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SISTEMELE DIFERENŢIALE CUBICE CU DREPTE INVARIANTE AFINE
REALE DE MULTIPLICITATE PARALELĂ TOTALĂ ŞASE ŞI DE

CONFIGURAŢIA
(
3(m), 1, 1, 1

)
Rezumat. Sunt clasificate sistemele diferenţiale cubice cu exact şase drepte afine reale invariante (ţinându-

se cont de multiplicitatea paralelă) de patru pante. O dreaptă de prima pantă are multiplicitatea paralelă

m, m = 1, 2, 3. Se arată că există cinci clase distincte de astfel de sisteme. Fiecare clasă este studiată din

punct de vedere calitativ şi pe discul Poincaré sunt construite portretele de fază.

Cuvinte-cheie: Sistem diferenţial cubic, dreaptă invariantă, portret de fază.

1. Introduction and statement of main results

We consider the real polynomial system of differential equations

dx

dt
= P (x, y),

dy

dt
= Q(x, y), gcd(P,Q) = 1 (1)

and the vector field

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
(2)

associated to system (1).

Denote n = max
{

deg(P ), deg(Q)
}

. If n = 2 (n = 3) then system (1) is called

quadratic (cubic).

An algebraic curve f(x, y) = 0, f ∈ C[x, y]
(
a function f = exp( g

h
), g, h ∈ C[x, y]

)
is

called invariant algebraic curve (exponential factor) of the system (1) if there exists a polyno-

mial

Kf ∈ C[x, y], deg(Kf ) ≤ n − 1 such that the identity X(f) ≡ f(x, y)Kf (x, y), (x, y) ∈ R2

holds. In particular, a straight line l ≡ αx + βy + γ = 0, α, β, γ ∈ C is invariant for (1) if

there exists a polynomial Kl ∈ C[x, y] such that the identity

αP (x, y) + βQ(x, y) ≡ (αx+ βy + γ)Kl(x, y), (x, y) ∈ R2 (3)

holds. The polynomialKf (x, y) is called cofactor of the invariant algebraic curve (exponential

factor) f. If m is the greatest natural number such that lm divides X(l) then we say that l

has parallel multiplicity m. In the case of cubic systems we have m ∈ {1, 2, 3}. If l has the

parallel multiplicity m, then f1 = exp(1
l
), ..., fm−1 = exp( 1

lm−1 ) are exponential factors.
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Let f1, . . . , fr
(
fr+1 = exp(gr+1/hr+1), . . . , fs = exp(gs/hs)

)
are invariant algebraic

curves (exponential factors) of (1) with cofactors Kf1(x, y), ..., Kfs(x, y), respectively. The

system (1) is called Darboux integrable if there exists a non-constant function of the form F =

fα1
1 · · · fαs

s ,

αj ∈ C, j = 1, s, such that either F is a first integral or F is an integrating factor for

(1) (about the theory of Darboux, presented in the context of planar polynomial differential

systems on the affine plane, see [23]). The function of the form

fα1
1 · · · fαs

s , (4)

where αj ∈ C, |α1| + · · · + |αs| 6= 0, is a first integral (an integrating factor) for (1) if and

only if in x and y the identity

α1Kf1(x, y) + α2Kf2(x, y) + ...+ αsKfs(x, y) ≡ 0 (5)(
s∑
j=1

αjKfj(x, y) ≡ −∂P (x, y)

∂x
− ∂Q(x, y)

∂y

)
(6)

holds.

By present a great number of works have been dedicated to the investigation of poly-

nomial differential systems with invariant straight lines.

The problem of estimating the number of invariant straight lines which a polynomial

differential system can have was considered in [2]; the problem of coexistence of the invariant

straight lines and limit cycles was examined in {[22] : n = 2}, {[11], n = 3}, [10].

The classification of all cubic systems with the maximum number of invariant straight

lines, including the line at infinity, and taking into account their geometric multiplicities, is

given in [13].

In [2] it was proved that the non-degenerate cubic system (1) can have at most eight

affine invariant straight lines. The cubic systems with exactly eight and exactly seven distinct

affine invariant straight lines have been studied in [13], [15]; with invariant straight lines of

total geometric (parallel) multiplicity eight (seven) - in [3], [4], [5]
(
[19], [30]

)
, and with six

real invariant straight lines along two (three) directions - in [17], [18]. The cubic systems

with degenerate infinity and invariant straight lines of total parallel multiplicity six and

total parallel multiplicity five were investigated in [20], [27], [28]. In [31] it was shown that

in the class of cubic differential systems the maximal
(
algebraic, geometric, integrable or

infinitesimal, see [6]
)

multiplicity of an affine real straight line (of the line at infinity) is

seven. In [32] the cubic systems with two affine real non-parallel invariant straight lines of

maximal multiplicity are classified.

In this paper a qualitative investigation of real cubic systems of the form{
ẋ = P0 + P1(x, y) + P2(x, y) + P3(x, y) ≡ P (x, y),

ẏ = Q0 +Q1(x, y) +Q2(x, y) +Q3(x, y) ≡ Q(x, y), gcd(P,Q) = 1,
(7)

where Pk =
∑

j+l=k

ajlx
jxl, Qk =

∑
j+l=k

bjlx
jxl (k = 0, 3) and |P3(x, y)| + |Q3(x, y)| 6≡ 0, with

affine real invariant straight lines of total parallel multiplicity six and of four distinct slopes,
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is given. Only one invariant straight line from these lines can have the parallel multiplicity

greater or equal two. Our main result is the following one:

Theorem 1.1. Assuming that a cubic system (7) possesses affine real invariant straight

lines of total parallel multiplicity six with four distinct directions and at least three of these

lines have multiplicity one. Then via an affine transformation and time rescaling this sys-

tem can be brought to one of the five systems (8)−(12) given in Table 1.1. Also, in this

table for each system (8)−(12) the invariant straight lines, Darboux first integral F (x, y)(
or integrating factor µ(x, y)

)
and phase portrait in the Poincaré disk are given.

Table 1.1. Canonical forms and qualitative investigation of the cubic systems with

invariant straight lines of configurations
(
3, 1, 1, 1

)
,
(
3(2), 1, 1, 1

)
and

(
3(3), 1, 1, 1

)
Fig./

Systems, invariant straight lines lj, first integral (F ) or integrating factor (µ) Tab.

Configuration (3,1,1,1).

(8)


ẋ = x(x+ 1)(x− a),

ẏ = (y − 1)
(
ay + (1− b)x2 + (a− 1)bxy + aby2

)
,

(b− 1)(a+ b+ ab)(1 + b+ ab) 6= 0, a > 0, b ∈ R,
1.1/

4.1
l1 = x, l2 = x+ 1, l3 = x− a, l4 = y − 1, l5 = x− ay, l6 = x+ y;

µ(x, y) = xα1(x+ 1)α2(x− a)α3(y − 1)α4(x− ay)α5(x+ y)α6

where α4 = (1− b)α1 =
1− b
b

, α2 = aα3 = − a

b(a+ 1)
, α5 = (a+ b+ ab)α3,

α6 = (1 + b+ ab)α3 if b 6= 0; F1(x, y) =
(x+ 1)(x− ay)

x(y − 1)
if b = 0;

Configuration (3,1,1,1).

