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CONDITII DE INTEGRABILITATE PENTRU SISTEMUL DIFERENTIAL
LOTKA-VOLTERRA CU UN FASCICOL DIN DOUA DREPTE INVARIANTE
SI O CUBICA INVARIANTA

Rezumat. Pentru sistemul diferential Lotka-Volterra sunt determinate conditiile de existentd a unui
fascicol format din doua drepte invariante si o cubica invarianta ireductibild. Aplicand teoria Darboux de
integrabilitate se studiaza integrabilitatea sistemelor obtinute cu trei solutii algebrice.

Cuvinte-cheie: sistemul diferential Lotka-Volterra, curbe invariante algebrice, integrabilitate.

1. Introduction
A planar polynomial differential system is a differential system of the form

x=Pxy), y=0(xy), 1)
where P(x,y) and Q(x,y) are real polynomials, x = %,y = % denotes the derivatives

with respect to independent variable t. We say that the polynomial differential system (1)
has degree n, if n = max{degP(x,y),degQ(x,y)}. In particular, when n=2, a
differential system (1) will be called a quadratic system.

In this paper we consider the quadratic system of differential equations

x=x(a;x +by+c¢) =Pxy), ¥y=y(ax+byy+c) =Q(x,y), (2)
in which all coefficients a,, bq,c;,a,, b,,c, and variables x = x(t), y = y(t) are
assumed to be real. The system (2) introduced by Lotka and Volterra appears in
chemistry and ecology where it models two species in competition. It has been widely
used in applied mathematics and in a large variety of physical topics such as laser
physics, plasma physics, neural networks, hydrodynamics, etc [1]. Many authors have
examined the integrability of system (2).

The Darboux integrability of (2) by using invariant straight lines and conics was
investigated in [2]. The integrability of (2) via polynomial first integrals and polynomial
inverse integrating factors was studied in [1]. The complete classification of systems (2)
in the plane having a global analytic first integral was provided in [3]. The family of
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systems (2) according to their geometric properties encoded in the configurations of
invariant straight lines which these systems possess was classified in [4].

The integrability conditions for some classes of quadratic systems (2) having an
irreducible invariant cubic curve were obtained in [5] and [6].

In this paper we study the integrability of system (2) using invariant algebraic
curves, two invariant straight lines and one irreducible invariant cubic curve, passing
through one singular point, i.e. forming a bundle of invariant algebraic curves.

The integrability conditions will be found modulo the symmetry

(xl }’; a1; b11 Cly aZ; bz, CZ) - (y: x, b21 a21 C2; bl; a11 Cl)' (3)

2. Invariant cubic curves

In this section we find the conditions under which the Lotka-Volterra system (2) has
a bundle of two invariant straight lines and one irreducible invariant cubic.

Definition 2.1. An algebraic curve ®(x,y) =0 in C* with ®(x,y) € C[x,y] is an
invariant algebraic curve of a differential system (2) if the following identity holds

D b + T2 0) = 0K () @
for some polynomial K(x,y) € C[x,y] called the cofactor of the curve ®(x,y) = 0.

By Definition 2.1, a straight line C + Ax + By =0, A,B,C€C, (A,B)# 0isan
invariant straight line of system (2) if and only if there exists a polynomial K(x,y) =
vy + ax + By such that the following identity holds

A-P(x,y)+B-Q(x,y) = (C + Ax + By)(y + ax + By). (5)

If the quadratic system (2) has complex invariant straight lines then obviously they
occur in complex conjugated pairs C + Ax + By = 0 and C + Ax + By = 0.

By using the identity (5), it is easy to verify that the quadratic system (2) has always
two invariant straight lines x = 0 and y = 0 with cofactors K; = a;x + b,y + ¢; and
K, = a,x + b,y + c,, respectively.

By Definition 2.1, a cubic curve

D(x,y) = azox3 + ay X%y + axy% + agzy® +
+azox? + ayxy + agey? + ajox + agy =0, (6)
where a;; € R, i +j = 1,2,3 and (aso, az1, 12, a3) # 0 is said to be an invariant cubic
curve of system (2) if the identity (4) holds for some polynomial K(x,y) =y + ax +
By, called the cofactor of the invariant cubic curve ®(x,y) = 0.

Identifying the coefficients of the monomials x‘y/ in (4) for cubic curve (6), we
reduce this identity to an algebraic system of fourteen equations
Uso = azo(3a; — ) =0,

Usy = az1(2ay + a; — B) + a3o(3b; —y) =0,
Uz = agp(ay + 2a; — B) + az(2by + b, —y) =0,

32



Uiz = ay5(by + 2b; —y) + ag3(3a, — B) =0,

Uos = ag3(3b, —v) =0,

Uso = az0(2a; — B) + azo(3¢c; —a) =0,

Uzr = ay1(ay + az — B) + az(2by —y) + az1(c; + 2¢; —a) =0, (7)
Uiz = ay1(by + by —y) + ap(2a; — B) + ag2(2¢; + ¢4 —a) =0,

Uos = ag2(2b; —v) + ap3(3c; —a) =0,

Uzo = ajo(ay — B) + azo(2¢; —a) =0,

U1 = agi(a; — B) + aro(by —y) + agi(cz + ¢4 —a) =0,

Uoz = ao1(b; —¥) + ag2(2¢c; —a) =0,

U = ayo(cy —a) =0,

U1 = ag1(c; — @) =0,
for the unknowns asg, a,1, @12, A3, A20, A11, Ag2, A19, Ag1 ANA a, B, Y.

To simplify derivation of the invariant cubic curves from (7) we use the following
assertion proved in [7] .
Lemma 2.1. Suppose that a polynomial system (1) of degree n has the invariant algebraic
curve ®(x,y) = 0 of degree m. Let P,, Q,, and ®,,, be the homogeneous components of
P, Q and @ of degree n and m, respectively. Then the irreducible factors of ®,, must be
factors of yP, — xQ,,.

According to Lemma 2.1, the irreducible factors of ®; must be the factors of

yP, —xQ; = xyl[(a; — az)x + (by — by)yl.

The symmetry (3) implies ®(x, y) = 0 to have one of the following forms

D(x,y) = x3 + ayox?® + ay1xy + agyy? + aj0x + ag,y = 0, (8)
D(x,y) = x%y + ayox? + ay xy + agyy? + ajox + ag;y =0, 9)
O (x,y) = xy[(a; — ay)x + (by — by)yl + ayex? + a1 xy + agy? +

+a10x + a01y = 0, (10)
O (x,y) = x*[(a; — a)x + (by — b))yl + azox® + ay1xy + ag,y* +

+a10x + a01y == 0, (11)
@ (x,y) = x[(a; — a)x + (by — by)y]* + azox? + a1 xy + agyy? +

+a10x + a01y == 0, (12)
@ (x,y) = [(ay — az)x + (by — b)y? + azex? + ajyxy + agy* +

+a10x + aOly = 0, (13)

where a,, a1, Aoy, 19, Aoy are unknown coefficients.

We study the consistency of system (7) for each cubic curve (8) - (13) and
determine the conditions under which the Lotka-Volterra system (2) has an irreducible
invariant cubic. We assume that

(a? + b? + a5 + b3)(a? + c?) (b2 +c3) # 0 (14)
and that
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a2 _b, _¢

= = 15
a b o (15)

do not hold simultaneously. These conditions ensure the system (2) to be not linear and
the vector field defined by (2) to be not constant.

