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Summary . It is well known that many mathematical models use differential equation systems and apply the

qualitative theory of differential equations, introduced by Poincaré and Liapunoff. One of the problems that

persists in order to control the behavior of systems of this type, is to distinguish between a focus or a center

(the Center-Focus Problem). The solving of this problem goes through the computation of the Poincaré–

Liapunoff quantities. The problem of estimating the maximal number of algebraically independent essential

constants is called the Generalized Center-Focus Problem. The present article contains: some moments

related to the history of the Center-Focus Problem; the contribution of the Academician C. Sibirschi’s

school in the solving of the Center-Focus Problem; methodological aspects of the M. N. Popa and V. V.

Pricop solution of the Generalized Center-Focus Problem.
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REFLECŢII ASUPRA PROBLEMEI LUI POINCARÉ
DESPRE CENTRU ŞI FOCAR

Rezumat. Multe modele matematice folosesc sisteme de ecuaţii diferenţiale şi aplică teoria calitativă a

ecuaţiilor diferenţiale, elaborată de Poincaré şi Liapunoff. Una din probleme ce persistă ı̂n studiul acestor

sisteme constă ı̂n determinarea condiţiilor care asigură că punctul singular este un centru (Problema Cen-

trului şi Focarului). Problema Generalizată a Centrului şi Focarului constă ı̂n estimarea de sus a numarului

de elemete algebric independente din careva sistem complet de condiţii esenţiale. Problema Generalizată a

Centrului şi Focarului a fost rezolvată de M. N.Popa şi V. V. Pricop. În articolul prezent: se expun unele

momente din istoria rezolvării Problemei Centrului si Focarului; se mentionează contribuţia şcolii acad. C.

Sibirschi la rezolvarea Problemei Centrului şi Focarului; se analizează aspectele metodologice ale soluţiei

propusă de M. N.Popa şi V. V. Pricop.

Cuvinte-cheie: constantele Poincaré-Liapunoff, Problema Centrului şi Focarului, Problema Generalizată a

Centrului şi Focarului, dimensiunea Krull, spaţiu sobru.

1. Introduction

Mathematical research has helped to solve a number of problems that have sprouted the

scientists’ minds for almost 2500 years, starting with Plato, Aristotle, Euclid, Archimedes.

The nineteenth century brought to human civilization several surprising discoveries. Much

of them is the result of the logical analysis and, in general, of the mathematical analysis of

phenomena: Gauss discovered through calculus the asteroids Ceres, Palass, Vesta, Iunona;

Galle also, based on the calculations, identified the planet Neptune; Mendeleev, starting

from the atomic table, systematized the chemical elements and anticipated the existence of

many new ones; Schliemann, based on Homer’s descriptions, determined the place of Troy’s

placement, etc. At the end of the nineteenth century, the genius French mathematician

Jules Henri Poincaré (1854 – 1912) created new areas of research such as topology, qualitative

theory of dynamic systems, etc. We mention that by the quantitative methods, the Romanian

mathematician Spiru Haret (1851 – 1912) demonstrated in 1878 the instability of the Solar

System. He made a fundamental contribution to the n-body problem in celestial mechanics.

Haret’s major scientific contribution was made in 1878, in his Ph.D. thesis ”Sur linvariabilité

des grandes axes des orbites planétaires”. At the time it was known that planets disturb each

others orbits, thus deviating from the elliptic motion described by Johannes Kepler’s First
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Law. Pierre Laplace (in 1773) and Joseph Louis Lagrange (in 1776) had already studied

the problem, both of them showing that the major axes of the orbits are stable, by using

a first degree approximation of the perturbing forces. In 1808 Siméon Denis Poisson had

proved that the stability also holds when using second degree approximations. In his thesis,

Haret proved by using third degree approximations that the axes are not stable as previously

believed, but instead feature a time variability, which he called secular perturbations. This

result implies that planetary motion is not absolutely stable. Henri Poincaré considered

this result a great surprise and continued Haret’s research, which eventually led him to the

creation of chaos theory and qualitative theory of dynamic systems [10, 19].

