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CENTER CONDITIONS FOR A CUBIC DIFFERENTIAL SYSTEM  

Angela MATEI, dr., associate professor 
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Abstract. We find conditions for a singular point 𝑂(0,0) of a center or a focus type to be a center, in a 

cubic differential system with one invariant straight line. The presence of a center at 𝑂(0,0) is proved by 

using the method of rational reversibility. 
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CONDIȚII DE EXISTENȚĂ A CENTRULUI PENTRU UN SISTEM 

DIFFERENTIAL CUBIC CU O DREAPTĂ INVARIANTĂ  

Rezumat. Se determină condițiile de existență a centrului pentru un sistem diferențial cubic cu punctul 

singular 𝑂(0,0) de tip centru sau focar ce posedă o dreaptă invariantă. Prezența centrului se demonstrează 

aplicând metoda reversibilității raționale.  

Cuvinte-cheie: Sistem diferențial cubic, problema centrului, drepte invariante, reversibilitate rațională. 

 

1. Introduction 

We consider the cubic system of differential equations  
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 (1.1) 

in which variables )(=),(= tyytxx  and coefficients are assumed to be real. Let the origin 

(0,0)O  be an isolated singularity of (1.1) with purely imaginary eigenvalues 

1)=,=( 2

1,2  ii . In this case the origin is either a focus or a center. The trajectories in 

some neighborhood of (0,0)O  can be spirals or closed trajectories.    

It arises the problem of distinguishing between a center and a focus, i.e. of finding 

the conditions under which (0,0)O  is, for example, a center. We study the problem of the 

center for cubic system (1.1) assuming that the system has invariant straight lines.   

Definition 1.1. An algebraic curve 0=),( yx  in 2C  with ],[ yxC  is said to be an 

invariant algebraic curve of system (1.1) if the following identity holds 
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 (1.2) 

for some polynomial ],[),( yxyxK C  called the cofactor of the invariant algebraic curve 

0=),( yx .  

Let the cubic system (1.2) have at least one invariant straight line  

 (0,0).=),(,,,0,=  BACBAByAxC C  (1.3) 

Then by Definition 1.1, a straight line (1.3) is an invariant straight for system (1.1) 

if and only if the following identity holds  

WITH ONE INVARIANT STRAIGHT LINE  
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 ),,()(=),(),( yxKByAxCyxBQyxAP   (1.4) 

where 2

0211

2

20011000=),( ycxycxcycxccyxK   and 𝐴,𝐵,𝐶, 𝑐𝑖𝑗  are unknown complex 

coefficients. 

Identifying the coefficients of 𝑥𝑖𝑦𝑗  in (1.4), we find that 

0,=)()( 2011 BqcAcm   0,=)()( 111001 CcBdcAcc   

0,=)()( 1102 BncAcp   0,=)( 0201 CcBcbfA   

0,=)( 2010 CcgBAca   0,=0100 CcBcA   ,0=00Cc                      (1.5) 

0,=)( 20 sBAck   0,=)( 02 BlcrA  .0=1000 BCcAc   

The coefficients in (1.1) are real and the complex invariant straight lines occur in 

complex conjugated pairs 0=ByAxC   and 0.=yBxAC   According to [1] the cubic 

system (1.1) cannot have more than four nonhomogeneous invariant straight lines, i.e. 

invariant straight lines of the form  

(0,0).),(0,=1  BAByAx  

As homogeneous straight lines 0=ByAx  , the system (1.1) can have only the lines  

1=0,= 2  iiyx . 

The problem of the center was completely solved for cubic system (1.1) with four 

invariant straight lines [1], [2] and with three invariant straight lines [2], [3]. In [4] by 

using the method of Darboux integrability and the method of rational reversibility it was 

obtained the center conditions for cubic system (1.1) with two invariant straight lines. 

The goal of this paper is to obtain center conditions for a cubic differential system (1.1) 

with one invariant straight line by using the method of rational reversibility. 

 

2. Time-reversibility in cubic systems 

In this Section for cubic system (1.1) we find conditions under which the system 

can be brought to a system with an axis of symmetry.  

Definition 2.1. We say that system (1.1) is  time-reversible if its phase portrait is 

invariant under reflection with respect to a line and reversion of time.  

The classical condition is that the system is invariant under one or other of the 

transformations ),,(),,( tyxtyx   or ),,(),,( tyxtyx  . The first corresponds to 

reflection in the y -axis and the second to reflection in the x -axis. If the system (1.1) is 

time-reversible, for example, 0=x  is the axis of symmetry, then the origin is a center. 

An algorithm for finding all time-reversible systems within a given family of 2-dim 

systems of ODE's whose right-hand sides are polynomials was presented by Romanovski 

in [5]. The relation between time-reversibility and the center-focus problem was 

discussed by Teixeira in [6]. 