There are proved the following theorems:
Theorem 2.1. The quadratic differential system (2) has an irreducible invariant cubic of
the form (8) if and only if one of the following sets of conditions holds:

i 3a i 3b
() az = Tl’bl = bZ = 0, CZ = Cl; ( ) bZ = 71, CZ = Cl;
i = =b, = = Cq; v 3b
(iii) a, =3ay,by =b; =0, ¢c; =¢y; (iv) a, = 3a, b, = 71,C2 = ¢y
\Y; 5a 3b Vi 3a
() a2=_1: 2=_1,C2=C1,' ( ) a2=_1, b1=b2=0,C1=2C2;
3 2 2
Vii 5a 3b Viii = =bh, = = :
( ) az — _1’ ) — _1, Cl — 2C2, ( ) aZ Zaly bl bZ 0, CZ 3C1,
2 2
IX = =b, = = 2¢q; X 3b
( ) a, 3611, b1 bz 0, (o) 2C1; ( ) a, = 2a1,b2 — 71’ c, = 3C1;
(xi) 15a, 3b,
a2=T, 2=T,C2=2C1.

Proof. Let ®(x,y) = 0 be of the form (8). We study the consistency of system (7) with
aso =1, a,; = a;, = ays = 0. In this case the equations U,, = 0, U3, = 0 of (7) yield
B =3a;,y =3band Uy = a;o(@ —c¢1) =0,Up; = ag1(a@—cy) = 0.

1) Assume that a;, = ay; = 0. In this case, the equations U,, = 0 and Uy,; = 0
imply @« = 2¢, and b, = (3b,)/2.

Let ¢, = ¢4, then ayg = ¢, /ay. If by =0, then a, = (3a4)/2, a;; = 0 and we get
the invariant cubic

(a;x + ¢)x? + ag,a,y? = 0

with cofactor K;(x,y) = 3a,x + 2c;, where a,c;a,, # 0. We obtain the set of
conditions (i) of Theorem 2.1. If b; # 0 and a, = 2a,, then ¢; = 0. In this case we
obtain a set of conditions which is contained in (x).

Suppose that b,(2a, — a,) # 0. Then express a,; from U;, =0 and a,, from
U,, = 0. We get the invariant cubic

2(3a; — 2a,)((a1x + ¢;)(2a; — az)x — bycy)x + bic;y? =0

with cofactor K;(x,y) = 3a,x + 3b;y + 2¢,, Where a,c,b,(2a, — a,)(3a, — 2a,) # 0.
We obtain the set of conditions (ii) of Theorem 2.1.

Let c, # c;. Then a,, = a,; = 0. In this case the system (7) has no solutions.

2) Assume that a,;qa,; # 0. Then @ = ¢, ¢, = ¢; and c;a; # 0. We express a,,
from U;, = 0, a,, from U,, = 0, a,, from Uy, = 0 and a,; from U,; = 0. Then
Uys = (3b; — b,)(3by — 2b,) = 0.
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Let b, = 3b; and a, = 3a,. In this case b, = 0 and the system (2) has an invariant

cubic curve
(a1x + ¢1)*x + ag,a?y =0
with cofactor K;(x,y) = 3a,x + ¢;, where a,c;a,; # 0. We get the conditions (iii).

When b, = 3b; and a, # 3a,, the system (7) is not consistent.

Let b, = (3b,)/2, b; # 0 and express a,; from U;, = 0. In this case we have
U,; = (5a; — 3a,)(3a, — a,) = 0. If a, = 3a,, then we get the set of conditions (iv).
The invariant cubic is

9a,x(a;x + ¢;)? + 18a,b,c;xy + 3b%c;y? + 2byciy =0
with cofactor K;(x,y) = 3a,x + 3b,y + ¢;, where a,c;b; # 0.
If a, = (5a,)/3, then we obtain the set of conditions (v). The invariant cubic is
a;x(a;x + ¢;)? — 6a,b;c;xy — 9b%c,y? — 6bc?y =0
with cofactor K;(x,y) = 3a,x + 3b,y + ¢;, where a,c,b; # 0.

3) Assume that a,, # 0 and let a,; = 0. Then a,, # 0 and @ = ¢;. In this case we
express c;, b,, ao, @49, ay; from the equations Uy, =0, Uy3 =0, U3, =0, U,, = 0,
U1 = 0, respectively. If b; = 0 and a, = (3a,)/2, then we obtain the invariant cubic

(a1x + 2¢,)%x + aga?y? =0
with cofactor K;(x,y) = 3a,x + 2c,, where a,c,a,, # 0. We get the conditions (vi).
If b; # 0 and a, = (5a,)/2, then we find the invariant cubic curve
a,x(a;x + 2¢,)? + 8a,;bycyxy + 2b%c,y? =0
with cofactor K;(x,y) = 3a;x + 3b,y + 2c,, where a,b,c, # 0. We determine the set
of conditions (vii).

4) Assume that a,; #+ 0 and let a,, = 0. Suppose that ay, = a,, = 0. Then ¢, =
3¢y and b, = 3b;. If a;; = 0, then the system (7) is not consistent. If a,; # 0, then b, =
0 and a, = 2a,. In this case we obtain the invariant cubic

ax3+a,y(c; +a;x) =0
with cofactor K;(x,y) = 3(a,;x + ¢;), where a,c,a,, # 0. We get the conditions (viii).

Let ay, = 0 and a,, # 0. In this case from the equations of (7) we find that a = c,,
C; = 2¢y, by = 3Dy, ayp = ¢1/ay, 411 = ap1(3a; — az)/c.

If b, = 0 and a, = 3a,. Then (2) has an invariant cubic curve

a,x3 + cx% + agia,y =0
with cofactor K;(x,y) = 3a,x + 2c;, where a,c;ay; # 0. We obtain the set of
conditions (ix). If b, = 0 and a, = 2a,, then the cubic curve (8) is reducible.

Let a,, = 0 and ay, # 0. In this case the equations of (7) yield @ = c,, ¢, = 3¢y,
b, = (3b1)/2, apy = (2¢1a02) /b1, a11 = 2ap2(3a; — a3)/b;.

When a, = 2a,, we get the set of conditions (x). The invariant cubic is

b,x3 + 2ag,a,xy + ag b y? + 2a4,c,y =0
with cofactor K;(x,y) = 3(a;x + byy + ¢;), where a,c;b,ay, # 0.
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Let a,oay, # 0. In this case the equations of (7) yield a = c¢,, ¢, = 2¢;, b, =
(3b1)/2, az = c1/as, agz = (3b1a01)/(4¢1), 11 = ap1(3a; — az)/cy.
If a, = (15a,)/8, then we obtain the set of conditions (xi). The invariant cubic is
9a2x?(a;x + ¢;) — 72a,;b,c;xy — 48b%c,;y? — 64b,ciy =0
with cofactor K;(x,y) = 3a,x + 3b,;y + 2¢4, where a,c,b; # 0. Theorem 2.1 is proved.
Theorem 2.2. The quadratic differential system (2) has an irreducible invariant cubic of
the form (9) if and only if one of the following sets of conditions is realized:

(I) az == 0, bz == 2b1, CZ - Cl; (”) az = _al, b1 == O, C2 == Cl;
(l”) az = _al, b2 - 2b1, Cz - Cl; (lV) az = _al, bz == Zbl, Cl == 2C2,
(V) a, =0, b, = 2by, ¢; = 2¢y; (vi) a, =0, by =0, ¢, = 2¢;.

Proof. Let ®(x,y) = 0 be of the form (9). We study the consistency of system (7) with
a,; =1, azg = a;, = ay3 = 0. In this case the equations Us; = 0, U,, = 0 of (7) yield
B =2a,+a,y=2by+b,.

1) Assume that a;, = ay; = 0. Then a,ya,y, # 0 and the equations of (7) yield a =
2¢y, ¢ = ¢1,a; = 0,by = 2by, a1y = (—2a1G02) /by, 30 = (2a9205 +byc;)/(2b7).
In this case obtain the set of conditions (i) of Theorem 2.2. The invariant cubic is

x2(2ag,a? + 2b2y+b,c;) — 4a,byag,xy + 2biag,y? =0

with cofactor K;(x,y) = 2(a;x + 2b,y + ¢;), Where a,,b; # 0.