Henri Poincaré formulated a series of important problems, the solution of which deter-

mines the further development of mathematical sciences. One of them is the the Poincaré

conjecture about the characterization of the 3-sphere, which is the hypersphere that bounds

the unit ball in four-dimensional space. In 2000, it was named one of the seven Millennium

Prize Problems, for which the Clay Mathematics Institute offered one million dollars prize for

the first correct solution. The enigmatic Russian mathematician Grigori Perelman presented

a proof of the conjecture in three papers made available in 2002 and 2003 on arXiv. On 22

December 2006, the scientific journal Science recognized Perelman’s proof of the Poincaré

conjecture as the scientific ”Breakthrough of the Year”, the first such recognition in the area

of mathematics.

One of the famous problems of the qualitative theory of differential equations is the

Center-Focus Problem, formulated by Poincaré about 135 years ago, in period 1881-1885

[10]. The Center-Focus Problem consists in distinguishing when a monodromic singular

point is either a center or a focus. The Center-Focus Problem arises many open questions

and it has deep links with Hilbert’s 16th Problem.

Hilbert’s 16th problem was posed by David Hilbert (1862 – 1943) at the Paris Interna-

tional Congress of Mathematicians in 1900, as part of his list of 23 problems in mathematics

(see [4, 1, 6]). The original problem was posed as the Problem of the topology of algebraic

curves and surfaces. Actually the problem consists of two similar problems in different fields

of mathematics:

1. An investigation of the relative positions of the branches of real algebraic curves of

degree n.

2. The determination of the upper bound for the number of limit cycles in two-

dimensional polynomial vector fields of degree n and an investigation of their relative posi-

tions.

In 1976, Academician Constantin Sibirschi (Sibirsky) (1928 – 1990), Head of Labora-

tory at the Institute of Mathematics and Computer Science of the Academy of Sciences of

Moldova, founder of the scientific school of differential equations in the Republic of Moldova,

published the monograph ”Algebraic Invariants of Differential Equations and Matrices” (see

[16, 15]), which had a great resonance in the world of mathematicians. Over three years

in 1979, Professor C.S. Coleman has published a review of this scientific paper, in which

he stated that it is written in the spirit of the research of Norwegian mathematician Mar-

ius Sophus Lie (1842 – 1899). Marius Sophus Lie obtained his PhD at the University of
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Christiania (present day Oslo) in 1871 with the thesis entitled ”Over en Classe Geometriske

Transformationer”. He created the theory of continuous symmetry, introducing the con-

cept of algebra, those bearing his name today, and applied it to the study of geometry and

differential equations. It would be described by Darboux as ”one of the most handsome

discoveries of Modern Geometry”.

The mathematician Mihail Popa, who was a student of the Professor C. Sibirschi, went

his own way, starting from establishing the link between the Lie algebras and the graduated

algebra of Sibirschi invariants – a tool for further researches. M. Popa took as a basis the

Generalized Center-Focus Problem for Polynomial Differential Systems, avoiding calculating

Poincaré–Lyapunoff quantities for each system. Poincaré–Lyapunoff’s quantities was sub-

stituted by a sequence of Lie algebras and a sequence of linear subspaces of the graduate

algebra of Sibirsky’s invariants (see [17, 13, 14]). When estimating the maximum number

of algebraically independent focal constants, he applied these algebras. As a result, a finite

numerical estimation was obtained for independent algebraic focal quantities, participating

in the solving of the generalized Center–Focus Problem for any polynomial differential sys-

tem (see Theorem 1). Currently, Professor Mihail Popa, along with his disciples, continues

his research in the theory of polynomial differential systems, successfully using Lie algebras.

An analysis of the activity of Professor Mihail Popa is contained in article [2].

2. The Center-Focus Problem

Consider the differential system

dx/dt = P (x, y), dy/dt = Q(x, y), (1)

where P (x, y) and Q(x, y) are polynomials that contain the linear part and satisfy the con-

ditions P (0, 0) = Q(0, 0) = 0. The coefficients of polynomials P (x, y), Q(x, y) and variables

from the system (1) takes values from the field of the real numbers R. It is known [7, 10] that

the conditions which distinguish center from focus for the system (1) consist in study of an

infinite sequence of polynomials (focal quantities, Lyapunoff constants, Poincaré–Lyapunoff

quantities (constants))
L1, L2, ..., Lk, ... (2)

in the coefficients of the polynomials from the right side of the system (1).

