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CONDIȚIILE INVARIANTE DE STABILITATE ALE MIȘCĂRII PENTRU 

UNELE SISTEME DIFERENȚIALE PATRUDIMENSIONALE 

Rezumat. Au fost obținute condițiile centroafin invariante de stabilitate a mișcării neperturbate pentru 

sistemul diferențial patru dimensional pătratic de tip Darboux în condiția invariantă nedegenerată. 

Cuvinte-cheie:  sistemul diferențial, mișcarea neperturbată, invariant, comitant, algebra Lie, stabilitatea.  

 

1. Introduction 

In mathematics, stability theory addresses the stability of solutions of differential 

equations and of trajectories of dynamical systems under small perturbations of initial 

conditions.  

The differential systems with polynomial nonlinearities are important in various 

applied problems. For example: the Van der Pol oscillator; the Fitzhugh–Nagumo model 

for action potentials of neurons; in seismology to model the two plates in a geological 

fault; in studies of phonation to model the right and left vocal fold oscillators as well as 

many other applications. 

The stability of unperturbed motions using the theory of algebras, of invariants and 

of Lie algebras was studied for the first time in [1].  

In [2] the center-affine invariant conditions of stability of unperturbed motion, 

described by critical two-dimensional differential systems with quadratic nonlinearities 

s(1; 2), cubic nonlinearities s(1; 3) and fourth-order nonlinearities s(1; 4), were obtained.  

In this paper, the similar investigations are done for some four-dimensional 

differential systems with quadratic nonlinearities. 

 

2. Center-affine invariants and mixt comitants for four-dimensional differential 

system with quadratic nonlinearities 

We consider the system of differential equations  

 ( , ) , , 1,4 ,
j

j j jdx
a x a x x P x a j

dt

  

                                  (1) 
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where 
ja  is a symmetric tensor in lower indices in which the total convolution is done, 

and the group of center-affine transformations (4, )GL  given by formulas 

 , det 0;r r j r

j jx q x q   , 1,4r j  .                                   (2) 

Coefficients and variables in (1) are given over the field of real numbers . The phase 

variables vector  1 2 3 4, , ,x x x x x  of system (1), which changes by formulas (2), is usually 

called contravariant [3]. Any other vector  1 2 3 4, , ,y y y y y  which changes by formulas 

(2), is called cogradient with vector x . The vector  1 2 3 4, , ,u u u u u , which changes by 

formulas 

,j

r r ju p u  , 1,4 ,r j                                                  (3) 

where
r j r

j s sp q   is the Kronecker’s symbol, is called covariant.  The vector u  is also 

called contragradient with vector x .  

Applying the transformation (2), the system (1) will be brought to the system 

 , , 1,4 ,
j

j jdx
a x a x x j

dt

  

                                          (4) 

in which the coefficients are linear functions of  the coefficients of system (1) and are 

rational functions of parameters of transformation (2). We will denote the set of 

coefficients of system (1) by a , the set of coefficients of transformed system (4) by a , 

and the set of parameters of transformation (2) by q . 

According to [3], we say that the polynomial ( , , )k x u a  of the coefficients of system (1) 

and of the coordinates of vectors x   and u  is call mixt comitant of the system (1) with 

respect to (4, )GL group, if the following identity holds 

( , , ) ( , , ),gk x u a k x u a                                                    (5) 

for all q  from (4, )GL  and every coordinates of vectors x  and u , as well as all the 

coefficients a  of system (1), where g  is an integer number called the weight of comitant. 

If the mixt comitant k  does not depend on the coordinates of the vector u , then we call it 

simply comitant, but if k  does not depend on the coordinates of the vector x  we call it 

contravariant. If k  does not depend on x  and u , then we will call it invariant of system 

(1) with respect to (4, )GL group. 

