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with conditions of continuity are proved.
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DESPRE FAMILIILE METRIZABILE DE SUBSPAŢII

ALE SPAŢIILOR LOCAL CONVEXE REFERITOR LA SELECŢII

Rezumat. Utilizând unele metode din lucrările lui E. Michael [11, 12, 13], T. Dobrowolski şi J.

van Mill [8] şi ale unuia dintre autorii [1, 2, 3, 5], au fost demonstrate câteva noi rezultate cu privire

la existenţa selecţiilor cu condi[̧t]ii de continuitate.
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1. Introduction

Any space is considered to be a Hausdorff space. Let X and Y be topological spaces. We

say that F : X −→ Y is a set-valued mapping if F (x) is a non-empty subset of Y for any

point x ∈ X.

A single-valued mapping f : X −→ Y of a space X into a space Y is said to be a

selection of a given set-valued mapping F : X −→ Y if f(x) ∈ F (x) for each x ∈ X. Note

that by the Axiom of Choice selections always exist. In the category of topological spaces

and continuous single-valued mappings the situation is more complex.

The following problem is important: Under what conditions there exist continuous

selections? There exist many theorems on continuous selections.

The set-valued mapping F : X −→ Y is called;

- lower semicontinuous mapping if the set F−1(H) = {x ∈ X : F (x) ∩H 6= ∅} is an

open subset of the space X for any open subset H of the space Y ;

- upper semicontinuous mapping if the set F−1(H) = {x ∈ X : F (x) ∩ H 6= ∅} is a

closed subset of the space X for any closed subset H of the space Y .

One of them is the famous Michael’s selection theorem for convex-valued mappings

from [11]. There are lower semicontinuous convex-valued mappings F : X −→ Y without

any continuous single-valued selections, even for X = [0; 1] (see Example 6.2 from [11]).

An important example is published in [9]. It was proved that every convex-valued lower

semicontinuous mapping of a metrizable domain into a separable Banach space admits a

continuous selection, provided that all values are finite-dimensional ([11], special case of

Theorem 3.1). Distinct results of this kind were proved in [1, 2, 3, 5, 7, 8, 9, 12, 14, 16, 17].
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The next localization principle is from the folklore field which do to H. Corson, J.

Lindenstrauss, T. Dobrowolski, J. van Mill, V. Valov (see [7, 8, 14, 15]).

Proposition 1 (Localization Principle). Suppose that a convex-valued mapping F :

X −→ Y of a paracompact space X into a topological vector space Y admits a single-valued

continuous selection over each member of some open covering γ of the space X. Then F

admits a global single-valued continuous selection.

2. Pseudometrics on linear spaces

Let d be a pseudo-metric on a space E. For all x ∈ E and ε > 0 we put V (x, d, ε) =

{y ∈ E : d(x, y) < ε}.
Let E be a topological linear space. A pseudo-metric d on a space E is called a

continuous invariant pseudo-metric if d(x+ z, y + z) = d(x, y) for all x, y, z ∈ E. A pseudo-

metric d is called a uniform pseudo-metric if it is invariant and if:

- from {an ∈ R : n ∈∈ N} and limn→∞an = 0 it follows limn→∞d(0, anx) = 0 for

every x ∈ E;

- from {xn ∈ E : n ∈ N} and limn→∞d(0, xn) = 0 it follows limn→∞d(0, txn) = 0 for

any t ∈ R;

- the set {x ∈ E : d(0, x) < r} is open in E for every r ∈ R.

A pseudo-metric d on the linear space is called a convex pseudo-metric if it is uniform

and the set {x ∈ E : d(0, x) < r} is open and convex in E for every r ∈ R.

Fix a pseudo-metric d on a space E. There exist a metric space (E/d, d̄) and a mapping

pd : E −→ E/d such that d(x, y) = d̄(pd(x), pd(y)) for all x, y ∈ E. On X/d we consider only

the topology generated by the metric d̄. If the sets V (x, d, ε) are open in E for all x ∈ E
and ε > 0, then we say that d is a continuous pseudo-metric on the space E. Obviously,

the pseudo-metric d is continuous if and only if the mapping pd is continuous. If the metric

space (E/d, d̄) is complete, then we say that d is a complete pseudo-metric. If F : X −→ E

is a set-valued mapping and the mapping Fd : X −→ E, where Fd(x) = pd(F (x)) for each

x ∈ X has the property P, then we say that F is a mapping with the d-property P.