(9)


ẋ = x(x+ 1)(x− a), −1 < a ≤ 1, a 6= 0, b > 0, c ∈ R∗,
ẏ = y

(
− a+ (1− a)x+ (1− bc)x2 + (b− 1)cxy + cy2

)
,(

|a+ b+ ab|+ |ac− (a+ 1)2|
)(
|1 + a+ ab|+ |c− a|

)
6= 0, if − 1 < a < 0,

and
(
|b− a|+ |ac− 1|

)(
|c− a|+ |ab− 1|

)
6= 0, if 0 < a ≤ 1,

1.2/

4.2

l1 = x, l2 = x+ 1, l3 = x− a, l4 = y, l5 = y − x, l6 = y + bx;

F2(x, y) = (x+ 1)−
(b+1)bc
a+1 (x− a)−

(b+1)abc
a+1 y−(b+1)(y − x)b(y + bx);

Configuration
(
3(2),1,1,1

)
.

(10)


ẋ = x2(x+ 1),

ẏ = y
(
x+ (1− bc)x2 + (b− 1)cxy + cy2

)
,

b ∈ R∗+, c ∈ R∗,
1.3

l1,2 = x, l3 = x+ 1, l4 = y, l5 = y − x, l6 = y + bx;

F3(x, y) = (x+ 1)−(b+1)bcy−(b+1)(y − x)b(y + bx);
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Table 1.1 (continued)

Fig./
Systems, invariant straight lines lj, first integral (F ) or integrating factor (µ) Tab.

Configuration
(
3(2),1,1,1

)
.

(11)


ẋ = x2(x+ 1),

ẏ = y
(
− bc− 2bcx+ (b− 1)cy + (1− bc)x2 + (b− 1)cxy + cy2

)
,

b ∈ R∗+, c ∈ R∗,
1.4

l1,2 = x, l3 = x+ 1, l4 = y, l5 = y − x− 1, l6 = y + b(x+ 1);

F4(x, y) = x−(b+1)bce(b+1)bc/xy−(b+1)(y − x− 1)b
(
y + b(x+ 1)

)
;

Configuration
(
3(3),1,1,1

)
.

(12)


ẋ = x3,

ẏ = y
(
(1− bc)x2 + (b− 1)cxy + cy2

)
,

c(bc− 1)(bc+ c+ 1)(b2 + bc+ 1) 6= 0, b > 0, c ∈ R,
1.5

l1,2,3 = x, l4 = y, l5 = y − x, l6 = y + bx;

F5(x, y) = x−(b+1)bcy−(b+1)(y − x)b(y + bx).

1) 2) 3) 4)

5) 6) 7) 8)

9) 10)

Fig. 1.1. Phase portraits of the system (8)
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1) 2) 3) 4)

Fig. 1.2. Phase portraits of the system (9)

1) 2) 1) 2)

Fig. 1.3. Phase portraits of the system (10) Fig. 1.4. Phase portraits of the system (11)

1) 2)

Fig. 1.5. Phase portraits of the system (12)

2. Some properties of the cubic systems with invariant straight lines

By a straight lines configuration of invariant straight lines of a cubic system we un-

derstand the set of all its invariant affine straight lines, each endowed with its own parallel

multiplicity.

The goal of this section is to enumerate such properties for invariant straight lines that

will allow the construction of configurations of straight lines realizable for (7). Some of these

properties are obvious or easy to prove and others were proved in [29].

Properties:

2.1) In the finite part of the phase plane each system (7) has at most nine singular

points.

2.2) In the finite part of the phase plane, on any straight line there are at most three

singular points of the system (7).

2.3) The system (7) has no more than eight affine invariant straight lines
(
[2]
)
.

2.4) At infinity the system (7) has at most four distinct singular points if

yP3(x, y) − xQ3(x, y) 6≡ 0. In the case yP3(x, y) − xQ3(x, y) ≡ 0 the infinity is degener-

ate, i.e. consists only of singular points.
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2.5) If yP3(x, y) − xQ3(x, y) 6≡ 0, then the infinity represents for (7) a non-singular

invariant straight line, i.e. a line that is not filled up with singularities.

2.6) Through one point cannot pass more than four distinct invariant straight lines of

the system (7).

We say that the straight lines lj ≡ αjx + βjy + γj ∈ C[x, y], (αj, βj) 6= (0, 0), j = 1, 2,

are parallel if α1β2−α2β1 = 0. Otherwise the straight lines are called concurrent. If an affine

invariant straight line l has the parallel multiplicity equal to m, then we will consider that

we have m parallel invariant straight lines identical with l.

2.7) The intersection point (x0, y0) of two concurrent invariant straight lines l1 and l2

of the system (7) is a singular point for this system.

By a triplet of parallel affine invariant straight lines we shall mean a set of parallel

affine invariant straight lines of total parallel multiplicity 3.

2.8) If the cubic system (7) has a triplet of parallel affine invariant straight lines, then

all its finite singular points lie on these straight lines.

2.9) The parallel multiplicity of an affine invariant straight line of the cubic system

(7) is at most three.

2.10) If the cubic system (7) has two concurrent affine invariant straight lines l1, l2

and l1 has the parallel multiplicity equal to m, 1 ≤ m ≤ 3, then this system cannot have more

than 3−m singular points on l2 \ l1.
We say that three affine straight lines are in generic position if no pair of these lines

are parallel and no more that two lines are passing through the same point.

2.11) For the cubic system (7) the total parallel multiplicity of three affine invariant

straight lines in generic position is at most four.

Proposition 2.1. If l ≡ αx+ βy + γ = 0, α 6= 0 (β 6= 0) is a real invariant straight line of

the system (7) then the transformation X = αx+ βy+ γ, Y = y
(
X = αx+ βy+ γ, Y = x

)
reduce (7) to a system of the form

Ẋ = X(a0 + a1X + a2Y + a3X
2 + a4XY + a5Y

2),

Ẏ = b0 + b1X + b2Y + b3X
2 + b4XY + b5Y

2+

+b6X
3 + b7X

2Y + b8XY
2 + b9Y

3.

(13)

Indeed, in the case α 6= 0 (β 6= 0), from (7) and (3), we have:

Ẋ = αẋ+ βẏ = (αx+ βy + γ)Kl(x, y) = X ·Kl

(
(X − βY − γ)/α, Y

)
,

Ẏ = ẏ = Q(x, y) = Q
(
(X − βY − γ)/α, Y

)
(
Ẋ = αẋ+ βẏ = (αx+ βy + γ)Kl(x, y) = X ·Kl

(
Y, (X − αY − γ)/β

)
,

Ẏ = ẏ = Q(x, y) = Q
(
Y, (X − αY − γ)/β

) )
.