The following center-affine invariant polynomials of the system (1) are known from [4]: 

1,4 ,I a

   2,4 ,I a a 

    3,4 ,I a a a  

     4,4 ,I a a a a   

     

1,4 ,P a x 

   2,4 ,P a a x  

    3,4 ,P a a a x   

     4,4 ,P a a a a x    

     

6,4 ,K a a a a a a x x x x         

        0,4 ,S u x   1,4 ,S a x u 
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2,4 ,S a a x u  

    3,4 ,S a a a x u   

     6,4 ,pqrs

p q r sR a a a a a a u u u u     

       

1,4

6,4

, 1,4

det ,
i

j

i j

S
R

x





 
  

 
  1,4 ,K a x x y z    

                     (6) 

  ,4 1,4iI i   are invariants,   ,4 1,4iP i   and  6,4K  are comitants,  ,4 0,3jS j   are 

mixed comitants, 6,4R  is contravariant, and 1,4K is comitant of cogradient vectors x , y , 

z  [3]. The vectors   and 
pqrs are four-dimensional unit vector with coordinates 1 

when an even permutation of the indices holds, -1 when an odd permutation of the 

indices holds and 0 in other cases.  

Remark 1. The characteristic equation of the system (1) has the form
 

4 3 2

1,4 2,4 3,4 4,4 0,L L L L                                          (7) 

where the coefficients of  equation (7) are invariants of system (1) and have the following 

form:  

1,4 1,4 ,L I 
  

 2

2,4 1,4 2,4

1
,

2
L I I 

  
 3

3,4 1,4 2,4 3,4 1,4

1
3 2 ,

6
L I I I I  

 

 2 2 4

4,4 1,4 3,4 4,4 1,4 2,4 2,4 1,4

1
8 6 6 3 ,

24
L I I I I I I I    

                        (8) 

where  1,4 1,4I i 
 from (6). 

 

3. Invariant conditions of stability of unperturbed motion  for system (1) in case 

when the roots of the characteristic equation have nonzero real parts 

Definition 1. If for any small positive value  , however small, one can find a positive 

number   such that for all perturbations 
0( )jx t  satisfying the condition  

 
22

0

1

( ) ,j

j

x t 


                                                       (9) 

the inequality   
22

1

( ) ,j

j

x t 


  is valid for any 0t t , then the unperturbed motion 

 0 1,4jx j   is called stable, otherwise it is called unstable. If the unperturbed 

motion is stable and the number   can be found however small such that for any 

perturbed motions satisfying (9) the condition  
22

1

lim ( ) 0,j

t
j

x t




 is valid, then the 

unperturbed motion is called asymptotically stable. 
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By means of the Lyapunov theorems on stability of unperturbed motion  by the 

signs of the roots of the characteristic equation (7) of system (1) and the Hurwitz theorem 

on the signs of the roots of an algebraic equation (see, for example, [5]) we have 

Theorem 1. Assume that the center-affine invariants (8) of system (1) satisfy inequalities                          

 ,4 0 1,4iL i  ,   
2 2

1,4 2,4 3,4 3,4 1,4 4,4 0L L L L L L   . 

Then the unperturbed motion  0 1,4jx j   of this system is asymptotically stable. 

Theorem 2.  If at least one of the center-affine invariant expressions (8) of system (1) is 

negative, then the unperturbed motion  0 1,4jx j   of this system is unstable. 

 

4. Invariant conditions of stability of unperturbed motion for system (1) in case 

when the characteristic equation has one zero root in conditions 6,4 1,40, 0R K   

Lemma 1. [4] If in (6) we have 1,4 0K   then the system (1) takes the form 

   1

12 , 1,4 .
j

j jdx
a x x a x j

dt

 

                                  (10) 

The system (10) is called four-dimensional differential system of Darboux type. 

Remark 2. The expression 6,4 0K   from (6) is the invariant partucular  4,GL 

integral of system (10). 

Remark 3. For any center-affine transformation of the system (6), its quadratic part 

retains its form changing only the variables and coefficients. This follows from the fact 

that the identity 1,4 0K   is preserved under any center-affine transformation. 

From [4] with considering Remark 3 it follows 

Lemma 2. If in system (10) we have 6,4 0R  , then by the center-affine transformation 

1 2 3 4

0,4 1,4 2,4 3,4, , , ,x S x S x S x S     

the system (10) can be brought to the following form : 

     1 2 1 1 2 3 2 1 3 4 3 1

1 1 12 , 2 , 2 ,x x x a x x x x a x x x x a x  

         

 4 1 2 3 4 4 1

4,4 3,4 2,4 1,4 12 ,x L x L x L x L x x a x                             (11) 

where   i,4 0,3S i   are from (6) and   j,4 1,4L j   are from (8). 