Assume that E is a topological linear space and d is a continuous invariant pseudo-

metric. Then Hd = {x ∈ E : d(0, x) = 0} is a closed subgroup of E, on E/d there exists a

structure of group for which pd : E −→ E/d is a continuous homomorphism of the topological

group E on the topological group E/d metrizable by the invariant metric d̄. If the pseudo-

metric d is uniform, then Hd is a closed liniar subspace of E, E/d admits a structure of a

linear topological space metrizable by the uniform metric d̄ on E/d. If the pseudo-metric d

is convex, then (E/d, d̄) is a locally convex linear space.

A family A of subsets of a space E is called metrizable by the pseudo-metric d if d is

a continuous pseudo-metric on the space X and for any L ∈ A, any point x ∈ L and any

open subset U of E with x ∈ U there exist an open subset V of E and a number ε > 0 such

that x ∈ V and V (y, d, ε) ∩M ⊆ U provided M ∈ A and y ∈ M ∩ V . We observe that any

set L ∈ A is metrizable by the metric d on L. If L ∈ A and the metric d̄ is complete on the

subspace pd(L), then we say that the set L is complete relatively to the pseudo-metric d. If

any set L ∈ A is complete relatively to the pseudo-metric d, then we say that the family A
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is complete metrizable by the pseudo-metric d.

Proposition 2. Let d be an invariant continuous pseudometric on a topological locally

convex space E. Then on E there exists a convex pseudometric ρ such that:

1. If d(x, y) = 0, then ρ(x, y) = 0 too.

2. If the family A of subsets of a space E is metrizable by the pseudo-metric d, then

the family A of subsets of a space E is metrizable by the pseudo-metric ρ too.

3. If any set L ⊂ E is metrizable relatively to the pseudo-metric d, then we say that

the family A is metrizable by the pseudo-metric ρ too.

4. If any set L ⊂ E is complete metrizable relatively to the pseudo-metric d, then we

say that the family A is complete metrizable by the pseudo-metric ρ too.

5. For every ε > 0 there exists a δ > 0 such that from x, y ∈ E and d(x, y) < δ it

follows that ρ(x, y) < ε.

Proof. We fix a sequence of {Vn : nN} of open convex subsets of the space E such

that:

- Vn+1 + Vn+1 ⊂ Vn ⊃ Vn ⊂ {x ∈ E : d(0, x) < 2−n} for each n ∈ N;

- clEVn+1 ⊂ Vn = −Vn for each n ∈ N.

For each n ∈ N and x ∈ E we consider the Minkowski functional νn(x) = infimum{t ∈
R : t ≥ 0, t · x ∈ Vn} on E associated to Vn which has the next properties:

- {x ∈ E : νn(x) < 1} ⊂ Vn ⊂ {x ∈ E : νn(x) ≤ 1};
- νn(tx) = |t|νn(x) for all x ∈ E and t ∈ R;

- νn(x+ y) ≤ νn(x) + νn(y) for all x, y ∈ E.

For any n ∈ N the linear space E/νn is a normed space and the projection pn : E −→
E/νn is continuous and linear.

Now we put ρ(x, y) = Σ{2−n ·min{1, 2νn(x− y)} : n ∈ N} for all x, y ∈ E.

By construction, ρ is an invariant pseudo-metric on E and the space E/ρ is homeomor-

phic by a subspace of the topological product Π{E/νn : n ∈ N}. Moreover, we can assume

that pρ(x) = (νn(x) : n ∈ N) ∈ E/ρ ⊂ Π{E/νn : n ∈ N}. Hence ρ is a continuous convex

pseudo-metric on E. Since Vn+2 ⊂ {x ∈ E : ρ(x, y) < 2−n−1} ⊂ Vn}, for every ε > 0 there

exists a δ > 0 such that from x, y ∈ E and d(x, y) < δ it follows that ρ(x, y) < ε. Assertion

5 is proved. Assertions 1 - 3 follows from Assertion 1. Assume that L ⊂ E and (L, d) is a

complete metric space. Assume that {xn ∈ L : n ∈ N} and limn,m→∞d(xn, xm) = 0. Fix

ε > 0. There exists k ∈ N such that 2−k < ε and ρ(xn, xm) < 2−k−1 for n,m ≥ k. Then

xn − xm ∈ Vk for n,m ≥ k. Therefore xn − xm{x ∈ E : d(0, x) < 2−k} and d(xn, xm) < ε

for n,m ≥ k. Hence, there exists a point a ∈ L such that limn→∞d(a, xn) = 0. Since d and

ρ are equivalent metrics on E, we have limn→∞ρ(a, xn) = 0 and ρ is complete on L. The

proof is complete.