Denote that the polynomial Kl(x, y) has degree less or equal to two and, consequently,

Kl

(
(X − βY − γ)/α, Y

)
has the same degree. �

Proposition 2.2. If lj ≡ αjx + βjy + γj = 0, j = 1, 2, ∆ ≡ α1β2 − α2β1 6= 0 are two

real invariant straight lines of the system (7) then the transformation X = α1x+ β1y + γ1,
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Y = α2x+ β2y + γ2 reduce (7) to a system of the form{
Ẋ = X(a0 + a1X + a2Y + a3X

2 + a4XY + a5Y
2),

Ẏ = Y (b0 + b1X + b2Y + b3X
2 + b4XY + b5Y

2).
(14)

Indeed,

Ẋ = α1ẋ+ β1ẏ = (α1x+ β1y + γ1)Kl1(x, y) =

= X ·Kl1

(
(β2X − β1Y + β1γ2 − β2γ1)/∆, (−α2X + α1Y + α2γ1 − α1γ2)/∆

)
,

Ẏ = α2ẋ+ β2ẏ = (α2x+ β2y + γ2)Kl2(x, y) =

= Y ·Kl2

(
(β2X − β1Y + β1γ2 − β2γ1)/∆, (−α2X + α1Y + α2γ1 − α1γ2)/∆

)
. �

3. Canonical forms

Let the system (7) hase a triplet {l1, l2, l3} of parallel invariant straight lines. Then:

3.1) lj, j = 1, 2, 3 are distinct and l1 ‖ l2 ‖ l3, or

3.2) l1 has parallel multiplicity two, l2 ≡ l1 6≡ l3 and l1 ‖ l3, or

3.3) l1 ≡ l2 ≡ l3 and l1 has parallel multiplicity three.

Along four directions there are only three possible configurations of six invariant

straight lines, three of which form a triplet of parallel invariant straight lines:

1) (3, 1, 1, 1), 2)
(
3(2), 1, 1, 1

)
, 3)

(
3(3), 1, 1, 1

)
.

Notation (3, 1, 1, 1) means that there are six distinct real invariant straight lines of

four directions and three of these lines form a triplet of parallel straight lines
(
the case

3.1)
)
. Configurations

(
3(2), 1, 1, 1

)
and

(
3(3), 1, 1, 1

)
correspond to the cases 3.2) and 3.3),

respectively.

3.1. Configuration (3, 1, 1, 1). Without loss of generality we can consider that one straight

line of these six is parallel with to Ox axis and the straight lines from triplet are parallel

with to Oy axis of coordinates. Taking into account the properties 2.2), 2.7) and 2.8)

from Section 2, the straight lines can have (up to some affine transformations) one of the

following three positions given in Fig. 3.1.

a)

2l 3ll1

4l

5l
l6

5l

l6

c)

l6

b)

l12l 3l

4l
4l

l1 3l2ll5

Fig. 3.1. Configurations of the type (3,1,1,1)

It is clear that the set of cubic systems which have the invariant straight lines of

configuration (3, 1, 1, 1) is a subset of the set of all cubic systems which have invariant

straight lines of configuration (3, 1).

In the case a) of Fig. 3.1 we can consider l1 = x, l1 ∩ l5 ∩ l6 = (0, 0), l2 = x + 1,

l3 = x − a, a > 0, l4 = y − 1. Then, using an affine transformation and time rescaling, the

cubic system for which (0, 0) is a singular point and lj, j = 1, 2, 3, 4 are invariant straight
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lines can be written in the form{
ẋ = x(x+ 1)(x− a) ≡ P (x, y), a > 0,

ẏ = (y − 1)(b1x+ b2y + b3x
2 + b4xy + b5y

2) ≡ Q(x, y), gcd(P,Q) = 1.
(15)

Note that the straight line l ≡ y − Ax − B = 0, A,B ∈ R is invariant for polynomial

differential system (1) if and only if the polynomial in x:

Ψl(x) = Q(x,Ax+B)− A · P (x,Ax+B)

is identically zero. According to [16] if the straight line l ≡ y − Ax − B = 0, A,B ∈ R is

invariant for (1) then l divides

E(X) = P · X(Q)−Q · X(P ), i.e.

E(X)=P (x, y)
(
P (x, y)∂Q(x,y)

∂x
+Q(x, y)∂Q(x,y)

∂y

)
−Q(x, y)

(
P (x, y)∂P (x,y)

∂x
+Q(x, y)∂P (x,y)

∂y

)
.

The polynomial E(X) has in x and y the degree 3(n − 1) + 2. In particular, in the case

of cubic systems we have deg
(
E(X)

)
= 8. Let l1, ..., l6 be the invariant straight lines of

(1) and l = y − Ax − B. Suppose that the lines l, lj, j = 1, ..., 6 are distinct. Denote

El(x) =
(
E(X)/(l1 · · · l6)

)
|y=Ax+B. The straight line l = y − Ax − B is invariant for (1) if

and only if in the same time the identities Ψl(x) ≡ 0 and El(x) ≡ 0 take place.

The straight line l5 (l6) passes through the singular points (0, 0) and (a, 1)
(
(−1, 1)

)
,

therefore it is described by equation x−ay = 0 (x+y = 0). The lines l5 and l6 are invariant

if {
Ψl5(x) = x(a− x)

(
a(b2 − ab1 − a) + (b5 + ab4 + a2b3 − a2)x

)
≡ 0,

Ψl6(x) = x(x+ 1)
(
b2 − b1 − a+ (1− b3 + b4 − b5)x

)
≡ 0,

i.e. if the following series of conditions is satisfied: b1 = 0, b2 = a, b4 = b(a − 1), b5 = ab,

where b = 1− b3. In these conditions the system (15) looks as{
ẋ = x(x+ 1)(x− a) ≡ P (x, y), a > 0,

ẏ = (y − 1)
(
ay + (1− b)x2 + (a− 1)bxy + aby2

)
≡ Q(x, y), gcd(P,Q) = 1,

(16)

i.e. we obtain the system (8) from Table 1.1.

Let l = y − Ax−B. For (16) we have

El(x) = −
(
a(1 + bB)(2− 2b+ 3bB) + b(a− 1 + 5aA+ b− ab− 2aAb− 2bB + 2abB+

+6aAbB)x+ b(1− b− 2Ab+ 2aAb+ 3aA2b)x2
)
,

Ψl(x) = aB(B − 1)(1 + bB) +B(2aA+ b− ab− 2aAb− bB + abB + 3aAbB)x+

+
(
(1− b)(1 + A)(aA− 1) +B(1− b− 2Ab+ 2aAb+ 3aA2b)

)
x2+

+bA(1 + A)(aA− 1)x3.

In conditions a > 0 and deg
(

gcd(P,Q)
)

= 0 the identities
{

Ψl(x) ≡ 0, El(x) ≡ 0
}

hold if

(b− 1)
(
a+ b(a+ 1)

)(
1 + b(a+ 1)

)
= 0. In this case (15) has more than six invariant straight

lines. Indeed, in the case b = 1
(
respectively, a+ b(a+ 1) = 0; 1 + b(a+ 1) = 0

)
the system

(15) has the invariant straight line l7 = y
(
respectively, l7 = x−ay+a+1; l7 = 1+b(x+y)

)
.

In the case b) and c) of Fig. 3.1 we can consider l1 = x, l2 = x+1, l3 = x−a and l4 = y.