Definition 2. The differential system (1) will be called a critical system of Lyapunov type 

if the characteristic equation of the system has one zero root and all other roots have 

negative real parts. 

Notice that for system (11) the characteristic equation coincides with equation (7). 

Lemma 3. The system (1) or (11) is critical of Lyapunov type if and only if the following 

invariant conditions hold:  
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4,4 ,4 1,4 2,4 3,40, 0 ( 1,2,3), 0,iL L i L L L                         (12) 

where  j,4 1,4L j   are from (8).  

The proof of Lemma 3 follows from the Hurwitz theorem on the signs of the roots 

of an algebraic equation and from equation (7) (see, for example [5]). 

Notice that the system (11) in invariant conditions (12) by the center-affine 

transformation   

1 1 2 3 4 2 2 3 3 4 1

3,4 2,4 1,4 , , , ,x L x L x L x x x x x x x x        

can be brought to the canonical form 

   2 , 2 ,x x ax by cz du y z y ax by cz du          

   2,4 1,4 3,4 2 , 2 .z x L y L z L u z ax by cz du u y u ax by cz du             (13) 

According to Lyapunov’s theorem [6], we will build the power series by which we can 

determine the stability of unperturbed motion of system (13). The first equation in system 

(13) is called the critical equation, and the other three are called non-critical equations. 

Using the algorithm from Lyapunov’s theorem [6] we examine the equations generated 

by right-hand sides of latest three equations of system (13). We have non-critical 

equations    2 0 ,z y a x b y c z d u        2 , 4 1 , 4 3 , 42 0 ,x L y L z L u z a x b y c z d u       

 2 0y u ax by cz du     .  

We express ,x y  and z  from non-critical equations in the following way: 

 2 ,y u ax by cz du       2 ,z y ax by cz du      

 2,4 1,4

3,4 3,4 3,4 3,4

2L Lx z
u y z ax by cz du

L L L L
                                 (14) 

We will seek ,x y  and z  as a holomorphic function on x . Then we can write 

2 3 2 3 2 3

1 2 3 1 2 3 1 2 3( ) ..., ( ) ..., ( ) ...y x A x A x A x z x B x B x B x u x C x C x C x              (15) 

Substituting (15) into (14) we get  
2 3 2 3 2 3

1 2 3 1 2 3 1 2 3... 2( ...)[ ( ...)A x A x A x C x C x C x ax b A x A x A x              

2 3 2 3

1 2 3 1 2 3( ...) ( ...)],c B x B x B x d C x C x C x         

2 3 2 3 2 3

1 2 3 1 2 3 1 2 3... 2( ...)[ ( ...)B x B x B x A x A x A x ax b A x A x A x              

2 3 2 3

1 2 3 1 2 3( ...) ( ...)],c B x B x B x d C x C x C x         

2,4 1,42 3 2 3 2 3

1 2 3 1 2 3 1 2 3

3,4 3,4 3,4

... ( ...) ( ...)
L Lx

C x C x C x A x A x A x B x B x B x
L L L

              

2 3 2 3 2 3

1 2 3 1 2 3 1 2 32( ...)[ ( ...) ( ...)B x B x B x ax b A x A x A x c B x B x B x              

2 3

1 2 3( ...)].d C x C x C x     

This implies that 1 10, 0,A B  1 2 1 1 2

3,4

1
, 2 ( ), 0,C A C a dC B

L
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1 2,4 1

2

3,4

2 ( )
,

C L a dC
C

L


 3 2 1 2 12[ ( 2 )],A bA C C a dC    3 2 12 ( ),B A a dC    

3 2 1,4 1 2 1 2,4 2 2,4 1

3,4

2
[ ( ) ( 2 )],C A L a dC bA C L C L a dC

L
      

4 1 3 3 2 2 2 3 12[ ( ) ( ) ( 2 )],A C bA cB C bA dC C a dC       4 3 1 2 2 22[ ( ) ( )],B A a dC A bA dC      

