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Abstract. For a cubic differential system with a singular point of a center or a focus type having two
invariant straight lines one invariant elliptic cubic curve it was proved that a singular point is a center if
and only if the first two Lyapunov quantities at this point vanish. There were obtained five sets of
conditions for a singular point to be a center.
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CONDITII DE CENTRU PENTRU UN SISTEM DIFERENTIAL CUBIC CU
DOUA DREPTE INVARIANTE SI O CURBA INVARIANTA DE TIP ELIPTIC

Rezumat. Pentru un sistem diferential cubic cu punct singular de tip centru sau focar, care poseda doua
drepte invariante si o cubica invariantd de tip eliptic, s-a demonstrat ca punctul singular este de tip centru
daca si numai daca primele doud marimi Lyapunov in acest punct se anuleaza. Au fost obtinute cinci serii
de conditii ca punctul singular sa fie de tip centru.

Cuvinte-cheie: sistem diferential cubic, curbe invariante algebrice, problema centrului.

1. Introduction

We consider the cubic system of differential equations of the form

{)'c =y+ax’ +cexy+ [y +kx’ +mx*y+ pxy* +ry’ = P(x, ), (.1
y=—(x+gx* +dxy+by’ +sx’ +gx’y+nxy* +1y°) = O(x, ),

where the coefficients are real numbers, x =x(¢) and y = y(¢) are real variables. The
origin O(0,0) is a singular point of a center or a focus type (a weak focus) for (1.1). The
problem arises of finding the coefficient conditions under which O(0,0) is a center.

The derivation of necessary conditions for a singular point O(0,0) to be a center

involves use of computer algebra and we obtain them by calculating the focus quantities,
which are polynomials in the coefficients of the system [1, 2, 4].

The necessary conditions are shown to be sufficient by a variety of methods [3, 4].
It is known that a singular point O(0,0) is a center for (1.1) if and only if the system has

an analytic first integral of the form F(x, y) = C in some neighborhood of O(0,0). Also,
0(0,0) is a center if and only if the system (1.1) has an analytic integrating factor of the

form u(x,y)=1+ Z 4, (x,y) in some neighborhood of O(0,0).
There exists a power series F(x,y) = ZFj(x, y) such that the rate of change of

F(x, v) along trajectories of (1.1) is a linear combination of polynomials {(x* + yz)}‘;’:z:

dF 0 :
T jzzLj_l(xz +3°).
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Quantities L; are polynomials with respect to the coefficients of system (1.1)
called the Lyapunov quantities (the focus quantities) [1, 4]. The order of the weak focus
000,0)is rif Li=L,=...=L_,=0 and L, #0. The origin O(0,0) is a center for (1.1)
if and only if L;=0,j=12,....

2. Invariant algebraic curves and Darboux integrability
We shall study the problem of the center for cubic system (1.1) assuming that the

system has invariant algebraic curves.
Definition 2.1. An algebraic curve ®(x,y)=0 in C*> with d(x,y)eC[x,y] is an

invariant algebraic curve of a differential system (1.1) if

G = PR S 00 T = K () 0 @1
for some polynomial K(x,y) e C[x,y] called the cofactor of the curve ®(x,y)=0.

Let the cubic system (1.1) have sufficiently many invariant algebraic curves
D (x,y)=0, j=1,....,q with cofactors K,(x,y). Then in most cases a first integral
(an integrating factor) can be constructed in the Darboux form [4, p.26]

OIPE ... D =C (,u =DIDS .. . D ) (2.2)

q
and we say that the cubic system (1.1) is Darboux integrable. The function (2.2), with

a; € C not all zero, is a first integral (an integrating factor) for (1.1) if and only if

Zq:ajK‘, (x,y)=0 (Zq:ajKj (x,y) = —g—i - %QJ : (2.3)

The method of Darboux is very useful and elegant one to prove integrability for some
classes of differential systems depending on parameters [5].
By Definition 2.1, a straight line C+ Ax+ By =0, 4,B,CeC, (4, B)#0 is an

invariant straight line for (1.1) if and only if there exists a polynomial K(x,y) such that
the following identity holds
A-P(x,y)+B-O(x,y)=(C+ Ax+ By)-K(x,y).
If the cubic system (1.1) has complex invariant straight lines then obviously they
occur in complex conjugated pairs [, =C+ Ax+By=0 and /, = C+Ax+ Z_3y =0.