It is clear that in the case b)
(
c)
)

of Fig. 3.1 we have −1 < a < 0 (a > 0). Moreover,

102



in the case c) we can consider 0 < a ≤ 1. The cubic system for which lj, j = 1, 2, 3, 4 are

invariant straight lines looks as{
ẋ = x(x+ 1)(x− a), (−1 < a < 0 or 0 < a ≤ 1),

ẏ = y(b0 + b1x+ b2y + b3x
2 + b4xy + b5y

2).
(17)

The straight lines l5,6 pass through the singular point (0, 0). Therefore, they are described

by an equation of the form y − bx = 0, b ∈ R \ {0}. Using the transformation x → x, y →
αy, α > 0 we can choose l5 = y−x. Then, l6 = y+bx, b > 0. Solving the system of identities{

Ψl5(x) = x(a+ b0 + (b1 + b2 + a− 1)x+ (b3 + b4 + b5 − 1)x2) ≡ 0,

Ψl6(x) = −bx(a+ b0 − (b · b2 − b1 − a+ 1)x+ (b2 · b5 − b · b4 + b3 − 1)x2) ≡ 0

we obtain that the straight lines l5,6 are invariant for (17) if b0 = −a, b1 = 1 − a, b2 = 0,

b3 = 1− bc, b4 = c(b− 1), where c = b5, i.e. if the system (17) has the form{
ẋ = x(x+ 1)(x− a) ≡ P (x, y), −1 < a ≤ 1, a 6= 0, b > 0,

ẏ = y
[
− a+ (1− a)x+ (1− bc)x2 + c(b− 1)xy + cy2

]
≡ Q(x, y).

(18)

Let l = y − Ax−B. For (18) we have

El(x) = c(3(cB2 − a) + 2(1− a− cB + 3cAB + bcB)x+ (1− 2cA+ 3cA2 − bc+ 2cAb)x2),

Ψl(x) = B(B2c− a)+B(1− a− cB+3cAB+bcB)x+B(1− 2cA+ 3cA2 − bc+ 2bcA)x2+

+cA(A− 1)(A+ b)x3.

If c = 0, then (18) is degenerate, i.e. deg
(

gcd(P,Q)
)
> 0. Let c 6= 0. Then, the system

of identities
{
El(x) ≡ 0, Ψl(x) ≡ 0

}
is equivalent to the system of equalities

{
A(A− 1)(A+

b) = 0, cB2 − a = 0, 1− a− cB + 3cAB + bcB = 0, 1− 2cA+ 3cA2 − bc+ 2cAb = 0
}
.

In the case A = 0 we obtain b−a = ac−1 = 0, B = 1/a or c−a = ab−1 = 0, B = −1.

Therefore, if 0 < a ≤ 1 then the system (18) has the seventh invariant straight line l7 ≡
y−a = 0 if b−a = ac−1 = 0, B = 1/a and l7 ≡ y+1 = 0 if c−a = ab−1 = 0, B = −1. Let(
|b− a|+ |ac− 1|

)(
|c− a|+ |ab− 1|

)
6= 0 and A = 1. Then {c− a = ab+ a+ 1 = 0, B = 1}

⇒ −1 < a < 0 and we have the invariant straight line l7 ≡ y − x − 1 = 0. At last, if

A = −b then a + b(a + 1) = ac − (a + 1)2 = 0, A = B = a/(a + 1). Taking into account

that b > 0 these equalities imply −1 < a < 0. Thus, if −1 < a < 0 then the system

(18) has exactly six distinct invariant straight lines if and only if the following inequality(
|c− a|+ |ab+ a+ 1|

)(
|a+ b(a+ 1)|+ |ac− (a+ 1)2|

)
6= 0 holds.

The above description leads us to the system (9) from Table 1.1 and to the inequalities

associated with it.

3.2. Configuration
(
3(2), 1, 1, 1

)
. Let the system (7) have six invariant straight lines of

the considered configuration of which l1 has parallel multiplicity two, l2 ≡ l−1, and l3 ‖ l1,2.
Taking into account Properties 2.8) and 2.10) the invariant straight lines lj, j = 1, ..., 6

have (up to some affine transformations) one of the following two positions given in Fig. 3.2.
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Fig. 3.2. Configuration
(
3(2),1,1,1

)
Fig. 3.3. Configuration

(
3(3),1,1,1

)
Without loss of generality we can consider that l1,2 = x, l3 = x+1, l4 = y. The cubic system

for which these lines are invariant looks as{
ẋ = x2(x+ 1) ≡ P (x, y),

ẏ = y(b0 + b1x+ b2y + b3x
2 + b4xy + b5y

2) ≡ Q(x, y), gcd(P,Q) = 1.
(19)

In the case a)
(
b)
)

of Fig. 3.2 via the transformation x→ x, y → γy, γ 6= 0 we make

the line l5 to be described by the equation y−x = 0 (y−x− 1 = 0). The equation of l6 has

the form y = −bx (y = −bx − b), b > 0. In this case, i.e. a)
(
b)
)

of Fig. 3.2, the straight

lines l5,6 are invariant for (19) if the identities hold:{
Ψl5 = x

[
b0 + (b1 + b2 − 1)x+ (b3 + b4 + b5 − 1)x2

]
≡ 0,

Ψl6 = bx
[
− b0 + (bb2 − b1 + 1)x+ (bb4 − b2b5 − b3 + 1)x2

]
≡ 0


Ψl5 = b0 + b2 + b5 + (b0 + b1 + 2b2 + b4 + 3b5)x+ (b1 + b2 + b3 + 2b4 + 3b5 − 1)x2+

+(b3 + b4 + b5 − 1)x3 ≡ 0,

Ψl6 = b
[
− b0 − b2b5 + bb2 + (−3b2b5 + 2bb2 + bb4 − b0 − b1)x+ (−3b2b5 + bb2+

+2bb4 − b1 − b3 + 1)x2 + (−b2b5 + bb4 − b3 + 1)x3
]
≡ 0

 .

These identities give us

b0 = b2 = 0, b1 = 1, b3 = 1− bc, b4 = c(b− 1)(
b0 = −bc, b1 = −2bc, b2 = b4 = c(b− 1), b3 = 1− bc

)
,

where c = b5. We obtained the system (10)
(
(11)

)
from Table 1.1. For both systems the

equality c = 0 is in contradiction with the condition gcd(P,Q) = 1.

3.3. Configuration
(
3(3), 1, 1, 1

)
. For the first step, without loss of generality, we consider

the system {
ẋ = x3,

ẏ = y(b0 + b1x+ b2y + b3x
2 + b4xy + b5y

2).
(20)

The system (20) has the invariant straight lines: l1,2,3 = x and l4 = y. The other invariant

straight lines l5 and l6 of (20) (if exist) must pass through singular point (0, 0). Moreover,

we can consider that l5 (l6) is described by the equation y−x = 0 (y+ bx = 0, b > 0). The

identities
Ψl5 = x

[
b0 + (b1 + b2)x+ (b3 + b4 + b5 − 1)x2

]
≡ 0,

Ψl6 = −bx
[
b0 + (b1 − bb2)x+ (b2b5 − bb4 + b3 − 1)x2

]
≡ 0

have the solution

b0 = b1 = b2 = 0, b3 = 1− bc, b4 = c(b− 1), (21)

where c = b5.
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In the conditions
{

(21), b5 = c
}

the straight lines l5,6 are invariant for the system (20).