4 3 3 1,4 1 2 1,4 2 2,4 2 2 1 2,4 3 3

3,4

2
[( )( ) ( )( ) ( )C B A L a dC A L C L bA dC C L bA cB

L
          

3 2,4 1( 2 )],...C L a dC                                                 (16) 

Substituting (15) into right-hand side of the critical equation (13) we get  

  2 3

1 2 32 ...,x ax by cz du D x D x D x        

or in expanded form we get 
2 3 2 3 2 3

1 2 3 1 2 3 1 2 32 [ ( ...) ( ...) ( ...)]x ax b A x A x A x c B x B x B x d C x C x C x              

2 3

1 2 3 ...,D x D x D x     

This implies that     

1 2 1 3 2 2 4 3 3 30, 2( ), 2( ), 2( ),D D a dC D bA dC D bA cB dC         

5 4 4 4 6 5 5 5 7 6 6 62( ), 2( ), 2( ),...D bA cB dC D bA cB dC D bA cB dC               (17) 

Using the Lyapunov’s theorem, in [7] was obtained 

Lemma 4. The stability of the unperturbed motion corresponding to system (13) is 

described by one of the following two possible cases: 

       
3,41) 0,L a d   then the unperturbed motion is unstable ;  

       
3,42) 0,L a d   then the unperturbed motion is stable.  

In the latter case the unperturbed motion belongs to some continuous series of stabilized 

motions, and moreover, if perturbations are small enough then perturbed motion will tend 

Asymptotically to one of stabilized motions. 

Proof.  According to Lyapunov’s theorem on stability of unperturbed motion in critical 

case [6], we examine the coefficients iD  from (17) taking into account (16). If 2 0D  , 

then we have first case from Lemma 4. If 2 0D  , then we obtain 0 ( 2)i i iA B C i      

from (16), therefore 0, 1,2,3,... .iD i   According to Lyapunov’s theorem we have the 

second case of  this lemma. Lemma 4 is proved. 

Theorem 3.  Let for differential system of the perturbed motion (1) the invariant 

conditions 6,4 1,40, 0R K   be satisfied. Then in conditions (12) the stability of 

unperturbed motion corresponding to this system is described by one of the following 

two possible cases: 

       3 2

1,4 1,4 1,4 2,4 1,4 3,4 1,4 1,4 2,4 2,4 2,4 1,4 3,4 4,41) 4( 3 2 ) 15( 2 2 ) 0,I P I I P I P I P I P I P P        then the 

unperturbed motion is unstable;  
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       3 2

1,4 1,4 1,4 2,4 1,4 3,4 1,4 1,4 2,4 2,4 2,4 1,4 3,4 4,41) 4( 3 2 ) 15( 2 2 ) 0,I P I I P I P I P I P I P P        then the 

unperturbed motion is stable.  

In the latter case the unperturbed motion belongs to some continuous series of stabilized 

motions, and moreover, if perturbations are small enough then perturbed motion will tend 

Asymptotically to one of stabilized motions. The invariant polynomials ,4 ( 1,4)iI i   and 

,4 ( 1,4)jP j   are given in (6).  

Proof. Using the system (13), obtained as a result of center-affine transformation in 

conditions 
6,4 1,40, 0R K   and (12) with the help of the invariant polynomials 

,4 ( 1,4)iI i   and ,4 ( 1,4)jP j   from (6), we obtain  

3 2

1,4 1,4 1,4 2,4 1,4 3,4 1,4 1,4 2,4 2,4 2,4 1,4 3,4 4,4 3,44( 3 2 ) 15( 2 2 ) 30( ) .I P I I P I P I P I P I P P L a d x         

Consequently taking into account Lemma 4 we obtain truth of this theorem. Theorem 3 is 

proved. 

 

5. Invariant conditions of stability of unperturbed motion for system (1) in case 

when the characteristic equation (7) has two pure imaginary roots in conditions 

6,4 1,40, 0R K   

Lemma 5. The characteristic equation (7) has two pure imaginary roots 1   and 

1   and the other two real and negative if and only if the following invariant 

conditions 

2 2

1,4 3,4 1,4 2,4 3,4 1,4 4,4 3,4 1,4 2,4 3,40, 0, 0, 0L L L L L L L L L L L                 (18) 

hold, where ,4 ( 1,4)iL i   are from (8). 