Let the cubic ststem (1.1) have two distinct invariant straight lines /, /, that are

real or I, I, are complex ([, =/, ). The conditions for the existence of two distinct

invariant straight lines for cubic system (1) where obtained in [6]. It was proved
Theorem 2.1. The cubic differential system (1.1) has two distinct invariant straight lines
if and only if one of the following sets of conditions holds:

) a=f=k=p=r=0, m(c*—4m)=0.
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The invariant straight lines and their cofactors are
I, = 2+(ci\/c2 —4m )x =0, K,,(x,y) = [y(c+2mx4_r\/c2 —4m)]/2;

) g=b+c, f=a+d, g=p+Il—k, s=m+n-—r.

The invariant straight lines and their cofactors are [, , =x+iy =0,

K (x,y)=—i+(a—ib—ic)x —(b+ia+id)y+ (k —im—in+ir)x" +
+(r—n—il—ip)xy—(I+ir)y*, K, =K;

() a=1,k=g,l=-b,q=[(d+n+1)cy+b—c—p)—gr’ly’>,
m=[(yd+1)+c* )y —1) = (b~ p)c(y =2) +b—p)—nyVy’,
r=1-y,5=0,y=f+2y[(b—c—p)’ +4y(d +n+1)] #0.

The invariant straight lines are |, =1+A4,,x—y=0, where A, A, are distinct

solutions of the equation yA*> +(b—c — p)A—d —n—1=0. The cofactors are

K,(xy)=x+A4,,y+ gx2 +(1+d - A12,2+ cA)xy+((y -4, ,+ b)y2 K

(V) p=[(b—)h+(k—g)yVh, q=[h(cs—gh)+s(g— k),
[==b,m=[(d—-h+D)h*+h(ck—g)—s)—(k—g)*Vh*,
r=l—y,n=[sy—(+d)hl/h,h=a-1, h((g—k)* +4sh) #0.

The invariant straight lines are I ,=1+A4,,x—y=0, where A,, A, are distinct

solutions of the equation hA> +(g —k)A—s =0. The cofactors are

Kl,z(x,y) =x+A4,y+ (g+ hAl,z)x2 +(1+d+ cA,,— Aiz)xy +(b+(y— l)Alaz)yz.
The sufficient conditions for a singular point O(0,0) to be a center in system (1.1)

with two invariant straight lines were determined in [6]. The presence of a center was
proved by using the method of Darboux integrability and the rational reversibility.

The problem of the center was solved for cubic system (1.1) with two invariant
straight lines and one invariant irreducible conic in [4]; with two parallel invariant
straight lines and one invariant cubic x* + y° + ay,x° +a, x°y +a,xy” +a,y° =0in [7].

The problem of the center was solved in [8] for a nine-parametric cubic system
that can be reduced to a Liénard type system.

3. Conditions for the existence of one elliptic cubic curve
In this paper assuming that one set of conditions (I) - (IV) holds, we shall
determine the conditions under which the cubic system (1.1) has an elliptic cubic curve of

the form
D(x,y) = a30x3 + a20x2 + a0 X+ ag, — y2 =0, 3.1)

with ay,, a,y, a,4, @y, € R and aya,, #0.
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By Definition 2.1, an algebraic curve (3.1) is an invariant cubic curve for (1.1) if
and only if there exists a polynomial Ky, (x, ) = Cyyx” + ¢, XV + Coo )’ +C1oX + o,V » With
real coefficients, such that the following identity holds

(Basx” +2a30x + ayy) - P(x,9) = 2 - O(x, ) = @(x,) - Ko (x,) . (3:2)
Identifying the coefficients of the monomials x'y”’ in (3.2), we reduce this identity
to a system of 18 equations {F; =0} for the unknowns a, a,, a9, dg, ¢; - We find that
¢ =0,cy =-2b,c,y =3k, c;; =3m, ¢y, =3p, a,, =—2bay,,
r=0, 2l+3p =0, 2n+3m=0, 3k+ 2ab=0, [-bf=0 (3.3)
and a,,, a,,, a,, are the solutions of the following algebraic system:
Fy, =9%aa,, +2aba,, =0,
F,, =@2b+3c)ay, —ma,, +2s =0,
F,, =9 fa,, + 2bfa,, — 6ab+6q =0,
F,, = 6aa,, —8ab’a,, =0, (3.4)
F, =3a,, +2(b+c)a,, +4bmay, +2g =0,
Fy =3 fay, —4b fag, +3d =0,
F,, =2a,, — (4b> + 2bc +3m)a,, +2 = 0.