2) Assume that a,yay; # 0. Then a = ¢4, ¢, = ¢;. Let a,, = 0, then the equations
Uzo = 0,Up; = 0,Uy, = 0yield a, = —ay, ay; = (2¢1)/ay, agp = (—2b1¢;)/(3a7).

If b, = 0, then we get the set of conditions (ii). The invariant cubic is

(2a?x + 4a,c)xy + 2a?a,0x + (2¢ — a;a,0b,)y =0

with cofactor K;(x,y) = a;x + b,y + ¢;), where a;oa,(2¢f — a,a,4b,) # 0.

If b; # 0, then b, = 2b, and we obtain the set of conditions (iii) of Theorem 2.2.
The invariant cubic (9) looks

9a,b,xy(a;x + 2¢;) — 6bic,y? + 8a,cix — 3b,cty =0

with cofactor K;(x,y) = a;x + 4b,y + ¢;, where a,c,b; # 0.

Suppose that a,, # 0 and let a, = 0. Then the equations U,, = 0,U,, = 0,U;; = 0
yield ayo = (a1a10)/¢1, @o2 = (2b1a01)/c1, a1 = (2a1a01 + byay9 + byase)/c1.

When b; = 0, the cubic is reducible. If b; # 0, then we express a,, from U,, = 0
and a,, from U,; = 0. In this case the cubic (9) is also reducible.

3) Assume ay; = 0 and let a,, # 0. Then a,, # 0 and a = c,. The equations U, =
0, Uys = Ovyield ¢; = 2¢,, b, = 2b,. If a,, =0, then a, = —a,, a;; = (3¢,)/ay,
ag, = (—bycy)/(a?), ayo = c2/(a,by). In this case we get the set of conditions (iv) of
Theorem 2.2. The invariant cubic (9) is

2a,b;xy(2a;x + 3¢;) — 2bZ2c,y* + a;ctx =0

with cofactor K;(x,y) = a;x + 4b,y + c;, where a,c,b; # 0.
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If a,, # 0, then a, = 0. In this case a,, = (2c,a,0)/a4, a;1 = (6b1ayy)/aq, Az =

(3¢,)/(8b,) and we obtain the set of conditions (v). The invariant cubic is
a,b;xy(8a,x + 18¢,) + 3aZc,x? — 9bic,y? + 6a,c5x = 0
with cofactor K;(x,y) = 2(a;x + 2b,y + ¢;), where a,c,b; # 0.

4) Assume a;o = 0and let ay; # 0. Then a,y # 0, @ = ¢y,a, = 0 and ¢, = 2¢;.

Let ayp, =0. Then b, =0 and a,; = (2a,a4,)/c;. In this case we have the
invariant cubic

2aix*(y + azo) + 2a,(2¢; — byaz0)xy + ¢1(2¢; — byaze)y = 0
with cofactor K;(x,y) = 2a,x + b,y + 2¢;, where a;c,a,,(2¢c; — bya,,) # 0. We get
the set of conditions (vi) of Theorem 2.2.

Let ay, # 0. Then b, = 2b;, ay, = (b1a01)/c1, a11 = (2a1a41)/c1, a; =0 and
a,o, = ¢;1/b,. In this case the cubic curve (9) is reducible. Theorem 2.2 is proved.
Theorem 2.3. The quadratic differential system (2) has an irreducible invariant cubic of
the form (10) if and only if the following set of conditions is satisfied
1) a, =—ay4, by =0, ¢, =c¢4.

Proof. Let ®(x,y) = 0 be of the form (10). We study the consistency of system (7) with
a,; = a, — a,, a;, = by — b,, azy = ay3 = 0. In this case the equations U;; = 0, U;3 =
0 of (7) yield § = 2a, + a,, y = by + 2b,.

1) Assume that a,, = ay; = 0. Then a,ya,, # 0 and the equations of (7) imply
a =2¢y, ¢; =¢,a; = by =0, ayy = (—2a;a9,—by¢1) /b, az0 = a1(a1a02+byc1)/b3.
In this case the invariant cubic (10) is reducible.

2) Assume that a,qay; # 0. Then a =c¢;,¢c, = c;.Whena,y, = a,, =0, the
equations of (7) yield a, = —a,,b, = —by, ay; = ¢, =0, a;o = (ap1a,)/ b;. In this
case the cubic curve is reducible.

Suppose that a,, # 0 and let a,, = 0. Then from the equations of (7) we find that
ay = —ay, by =0, ay; = 4cy,a0, = (—2by¢1)/ ay, agy = (—2¢1)/ ay, ayo = (4¢7)/ b
In this case the cubic curve (10) is reducible.

Suppose that a,, # 0 and let ay, = 0. Then from (7) we determine that a, = 0,
b, = —by, ay; = —4cy, ayo = (—2¢)/ by, azo = (—2a1¢1)/ by, agy = (—4ci)/ a;.

In this case the cubic curve (10) is also reducible.

When a,,ay, # 0, the equations of (7) yield b, = a, = a;; =0, a;y =c?/ b,,
ag, = (—c?)/ aq, ayy = (ayc;)/ b, and ay, = (—b,c;)/ a,. The cubic (10) is reducible.

3) Assume a,, #= 0 and let ap; = 0. Then ay, # 0, by =0 and a = ¢; = 2¢c,. We
express a,q, a1, a;o from the equations U,, = 0, U;, = 0, U;; = 0 of (7).

If ¢, = 0 or a, = 0, then the cubic curve (10) is reducible. Suppose that a,c, # 0,
then a, = —a, and ay, = (—8b,c,)/(3a,). In this case we get the set of conditions (i)
of Theorem 2.3. The invariant cubic (10) looks

3a,b,xy(2a,;x — b,y + 6¢,) — 8b3c,y? + 9a,cix = 0
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with cofactor K;(x,y) = a,x + 2b,y + 2c,, where a,c,b, # 0.

4) Assume ay, # 0 and let a;, = 0. This case is symmetric to the case 3) and we
obtain the set of conditions symmetric to (i). Theorem 2.3 is proved.
Theorem 2.4. The quadratic differential system (2) has an irreducible invariant cubic of
the form (11) if and only if one of the following sets of conditions holds:

(i) 3a, (i) a, =3a,, by =0, ¢, = cy;
az == 2 ,bz - 2b1, CZ - Cl; 2 1 1 2 1
i 5a V) by = =3¢y
( ) a, = 31’ bz — 2b1, C, = ¢y ( ) bl 0! Cy 3611
(V) 15a (Vi) a, =3ay, by =0, ¢, = 2¢q;
a, = 7 ! B bz = 2b1, Cy, = 3C1,' 2 1 1 2 1
(vii) 5a, o (viii) 7a, o
az - T, b2 - Zbl, C2 - ?, az = ?, bz = 2b1, CZ = ?

Proof. Let ®(x,y) = 0 be of the form (11). We study the consistency of system (7) with
Az = A, — Ay, Ay; = by — by, a1, = a3 = 0. In this case the equations U,y = 0, U,, =
0 of (7) yield 8 = 3a,, y = 2b; + b,.

1) Assume that a;y = ay; = 0. Then a4, # 0 and a = 2¢,. Suppose that ¢, = ¢y,
then b, = 2b;. We express a,; and a,, from the equations U;, = 0 and U,; = 0 of (7).

If a, = (3a,)/2, then we get the set of conditions (i). The invariant cubic is

a,x3 + 2b;x%y + cix? — 2a,,y> =0

with cofactor K5(x,y) = 3a,x + 4b,y + 2¢,, where a,b,a,y, # 0. If a, # (3a,)/2, then
ay, = (b%c;)/[a,(2a, — a,)]. In this case the invariant cubic (11) is reducible.