The cofactors of lines l4, l5, l6 are respectively: K4(x, y) = (1 − bc)x2 + c(b − 1)xy + cy2,

K5(x, y) = x2 + bcxy+ cy2 and K6(x, y) = x2− cxy+ cy2. From these, K4(x, 0) = (1− bc)x2,
K5(x, x) = (bc+ c+ 1)x2 and K6(x,−bx) = (b2c+ bc+ 1)x2. Therefore, if (bc− 1)(bc+ c+

1)(b2c+ bc+ 1) = 0 then at least one of the invariant straight lines has parallel multiplicity

greater than one but this is not allowed in the examined configuration. If in the system{
(21), (21), b5 = c

}
the parameter c vanishes then the condition gcd(P,Q) = 1 is not met.

Thus, the system (12) from Table 1.1 of Theorem 1.1 and its associated conditions are

obtained.

4. Darboux integrability

In this section we construct the first integrals (F ) or the integrating factors (µ) for

systems (8)−(12).

4.1. Integrability of the system (8):
ẋ = x(x+ 1)(x− a) ≡ P (x, y),

ẏ = (y − 1)
(
ay + (1− b)x2 + (a− 1)bxy + aby2

)
≡ Q(x, y),

(b− 1)(a+ b+ ab)(1 + b+ ab) 6= 0, a > 0, b ∈ R.
The cofactors of the invariant straight lines: l1 = x, l2 = x + 1, l3 = x − a, l4 = y − 1,

l5 = x− ay, l6 = x+ y of this system are, respectively:

Kl1(x, y) = (x+ 1)(x− a), Kl2(x, y) = x(x− a), Kl3(x, y) = x(x+ 1),

Kl4(x, y) = ay + (1− b)x2 + (a− 1)bxy + aby2,

Kl5(x, y) = −a+ (1− ab)x+ a(1− b)y + x2 + abxy + aby2,

Kl6(x, y) = −a+ (b− a)x+ a(1− b)y + x2 − bxy + aby2.

Putting s = 6, f ≡ l and Klj(x, y), j = 1, 6 in (6) and identifying the coefficients near

the same powers of x and y, we get the system

α1 + α5 + α6 = −2,

(1− a)α1 − aα2 + α3 + (1− ab)α5 + (b− a)α6 = (a− 1)(b+ 2),

α4 + (1− b)(α5 + α6) = 2(b− 1),

α1 + α2 + α3 + (1− b)α4 + α5 + α6 = b− 4,

b
(
2a− 2 + (a− 1)α4 + aα5 − α6

)
= 0,

b(3 + α4 + α5 + α6) = 0.

If b 6= 0 then this system has the following solution in α1, ..., α6 :

α1 =
1

b
, α2 =− a

(a+1)b
, α3 =− 1

(a+1)b
, α4 =

1−b
b
, α5 =−a+(a+1)b

(a+ 1)b
, α6 =−1+(a+1)b

(a+ 1)b
.

Therefore,

µ(x, y) = x
1
b (x+ 1)−

a
(a+1)b (x− a)−

1
(a+1)b (y − 1)

1−b
b (x− ay)−

a+(a+1)b
(a+1)b (x+ y)−

1+(a+1)b
(a+1)b

is a Darboux integrating factor of the system (8)
(
see, (4)

)
.

For these cofactors in the case b 6= 0, the identity (5) takes place if and only if α1 =

0, ..., α6 = 0. If b = 0, then the identity (5) is equivalent to the system
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
α1 + α5 + α6 = 0,

(1− a)α1 − aα2 + α3 + α5 + aα6 = 0,

α4 + α5 + α6 = 0,

α1 + α2 + α3 + α4 + α5 + α6 = 0;

⇔


α1 = −(α5 + α6),

α2 = α5,

α3 = α6,

α4 = −(α5 + α6).

This system has the solution α1 = α4 = −α2 = −α5 = −1. Thus,

F (x, y) =
(x+ 1)(x− ay)

x(y − 1)

is a first integral of the system
{

(8), b = 0
}

.

4.2. Integrability of the system (9):
ẋ = x(x+ 1)(x− a), a > −1, b > 0, c ∈ R∗,
ẏ = y

(
− a+ (1− a)x+ (1− bc)x2 + (b− 1)cxy + cy2

)
,(

|a+ b+ ab|+ |ac− (a+ 1)2|
)(
|1 + a+ ab|+ |c− a|

)
6= 0, if − 1 < a < 0,

and
(
|b− a|+ |ac− 1|

)(
|c− a|+ |ab− 1|

)
6= 0, if 0 < a ≤ 1.

The invariant straight lines: l1 = x, l2 = x+ 1, l3 = x− a, l4 = y, l5 = y − x, l6 = y + bx of

(9) have the cofactors, respectively:

Kl1(x, y) = (x+ 1)(x− a), Kl2(x, y) = x(x− a), Kl3(x, y) = x(x+ 1),

Kl4(x, y) = −a+ (1− a)x+ (1− bc)x2 + (b− 1)cxy + cy2,

Kl5(x, y) = −a+ (1− a)x+ x2 + bcxy + cy2, Kl6(x, y) = −a+ (1− a)x+ x2 − cxy + cy2.

Putting Kli(x, y), i = 1, 6 in the identity (5) we obtain in αi, i = 1, 6 the system:

α1 + α4 + α5 + α6 = 0,

(1− a)(α1 + α4 + α5 + α6)− aα2 + α3 = 0,

α1 + α2 + α3 + (1− bc)α4 + α5 + α6 = 0,

(b− 1)α4 + bα5 − α6 = 0,

α4 + α5 + α6 = 0;

⇔



α1 = 0,

α2 = −(b+ 1)bcα6/(a+ 1),

α3 = −(b+ 1)abcα6/(a+ 1),

α4 = −(b+ 1)α6,

α5 = bα6.

Considering α6 = 1, the solution of this system gives us the following first integral of (9):

F (x, y) = (x+ 1)−
(b+1)bc
a+1 (x− a)−

(b+1)abc
a+1 y−(b+1)(y − x)b(y + bx).

4.3. Integrability of the systems (10)−(12).

Similarly to subsections 4.1 and 4.2 for each system (10)−(12) we calculate the cofac-

tors Klj(x, y), j = 1, 6
(
see, (3)

)
of invariant straight lines and the exponents αj, j = 1, 6(

see, (5)
)

of the first integrals F (x, y) of the form (4). The obtained results are given in

Table 4.1.

Table 4.1. First integrals of systems (10) − (12)

Syst. li, i = 1, 6 Ki(x, y), i = 1, 6 αi, i = 1, 6 F

(10)

l1 = x,

l2 = e1/x,

l3 = x+ 1,

l4 = y,

l5 = y − x,
l6 = y + bx,

Kl1 = x(x+ 1),

Kl2 = −x− 1,

Kl3 = x2,

Kl4 = x+ (1− bc)x2 + (b− 1)cxy + cy2,

Kl5 = x+ x2 + bcxy + cy2,

Kl6 = x+ x2 − cxy + cy2,

α1 = 0,

α2 = 0,

α3 = −(b+ 1)bcα6,

α4 = −(b+ 1)α6,

α5 = bα6;

F3
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Table 4.1 (continued)

Syst. li, i = 1, 6 Ki(x, y), i = 1, 6 αi, i = 1, 6 F

(11)

l1 = x,

l2 = e1/x,

l3 = x+ 1,

l4 = y,

l5 = y − x− 1,

l6 = y + bx+ b,

Kl1 = x(x+ 1),

Kl2 = −x− 1,

Kl3 = x2,

Kl4 = bc(y − 2x− 1)− cy + (1− bc)x2+
+(b− 1)cxy + cy2,

Kl5 = bcy + x2 + bcxy + cy2,

Kl6 = −cy + x2 − cxy + cy2,

α1 = −(b+ 1)bcα6,

α2 = (b+ 1)bcα6,

α3 = 0,

α4 = −(b+ 1)α6,

α5 = bα6;

F4

(12)

l1 = x,

l2 = e1/x,

l3 = e1/x
2
,

l4 = y,

l5 = y − x,
l6 = y + bx,

Kl1 = x2,

Kl2 = −x,
Kl3 = −2,

Kl4 = (1− bc)x2 + (b− 1)cxy + cy2,

Kl5 = x2 + bcxy + cy2,

Kl6 = x2 − cxy + cy2,

α1 = −(b+ 1)bcα6,

α2 = 0,

α3 = 0,

α4 = −(b+ 1)α6,

α5 = bα6.