We solve the system (3.4) assuming that one set of conditions (I) - (IV) holds. In
this way we determine the conditions for the existence of two invariant straight lines and
one invariant elliptic cubic curve of the form (3.1).

Theorem 3.1. The cubic system (1.1) has two distinct invariant straight lines
[,=0,l, =0 and one invariant cubic ® =0 of the form (3.1) if and only if one the

following eight sets of conditions holds:
(1) a=d=f=k=l=p=gq=r=0,n=312b+c)(b+c),
m=-22b+c)b+c),s=(4b> +4bc+2bg+3cg)/3;
(1) a=d=f=k=l=p=q=r=0,n=b(2b+3c)/3,
m=-2b(2b+3c)/9,s =(3g—3c—2b)(2b+3c)/9;
(i) a=d=f=k=Il=p=q=r=0,n=-3m/2;

(iv) a=k=r=0,f=d,g=b+c, m=-2b(2b+3c)/9,q=>bd/3,
[=bd,n=b(2b+3c)/3, p=(-2bd)/3,s =b(2b+3c)/9;

(v) d=r=0,c=(=7b)/3,f =a, g =(-4b)/3,1 =q = ab, m = (-8b*)/9,
n=(4b>)/3,k = p=(-2ab)/3, s = (4b*)/9;

i) a=k=r=0,d=f=-1, g=0Bc—-b)/3,m=-2(bc+2)/3,
l==b,n=bc+2, p=(2b)/3,qg=b,s=—bc—2,b> =3;
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(vii) a=k=r=0,g=Bc—b)/3,d =b(b> —3bc—24)/(21b+9c),
g = (5b°c —2b* +3b°c* +27b* —6bc —9c¢*)/(21b +9c¢),
m=2(b*>—3bc—9)/9,n=(9+3bc—b*)/3, p=(2b)/3,
[=-b,s=(2b’ —5b°c—3bc* —20b—12¢)/(7b +3c),
f=-1, 196 —=33b°c—63bc* —252b—-27¢c —108¢ =0;
(vili) d=r=0,a=s=2/3, c=(=7b)/3, f =—1, g =(—4b)/3, k =(—4b)/9,
l=-b,m=2,n=-3, p=q=(2b)/3,b> =3/2.

Proof. To prove Theorem 3.1, we solve the system (3.4) assuming that one set of
conditions (I) - (IV) holds.

In Case (I) the equations of (3.4) yield d = ¢ =0 and the system (3.4) becomes
F,, =@2b+3c)ay, —ma,, +2s =0,
Fy, =3a,, +2(b+c)ay, +4bmay, +2g =0,
F, =2a,, — (4b” + 2bc+3m)ay, +2 = 0.
We find a,, from F,, =0 and a,, from F, =0, then F;; =0 looks
F,,=42b+3c)(b+c—g)+6m+12s - f, f,a,, =0, (3.5)
where f, =4b> +6bc+2c”> +m, f, =4b> +6bc+9m.
If £, =0, then (3.5) implies
m=-22b+c)b+c), s=(4b> +4bc+2bg +3cg)/3
and we obtain the set of conditions (i) of Theorem 3.1. The invariant curves are
L=2(b+c)x+1=0,,=2b+c)x—-1=0,
D =2(g —c—b)x’ +3(x* +y°) —3(2bx + 2cx +1)(2bx +cx—1)’a,, =0
and have the cofactors
K, =20b+c)2bx+cx—-1y, K, =—(2b+c)2bx+2cx+1)y,
Ky =-2by—6(2b+c)(b +c)xy.
If £, =0, f, =0, then (3.5) implies
m=-2b(2b+3¢c)/9, s=Bg—3c—2b)(2b+3c)/9.
In this case we get the set of conditions (ii) of Theorem 3.1. The invariant curves are
L, =2b+3c)x+3=0,1, =2bx—-3=0,
@ =18(g —c—b)x’ +27(x> +y*) +(2bx—3)’a,, =0
and have the cofactors
K, =y(3-2bx)(2b+3c)/9, K, =-2by(3(cx+1)+2bx)/9,
Ky =-2by((2b+3c)x +3)/3.
Let £, #0, f, #0. In this case the equation (3.5) yields