Proof.  Denote by ( 1,4)i i   the roots of characteristic equation (7). According to 

Vieta's theorem we have      

1 2 3 4 1,4 1 2 1 3 1 4 2 3 2 4 3 4 2,4, ,L L                           

1 2 3 1 2 4 1 3 4 2 3 4 3,4 1 2 3 4 4,4, .L L                                    (19) 

Let us suppose that 1 i   and 
2

2 ( 1)i i     , where 0   is real number. From 

(19) we obtain 

2 2 2

3 4 1,4 3 4 2,4 3 4 3,4 3 4 4,4, , ( ) , .L L L L                            (20) 

From the first and third equalities (20) we get  

3,4

1,4 3,4

1,4

( 0).
L

L L
L

                                           (21) 

Taking into account the first and second equalities from (20) we obtain 
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3,42

1,4 2,4

1,4

0 ( 3,4).j j

L
L L j

L
                                         (22) 

Using the Hurwitz theorem on the signs of the roots of an algebraic equation [5] and the 

inequality (21) we get first three conditions from (18). Substituting 
3 4   from second 

equality (20) into last equality (20) we obtain equality from (18). Lemma 5 is proved. 

Lemma 6. The characteristic equation (7) has two pure imaginary roots 1   and 

1   of multiplicity 2 if and only if the following invariant conditions 

2

2,4 1,4 3,4 2,4 4,40, 4 0,L L L L L                                           (23) 

hold, where ,4 ( 1,4)iL i   are from (8). 

Proof. Let us suppose that   

1 2 3 4, ,i i         
                                           

 (24) 

where 0   is real number.  From (19) we obtain  

2 4

1,4 3,4 2,4 4,40, 2 , .L L L L                                          (25) 

Because 0   is real number, from (25) we get 

2,4 2,4

1
( 0),

2
L L                                                     (26) 

and  

2

2,4 4,44 0.L L                                                           (27) 

The conditions (25)-(27) coincide with (23). Lemma 6 is proved. 

Theorem 4.  Let for differential system of the perturbed motion (1) the invariant 

conditions 6,4 1,40, 0R K   be satisfied. Then this system by center-affine 

transformation can be reduced to the form 1 2 3 4( , , , )x x y x z x u x     

a) in conditions (18):  

2 , 2 , 2 ,x y x P y x y Q z u z R                           (28) 

2

2,4 1,4( ) 2 ,u y L z L u u S         

where   is from (21),  ,4iL  is from (8) and  Ax By Cz Du      with , , ,A B C D  real 

constants.  

b) in  conditions (23):   

22 , 2 , 2 , 2 ,x y x y x y z u z u y z u                          (29) 

where   is from (26),  ,4iL  is from (8) and  Ax By Cz Du      with , , ,A B C D  real 

constants.  
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Proof.  a) As shown in the Lemmas 1 and 2 in conditions 6,4 1,40, 0R K   the system 

(1) by the center affine transformation is reduced to the form (11). In the case (18) the 

system (11) has the form 
1 2 3 4 1 1

11 12( , , , , , ,x x y x z x u x a a       1 1

13 14, )a a    

2

2
2 , 2 , 2 , 2 ,

b bcd
x y x y z y z u z u x by cz du u

d


                  (30)

 

where 
 

3,4 2,4 1,4, , , ( , , , ).b L c L d L x y z u                              (31) 

Let’s consider the transformation 
  

2 2( ) , ( ) , , ,X c y dz u Y c x d y z Z x U y                           (32) 

where according to (21) and (31) we have 
2 b

d
 

 
and determinant 

3 0.      

Making the transformation (32) in the system (30)-(31) we obtain for it the form (28). 

b) In the case (23) the system (11) has the form  

            4 22 , 2 , 2 , 2 2 ,x y x y z y z u z u x z u                         (33)
 

where 
 

2,4 2

1,4 3,4 2,4 4,4, , 0, 4 .
2

L
ax by cz du L L L L                                 (34) 

Let’s consider the transformation 
  

2 3, , , .X y u Y x z Z x U y                                           (35) 

According to (16) the determinant of transformation (35)  is
 
 

3 0.      