Suppose that ¢, # c¢;. Then a,, = a,; =0, b, = 2b; and a, = (3a,)/2. In this
case the algebraic system (7) is not consistent.

2) Assume that a,yay; # 0. Then a = ¢y, ¢, = ¢; and c;a; # 0. We express a,,
Qg2, Aq1, A4 from the equations U,, = 0, U,, = 0, U;; = 0, U3, = 0 of (7).

Let b, = 0. If a, = 2a,, then the invariant cubic (11) is reducible.

If a, = 3a,, then we obtain the set of conditions (ii). The invariant cubic is

a;x%(2a,x + b,y + 4c;) + 2b,cixy + 2¢ix — ag;a,y = 0

with cofactor K;(x,y) = 3a,x + b,y + ¢;, where a,c;b,ay; # 0.

If (a, —2a;)(a, —3a;,) #0 and ay, = (—byc?)/ a2, then (11) is reducible.

Suppose that b; # 0. Then Uy; = 0 vyields b, = 2b;. If a, = 3a,, then ay; =
(—b,c?)/ a? and the invariant cubic (11) is reducible.

Let a, # 3a;. Then express a,, from U,; =0. In this case U, = (3a; —
2a,)(5a; — 3a,) = 0. If a, = (3a,)/2, then the invariant cubic (11) is reducible.

If a, = (5a,)/3, then we get the set of conditions (iii). The invariant cubic is

a?x*(2a;x + 3byy + 4c,) — 6a,;byc;xy — 18bic,;y? + 2a,¢ix — 9b ¢ty = 0
with cofactor K;(x,y) = 3a,x + 4b,y + ¢;, where a,c,b; # 0.
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3) Assume that a,; # 0 and let a;, = 0. Then a = c,. Suppose that a,, = ay, =
0, then b, =0, ¢, = 3¢; and a,; = (2b,c;)/(a, — 2a,). When a, = 3a,, we get a set
of conditions which is contained in (ii). When a, # 3a,, we express a,; from U;; = 0.
In this case we get the set of conditions (iv). The invariant cubic is

(Ba; — a;)(2a; — ay)(2a,x + byy)x? + 2by,c?y =0
with cofactor K;(x,y) = 3a,x + b,y + 3c,, where a,c,;b,(3a; — a,)(2a, — a,) # 0.

Let a,paq, # 0. Then ¢, = 2¢; and b, = 2b,. We express a,;, from U;, = 0, a,,
from U,; = 0, ay, from Uy, = 0 and a, from U;; = 0. In this case the invariant cubic
(11) is reducible.

Let a,, =0 and ay, # 0. Then from the equations of (7) we find that a,, =
(2b1ao1)/ (3¢1), ayy = (6a1a01)/ (7¢1), agy = (49bicf)/ (3af) and a, = (15a,)/ 7.
In this case we get the set of conditions (v) of Theorem 2.4. The invariant cubic is

a?(72a,x + 63b;y)x? — 882a,b,c;xy — 686bZc;y?> — 1029b,c?y = 0
with cofactor K;(x,y) = 3a,x + 4b,y + 3¢, where a,c,b; # 0.
Let a,, # 0 and a,, = 0. Then from the equations of (7) we find that
by =0, ¢c; = 2¢1, Gz9 = (a1011)/b3, 411 = ap1(3a; — ay).
If a, = 3a,, then we obtain the set of conditions (vi). The invariant cubic is
(2a;x + b,y + 2¢)x* —ag,y =0
with cofactor K;(x,y) = 3a,x + b,y + 2¢,, where a,b,c,;ay; # 0.

If a, # 3a,, then express a,, from U;, = 0. The invariant cubic is reducible.

4) Assume that a;, # 0 and let aj;, = 0. Then ¢ = ¢,, b, = 2b, and ¢, = ¢; /2.
We express a,,, a,1, a4y, from the equations of (7) and obtain that

U,, = (7a, — 6a,)(5a, — 2a,) = 0.
If a, = (5a,)/2, then we get the set of conditions (vii). The invariant cubic is
a?x?(3a;x + 2b;y + 6¢;) + 18a,b,c;xy + 3a,cix + 9bic,y?> =0
with cofactor K;(x,y) = 3a,x + 4b,y + ¢;, where a,c,b; # 0.
If a, = (7a,)/6, then we get the set of conditions (viii). The invariant cubic is
a?x?(a,x + 6b;y + 2¢;) + 6a,b,cixy + a;c?x — 9bic,y? =0
with cofactor K;(x,y) = 3a,x + 4b,y + ¢;, where a,c,;b; # 0. Theorem 2.4 is proved.
Theorem 2.5. The quadratic differential system (2) has an irreducible invariant cubic of
the form (12) if and only if one of the following sets of conditions is realized:

) a = %: b, =0, c; =cy; () a; =3ay,b, = =by, ¢; = cy;
(i) a, = %, b, = —b;y, ¢; =cy; (v) a, = %,bz = —by, ¢, = 3¢y;
V) a, = %' by =0, ¢z =3cy; “ 42 = %’ bi=0, ¢ =3cy

Vil) @ =7ay, by =—b,c;=2¢,; (Vi) S,

3
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(ix) 4 5a; (x) 3a, Cy

2= b =0c=2¢; Ay =—" b1 =0,c==;
(xi) 5a, o)
aZ =TI b1 = 0, CZ =?.

Proof. Let ®(x,y) = 0 be of the form (12). We study the consistency of system (7) with
azo = (a; — az)% ay; = 2(a; — ay)(by — by), ay, = (by — by)?, ag3 = 0.

In this case we have U,, = a,y(c; —¢c;) =0, U;; = ay1(c; —c,) =0 and the
equations U,, =0, Us; =0 of (7) yield g =3a,, ¥y = b, +2b,. We divide the
investigation into the following cases:

1) Assume that a;, = ag; = 0. Then ay, # 0 and @ = 2¢,, b; = 0.

Let ¢, = c¢;. Then express a,; from U;, = 0 and a,, from U;, = 0. If a, = 2a,,
then the cubic curve (12) is reducible. If a, = (3a,)/2, then we get the set of conditions
(i) of Theorem 2.5. The invariant cubic is

x(a;x + 2b,y)? + a,c,x? + 4bycixy + 4ay,y? =0
with cofactor K;(x,y) = 3a,x + 2b,y + 2¢,, where ay,a,b, # 0.

If (a, —2a,)(2a, —3a;) # 0, then U,; = 0 implies ay, = (b5c;)/a, and the
invariant cubic (12) is reducible.

Let ¢, # ¢4, then a,, = ay, = 0. In this case the system (7) is not consistent.

2) Assume that a,pay; # 0. Then a = ¢;,c, = ¢; and ¢y b,a; # 0. We express a,,
from U,, = 0, a,, from U,, = 0 and a,; from U;; = 0, then U,, = b;(b, + b,) = 0.

Suppose that b; = 0 and express a,, from U;, = 0. If a, = 2a,, then the cubic
curve (12) is reducible. Let a, # 2a,and express a,; from Uz, = 0. If a, = 3a, or a, =
(3a,)/2, then the cubic (12) is reducible.

Suppose that b, = —b,, b; # 0and express a,, from U;, = 0. If a, = 3a,, then
we obtain the set of conditions (ii) of Theorem 2.5. The invariant cubic is

4x(a;x — byy)? + 8a,c,x? — 8b,cixy + 4cix + ag,y =0
with cofactor K;(x,y) = 3a,x — b,y + ¢;, where ay,a,b,c; # 0.
If a, # 3a,, then express a,; from U,; = 0. In this case a, = (5a;)/3 and we get
the set of conditions (iii) of Theorem 2.5. The invariant cubic is
a,x(a;x — 3byy)? + 2aic;x? — 18a,b,cyxy + a;cix — 12b,cty = 0
with cofactor K;(x,y) = 3a,x — b,y + ¢;, where a,b,c; # 0.
3) Assume that ay; # 0 and let a,;, = 0. Then @ = ¢, and
Uzo = ay(2¢; — c3) = 0.