It was shown that if the focal quantities (2) are equal to zero then the origin of coor-

dinates for the system (1) is a center, i.e. the trajectories near this point are closed. On the

contrary the origin of coordinates is a focus and the trajectories are spirals.

We can assume that P (x, y) = Σ{Pmi
: i ∈ {0, 1, 2, ...l}} and Q(x, y) = Σ{Qmi

: i ∈
{0, 1, 2, ...l}}, where Pmi

and Qmi
are homogeneous polynomials of degree mi ≥ 1 in x and

y, m0 = 1. In this case we denote the system (1) by s(1,m1,m2, ...,ml)

It is known that if the roots of characteristic equation of the singular point O(0, 0) of

the system (1) are imaginary, then the singular point O is a center or a focus. In this case

the origin of coordinates is a singular point of the second type.

The Center-Focus Problem can be formulated as follows: Let for the system

s(1,m1,m2, ...,ml) the origin of coordinates be a singular point of the second type (center or

focus). Find the conditions which distinguish center from focus. This problem was posed by

H. Poincaré [10]. The basic results were obtained by A. M. Lyapunoff (1857 – 1918) [7].
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It is well known that, from the Hilbert’s theorem on the finiteness of basis of polynomial

ideals, for any concrete system s(1,m1,m2, ...,ml) the set

PL(1,m1,m2, ...,ml) = {i ∈ N = {1, 2, ...} : Li 6= 0} (3)
is finite. Assume that

PL(1,m1,m2, ...,ml) = {n1, n2, ..., nβ} (4)

and nα = n1 < n2 < ... < nβ. (5)

The Poincaré’s Center-Focus Problem determines the following problems:

P1. The problem of finding the number nα or obtaining for it an argued numerical upper

bound.

P2. The problem of finding the number nβ or obtaining for it an argued numerical upper

bound.

P3. The problem of finding the number β or obtaining for it an argued numerical upper

bound.

Problems P1 and P2 are open. Solution of the Problem P1 contains a solution of the

Center-Focus Problem. Positive solution of Problem P2 contains the solution of Problem

P1. Hence Problem P2 is the strong Center-Focus Problem. Problem P3 is the weakly

Center-Focus Problem.

Denote by D the set of all systems (1). Since the Center-Focus Problem is very compli-

cated, it presents interest the following problem: Finding the subsets H of the set D for which

Problems P1–P3 (or some of them) are positive solutions. Monographs [16, 18, 11, 14, 12, 3]

contain some results of that kind. The Center-Focus Problem is solved for the class QS of

all quadratic systems (see [16, 18, 17, 15]). Using global geometric concepts, was completely

studied the class QW3 of quadratic systems with a third order weak focus (see [15]). The

class QW2 of all quadratic differential systems with a weak focus of second order is important

for Hilbert’s 16th problem (see [15, 1, 6]). Are important (see [3, 15]) the classes:

- the class of dynamical systems with special invariant algebraic curves;

- the class of dynamical systems with a Darboux first integral or a Darboux integrating

factor.

3. Sibirschi graded algebras

C. S. Sibirschi (see [13, 11, 14]), for any system s(1,m1,m2, ...,ml), were introduced

the graded algebra SI = SI(1,m1,m2, ...,ml) of unimodular invariants and the graded al-

gebra S = S(1,m1,m2, ...,ml) of comitants of the system s(1,m1,m2, ...,ml). Obviously

SI(1,m1,m2, ...,ml) ⊂ S(1,m1,m2, ...,ml).

The maximal number of algebraically independent elements of the Sibirsky graded

algebra S is denoted by ρ(S).

Let R be a finitely generated algebra over a field K. By the virtue of Krull’s theorem

the maximum number of elements of R that are algebraically independent over K is the same

as the Krull dimension of R. Hence ρ(S) is the Krull dimension of the Sibirschi algebra S.

A natural question is of course: Which properties of s(1,m1,m2, ...,ml) are described

in SI(1,m1,m2, ...,ml) and S(1,m1,m2, ...,ml)? In particular, the following problem may

be considered as the generalized Poincaré Center-Focus Problem (see [13, 2, 14]):
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P4. The problem of finding the number ρ(S(1,m1,m2, ...,ml)).

In [13, 14] was proved the following unexpected assertion.