Suppose system (1.1) is not time-reversible. It is clear that (1.1) has a center at 

(0,0)O  if there exists a diffeomorphism  
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 (0,0),=(0,0))},,(=),,(={=,:  yxYyxXVU   

which brings system (1.1) to a system with the axis of symmetry. In particular, if ),( yx  

and ),( yx are rational functions, then we say that (1.1) is rationally reversible.  

In [7] Zoladek classified all rationally reversible cubic systems. An algorithm for 

checking whether it is possible to transform a given system to one which is time-

reversible by means of a bilinear transformation was described by Lloyd in [8]. This 

algorithm was applied to find the center conditions for some families of cubic systems. 

Consider the polynomial differential system  
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                                                 (2.1) 

The critical point at the origin is clearly monodromic (locally the trajectories 

encircle the critical point). However a change of coordinates ),,(),,( tYXtYX  leaves 

the system invariant. Clearly the 𝑌- axis is a line of symmetry for the trajectories. Close 

to the origin the trajectories must therefore be closed. 

In [4] by using the method of rational reversibility there were obtained the center 

conditions for cubic system (1.1) with two invariant straight lines. It was proved that the 

cubic system (1.1) by a rational transformation 

 
1

=,
1

=
33

22

33

11









YbXa

YbXa
y

YbXa

YbXa
x ,                                  (2.2) 

where 0=2121  abba  and 1,2,3=,, jba jj R  can by brouthgt to the form (2.1) if and only 

if the following equalitites are satisfied  
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0,=2)()( 3
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1 afaaacbaadaga                             (2.3) 
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0=12

2

2

1 aa , 0=12

2

2

1 bb , 𝑎1𝑏1 + 𝑎2𝑏2 = 0 

in the coefficients of system (1.1) are the parameters 
321321 ,,,,, bbbaaa  of the 

transformation.  

The equations 0=12

2

2

1 aa , 0=12

2

2

1 bb  of (2.3) admit the parametrizations 
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Taking into account (2.4) and the equation 𝑎1𝑏1 + 𝑎2𝑏2 = 0 of (2.3), two 

symmetric cases   1) ;
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will be considered in studying the consistency of the algebraic system (2.3). 

 

3. Reversible cubic systems with one invariant straight line 

Assume that 1221 =,= baba  and let .03 a  In this case from the equation  

0=)()( 3

2

2221221

2

12 abfadabaabbgcbaa   

of (2.3) we find that  

.1)]/(1)()2(1)))(4((81)([= 32222232

3  uuugcufdbuuuaa  

We have the following theorem. 

Theorem 3.1. The cubic differential system (1.1) is rationally reversible and has one 

invariant straight line if one of the following sets of conditions holds: 

(i) ;2=,2=0,=,=,2=),(=,3=,2= 2 bfpabkrbflbmdabqbcbg   

(ii) ;2=,2=0,=,=,2=),(=,3=,2= 2 agqablsagkancbapadaf   

(iii)  1)1111(23)3)(102[(6= 24642 uuuduuucba  

1)],1)(1)]/[4(7(75 24264  uuuuuf  

1)],(1)]/[81515)(2(35)14(521)6([14= 42462424  uuuuudfuucuuubug  
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Proof. We study the compatibility of (2.3) in three possible cases: 1,0  uu and 

0)1( uu . If 0u , then from the equations of (2.3) we obtain the set of conditions (i) 

and the equations of (1.5) give the invariant straight line 021  bx .  

If 1u , then from the equations of (2.3) we determine the set of conditions (ii) and 

the equations of (1.5) yield the invariant straight line 021  ay . 

Assume that 0)1( uu . In this case from (2.3) we get the set of conditions (iii) and 

the equations of (1.5) imply for system (1.1) the existence of the invariant straight line 

 )2)](2)(1(2)16)(2[( 222242 yyuuxcducuuuuufbufu  

.0)1)(1( 224  uu  

Theorem 3.1 is proved.  

Assume that 1221 =,= baba  and let .03 a  We have the following theorem 

Theorem 3.2. The cubic differential system (1.1) is rationally reversible if one of the 

following sets of conditions holds: 

(i) 0;======= qplkfda  

(ii) ;0======= qplkgcb  

(iii) ],1))]/[2(66(201)77)([(= 3253246  uuuubuuufda  

],1)()]/[2)(7(4)22(12)(1[= 2242536  uuuufduuubufc  
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Proof. We study the compatibility of (2.3) in three possible cases: 1,0  uu  and 

0)1( uu . We obtain the center conditions (i), (ii) and (iii), respectively. When one of 

these three sets of conditions holds the cubic system (1.1) has no invariant straight lines.  

Theorem 3.2 is proved.  
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