Making the transformation (35) in the system (33)-(34) we obtain for it the form (29). 

Theorem 4 is proved. 

 

6. The theorem on the integrating factor for a four-dimensional differential system 

Let's suppose that the system (1) admits the ( 1)n  - dimensional commutative Lie 

algebra with operators 

 ( ) 1,4; 1,3 ,j

j
X x j

x
  


  


                                (36) 

and  

 ( , ) 1,4 .j

j
P x a j

x


  


                                      (37) 

Let’s consider the determinant constructed on coordinates of operators (36)-(37) 

1 2 3 4

1 1 1 1

1 2 3 4

2 2 2 2

1 2 3 4

3 3 3 3

1 2 3 4P P P P

   

   

   
                                               (38) 
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Theorem 5. [4] If the four-dimensional differential system (1) admits three-dimensional 

commutative Lie algebra of operators (36), then the function 
1

 


 where 0   from 

(38) is the integrating factor for Pfaff equations 
2 3 4 1 3 4 1 2 4 1 2 3

2 2 2 2 2 2 2 2 2 2 2 2

2 3 4 1 1 3 4 2 1 2 4 3 1 2 3 4

3 3 3 3 3 3 3 3 3 3 3 3

2 3 4 1 3 4 1 2 4 1 2 3

0,dx dx dx dx

P P P P P P P P P P P P

           

                

2 3 4 1 3 4 1 2 4 1 2 3

1 1 1 1 1 1 1 1 1 1 1 1

2 3 4 1 1 3 4 2 1 2 4 3 1 2 3 4

3 3 3 3 3 3 3 3 3 3 3 3

2 3 4 1 3 4 1 2 4 1 2 3

0,dx dx dx dx

P P P P P P P P P P P P

           

                

2 3 4 1 3 4 1 2 4 1 2 3

1 1 1 1 1 1 1 1 1 1 1 1

2 3 4 1 1 3 4 2 1 2 4 3 1 2 3 4

2 2 2 2 2 2 2 2 2 2 2 2

2 3 4 1 3 4 1 2 4 1 2 3

0,dx dx dx dx

P P P P P P P P P P P P

           

                  (39) 

that determine the general integral of system (1). 

 

7. The Lie algebra of operators admitted by the system (28). Some particular 

integrals and one first integral of Darboux type 

Lemma 7. The Lie algebra of operators admitted by the system (28) has the form      

2 2 2

1 1 2 3 2[( ) ( ) ( ) 2 2 2 ]X Bd D c x Ad c y x xz C xu
x

       


        


 

2 2

1 2 3 2[ ( ) ( ) ( ) 2 2 2 ]Ad c x Bd D c y xy yz C yu
y

       


         


 

2 2 2

2 1 2 3 2[ ( ) ( ) 2 2 2 ]A c y c z xz z C zu
z

      


       


 

2 2 2

2 1 2 3 2[ ( ) ( ) 2 2 2 ] ,A c x c u xu zu C u
u

       


      


 

2 2 2 2

2 5 4 3 6 6[ ( ) ( )( 2 ) 2 2 2 ]X c x A c c y x xz C xu
x

         


        


 

2 2 2

5 4 3 6 6[ ( )( 2 ) ( ) 2 2 2 ]A c c x c y xy yz C yu
y

         


         


 

2 2 2

6 4 3 6 6[ ( ) ( ) 2 2 2 ]A c x c z xz z C zu
z

        


       


 

2 2 2 2

6 4 3 6 6[ ( ) ( ) 2 2 2 ] ,A c y c u xu zu C u
u

        


       


 

2 2 2

3 7 8 9[ ( ) ( ) 2 2 2 ]X B c x A c y x xz xu
x

      


        


 

2 2

7 8 9[ ( ) ( ) 2 2 2 ]A c x B c y xy yz yu
y
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2 2 2

7 8 9[ ( ) ( ) 2 2 2 ]B c z A c u xz z zu
z

     


        


 

2 2 2 2 2

7 8 9[ ( ) ( ) ( )( ) 2 2 2 ] ,A c y A c z Ad B c u xu zu u
u

      


         


 