3. Local properties of families of subspaces and pseudometrics

Let d be a continuous pseudo-metric on a topological linear space E. A family A of subsets

of a space E is called:

- weakly locally d-complete if for any element L ∈ A there exists an open subset U of

E such that L ∩ U 6= ∅ and the set M ∩ clEU is complete relatively to the pseudo-metric d
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for any M ∈ A;

- locally d-complete if for any element L ∈ A and any open subset V of E with

V ∩ E 6= ∅ there exists an open subset U of E such that U ⊂ V , L ∩ U 6= ∅ and the set

M ∩ clEU is complete relatively to the pseudo-metric d for any M ∈ A;

- pseudo locally linear finite dimensional if for any element L ∈ A there exists an open

subset U of E such that L ∩ U 6= ∅ and M ∩ U for any M ∈ A is a subset of some finite

dimensional linear subspace Y (U,M) of E;

- almost locally linear finite dimensional if for any element L ∈ A, each point x ∈ L
and any open subset V of X with x ∈ V there exists an open subset U of E such that

U ⊂ V , U ∩ L 6= ∅ and M ∩ U is a subset of some linear subspace Y (M,U) of E for any

M ∈ A;;

- weakly locally closed if for any element L ∈ A there exists an open subset U of E

such that L ∩ U 6= ∅ and M ∩ clEV is a closed subset of the subspace E for any M ∈ A;

- locally closed if for any element L ∈ A, each point x ∈ L and any open subset V of E

with x ∈ V there exists an open subset U of E such that U ⊂ V , U ∩L 6= ∅ and M ∩ clEU
is is a closed subset of the space E for any M ∈ A.

The following assertion is well known and obvious

Proposition 3. Let L be a convex subset of the topological linear space E, H be a

linear subspace of E and U be an open subset of E. If ∅ 6= U ∩ L ⊂ H, then L ⊂ H.

4. Main results

Theorem 4. Let d be an invariant pseudo-metric on a topological locally convex space

E, A be a family of non-empty convex subspaces of the space E metrizable by the pseudo-

metric d and for any element L ∈ A there exists an open subset U of E such that L∩U 6= ∅
and for any set M ∈ A the intersection M ∩clEU is complete relatively to the pseudo-metric

d. Assume that F : X −→ E is a lower semicontinuous mapping of a paracompact space X

into the space E and F (x) ∈ A for each x ∈ X. Then there exists a single-valued continuous

mapping f : X −→ E such that f(x) ∈ F (x) for each point x ∈ X.

Proof. By virtue of Proposition 2, we can assume that that d is a convex pseudo-

metric on E. Consider the locally convex space E/d metrizable by the convex metric d̄ and

the continuous linear projection pd : E −→ E/d.

We put B = {L∩Φ : L ∈ A, L∩Φ 6= ∅,Φ is a closed convex subset of E}. Obviously,

the family B is metrizable by the pseudo-metrics d.

Fix a point a ∈ X and an open subset U of E such that F (a) ∩ U 6= ∅ and for any

set M ∈ B the intersection M ∩ clEU is complete relatively to the pseudo-metric d. Fix a

point b ∈ F (a) ∩ U , an open convex subset V of E and an open Fσ-subset W of X such

that b ∈ V ⊂ clEV ⊂ U and a ∈ W ⊂ F−1(V ). We put Fa(x) = F (x) ∩ clEV . Then

Fa : W −→ E is a lower semicontinuous mapping of a paracompact space W into the space

E, Fa(x) ∈ B and the set Fa(x) is convex and complete metrizable by the metric d for any

point x ∈ W .