g =[42D+3c)b+c—g)+6m+12s]/(f,.1>)
and we obtain the set of conditions (ii1). The invariant curves are
l,=2+(ct Vet —4m)x =0, D(x, ) = @y X +ax” +a, X +ay —y° =0,
where a,, =[4(2b+3c)(b+c—g)+6m+12s]/(f.15), a0 =—2bay,,
a,, = (4> +2bc+3m)ay, —2)/ 2, ay, =—2(2bmay, +(b+c)a, +g)/3.
The cofactors of the invariant algebraic curves are
K ,(x,y)=[y(c+2mxtc® —4m))2, Ky =—y(2b—3mx).

In Case (II) the system (3.4) looks
’F40 =9aa,, +2aba,, =0,
F;, =(2b+3c)ay, —ma,, —m =0,
F,, =(a+d)9ay, +2ba,,) + 2bd =0,
F,, = 6aa,, —8ab’a,, =0, (3.6)
F, =3a,, +2(b+c)a,, + 4bmay, +2(b+c) =0,
F, =(a+d)(3a,, —4b’ay)+3d =0,
F, =2a,, — (4b” + 2bc+3m)ay, +2 = 0.

If a=d=0, then (3.6) yields a;, =—a,,(4b> +6b°c+2bc” +Thm+3cm)/3,
a,, = ((4b” +2bc+3m)ay, —2)/2 and (4b° + 6bc+2¢> + m)(4b” + 6bc+9m) = 0.

This subcase is contained in the case (iii) of Theorem 3.1.

If a =0,d # 0, then the equations of (3.6) imply
a,, = (4b%ay, —3)/3, ay, =(-8ay,bh>)/27, m=-2b(2b+3c)/9.
In this subcase we obtain the set of conditions (iv) of Theorem 3.1. The invariant

algebraic curves are
l,= x*+3y° =0, O(x,y)=(2bx—3) ay, +27(x* +y*) =0,
and have the cofactors
K, ,(x,y)=2by(—3—2bx—3cx—3dy)/3, K, =—2by(2bx + 3cx +3dy +3)/3.

If a #0, then from the equations of (3.6) we find
ay, =(8b)/81, ay, =(—4)/9, ay, =(-1)/(3b*),d =0,m =(-8b>)/9, c = (-7b)/3.
In this subcase we get the set of conditions (v). The invariant algebraic curves are
l[,=x>+y"=0, ®(x,y) = (2bx—3)’ =9b(2b—3c)y* =0
and have the cofactors K, (x,y) = —2(2abx* +3aby* +4b*xy —3ax+3by)/3,
K, =—2b3ax’ +3ay” + 4bxy+3y)/3.

In Case (III) the equations F,, =0, F,, =0 of (3.4) implies a,, = (4b’a,,)/3,

ay, =(—2bay,)/9, where b=0. From the relations (3.3) we obtain p=(2b)/3,
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g=(-2b)/3, f =—1, n=bB3c—>b)/3. In this case F;, #0 and the system of algebraic

equations (3.4) is not compatible.
In Case (IV) the relations (3.3) yield f=-1, g=Bc—-3ac—b—ab)/3,