Let a,, = 0. Then Uz, = 0 yields ¢, = 3¢;. If ¢, = 0, then b, = —b,,a, = 3a, and
this case is contained in (ii). When ¢, # 0, we express a,;, from U;; = 0, a,, from U,, =
0 and obtain that Uy; = b,(b, + b;) = 0.

If b, = —b,, then express a,y; from U;, = 0. In this case a, = (5a,)/3 and we get
the set of conditions (iv) of Theorem 2.5. The invariant cubic looks

a,x(a;x — 3b,y)? — 36a,b,c;xy — 27b,ciy =0
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with cofactor K;(x,y) = 3a,x — b;y + 3¢;, where a;b,c; # 0.
If b, # —b,, then b; = 0. We express a,, from U,, = 0 and obtain that
U,; = (5a; — 2a,)(3a; — 2a,) = 0.

Suppose that a, = (5a,)/2. In this case we obtain the set of conditions (v). The

invariant cubic is
a,x(3a;x + 2b,y)? — 48a,b,c;xy — 32b5y? — 96b,c2y = 0
with cofactor K;(x,y) = 3a,x + 2b,y + 3¢, Where a,b,c; # 0.

Suppose that a, = (3a,)/2, then we obtain the set of conditions (vi) of Theorem

2.5. The invariant cubic is
9a,x(a;x + 2b,y)? + 144a,b,c,xy + 32b3c,y? + 96b,ciy = 0
with cofactor K;(x,y) = 3a,x + 2b,y + 3¢, where a,b,c; # 0.

Let a,, # 0. Then Us, = 0 yields ¢, = 2¢;. We express a,, from U;; =0, a,
from Uy, = 0 and obtain that Uy,; = b,(b, + b;) = 0. If b, = —b;, then express ay;
from U,, = 0, a,, from U,; = 0 and we get Us, = (a, — 7a,)(3a, — 5a,) = 0.

When a, = 7a,, we get the set of conditions (vii). The invariant cubic is

4a,x(3a,x — by;y)? + 36a2c,x* — 12a,b,c;xy + 3b,ciy =0
with cofactor K;(x,y) = 3a;x — b;y + 2¢,, where a;b,c; # 0.
When a, = (5a,)/3, we obtain the set of conditions (viii). The invariant cubic is
4a,x(a;x — 3b,y)? + 4a?c;x? — 108a,b,c;xy — 81b,;c?y = 0
with cofactor K;(x,y) = 3a,x — byy + 2¢4, where a,b,c; # 0.

If b, # —b4, then Uy; = 0 yields b; = 0. We express a,; from U;, = 0, a,, from
U,, = 0 and we find that U;, = (5a, — 2a,)(3a, — 2a,)(3a,; — a,) = 0.

When a, = 3a, or a, = (3a,)/2, the cubic curve (12) is reducible. When a, =
(5a,)/2, we obtain the set of conditions (ix). The invariant cubic is

a,x(3a,x + 2b,y)? + 9a%c;x* — 12a,b,cxy — 12b%c,y? — 24b,ciy = 0
with cofactor K;(x,y) = 3a,x + 2b,y + 2¢,, Where a,b,c; # 0.

4) Assume that a,, # 0 and let ay; = 0. Then ay, # 0, a =c¢;, by =0 and ¢, =
¢, /2. We express a,, from U,, = 0, a,, from U,;; = 0, a,, from U3, = 0 and obtain that
U,;, = (5a; — 2a,)(3a, — 2a,) = 0.

If a, = (3a,)/2, then we get the set of conditions (x). The invariant cubic is

x(a,x + 2b,y)? + 2a,¢,x% + 4bycixy + 4ag,y? + c2x =0
with cofactor K;(x,y) = 3a,x + 2b,y + c;, where a,b,c; # 0.

If a, = (5a,)/2, then ay, = (4b%c,)/a, and we obtain the set of conditions (xi).
The invariant cubic is

a;x(3a,x + 2b,y)? + 18a%c,x? + 36a,b,c;xy + 16b3c;y? + 9a,c?x = 0
with cofactor K;(x,y) = 3a,x + 2b,y + ¢;, where a,b,c; # 0. Theorem 2.5 is proved.
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Theorem 2.6. The quadratic differential system (2) has an irreducible invariant cubic of
the form (13) if and only if one of the following sets of conditions holds:
(l) a2 == 2a1, b1 = 2b2, CZ = C]_ = 0; (”) al(bl - 4‘b2) + a2(3b2 - Zbl) = 0,

CZ = Cl;
ii 5a iv 7b
( ) az = Tl, bl = 3b2, CZ = Cl; ( ) b1 = TZ, az = 5a1, CZ = 3C1,
v 7b 9a Vi 4b
( ) bl = TZ, az = Tl,CZ = 3C1; ( ) bl = TZ’ aZ = O, CZ = 3C1;
vii 5b viii 5b
( ) bl = Tzl a, = 4a1, Cy, = 2C1,' ( ) b1 = 72, a, = —5a1, Cy = 2C1;
2 4 » M1 2 )y L2 1’ 2 4 » V1 6 » L2 1

Proof. Let ®(x,y) = 0 be of the form (13). We study the consistency of system (7) with
azp = (a1 — az)?, a;; = 3(a; — ay)(by — b))%, az; =3(a; — a)*(by — by), ag3 =
(b; — b,)3. In this case the equations U,y = 0, U3, = 0 of (7) yield 8 = 3a,, y = 3b,.
We divide the investigation into the following cases:

1) Assume that a;, = ay; = 0. Letay, =0and a;; = 0. Then a = 2¢,, ¢, = ¢; =
0 and a; = 0. We obtain a contradiction with conditions (14).

If ap, = 0 and a,; # 0, then ¢; = 2¢,, @ = ¢; + ¢,. In this case the system (7) is
consistent only if a,, = 0. We get the set of conditions (i) of Theorem 2.6. The invariant
cubic is

(a;x — byy)® —a;1xy =0
with cofactor K;(x,y) = 3(a;x + b,y), where a,;;a,b, # 0.

Let ay, # 0. Then @ = 2¢, and U,y = (¢; — ¢,)a, = 0, U4 = (¢ — ¢3)a,; = 0.
Suppose that ¢, = ¢;. Then b,a,; # 0. We express a,, from U;, = 0 and a,, from Uy; =
0. If a, = 2a4, then the cubic curve (13) is reducible. If a, # 2a,, then express a,, from
U,, =0, and U;, = 0 becomes U,, = e,e,e; = 0, where e; = a;b;, — 2a,b, + a,b,,
e, = 2a,b; — 3a,b, — a,b; + 2a,b,, e; = 3a,b; — 4a,b, — 2a,b; + 3a,b,.

If e, =0 or e, =0, then the cubic curve (13) is reducible. If e; = 0, then we
obtain the set of conditions (ii) of Theorem 2.6. The invariant cubic looks

a1b,(2a; — ay)[(a; — ax)x — (by — b)y)® + c1by(ay — a;)%(2a; — ay)x* +

+2a;byc1(by — by)(ar — ax)?xy + ascy(by — by)°(2a; — ay)y* = 0,
where K;(x,y) = 3a,;x + 3b,y + 2¢, and c;a,b,(2a, — a,)(a, — a,)(b; — b,) # 0.

Suppose ¢, # ¢4, then a,, = a;; = 0 and the system (7) has no solutions.

