then

the set P = {i ∈ N : d(c(µ,i), xi) ≥ r is finite. Hence the set Nη \P is infinite, d(c(µ,i), xi) < r

for i ∈ Nµ and d(c(η,i), xj) ≥ r for j ∈ Nη \ P . Thus x 6∈ Uη. Moreover, d(cµ, cη) = ∞.

Assertion 1 is proved.

Assume that the space (A, d) is connected. Then for any y = (y1, y2, ..., yn, ...) ∈
C(N, A) the set Fin(y) = {z = (z1, z2, ..., zn, ...) ∈ C(N, A) : |{iN : yi 6= zi}| < ℵ0} is

connected. Fix x = (x1, x2, ..., xn, ...) ∈ C(N, A). The set U(x) is open. suppose that the

set U(x) is not connected and U, V are two disjoint non-empty open subsets of C(N, A) such

that U(x) = U ∪ V . Let x ∈ U . Fix y ∈ V . Then x ∈ ClF in(y) and, since y ∈ Fin(y) and

Fin(y) is connected, we have Fin(y) ⊂ V . Then U ∩ Fin(y) = ∅, x ∈ U and x 6∈ clF in(y),

a contradiction. Assertion 2 is proved.

Assume that d is a metric. In this case M is a maximal subset of C(N, A) such that

d∗(x, y) = ∞ for any distinct points x, y ∈M . From the proof of Assertion 1 it follows that

|M | ≥ 2ℵ0 . In this case U(x)∩U(y) = ∅ for distinct points x, y ∈M . Assertion 3 is proved.

The proof is complete.

5. Applications

Distinct poset structures have been introduced to accommodate the needs of informa-

tion theories. In the 1960’s, Dana Scott introduced continuous lattices [38, 39, 40, 42, 43, 41]

into computer science as a means of providing mathematical models for a system of types

that justify recursive definitions of these types. In time, the order theoretic models Scott

and others considered evolved into what we now call domains (see [1, 21, 47], RS). The level

of abstraction required to understand domain theory remained an obstacle to its widespread

use. To remedy this problem, Scott imported from logic the notion of an information system

to provide a set-theoretic approach to domains [43]. In this setting, every information sys-

tem gives rise to a domain in a canonical way. The Hoare powerdomain is an order-theoretic

analog of the power set and is used in programming semantics as a model for angelic nonde-

terminism (see, for example, Plotkin [33]). Some topological aplications in Computer Science

are examined in [27, 28, 13, 20, 46, 48].

A poset P is said to be directed-complete if the join ofevery directed subset of P

exists in P . A subset S of poset P is a down-set of P provided S = {p ∈ P : p � a for

some a ∈ S}. A down-set of P is Scott-closed if it contains the join of each of its directed

subsets. An element x of a P is compact if, whenever x is below the supremum of a directed

55



subset set S of P , then x ∈ {p ∈ P : p � a for some a ∈ S}. We use K(P ) to denote

the subposet of compact elements of P . A directed-complete poset P is algebraic if, for all

p ∈ P , the set K(p) = {x ∈ P : x � p} ∩ K(P ) is directed and p = ∨K(p). We use the

term ”domain” for an algebraic poset in which the meet of every non-empty subset exists.

We will let Γ(P ) denote the set of all Scott-closed subsets of the directed-complete poset P ,

ordered by set-inclusion. It is easy to see that Γ(P ) is closed with respect to finite set-unions

and arbitrary set-intersections. Hence Γ(P ) is the family of closed sets for a topology on P ,

called the Scott topology on P . The lattice of non-empty Scott-closed subsets of a domain

D is called the Hoare powerdomain of D [24].

A domain representation of a topological space X is a function, usually a quotient

map, from a subset of a domain onto X (see [5]). The theory of domains was improved by

Yu. L. Ershov [17, 19, 18, 16] and now is called the Scott - Ershov theory of domains.

Definition ([24]). An information system is a triple S = (S,Con,`) consisting of:

(1) a set S whose elements are called propositions or tokens;

(2) a non-empty subset Con of the set of all finite subsets Fin(S) of a set S, called

the consistency predicate;

(3) a binary relation ` on Con, called the entailment relation.

These entities satisfy the following axioms:

(IS1). Con is a down-set S of Fin(S) with respect to set-inclusion such that

∪Con = S.

(IS2). if A ⊂ Con and B ⊂ A, then A ` B.

(IS3). if A,B,C ∈ Con, A ` B, and B ` C, then A ` C.

(IS4). if A,B,C ∈ Con, A ` B, andA ` C, then B ∪ C ∈ Con and A ` (B ∪ C).

Axiom (IS1) implies that every singleton subset of S is a member of Con and that

whenever A ∈ Con and B ⊂ A, then B ∈ Con. Axioms (IS2) and (IS3) imply that

(Con,`) is a preordered set, that is, ` is a reflexive and transitive relation on Con. The

above definition of an information system is differently from the definitions of Scott [43],

Davey and Priestly [10], Droste and Göbel [14].

A workload [25, 26] is a triple W = (D,A,Q), where D is the domain, A is a finite

subset of the domain (dataset, or instance), and Q ⊂ 2D is the set of queries, that is, some

specified subsets of D. Answering a query Q ∈ Q means listing all datapoints a ∈ A ∩Q.

A (dis)similarity measure on a set D is a function of two variables s : D ×D −→ R,

possibly subject to additional properties. A range similarity query centered at a ∈ D consists

of all x ∈ D determined by the inequality s(a, x) < k or s(a, x) > k, depending on the type

of similarity measure. A similarity workload is a workload whose queries are generated by

a similarity measure. The formula d(a, b) = s(a, a) − s(a, b), a, b ∈ A isa distance. In

many cases d(a, b) is a quasi-metric. By instance, applied to the similarity measure given by

BLOSUM62, as well as of most other matrices from the BLOSUM family, is a quasi-metric

on A.
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