k =(=2ab)/3, s =[(1—a)b* —3bc—3d +9a—12)]/3
and the equations F,, =0, F}, = 00f (3.4) looks
F,, = a(2ba,, +9a,,) =0, F,, =aBa,, —4b’a,,) =0.
Assume a =0, then from equations F}, =0 and F,, =0 we express a,, and ay,
respectively. Then F, = a,,(3—b>)+d +1=0.
If b =3, then d =—1 and we obtain the set of conditions (vi) of Theorem 3.1.
The invariant algebraic curves looks /, =1+ A, x—y =0, , =1+ A4,x—y =0,
D(x,y) = (8bx’ +18bx—36x" —9)a,, —8hx’ +9(x* + ) =0,
where A4,, A, are distinct solutions of the equation 34° + (b —3c)4—3bc—6=0. The
cofactors of these invariant algebraic curves are K, =2y(by —bcx—2x —b),
K, =[Bc—b—34)x* +3A(c — A)xy+3x+3by* +34y]/3.
If a=0 and b* # 3, then from the equations F;, =0, F,, = 0 of (3.4) we find that
ay, = (d +1)/(b> —3), d = b(b*> —3bc—24)/(21h +9c¢).

In this subcase we get the set of conditions (vii) of Theorem 3.1. The invariant algebraic
curvesare [, =1+ 4 x—-y=0, ,=1+4,x-y=0,

D(x, y) = 2(25b* —66b°c —27b°c* —315b> + 54bc+81c?)x” + 54b(b —3c)x +

+9b(72 —7b* + 21bc)x* +27(3¢ —b) + 81(7h + 3¢)y* =0,
where 4,, A, are distinct solutions of the equation

3(7b+3¢)A* + (7b* —9¢* —18bc) A+ 3(2b° —5b*c —3bc* —20b —12¢) = 0.

The cofactors of these invariant algebraic curves are
K., =((3¢—b—3A)x> +(bA—3bc+b*> —9)xy +3x+3by* +34y)/3,
K, =2y(b*x —3bcx+3by —9x —3b)/3.

If a#0, then the equations F,, =0, F,, =0 of (3.4) yield a,, =(4b’a,,)/3,
ay, = (—8b%ay,)/27. We express a,, =1/(3a+b>—1) from F,, =0. Then the equations
of 3.4)imply d =0, c=b(3—a)/(Ba—3), a=(9-2b*)/9, b* =3/2.

In this subcase we obtain the set of conditions (viii). The invariant algebraic curves are
L=1+Ax-y=0, =1+ Ax—y=0, ®(x,y) =8bx’ —36x" +36bx—18 +9y° =0,
where 4,, A4, are distinct solutions of the equation 34” +8bA4+ 6 = 0. The cofactors of

these invariant algebraic curves are K, = 2(3by” —2bx” —3by +9xy)/3 and
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K, =(—(A+4b)x* + (bA+9)xy +3x +3by” +34y)/3.

The proof of Theorem 3.1 is complete.

4. Integrability conditions for cubic system (1.1) with three algebraic curves

Let the cubic system (1.1) have at least two invariant straight lines and one
invariant elliptic cubic curve, i.e. one of the sets of conditions (i) - (vii1) of Theorem 3.1
1s satisfied. In this section, we pay attention to the problem of the center for system (1.1)

and prove that the origin O(0,0) is a weak focus of order at most two.
Lemma 4.1. The following three sets of conditions are sufficient conditions for the origin
to be a center:
(1) a=d=f=k=l=p=q=r=0,n=32b+c)(b+c),
m=-202b+c)b+c), s =(4b> +4bc+2bg +3cg)/3;
2) a=d=f=k=l=p=q=r=0,n=b(2b+3c)/3,
m=-2b(2b+3c)/9,s =3g—3c—2b)(2b+3c)/9,
3) a=k=r=0,f=d,g=b+c, m=-2b(2b+3c)/9,q=>bd/3,
l=bd,n=b(2b+3c)/3, p=(-2bd)/3, s =b(2b+3c)/9.
Proof. In Cases (1), (2) and (3), the cubic system (1.1) has two invariant straight lines
and one invariant elliptic curve. The system has a Darboux first integral of the form

[“L,%20% =C. 4.1)
The first integral (4.1) can be easily constructed by using the identity (2.3) and the
cofactors K, K,, K, of the invariant algebraic curves /, =0, /, =0, ®=0.