Theorem 1. ρ(S(1,m1,m2, ...,ml)) = 2(Σ{mi : 1 ≤ i ≤ l} + l) + 3 for any system

s(1,m1,m2, ...,ml).

In this context, in [13] was formulated the following

Conjecture. β ≤ 2(Σ{mi : 1 ≤ i ≤ l}+ l) + 3 for any system s(1,m1,m2, ...,ml).

Present interest the following open question

P5. For which n there exist two polynomials P (x, y) = Σ{Pmi
: i ∈ {0, 1, 2, ...l}} and Q(x, y)

= Σ{Qmi
: i ∈ {0, 1, 2, ...l}} for which:

- P (x, y) is a polynomial of degree n1, Q(x, y) is a polynomial of degree n2 and n =

maximum{n1, n2};
- β = 2(Σ{mi : 1 ≤ i ≤ l}+ l) + 3.

4. Krull’s dimension of spaces

Any space X is considered to be a Kolmogorov space, i.e. for any two distinct points

x, y ∈ X there exists an open subset U of X for which the intersection U ∩ {x, y} is a

singleton set.

A subset F of a space X is called an irreducible subset if for any two closed subsets

F1, F2 of X for which F ⊂ F1∪F2 we have F ⊂ Fi for some i ∈ {1, 2}. The closure clX{x} of

the singleton set {x} is irreducible. A sober space is a topological space X such that every

non-empty irreducible closed subset of X is the closure of one point of X. If F = clX{x},
then x is a generic point of the set F . A non-empty irreducible subset has a unique generic

point.

Denote by |L| the cardinality of a set L.

The following assertion is obvious.

Proposition 1. A subset L of a space X is irreducible if and only if the its closure clXL is

irreducible.

Example 1. Let X = {1, 2, 3} with the topology {∅, X, {2}, {1, 2}, {2, 3}}. Then X is a

sober irreducible space and the closed subspace Y = {1, 3} is discrete and not irreducible.

A closed subspace of a sober space is a sober space.

Example 2. Let ω = {0, 1, 2, ..., n, ...} and X = {0, 1, 2, ..., n, ..., ω} with the topology

{∅, X} ∪ {X \ F : F is a finite subset of ω}. Then X is a sobre irreducible space and the

subspace Y = {0, 1, 2, ..., n, ...} is irreducible and not sober.

Define the Krull dimension dk(X) of a space X to be the maximum n such that there

exists a chain of pairwise distinct non-empty irreducible closed sets F0, F1, F2 ..., Fn such that

F0 ⊂ F1 ⊂ F2 ⊂ ... ⊂ Fn. If Y is an irreducible closed subset of X the Krull co-dimension

co-dkX(Y ) of Y in X is the supremum over all n such that there is a chain of pairwise distinct

non-empty irreducible closed sets F0, F1, F2 ..., Fn such that Y ⊂ F0 ⊂ F1 ⊂ F2 ⊂ ... ⊂ Fn.

We observe that dk(X) = co-dkX(∅). We can assume that dk(X) = -1 for X = ∅.

From Proposition 1 it follows that dk(Y ) ≤ dk(X) for any subspace Y of a space X.

If {Xi : i ∈ Nn = {1, 2, ..., n}} is a finite family of closed subspaces of a space X, n ≥ 2

and X = ∪{Xi : i ∈ Nn}, then dk(X) = supremum{dk(Xi) : i ∈ Nn}. This fact follows
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from Claim 1 in the proof of the following proposition.

Proposition 2. Let {Xi : i ∈ Nn} be a finite family of subspaces of a space X, n ≥ 2 and

X = ∪{Xi : i ∈ Nn}. Then:

1. If F is a closed irreducible subset of X, then there exists i ∈ Nn such that Fi =

F ∩Xi is an irreducible subset of the spaces Xi and X, and F = clXFi.

2. If F is a closed irreducible subset of X, i ∈ Nn, Fi = F ∩Xi and F = clXFi, then

Fi is an irreducible subset of the spaces Xi and X.

3. dk(X) = Σ{dk(Xi) : i ∈ Nn}.
Proof. In the first we prove the following assertion.

Clam 1. Let F be an irreducible subset of the space X, γ is a finite family of closed subsets

of X and F ⊂ ∪γ. Then F ⊂ Y for some Y ∈ γ.