2) Assume that a,yay; # 0. Then a = ¢;, ¢, = ¢4 and ¢y b,a; # 0. We express a,,
from U,, = 0, a,, from U,, =0, a,; from U;; =0, ay; from U,; = 0 and a,, from
U;o, = 0.In this case the equations U,; = 0 and U,;, = 0 have a common factor h =
a;b, — 2a,b, + a,b,. If h = 0, then the cubic (13) is reducible.
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Let h # 0 and suppose b, = 3b,. Then we obtain an irreducible cubic curve of the
form (13) only if a, = (5a,)/3. We get the set of conditions (iii). The invariant cubic is

(a;x — 3b,y)3 + 2a%c;x? — 36a,b,c,xy — 54a3c,y? + a;cix — 27b,c2y = 0
with cofactor K;(x,y) = 3a,x + 3b,y + c;, where ¢;a; b, # 0.

Suppose that h(b; — 3b,) # 0 and let a, = 3a;. Then (2) has an irreducible cubic
curve only if b; = (5b,)/3. In this case we obtain the set of conditions symmetric to (iii).

Let h(b; — 3b,)(a, — 3a,) # 0. Then the system of equations (7) (U,; =0, U}, =
0) is not consistent.

3) Assume that ay; # 0 and let a;, = 0. Then a = ¢, and

Uzo = ay(2¢1 — c3) = 0.

Suppose that a,, = 0. Then Uz, = 0 yields ¢, = 3c; and c;b, # 0. We express a,,

from Uy; = 0, ay; from Uy, = 0 and a,, from U;; = 0. In this case
Uz = (3by — 7b,)[(Bay — az)by — 2(2a, — a;)b,] = 0.

If b, = (7b,)/3 and a, = 5a,, then we obtain the set of conditions (iv) of Theorem

2.6. The invariant cubic is
(3a;x — byy)® + 18a,b,c,xy — 6b2c,y? — 9byciy = 0
with cofactor K;(x,y) = 3(a;x + b,y + ¢;), where c;a, b, # 0.

If b, = (7b,)/3 and a, = (9a,)/5, then we obtain the set of conditions (v) of

Theorem 2.6. The invariant cubic is
(3a,x — 5b,y)3 — 1350a,b,c,xy — 750b5¢,;y? — 1125b,c2y = 0
with cofactor K;(x,y) = 3(a;x + b,y + ¢;), where ¢;a, b, # 0.

Suppose that 3b, —7b, # 0 and let (3a, —a,)b; — 2(2a, — a,)b, = 0. Then

U, = 0 imply a, = 0. We get the set of conditions (vi). The invariant cubic looks
(3a,x + byy)® + 27a,b,cixy + 6b3c,y% + 9byciy =0
with cofactor K;(x,y) = 3(a;x + b,y + ¢;), where ¢;a, b, # 0.

Suppose that a,, # 0, then U,, = 0 yields ¢, = 2¢; and a;c,;b, # 0. We express
aq, from Uy, =0, a;; from U;; =0, ay, from Uy; = 0 and a,, from Us, = 0. In this
case U, = (2b; — 5b,)[2b,(3a; — a;) — b,(9a, — 5a,)] = 0.

If by = (5b,)/2 and a, = 4a,, then we obtain the set of conditions (vii) of
Theorem 2.6. The invariant cubic is

(2a,x — b,y)3 + 8aic;x? + 4a,byc,xy — 6bic,y? — 4b,ciy =0
with cofactor K;(x,y) = 3a,x + 3b,y + 2¢,, Where ¢;a, b, # 0.

If b, = (5b,)/2 and a, = —5a,, then we obtain the set of conditions (viii) of

Theorem 2.6. The invariant cubic is
(4a,x + byy)® + 64a%c,x? + 32a,b,cxy + 4bsc,y? + 4byciy =0
with cofactor K;(x,y) = 3a,x + 3b,y + 2¢,, where ¢;a, b, # 0.

If b, = (5by)/2 and a, = (7a,)/4, then we obtain the set of conditions (ix) of

Theorem 2.6. The invariant cubic is
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(a;x — 2b,y)3 + a?c;x? — 40a,b,cixy — 32b5c,y? — 32byciy =0

with cofactor K;(x,y) = 3a,x + 3b,y + 2¢,, Where ¢;a, b, # 0.

Suppose that 2b; — 5b, # 0 and let 2b,(3a; — a,) — b,(9a, — 5a,) = 0. Then
U,; = a,(3a; —4a,) = 0. If a, = 0, then the cubic curve (13) is reducible.

If a, = (3a,)/4, then we obtain the set of conditions (x). The invariant cubic is

(3a,x + 2b,y)3 + 27a%c,x? + 72a,b,c,xy + 32b5¢,y? + 32b,ciy = 0

with cofactor K;(x,y) = 3a,x + 3b,y + 2¢,, Where c;a, b, # 0.

4) Assume that a,, # 0 and let ay,; = 0. In this case we obtain the sets of
conditions symmetric to (iv) - (X). Theorem 2.6 is proved.

3. Darboux theory of integrability

Let the polynomial differential system (1) have the invariant algebraic curves
®;(x,y) =0, j =1, ...,q with cofactors K;(x,y). Then in most cases a first integral (an
integrating factor) can be constructed in the Darboux form [8]

q):flll(b;lz CDZCI
and we say that the polynomial system (1) is Darboux integrable.

Theorem 3.1. The system (1) has a Draboux first integral

F(x,y) = @) d7 = C (16)
if and only if there exists constants a; € C, not all identically zero, such that
h K (x,y) + h Ko (x,y) + -+ hg Ky (x,y) =0, (17)

where K;(x, y) are the cofactors of ®;(x,y) =0,j=1,...,q.
Following [8], the relation (16) is a first integral for system (1) if and only if
oF (x,y) dF (x,y)
Tox TN rT50
If a first integral cannot be found, Darboux proposed to search for an integrating
factor p of the same form.

Theorem 3.2. The system (1) has a Draboux integrating factor
hq

(x,y) =0.

T S SR (18)
if and only if there exists constants o; € C, not all identically zero, such that
oP 0
hiKi(x,y) + h Ky (x,y) + -+ hg Ky (x,y) + I + % =0, (19)

where K;(x, y) are the cofactors of ®;(x,y) =0,j=1,..,q.
Following [8], the relation (18) is an integrating for system (1) if and only if

ou ou daP
P(x,y)a+ Q(x,y)@+u<a+a) = 0.

How many invariant algebraic curves ®;(x,y) = 0 must admit the system (1) to
have a Daroux first integral or a Darboux integrating factor? Darboux proved
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Theorem 3.3. Suppose system (1) has g distinct invariant algebraic curves ®;(x,y) = 0,
j=1,..,q.1fqg = n(n + 1)/2, then either we have a Darboux first integral or a Darboux
integrating factor.

By Theorem 3.3, in the case of quadratic system (2), if g = 3, then either we have a
Darboux first integral or a Darboux integrating factor.

The method of Darboux is very useful and elegant one to prove integrability for
some classes of differential systems depending on parameters [8].