F5

5. Qualitative investigation of the systems (8)−(12)

In this section, the qualitative study of the systems (8)−(12) from Theorem 1.1 will

be done. For this purpose, in order to determine the topological behavior of trajectories,

the singular points in the finite and infinite part of the phase plane will be examined. This

information and the information provided by the existence of invariant straight lines will be

taken into account when the phase portraits of the system (8)−(12) on the Poincaré disk

will be constructed.

We set the abbrevation SP for a singular point and use here the following notations:

λ1 and λ2 for eigenvalues of SP ; S for a saddle (λ1λ2 < 0); N s for a stable node (λ1, λ2 < 0);

Nu for a unstable node (λ1, λ2 > 0); S − N s(u) for a saddle-node with a stable (unstable)

parabolic sector, P s(u) for a stable (unstable) parabolic sector, H for a hyperbolic sector.

5.1. System (8)
(
configuration (3,1,1,1)

)
, i.e. the system

ẋ = x(x+ 1)(x− a) ≡ P (x, y),

ẏ = (y − 1)
(
ay + (1− b)x2 + (a− 1)bxy + aby2

)
≡ Q(x, y),

(b− 1)(a+ b+ ab)(1 + b+ ab) 6= 0, a > 0, b ∈ R,

which has the invariant straight lines: l1 = x, l2 = x+ 1, l3 = x− a, l4 = y − 1, l5 = x− ay
and l6 = x+ y. This system has in the finite part of the phase plane nine singular points if

b 6= 0 and six if b = 0. The semi-plane of parameters a, b; a > 0 is divided in thirteen sectors

Ij by straight lines a = 0, b = 0, b = ±1 and the hyperbolas (a + 1)b = ±1, (a + 1)b = ±a
(see, Fig. 5.1).
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Fig. 5.1. Bifurcation diagram of the system (8)

In each of these sectors we calculate the eigenvalues of singular points and bring them in

Table 5.1. In Table 5.1 we used the notations: α = a+ 1 and β = a(b+ 1).

Taking into account that a > 0, from Table 5.1 it is easy to see that the singular points

O1 and O3 (respectively, point O5) of the system (8) are unstable nodes (is a stable nod). If

b < −1 or b > 0 then the O9 is a saddle, and if −1 < b < 0 then O9 is a stable node and so

on.

Further we will study non-hyperbolic singular points of the system (8): O2 in the sector

I11; O4 in the sectors I4−I6 and O6 in I2, I5 and I8. In the other cases the singular points

are hyperbolic.
Table 5.1. System (8): singular points, eigenvalues and types of SP

SP λ1; λ2 I1/I2/I3 I4/I5/I6 I7/I8/I9 I10/I11/I12 I13

O1(−1, 1) α; α N i

O2(0, 1) −a; β S S S S/S−N s/N s S

O3(a, 1) aα; aα Nu

O4(−1,− 1
a
) α; α(αb−a)

a
Nu S−Nu S S S

O5(0, 0) −a; −a N s

O6(a,−a)
aα;

aα(αb− 1)
Nu/S−Nu/S S/S−Nu/Nu Nu/S−N i/S S S

O7(−1, b−1
b

) α; a−αb
b

S − Nu S −
O8(a,

b−1
b

) aα; a−αab
b

S/−/Nu Nu/−/S S/−/Nu S −
O9(0,−1

b
) −a; β

b
S S S N s/−/S −

Fig. 1.1: 1)/2)/3) 4)/5)/2) 3)/4)/6) 7)/8)/9) 10)

1) Singular point O2(0, 1). Sector I11 is the semi-straight line of the semi-plane bOa, a >

0 given by equation b = −1. On I11 the eigenvalues of O2 are λ1 = −a and λ2 = 0, therefore

it is a semi-hyperbolic singular point. The transformation (x, y)→ (x, y− 1) translate O2 in

the origin of the system of coordinates xOy. Then, changing x by y and y by x, i.e. x = Y ,
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y = X and rescaling the time τ = −at, the system
{

(8), b = −1
}

takes the form Ẋ = 1
a
X
(
aX + (a− 1)Y + aX2 + (a− 1)XY − 2Y

)
= P (X, Y ),

Ẏ = Y − 1−a
a
Y 2 − 1

a
Y 3 = Y +Q(X, Y ).

The function Y = ϕ(X) =
∑

i≥1 ciX
i is an analitic solution of equation Y +Q(X, Y ) =

0 if and only if it vanishes Y = ϕ(X) ≡ 0. Putting Y = 0 in P (X, Y ) we obtain ψ(X) =

X2 +X3. According to [1] the singular point O2(0, 1) is a stable saddle-node.

2) Singular point O4

(
− 1,− 1

a

)
. In this case the sectors I4, I5 and I6 are placed on the

hyperbola a− (1 + a)b = 0, i.e. b = a
a+1

, where a > 0. The eigenvalues of O4 are λ1 = 1 + a

and λ2 = 0, therefore O4 is a semi-hyperbolic singular point. Translating O4 in the origin(
(x, y)→ (x+ 1, y + 1/a)

)
and putting b = a

a+1
in (8) we obtain

ẋ = x(x− 1)(x− a− 1), ẏ = (ay − a− 1)
(
− (a+ 1)x+ x2 + a(a− 1)xy + a2y2

)
/(a2 + a).

The nondegenerate transformation (x, y)→
(
Y,X+Y/a

)
and the time rescaling τ = (a+1)t

reduce the last system to the form Ẋ = − 1
a+1

X
(
aX + (a+ 2)Y − a2

a+1
X2 − (a+2)a

a+1
XY − 2Y 2

)
= P (X, Y ),

Ẏ = Y − a+2
a+1

Y 2 + 1
a+1

Y 3 = Y +Q(X, Y ).

From the equation Y +Q(X, Y ) = 0 we find Y = ϕ(X) = 0. Putting Y = 0 in P (X, Y ) we

obtain ψ(X) = − a
a+1

X2 + a2

(a+1)2
X3. According to [1], the singular point O4

(
− 1,− 1

a

)
is an

unstable saddle-node.