The assertion follows from the definition for |γ| ≤ 2. Assume that k > 2 and the

assertion is true provided |γ| < k. Fix a collection γ of closed subsets of X for which |γ| = k

and F ⊂ ∪γ. Now fix Y ∈ γ and put γ1 = γ \ {Y }. We have two possible cases.

Case 1. F ⊂ ∪γ1.
Since γ1| = k − 1 < k, there exists Z ∈ γ1 such that F ⊂ Z.

Case 2. F 6⊂ ∪γ1.
We put Z = ∪γ1. Then F ⊂ Z ∪ Y and F 6⊂ Z. Hence F ⊂ Y ∈ γ. The proof of

Claim 1 is complete.

Clam 2. If F is a closed irreducible subset of X, then there exists i ∈ Nn such that F =

clX(F ∩Xi).

We put Fi = F ∩ Xi and Φi = clXFi. Then γ = {Φi : i ∈ Nn} is a finite family of

closed subsets of X and F ⊂ ∪γ. Thus F ⊂ Φi for some i ∈ Nn. Claim is proved.

Assertion 2 follows from Proposition 1.

Fix a chain of pairwise distinct non-empty irreducible closed sets F0, F1, F2 ..., Fm

of the space X such that F0 ⊂ F1 ⊂ F2 ⊂ ... ⊂ Fn. We put Fij = Fj ∩ Xi. Let Ai =

{j : 0 ≤ j ≤ m,F = clXFij} and mi = |Ai|. Then mi ≤ dk(Xi) and, by virtue of assertions

1 and 2, we have m ≤ Σ{mi : i ∈ Nn} ≤ Σ{dk(Xi) : i ∈ Nn}. Assertion 3 is proved. The

proof is complete.

Proposition 3. Let {Xi : i ∈ Nn} be a finite family of sober subspaces of a space X, n ≥ 2

and X = ∪{Xi : i ∈ Nn}. Then:

1. If F is a closed irreducible subset of X, i ∈ Nn, Fi = F ∩Xi and F = clXFi, then

Fi is an irreducible subset of Xi and the generic point x ∈ Xi of Fi in Xi is a generic point

of F in X.

2. X is a sober space.

Proof. Assertion 1 follows from Proposition 1. Assertion 2 follows from assertions 1 and

Proposition 2.

5. Spectrum of a ring

Let R be a commutative ring [9, 5]. A subset I of R is called an ideal of R if:

1. (I,+) is a subgroup of the group (R,+).

2. R · I ⊂ I.
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3. If R is an algebra over field K, then K · I ⊂ I for any ideal I of R.

An ideal I of R is said to be prime ideal if x, y ∈ R and x ·y ∈ I implies I ∩{x, y} 6= ∅.

The set of all prime ideal of R, is denoted by Spec(R), is called spectrum of the ring

R. Let A be an ideal of R and let V (A) be the collection of all prime ideal contains A. The

collection of all V (A) satisfies the axioms of closed subsets of a topology for Spec(R), called

the Zariski topology for Spec(R). The space Spec(R) is a compact Kolmogorov space.

For any commutative ring R and m ∈ N the following assertions are equivalent:

1. dk(Spec(R) = m.

2. If I0 ⊂ I1 ⊂ ... ⊂ In is a chain of distinct prime ideals of R, then n ≤ m.

From Theorem 1 it follows that dk(S(1,m1,m2, ...,ml)) = 2(Σ{mi : 1 ≤ i ≤ l}+ l) + 3

for any system s(1,m1,m2, ...,ml).

6. Representation of a class of problems

The problem of determining the finite numbers nα, nβ and β (see (5) in Section 2), or

obtaining for them some numerical boundaries from the top, is important for the complete

solution of the Center-Focus Problem. Obviously the Center-Focus Problem is a difficult one.

So far, no general methods have been found for studying the Poincaré-Liapunoff quantities

(2). In particular, there is no a general strategy to solve. Another impediment is the

enormous calculations that can not be overcome by the modern supercomputers, even for

the system s(1, 2, 3), not to mention more complicated systems. From a psychological point

of view, there are also impediments to the human conservatism to explore the problems

traditionally, classically. History confirms that new, unusual methods with great difficulty are

approved and valued at their fair value. However, according to Kurt Gödel’s incompleteness

theorem, as a rule, the resources created up to now are not sufficient for further studies.