InCase(1): oy =L, =2,0,=-1, [, =2(b+c)x+1=0,, =(2b+c)x—1=0 and

D =2(g—c—b)x’ +3(x> +y°) —3(2bx+2cx+1)(2bx+cx—1)’ay, =0.
InCase (2): ,=0,0, =3, 0, =-1, [,=(2b+3c)x+3=0,/, =2bx—-3=0 and

D =18(g —c—b)x’ +27(x> +y*)+(2bx—3)’a,, =0.
InCase 3): o, =a, =L, a;=-1, [, =x+iy=0 and
D(x,y) = (2bx—3)’ a,, +27(x* + y*) =0.
Lemma 4.2. The following set of conditions is sufficient for the origin to be a center
@) a=d=f=k=l=p=q=r=0,n=-3m/2.
Proof. When the set of conditions (4) is satisfied, the cubic system (1.1) has two
invariant straight lines /, , =2+ (c v ¢® —4m)x =0 and one invariant elliptic cubic
D(X, ) = A3yX° + apyx” +ayx+ay, —y° =0,

where a,, =-2ba,,,

ayy =[4(2b +3c)(b+c— g) +6m +12s]/[(4b> + 6bc +2¢” + m)(4b° + 6bc +9m)],
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a,, =[(4b> +2bc +3m)ay, —21/2, ay, = —2[2bmay, + (b +c)a,, +g1/3.
The system (1.1) is Darboux integrable and has an integrating factor of the form

u=1"1"'0. (4.2)

The existence of an integrating factor (4.2) can be easily verified by using the identity

(2.3) with cofactors

K ,(x,y)=[y(c+2mxtc* —4m))2, K, =—y(2b—3mx).
Lemma 4.3. The following set of conditions is sufficient for the origin to be a center:
5) a=k=r=0,d=f=-1, g=Q@Bc—-b)/3, m=-2(bc+2)/3,
[=-b,n=bc+2, p=02b)/3,q=b,s=—bc—2,b* =3.
Proof. When the set of conditions (5) holds, the cubic system (1.1) has three invariant

straight lines
L=l+Ax-y=0,L,=1+4x-y=0,L,=1-bx+y =0,
where A,, 4, are distinct solutions of the equation 34° + (b —3c)4—3bc—6=0 and one
invariant elliptic cubic ®(x, y) = (8bx> +18bx —36x> —9)a,, —8bx> +9(x” + y*) =0.
The system (1.1) has a Darboux first integral
L5 0" =C, (4.3)
where @, = bJVA +b> —3bc—18, a, =bJA —(b> =3bc—18), a, =2bJA, a, =-2bJA

and A=b>+30bc+9c* +72.
The first integral (4.3) was constructed by using the identity (2.3) with cofactors

K., =[Bc—b—-34)x> +3A(c — A)xy +3x+3by* +34y]/3,
K, =[3by* —(2b+3c)x”> — (3bc+ 3)xy — 3by — 3x]/3,
Ky =2y(by —bcx —2x - D).
Theorem 4.1. The origin O(0,0) is a center for cubic system (1.1) with two invariant
straight lines and one invariant elliptic cubic curve (3.1) if and only if the first two

Lyapunov quantities vanish.
Proof. By using the algorithm described in [4], we compute the first two Lyapunov

quantities L, L, for each set of conditions (i)—(viii) of Theorem 3.1. In the expressions
for L, we will neglect the denominators and non-zero factors.

In Cases (i) and (ii) the first two Lyapunov quantities vanish. Then we obtain the
center conditions (1) and (2) of Lemma 4.1.

In Case (1i1) the first two Lyapunov quantities vanish. Then Lemma 4.2.

In Case (1v) the first two Lyapunov quantities vanish. Then Lemma 4.1, (3).

In Case (v) the vanishing of L, gives ¢ =(-5b)/3 and the second Lyapunov

quantity looks L, = ab’ # 0. In this case a singular point O(0,0) is a focus.
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In Case (vi) the first two Lyapunov quantities vanish. Then Lemma 4.3.
In Case (vii) the vanishing of the first Lyapunov quantity gives ¢ =(—4b)/3. The

second one looks L, =5bh> +9# 0 and therefore a singular point O(0,0) is a focus.

In Case (viii) the first Lyapunov quantity looks L, =b # 0. In this case a singular

point O(0,0) is a focus. Theorem 4.1 is proved.
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