4. Darboux first integrals
In this section we determine the sets of conditions from Theorems 2.1 — 2.5, under
which the quadratic system (2) has Darboux first integrals of the form
xhyhaphs = (, (20)
where x = 0,y = 0 are invariant straight lines, @ = 0 is an irreducible invariant cubic of
the form (6) and h,, h,, h; are real numbers.
To construct the first integrals (20) we take into account the cofactors
K, (x,y),K,(x,y) and K;(x,y) of these algebraic solutions, obtained in the proofs of
Theorems 2.1 — 2.5. Then we apply the identity (17)
hiKi(x,y) + hy Ky (x,¥) + h3K3(x,y) =0 (21)
to each set of conditions from Theorems 2.1 — 2.5. It was proved the following theorem.
Theorem 4.1. The Lotka-Volterra system (2) has a Darboux first integral of the form
(20) if one of the following conditions is satisfied:

(i) a, = %,Iﬁ b, =0, = cy; (i) a, =3ay, by =b, =0, ¢, = cq;
(iii) a, = %’ b= b, =0, ¢ = 2,; (iv) a, =2a,, by =b, =0, ¢, = 3¢y;
(V) a, =3a4, by =b, =0, ¢, = 2¢y; (vi) o, = 2a,,b, = 37111, ¢, = 3¢,

(vii) a, = %.bz _2b,, ¢ =y (viii) a, =3ay, b; =0, ¢, =cy;
(ix) a, = %’ b, = 2b,, ¢, = cy; (X) a, =3ay, by =0, ¢, = 2¢y;
(xi) a, = %’ b =0, ¢, = cy: (xii) a, = 3ay,b, = —by, ¢, =cy;

(xiii) a, = %, b; =0, ¢, = 2¢q; (xiv) a, = %, b, =0, c, = %;
(Xv) a, = 2ay, by =2by, c; =c; =0;  (xvi) b, = % 0, = 4a, ¢, = 2¢;

2
(XV”) al(bl - 4b2) + a2(3b2 - Zbl) = 0,

Cz == Cl'
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Proof. We use the identity (21) for each set of conditions from Theorems 2.1 — 2.5.
Substituting in this identity the expressions of the cofactors and identifying the
coefficients of x°, x,7y, we obtain systems of algebraic equations for the unknowns h,, h,
and hs. Solving the obtained systems we determine the exponents hy, h, and h;.
Applying the identity (21) to the sets of conditions from Theorem 2.1, we obtain:
In case (i), ® = (a;x + ¢;)x* + ap,a,;y* =0 and hy; =2, h, =2, hy =—1.
In case (ii), ® = (a;x +¢;)?’x+ap;a?y =0 and h; =2, h, =1, h; = —1.
In case (iii), ® = (a;x + 2¢,)*x + ag,aiy? =0 and h;, =2, h, =2, hy = —1.
In case (iv), ® = a;x®*+ a;;y(c; +a;x) =0 and h; =3, h, =0, h; = —1.
Incase (V), ® = a;x3 + ¢;x* + ag,a,y=0and h, =0, h, =1, h; = —1.
In case (vi), ® = b;x3 + 2ag,a;xy + agyb,y* + 2a4,¢,y = 0 and
h, =3, h, =0, h; =—1.
Applying the identity (21) to the sets of conditions from Theorem 2.4, we have:
In case (vii), ® = a;x3 + 2b;x%y + cix? — 2a4,y? =0and h; =0,h, =2,h; = —1.
In case (viii), ® = a,;x%(2a;x + b,y + 4c;) + 2b,cixy + 2¢ix — ag,a,y = 0
and h, =0, h, =1, h; =—1.
In case (ix), ® = a?x?(2a,x + 3b;y + 4c;) — 6a,b,c;xy — 18b%?c;y? + 2a,c?x —
—9b,c?y =0 and h; =-2, h, =3, hy=—1.
Incase (x), ® = (2a;x + b,y + 2¢;)x* —ag,y =0 and h; =0, h, =1, hy = —1.
Applying the identity (21) to the sets of conditions from Theorem 2.5, we get:
In case (xi), ® = x(a;x + 2b,y)? + a;c;x? + 4bycyxy + 4ay,y* = 0 and
h, =0, h, =2, h; =—-1.
In case (xii), ® = 4x(a;x — b;y)? + 8a,c,;x* — 8b,cyxy + 4c?x + ap;y = 0 and
h, =0, h, =1, h; =-1.
In case (xiii), ® = a;x(3a;x + 2b,y)? + 9aic,x? — 12a,b,c;xy — 12b3c,y? —
—24b,c?y =0 and h, = -2, h, =2, hy =—1
In case (xiv), ® = x(a,;x + 2b,y)? + 2a,¢,x? + 4b,cixy + 4ay,y? + c2x = 0 and
h, =0, h, =2, h; =—1.
Applying the identity (21) to the set of conditions from Theorem 2.6, we obtain:
In case (xv), ® = (a;x — b,y)®  —ay;xy=0and h, =1, h, =1, hy = —1.
In case (xvi), ® = 4a,x(3a,x — b;y)? + 36aic,x* — 12a,b,c;xy + 3b,c?y = 0 and
h, = =2, h, =2, hy; =—1.
In case (xvii), ® = a,b,(2a, — a,)[(a; — ay)x — (by — by)y]® + ¢;b,(a; — ay)® -
- (2a; — az)x*+2a1byc1(by — by)(a; — a)?xy + ascy(by — by)*(2a; — ay)y? =0
and h, =2a, —3ay, h, =a,, hy=a, —a,.
Theorem 4.1 is proved.
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5. Darboux integrating factors
In this section we determine the sets of conditions from Theorems 2.1 — 2.5, under
which the quadratic system (2) has Darboux integrating factors of the form
p=x"yt2@hs, (22)
where x = 0,y = 0 are invariant straight lines, ® = 0 is an irreducible invariant cubic of
the form (6) and h,, h,, h; are real numbers.
To construct the integrating factors (22) we take into account the cofactors
K, (x,v),K,(x,y) and K;(x,y) of these algebraic solutions, obtained in the proofs of
Theorems 2.1 — 2.5. Then we apply the identity (19)
u(7) + ok (6,7) + ks (,9) + 5+ 502 0 23)
for each set of conditions from Theorems 2.1 — 2.5. It was proved the following theorem.
Theorem 5.1. The Lotka-Volterra system (2) has a Darboux integrating factor of the

form (22) if one of the following conditions is satisfied:

i 3b i

() bzle,szcl; () a2=3a1,b2=71,6'2=c1;

(i) _Sa 3 _ (v _Sa, _3b _,
2 — T4 U2 — 75,02 — (g, 2 — T4 U2 =75, — 27
3 2 2 2

Y] 15a 3b Vi = =2 = Cq:

(V) a, = - 1’ , = Tl'CZ = 2¢,; (Vi) a, =0, b, by, ¢; = ¢y;
(V”) az == _al, b1 = 0, CZ = Cl; (V”l) az == _al, bz = Zbl, Cz = Cl;
(lX) az - _al, b2 == 2b1, Cl == 2C2; (X) a2 - 0, b2 - 2b1, Cl == ZCZ;
(Xl) az == 0, bl = 0, CZ = 2C1, (X”) a,z == —(11, bl = 0, Cz = Cl;

xiii) by =0 = 3¢y; Xiv 15a
( ) 1 0 G2 v ( ) a, = 7 1, b2 = 2b1, C, = 3C1;
XV 5a c XVi 7a o
( ) a, =71, bz =2b1, Cy =?1, ( ) a, :?1, b2 :Zbl, Cy :?1;
(xvii) 5a, (xviii) 5a,
a, = 3 b, = —by, ¢; = ¢cy; a; = T,bz = —by,c; = 3¢y;
XIX 5a XX 3a
( ) a2 == Tl, bl = 0, C2 = 3C1, ( ) az == Tl, bl == O, CZ = 3C1,
XX = = — = 2¢q; XXii 5a
(xxi) a, = 7a4, b, by, ¢, €1 ( ) a, = Tl' b, = —by, ¢; = 2¢y;
(XXiii)a—&b—Oc—c—l' (Xiv)a—&b—Bb C, = Cq;
2 — » V1 — Y, L2 ) 2 — » V1 — 2 2 — *D
2 2 3
XXV 7b XXVI 7b 9a
( ) bl = ?2, a, = 5a1, Cy = 3C1, ( ) b1 = TZ, a, = Tl,CZ = 3C1,
XXVII 4b XXVili 5b
( ) bl = TZ, az = 0, CZ = 3C1, ( ) b1 = TZ, az = —5a1, C2 = 2C1,
XXiX 7a 5b XXX 3a 7b
( ) az :Tl’ 1 :Tz, C2 :ch, ( ) a2 :Tl' 1 :TZ’ C2 :2C1.
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Proof. We use the identity (23) for each set of conditions from Theorems 2.1 — 2.5.