3) Singular point O6(a,−a), a > 0. The sectors I2, I5 and I6 are placed on the hyperbola

(a + 1)b = 1, i.e. b = 1
a+1

. The eigenvalues of O6 are λ1 = (1 + a)a and λ2 = 0, thus the

singular point O6 is semi-hyperbolic. Proceeding in the same way as in the case 2) for O6 we

obtain ψ(X) = − 1
a+1

X2 + 1
(a+1)2

X3. According to [1] the point O6 is of saddle-node type.

Proposition 5.1. At infinity the system (8) has the following singular points:

a) X1∞(1, 0, 0) − saddle; X2∞(1,−1, 0), X3∞
(
1, 1

a
, 0
)
− stable nodes and Y∞(0, 1, 0) −

unstable node, if b < 0;

b) X1∞(1, 0, 0) − stable node; X2∞(1,−1, 0), X3∞
(
1, 1

a
, 0
)
− saddles and Y∞(0, 1, 0) −

stable node, if b > 0;

c) if b = 0 then the infinity is degenerate for (8), i.e. consists only of singular points.

The singular points situated at the ends of the Oy axis are nodes. Through each of every

other singular point at the infinity passes only one trajectory.

Proof. In the case b 6= 0 (b = 0) the first Poincaré transformation x = 1/z, y = u/z

and the time rescaling τ = t/z2 (τ = t/z) reduce (8) to the system

ż = z(z + 1)(az − 1), u̇ = (u+ 1)(au− 1)
(
bu+ (1− b)z

)
(
ż = (z + 1)(az − 1), u̇ = (u+ 1)(au− 1)

)
,

and the second transformation: x = v/z, y = 1/z and τ = t/z2 (τ = zt) give us

v̇ = v(v + 1)(v − a)
(
b+ (1− b)z

)
, ż = z(z − 1)

(
ab+ (a− 1)bv + az + (1− b)v2

)
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(
v̇ = v(v + 1)(v − a), ż = (z − 1)(az + v2)

)
.

Putting z = 0 in the right-hand sides of these systems and equaling them with zero

we obtain the following singular points, respectively: X1∞(1, 0, 0) : {λ1 = −1, λ2 = −b},
X2∞(1,−1, 0) : {λ1 = −1,

λ2 = b(a + 1)}, X3∞

(
1, 1

a
, 0
)

:
{
λ1 = −1, λ2 = b(a+1)

a

}
and Y∞(0, 1, 0) : {λ1 = λ2 = −ab}(

Y∞(0, 1, 0) : {λ1 = λ2 = −a}
)
. The types of these singular points are completely determined

by their eigenvalues: λ1 and λ2. �

In Fig. 5.2 are illustrated the singular points from Proposition 5.1.
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Fig. 5.2. Singular points at the infinity of the system (8)

The qualitative study in the finite part of phase plane and at the infinity leads us to

the portraits given in Fig. 1.1.

5.2. System (9)
(
configuration (3,1,1,1)

)
:

ẋ = x(x+ 1)(x− a), a > −1, b > 0, c ∈ R∗,
ẏ = y

(
− a+ (1− a)x+ (1− bc)x2 + (b− 1)cxy + cy2

)
,(

|a+ b+ ab|+ |ac− (a+ 1)2|
)(
|1 + a+ ab|+ |c− a|

)
6= 0, if − 1 < a < 0,

and
(
|b− a|+ |ac− 1|

)(
|c− a|+ |ab− 1|

)
6= 0, if 0 < a ≤ 1.

For this system the straight lines: l1 = x, l2 = x+1, l3 = x−a, l4 = y, l5 = y−x, l6 = y+bx

are invariant. At the infinity it has four singular points and in the finite part of the phase

plan it has nine (seven). All singular point are hyperbolic. Their eigenvalues and their types

are given in Table 5.2. The information from the Table 5.2 are sufficiently to sketch phase

portraits (see Fig. 1.2).

In the Table 5.2 we used the notations: α = a+ 1 and β = b+ 1.
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Table 5.2. System (9): singular points, eigenvalues and types of SP

−1 < a < 0 0 < a ≤ 1

SP λ1;λ2
c < 0 c > 0 c < 0 c > 0

O1(−1, 0) α; −bc N i S N i S

O2(0, 0) −a; −a N i N i N s N s

O3(a, 0) aα; −a2bc S N s N i S

O4(−1,−1) α; cβ S N i S N i

O5(a, a) aα; a2cβ N s S S N i

O6(−1, b) α; bcβ S N i S N i

O7(a,−ab) aα; a2bcβ N s S S N i

O8,9

(
0,±

√
a
c

)
−a; 2a S − − S

X1∞(1, 0, 0) −1; −bc S N s S N s

X2∞(1, 1, 0) −1; cβ N s S N s S

X3∞(1,−b, 0) −1; bcβ N s S N s S

Y∞(0, 1, 0) −c; −c N i N s N i N s

see Fig. 1.2: 1) 2) 3) 4)

5.3. System (10) (configuration
(
3(2),1,1,1)

)
:

ẋ = x2(x+ 1),

ẏ = y
(
x+ (1− bc)x2 + (b− 1)cxy + cy2

)
,

b ∈ R∗+, c ∈ R∗.

The straight lines: l1,2 = x, l3 = x+ 1, l4 = y, l5 = y−x şi l6 = y+ bx are invariant for (10).

The lines l1, l5, l4 and l6 divide the neighborhood of O(0, 0) in eight sectors. We enu-

merate these sectors from positive Ox semi-axis in counterclockwise direction. The notation

P uH4P sHP u means that the first sector is unstable parabolic, the second sector is of hy-

perbolic type, the 3,4,5,6 sectors are stable parabolic, the 7 sector is hyperbolic and the 8

sector is unstable parabolic.

Proposition 5.2. In the finite part of the phase plane the system (10) has the following

singular points:

1) O1(0, 0) − P uH4P sHP u if c < 0, and 2P uH2P sH2P u, if c > 0;

2) O2(−1, 0) − unstable node if c < 0, and saddle if c > 0;

3) O3,4(−1,−1) − saddle if c < 0, and unstable node if c > 0.

Proof. We will examine separately every singular point O1−O4.

a) Singular point O1(0, 0). Both eigenvalues of the point O1 are null. We will study

the behavior of the trajectories in a neighborhood of this point using blow-up method. First

we apply in (10) the transformation x = X, y = XY :{
Ẋ = ẋ = x2(x+ 1) = X2(X + 1),

Ẏ = ẏ/x− yẋ/x2 = bX2Y (Y − 1)(Y + a).
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Then, rescaling the time τ = X2t and using the substitution (X, Y )→ (X + 1, Y ), the

last system takes the form:

Ẋ = X, Ẏ = bY (Y − 1)(Y + a). (22)

The singular points of the system (22) and their eigenvalues are:{
M1(0, 0) : λ1 = 1, λ2 = −bc

}
− unstable node if c < 0, and saddle if c > 0;{

M2(0, 1) : λ1 = 1, λ2 = (b+ 1)c
}
− saddle if c < 0, and unstable node if c > 0;{

M3(0,−b) : λ1 = 1, λ2 = (b+ 1)bc
}
− saddle if c < 0, and unstable node if c > 0.