2 2 2 2

4 5 10[ ( ) 2( ) 2 ( ) 2 2 ]X c x B x A c xy xz C xu
x

      


        


 

2 2 2 2

5 10[ ( ) 2( ) 2 ( ) 2 2 ]c y B xy A c y yz C yu
y

      


        


 

2 2 2 2

5 10[ ( ) 2( ) 2 ( ) 2 2 ]c z B xz A c yz z C zu
z

      


        


 

2 2 2 2

5 10[ ( ) 2( ) 2 ( ) 2 2 ] ,c u B xu A c yu zu C u
u

      


       


            (40) 

where  
2 2 2 2 2

1 ( ) ( ) ,A B cd BCd BDc CD AC A d B d BD            

2 2

2 3( ) 2 , ( ) ,Ac Bd D A Cd c D             

2 2 2 2 3 2 2 2 4

4 2 ( ) 3( ) ( )( 2 ),BCc C A Cd Dc A c B c BC AD A B c                 

2 2 2 2 2

5 6 7( 2 ) , ( 2 ) , ( )( ) ,B c C B c C Ad A B c BC                  

2 3 2 2

8 9 10( ) ( ) , ( ) , .AC c B Cd Dc BD AD c BC Cd cD D                      (41) 

Proof. Writing the operators (36) in a general form ( )j

j
X x

x






and solving the 

determining equations 

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 , ( 1,4)j j j j j j j j

x x x x x x x x
P P P P P P P P j                

we obtain that the system (28) admits the operators (40)-(41).  

The operators ( 1,2,3,4)iX i   are linearly independent, since the determinant of fourth 

order constructed on coordinates of these operators is different from zero. Notice that 

commutators [ , ] 0, ( , 1,4).i jX X i j 
 

Therefore operators ( 1,4)iX i   form a four-

dimensional Lie algebra. Further,  using the theorem 5 on integrating factor we calculate 

determinant   which is constructed on the coordinates of three operators ( 1,2,3,4)iX i   

and on the right-hand sides of the system (28), we obtain         

2 2 2 2 2 2

134 234 123 1 2 3 124 1 2 30, ( ) , ( ) ,A B c A c                     

where 
2 2 3 2 2 2

1 2, 2( ) 2 ( ) 2 ( ) 2 ,x y c Bc C B x A c y Cd cD D z C u                       

2 2 2 2 2 2 2 2 2 2

3 (2 4 ) ( ) [2 (6 ) 4 ]x d xy cd xz c d xu c y c c d yz                      

3 2 2 2 4 6 2 2 2 2 4 2[ (5 ) (8 ) 4 ] [ (4 ) 4 ]( ).cdyu c c c d c d z c c d dzu u                   (42) 

We denote the operator of system (28) by .P Q R S
x y z u

   
    

   
 Then we obtain   
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1 1( ) 4 ,     
2 2( ) 2 ,      

3 3( ) ( 4 ),d        
1 2 1 2( ) 2(2 ) ,             

where .Ax By Cz Du       

From the last equalities we get 

Theorem 6. The functions 1 2 3, ,    from (42) are particular integrals of the system (28) 

and the function 2

1 2F     is a first integral of Darboux type for this system. 

Remark 4. The comitant 
6,4K  from (6) for the system (28) has the form 

6,4 1 3K   , 

where   from (21) and 1 , 3  are from (42). 

 

8. The Lie algebra of operators admitted by the system (29). Some particular 

integrals and one first integral of Darboux type 

Lemma 8. The Lie algebra of operators admitted by the system (28) has the form        

3 2 2 2 3

1 [ 2( ) 2 2 2 ]Y x C B x A xy D xz C xu
x

    


      


 

3 2 2 2 3[ 2( ) 2 2 2 ]y C B xy A y D yz C yu
y

    


      


 

3 2 2 3 2[ 2( ) 2 2 2 ]z C B xz A yz D z C zu
z

    


      


 

3 2 2 3 2[ 2( ) 2 2 2 ] ,u C B xu A yu D zu C u
u

    


     


 

3 2 2 2 3

2 [ 2( ) 2 2 ]Y D x CD AC BD x D xz CD xu
x

    


       


 