Substituting in this identity the expressions of the cofactors and identifying the

coefficients of x°, x,7y, we obtain systems of algebraic equations for the unknowns h,, h,

and hs. Solving the obtained systems we determine the exponents hy, h, and h;.
Applying the identity (23) to the sets of conditions from Theorem 2.1, we obtain:

In case (i), ® = 2(3a,; — 2a,)((a;x + ¢;)(2a; — a,)x — byc;y)x + bZc,y? = 0 and

_ 2(a; — 2ay) 3a, — 4a,

) 3 —

h, =2, h .
1 2 3(11 - 2a2 3(11 - Zaz

In case (ii), ® = 9a,x(a;x + ¢;)? + 18a,b,c;xy + 3b?c;y? + 2b;c?y = 0 and
hy=2  hy=-1/2, hy=-5/6.
In case (iii), ® = a;x(a;x + ¢;)? — 6a,;b,c;xy — 9b2c,y? — 6b,ciy = 0 and
hy=-5/2, hy=2  hy=-3/2.
In case (iv), ® = a;x(a;x + 2¢,)? + 8a,b;c,xy + 2b2c,y? = 0 and
hy=-1/4, hy=-1/2, hy=-1.
In case (V), ® = 9a?x?(a;x + ¢;) — 72a,b,c;xy — 48b%c,y? — 64b,c?y = 0 and
hy=-2  hy,=1/3, hy=-5/6.
Applying the identity (23) to each set of conditions from Theorem 2.2, we get:
In case (vi), ® = x2(2aq,a? + 2biy+b;ic;) — 4a,b;ay,xy + 2b?a,,y? = 0 and
hy=1, h,=0, hy=—3/2
In case (vii), ® = (2a?x + 4a,c)xy + 2a%a,0x + (2¢? — a,a,0b,)y = 0 and
hy=0, hy=-1/2, hy=-3/2.
In case (viii), ® = 9a,b,;xy(a;x + 2¢;) — 6b?c;y* + 8a,cix — 3b,ciy = 0 and
hy=-2/3, h,=-1/2, hy=—5/6.
In case (ix), ® = 2a,;b,xy(2a,x + 3¢;) — 2b?c;y* + a;cix = 0 and
hy=-1/3, h,=-1/3, hy=—1.
In case (X), ® = a;b;xy(8a,;x + 18¢,) + 3a?c,x? — 9b%c,y? + 6a,c5x = 0 and
h,=-1/3, h,=-2/3, hy=-5/6.
In case (xi), ® = 2a?x%(y + ayo) + 2a,(2¢c; — byaye)xy + ¢;(2¢; — bya,,)y = 0 and
hy=1,  hy,=-1/2, hy=—-3/2.
Applying the identity (23) to the set of conditions from Theorem 2.3, we obtain
the case (xii), with ® = 3a,b,xy(2a,x — b,y + 6¢,) — 8b2c,y? + 9a,c5x = 0 and
h,=0, hy=0  hy=—1.
Applying the identity (23) to the sets of conditions from Theorem 2.4, we have:
In case (xiii), ® = (3a, — a,)(2a; — a,)( 2a,x + b,y)x? + 2b,c?y = 0 and
a, —2a4 a, —4a,

3 =

h, =2, h, = , :
1 2 3a1_a2 3a1_a2

In case (xiv), ® = a?(72a,x + 63b,y)x? — 882a,b,c;xy — 686b%c;y* —
_1029b1C%y =0 and h'l = _2, hz = 1/6, h3 = _5/6.
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In case (xv), ® = a?x%(3a,x + 2b;y + 6¢;) + 18a,b,c;xy + 3a,cix + 9bic;y? =0
and hy; = —1/3, h, = —2/3, hy = —5/6.
In case (xvi), ® = a?x%(a;x + 6b,y + 2¢;) + 6a,b,c;xy + a;c?x — 9b%c,y? = 0 and
hy = —1/3, hy = —2, hy = —1/6.
Applying the identity (23) to the sets of conditions from Theorem 2.5, we get:
In case (xvii), ® = a;x(a;x — 3b,y)? + 2a%c,x* — 18a,b,cyxy + a,cix —
—12b,c2y =0and h, = —1/2, hy = —1, hy = —1/2.
In case (xviii), ® = a;x(a;x — 3b;y)? — 36a,b,c;xy — 27b,c?y =0 and
hy=—1/4  h,=—-1/4  hy =—1.
In case (xix), ® = a;x(3a,x + 2b,y)? — 48a,b,c,xy — 32b5y? — 96b,c?y = 0 and
hy=-5/2, hy=1  hy=—3/2.
In case (xx), ® = 9a,x(a;x + 2b,y)? + 144a,b,c,xy + 32b3¢c;y? + 96b,cZy = 0
and hy = -5/6, h, = —1/3, hy = —1/2.
In case (xxi), ® = 4a,x(3a,x — b;y)? + 36aic,x* — 12a,b,c;xy + 3b,c?y = 0 and
hy=-1/3, h,=-7/6, hy=—1/6.
In case (xxii), ® = 4a,x(a;x — 3b;y)? + 4a%c,x* — 108a,b,c;xy — 81b,c?y =0
and h, = —1/3, h, = —1/2, hy = —5/6.
In case (xxiii), ® = a;x(3a,x + 2b,y)? + 18ac;x? + 36a,b,c;xy + 16b5¢c,y? +
+9a,c?x =0 and h; = —1/2, h, = —1, hy = —1/2.
Applying the identity (23) to the sets of conditions from Theorem 2.6, we obtain:
In case (xxiv), ® = (a,;x — 3b,y)3 + 2a?c,x? — 36a,b,c;xy — 54a3c,y? + a,;cix —
—27b,c2y = 0and hy = —5/6, h, = —1/2, hy = —2/3.
In case (xxv), ® = (3a,x — b,y)® + 18a,b,c,xy — 6b%c,y?> — 9b,c?y = 0 and
hy=—5/2, h,=-3/2, hy=1.
In case (xxvi), ® = (3a;x — 5b,y)® — 1350a,b,c;xy — 750b%c,y*> — 1125b,ciy = 0
and hy =-1/2, h, =-1/6, hy; = —1.
In case (xxvii), ® = (3a;x + b,y)3 + 27a,b,c,xy + 6b5c,;y? + 9b,ciy = 0
and h, = -2, h, =-2/3, h; =0.
In case (xxviii), ® = (4a,x + b,y)® + 64afc;x* + 32a,b,c,xy + 4b5c,y* +
+4byc2y =0 and hy = —5/3, hy = —5/6, hs = 1/6.
In case (xxix), ® = (a;x — 2b,y)® + a?c,x? — 40a,b,c;xy — 32b3c,y? —
_32b,c2y =0 and h; = —2/3, hy = —1/3, hy = —5/6.
In case (xxx), ® = (3a,x + 2b,y)3 + 27a%c,x? + 72a,b,c,xy + 32b3c,y? +
+32byc2y =0 and hy = -2, hy = —5/9, hy = —2/9.
Theorem 5.1 is proved.
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Conclusion

For Lotka-Volterra system (2) with a bundle of two invariant straight lines and one
irreducible invariant cubic, modulo the symmetry (3), there were obtained 47 sets of
Darboux integrability conditions.
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