The behavior of the trajectories near the points: M1, M2, and (0, 0) is illustrated in

Fig. 5.3a (Fig. 5.3b) if c < 0 (c > 0).
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Fig. 5.3. System (10): the type of the singular point (0, 0)

b) Singular points O2(−1, 0), O3(−1,−1) and O4(−1, 0). These points have the eigen-

values respectively:

O2: λ
2 + (bc− 1)λ− bc = 0; λ1 = 1; λ2 = −bc;

O3: λ
2 − (1 + (b+ 1)c)λ+ (b+ 1)c = 0; λ1 = 1; λ2 = (b+ 1)c;

O4: λ
2 − (1 + (b+ 1)bc)λ+ (b+ 1)bc = 0; λ1 = 1; λ2 = (b+ 1)bc.

Each of the point O2, O3 and O4 are hyperbolic and is not difficult to determine their

types. �

Because the cubic nonlinearities of (9) and (10) coincide, these systems have the same

singular points at the infinity: X1∞(1, 0, 0), X2∞(1, 1, 0), X3∞(1,−b, 0), Y∞(0, 1, 0). More-

over, for both systems the eigenvalues λ1, λ2 are the same, respectively, and their types are

completely determined by the value of parameter c (see, Tab. 5.2).

The arguments outlined above are enough to be able to draw the phases portraits of the

system (10)

(see, Fig. 1.3,1) if c < 0 and Fig. 1.3,2) if c > 0.)

5.4. System (11)
(
configuration

(
3(2),1,1,1

))
:

ẋ = x2(x+ 1),

ẏ = y
(
− bc− 2bcx+ (b− 1)cy + (1− bc)x2 + (b− 1)cxy + cy2

)
,

b ∈ R∗+, c ∈ R∗.
For the system (11) the straight lines: l1,2 = x, l3 = x + 1, l4 = y, l5 = y − x − 1 and

l6 = y + b(x+ 1) are invariant.
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Proposition 5.3. If c < 0 (c > 0), then the system (11) has in the finite parte of the phase

plane the following six (four) singular points:

1) O1(0, 0), O2(0, 1), O3(0,−b) − saddle-nodes;

2) O4(−1, 0) − unstable node;

3) O5,6

(
−1,± 1√

−c

)
− saddles.

Proof. a) Singular point O1(0, 0). This point has the eigenvalues: λ1 = 0 and λ2 = −bc.
Therefore, O1 is a semi-hyperbolic. Rescaling in (11) the time τ = −bct we obtain the system ẋ = − 1

bc
x2(x+ 1) = P (x, y),

ẏ = y − b−1
b
y2 + 2xy + bc−1

bc
x2y + 1−b

b
xy2 − 1

b
y3 = y +Q(x, y).

The equation
{
y + Q(x, y) = 0, y(0) = 0

}
has the solution y = 0. Putting y = 0 in

P (x, y) we have ψ(x) = P (x, 0) = − 1
bc

(x2 +x3). According to [1], the singular point O1(0, 0)

is of saddle-node type.

b) Singular point O2(0, 1) has the eigenvalues: λ1 = 0 and λ2 = (b + 1)c, i.e. O2 is

semi-hyperbolic. At the beginning, via substitution (x, y) → (x, y − 1) we translate O2 in

origin, then rescaling in (11) the time τ = (b+ 1)ct, we obtain the system ẋ = 1
(b+1)c

x2(x+ 1) = P (x, y),

ẏ = y + 2
(b+1)c

x2(1− x) + 2xy + b+2
b+1

y2(x+ 1) + 1+(b+1)c
(b+1)c

x2y + 1
b+1

y3 = y +Q(x, y).

The solution y = ϕ(x) =
∑

i≥1 cix
i of the equation y + Q(x, y) = 0 has the form

ϕ(x) = − 2
(b+1)c

x2 + 2
(b+1)c

x3 + · · ·. Putting ϕ(x) in P (x, ϕ(x)) we come to the function

ψ(x) = 1
(b+1)c

(x2 + x3). Therefore, the singular point O2(0, 1) is of saddle-node type (see,

[1]).

c) Singular point O3(0,−b). Similarly as in b), for O3(0,−b) we get ϕ = 2
(b+1)c

x2 + · · ·
and ψ(x) = 1

(b+1)bc
(x2 + x3). Thus, O3 is of saddle-node type

(
[1]
)
.

d) Singular points O4(−1, 0) and O5,6(0,±1/
√
−c). The eigenvalues of O4 (O5,6) are

λ1 = λ2 = 1 (λ1 = −2 and λ2 = 1). Therefore, O4 (O5,6) is (are) unstable node (saddles). �

Because the systems (9) and (11) have the same cubic non-linearities, their singular

points at the infinity coincide. The qualitative characteristics of these points are given in

Tab. 5.2.

The investigations allowed us to draw the phase portraits of the system (11) (see, Fig.

1.4).

5.5. System (12)
(
configuration

(
3(3),1,1,1

))
:

ẋ = x3,

ẏ = y
(
(1− bc)x2 + (b− 1)cxy + cy2

)
,

c(bc− 1)
(
(b+ 1)c+ 1

)(
(b+ 1)bc+ 1

)
6= 0, b > 0, bc ∈ R.

This system has the following invariant straight lines: l1,2,3 = x, l4 = y, l5 = y − x and

l6 = y + bx.
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Proposition 5.4. If c < 0 (c > 0) then in the finite parte of the phase plane the system (12)

has only one singular point (0, 0) which is of the type P u2H2P u2HP u (unstable topological

node) if c < 0 (c > 0).

Proof. Both eigenvalues of the singular point O(0, 0) are null. Therefore, O(0, 0) is

nilpotent. We will study the behavior of the trajectories in a neighborhood of this point

using blow-up method. In the polar coordinates x = ρcosθ, y = ρsinθ the system (12) takes

the form:
dρ
dτ

= ρ
(

cos4 θ + b sin4 θ + (1− bc) sin2 θ cos2 θ + c(b− 1) sin3 θ cos θ
)
,

dθ
dτ

= c sin θ cos θ(sin θ − cos θ)(sin θ + b cos θ),
(23)

where τ = ρ2t. Taking into account that the system (12) is symmetric with respect to the

origin, it is sufficient to consider θ ∈ [0, π). The singular points of the system (23) with first

coordinate ρ = 0 and the second θ ∈ [0, π), their eigenvalues and types respectively are:

M1(0, 0): {λ1 = 1, λ2 = −bc}− unstable node, if c < 0, and saddle, if c > 0;

M2(0, π/2): {λ1,2 = ±c}− saddle;

M3(0, π/4):
{
λ1 =

1

2
, λ2 =

(b+ 1)c

2

}
− saddle, if c < 0, and unstable node, if c > 0;

M4(0,−arctg b):
{
λ1 =

1

b2 + 1
, λ2 =

(b+ 1)bc

b2 + 1

}
− saddle, if c < 0, and unstable node, if

c > 0.

We obtain Fig. 5.4a), if c < 0, and Fig. 5.4b), if c > 0. In the case c < 0 we have the

following partition in sectors of the neighborhood of the origin: P u2H2P u2HP u and in the

case c > 0 the neighborhood of the origin is an unstable topological node. �
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Fig. 5.4. System (12): the type of the singular point (0, 0)

The systems (9) and (12) have the same qualitative characteristic at the infinity.

The phase portraits of the system (12) are given in Fig. 1.5.

The results obtained in the Sections 3 − 5 prove the Theorem 1.1.
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