3 2 2 3[ 2( ) 2 2 ]D y CD AC BD xy D yz CD yu
y

    


       


 

2 3 2 2 3 2[ 2( ) 2 2 ]A y D z CD AC BD xz D z CD zu
z

     


       


 

3 3 2 2 3 2[ 2( ) 2 2 ] ,A x D u CD AC BD xu D zu CD u
u

     


      


 

3 3 2 2

3 [ 2 2 ( ) 2 ( ) ]Y B x A y Ex AC BD xz BC AD xu
x

     


        


 

3 3 2[ 2 2 ( ) 2 ( ) ]A x B y Exy AC BD yz BC AD yu
y

     


       


 

3 2 2 2[ 2 2 ( ) 2 ( ) ]B z A u Exz AC BD z BC AD zu
z

     


        


 

2 4 3 2 22 2 ( ) 2 ( ) ] ,A y A z B u Exu AC BD zu BC AD u
u

      


       


 

3 2 5 2 3

4 [ ( ) 2 2 2 ]Y C B x A y Hx Fxz Gxu
x

    


       


 

5 3 2 3[ ( ) 2 2 2 ]A x C B y Hxy Fyz Gyu
y
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3 3 2 4 3 2[ ( ) 2 2 2 ]A x C B z A u Hxz Fz Gzu
z

     


       


 

6 3 2 3 2( ) 2 2 2 ] ,A z C B u Hxu Fzu Gu
u

    


     


                       (43) 

where 2 2 2( ) ,E BC A B     2 ,F CD AC BD     2 2 3,G C BC AD      

2 2 3 2 2 4( ) .H C BC AD A B         

The proof of Lemma 8 is similarly with the proof of Lemma 7.  

The operators ( 1,2,3,4)iY i   are linearly independent, since the determinant of fourth 

order constructed on coordinates of these operators is different from zero. Notice that 

commutators [ , ] 0, ( , 1,4).i jY Y i j 
 

Therefore operators ( 1,4)iY i   form a four-

dimensional Lie algebra. Further,  using the theorem 5 on integrating factor we calculate 

determinant   which is constructed on the coordinates of three operators ( 1,2,3,4)iY i   

and on the right-hand sides of the system (29), we obtain 

2 7 2 2 7 2

123 134 124 2340, , ,A A B                

where      
2 2 3 2 2 3, 2( ) 2 2 2 ,x y C B x A y D z C u                               (44) 

Direct calculation of the operator   for the system (29) gives  

( ) 4 ,      ( ) 2 ,      ( ) 2(2 ) ,             

where .Ax By Cz Du       

From the last equalities we get 

Theorem 7. The functions   and   from (44) are particular integrals of the system (29) 

and the function 2F   is a first integral of Darboux type for this system. 

Remark 5. The comitant 
6,4K  from (6) for the system (29) has the form 3 2

6,4K   , 

where   from (26) and   are from (44). 

Remark 6. The first integral 2

1 2F     of the system (28) is the holomorphic integral of 

Lyapunov type, i.e. this integral can be written in the form 2 2 ( , , , )F x y F x y z u   , 

where ( , , , )F x y z u  is the polynomial of the order more than two.         

From [4] it is known the comitant of system (1) in the form    

4,4 4,4 3,4 1,4 2,4 2,4 1,4 3,4 4,4

4
2 ,

5
L L P L P L P P

 
      

 
                      (45) 

where ,4 ( 1,4)jP j   are from (6) and  ,4 ( 1,4)iL i   are from (8). 

Remark 7. The comitant 4,4  for the system (28) has the form 4,4 2   , where 2  is 

from (42). 

Using the Lyapunov’s theorem [6], the theorems 6-7 and remarks 6-7, we obtain 
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Theorem 7. [8] Assume for the system (1) with 
1,4 0K   and 

6,4 0R   under center-affine 

invariant conditions (18), the comitant (45) is not identically zero. Then the system has a 

periodic solution containing an arbitrary constant, and varying this constant one can 

obtain a continuous sequence of periodic motions, which comprises the studied 

unperturbed motion. This motion is stable and any perturbed motion, sufficiently close to 

the unperturbed motion, will tend asymptotically to one of the periodic motions. 
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