Therefore, it is undeniable that the successes of the future depend to a large extent on the

newly created tools.

The study of a new problem or an unsolved problem, applying the methods of solving

the known problem is done by various methods: the method of substitution of the variables;

the method of crossing on limit, etc. Some of them have been well-known since ancient times

and have generated new methods, appropriate to the mathematical concepts of the respective

period. For example, with the method of crossing on limit, Hopf has solved the quasi-linear

equations. In [8] the method of substitution of algebraic operations was successfully used in

the solving of some problems of the theory of differential equations.

The principle of contrast revealed in ”matter and anti-matter”, ”parallel spaces”,

”world and anti-world” penetrates into the essence of the universe, thus constituting amaz-

ing ”symmetries” in the world of known phenomena. From a mathematical point of view

such ”symmetries” are built based on the duality principle. To build a duality means to

determine a correspondence between certain types of objects, where each property of the

original object corresponds to a particular property of that object in that correspondence.

In any duality, their ”objects” and ”properties” have dual ”objects” and ”properties”. Any

concrete duality is a valuable event for these theories. The dualities in the projective ge-

ometry, the duality of Pontryagin in the theory of the local compact Abelian groups, the
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Kolmogorov–Gelfand duality of compact spaces and functional Banach algebras, the duali-

ties of Serre and Alexander in the topology, the duality of Radu Miron of the Cartan spaces

and the Finsler spaces, the duality of De Morgan in the theory of sets, the Stone duality

between zero-dimensional compact spaces and Boolean rings, wave-particle duality in quan-

tum mechanics, Kramers–Wannier dualism in statistical physics, etc. This method, which

is also an ”anti-analogy reasoning”, determines from the point of view of formal logic that

many objects different in form and content are built in a similar way.

From this point of view, represent interest some correspondences of concrete class of

objects of one theory into other theory. Let A and B be two theories, P be a class of problems

of the theory A and S(P ) be a set of solution of the problem P ∈ P. A correspondence

Ψ : P −→ B is a representation of the class of problems P in the theory B if:

- Ψ(P ) is a problem of the theory B for any problem P ∈ P;

- if P ∈ P and Ω ∈ S(P ) is a given solution of the problem P , then Ψ(Ω) is a solution

of the problem Ψ(P ).

In this case the problem Ψ(P ) is a generalized form of the initial problem P ∈ P.

Solving generalized forms is important if for a long time there is no solution for the initial

problem. Moreover, the solutions of the generalized problem propose strategies and hypothe-

ses to solve the initial problem. Some estimates in the generalized problem solution can serve

as working hypotheses for the initial problem. Furthermore, the solution to the generalized

problem reflects possible ways of examining some particular cases.

Denote by E the theory of polynomial differential systems (1), by R the theory of com-

mutative algebras and by T the theory of topological spaces. For any problem s(1,m1,m2, ...,

ml) is determined the number {β} as the set of solutions S(s(1,m1,m2, ...,ml)).

The correspondence ΨA : D −→ R, where ΨA(s(1,m1,m2, ...,ml)) = S(s(1,m1,m2, ...,

ml) and D is the set of all equations (1), is a representation of the class of problems D in

the theory R. We have ΨA(β) = dk(S(1,m1,m2, ...,ml)) for any problem s(1,m1,m2, ...,ml)

(Theorem 1).

The correspondence ΨT : D −→ T, where

ΨT (s(1,m1,m2, ...,ml)) = Spec(S(1,m1,m2, ...,ml))

is a representation of the class of problems D in the theory T. We have

Ψa(β) = dk(Spec(S(1,m1,m2, ...,ml)))

for any problem s(1,m1,m2, ...,ml) (Theorem 1).

Therefore the number dk(S(1,m1,m2, ...,ml)) = dk(Spec(S(1,m1,m2, ...,ml))) is a

generalized solution of the Center-Focus Problem of the system s(1,m1,m2, ...,ml).
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and Computer Sciences, ASM, Chişinau, 2001, 224 p. (in Russian).

12. Popa M. N. Algebraic methods for differential systems. Editura the Flower Power, Uni-

versitatea din Piteşti, Seria Matematică Aplicată şi Industrială, 2004, (in Romanian).
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