Now we put Ψa(x) = pd(Fa(x)) for any x ∈ W . Then the mapping Ψa : W −→ E/d is

lower semicontinuous, convex-valued, closed-valued and for any x ∈ W the image Ψa(x) is a
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closed and convex subset of the metrizable by the convex metic d locally convex space E/d.

Any set Ψa(x) is complete by the convex metric d̄.

Since W is a paracompact space, by virtue of Michael’s Theorem from [11], there

exists a single-valued continuous mapping ga : W −→ E/d such that ga(x) ∈ Ψa(x) for each

x ∈ W .

By virtue of the reduction principles from [4, 5], there exists a single-valued continuous

mapping fa : W −→ E such that fa(x) ∈ Fa(x) = F (x) ∩ Y (F (a), F (x)) and ga(x) =

pd(fa(x)) for each x ∈ Xa. Proposition 1 completes the proof.

Corollary 5. Let d be an invariant pseudo-metrics on a topological locally convex

space E, A be a family of non-empty convex subspaces of the space E metrizable by the

pseudo-metric d. Assume that the family A is a weakly locally d-complete, F : X −→ E is

a lower semicontinuous mapping of a paracompact space X into the space E and F (x) ∈ A

for each x ∈ X. Then there exists a single-valued continuous mapping f : X −→ E such

that f(x) ∈ F (x) for each point x ∈ X.

Proof. Fix an element L ∈ A.

Since A is weakly locally closed there exist an open subset U1 of the space E such that

L ∩ U1 6= ∅ and M ∩ clEU1 is a closed subset of E for any M ∈ A.

Since A is a locally linear finite-dimensional family, there exist a number n(L) ∈ N,

an open subset U2 of the space E and the linear subspaces Y (L,M) ⊂ E, M ∈ A, of the

dimension ≤ n(L) such that U2 ⊂ U1, U2 ∩L 6= ∅ and M ∩U2 ⊂ Y (L,M) for each M ∈ A.

Since A is a locally convex family, there exists an open subset U of the space E such

that U ⊂ U2, U ∩ L 6= ∅ and M ∩ U ⊂ Y (L,M) is a convex subset of the linear subspace

Y (L,M) for each M ∈ A. Then for any x ∈ U the set F (x)∩ clY U is a closed convex subset

of the linear subspace Y (a, x) of dimension ≤ n(a). Theorem 3 completes the proof.

Corollary 6. Let d be an invariant pseudo-metrics on a topological locally convex space

E, A be a family of non-empty convex subspaces of the space E metrizable by the pseudo-

metric d. Assume that the family A is pseudo locally linear finite-dimensional and weakly

locally closed, and F : X −→ E is a lower semicontinuous mapping of a paracompact space

X into the space E such that F (x) ∈ A for each x ∈ X. Then there exists a single-valued

continuous mapping f : X −→ E such that f(x) ∈ F (x) for each point x ∈ X.

Proof. Since A is a weakly locally linear finite-dimensional family, then from Propo-

sition 3 it follows that for any point x ∈ X there exists a finite-dimensional linear subspace

Y (x) of E such that F (x) ⊂ Y (x). We can assume that A = {F (x) : x ∈ X}.
Fix a ∈ X and put L = F (a). Since A is weakly locally closed there exists an open

subset U of the space E such that L∩U 6= ∅ and M ∩ clEU is a closed subset of E for any

M ∈ A. We put V = F−1(U). Then {F (x) : x ∈ V = {M ∈ A : M ∩ U 6= ∅}.
By virtue of Proposition 2, we can assume that that d is a convex pseudo-metric on

E. Consider the topological linear space E/d metrizable by the convex metric d̄ and the

continuous projection pd : E −→ E/d.

By virtue of the V.L. Klee theorem [10], the metric d̄ is complete on any finite di-

mensional linear subspace L of E/d (see also [6]). In particular, any subspace pd(Y (x)) is
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complete relatively to the metric d̄. Hence, for any point x ∈ V , the set F (x) ∩ clEU is

complete relatively to the pseudo-metric d. Theorem 4 completes the proof.

References

1. Choban M. Multi-valued mappings and Borel sets, I. In: Trudy Moskovskogo Matem.

Obshchestva 22, 1970. p. 229-250. English translation: Trans. Moscow Math. Soc.

22, 1970. p. 258-280.

2. Choban M. Multi-valued mappings and Borel sets, II. In: Trudy Moskovskogo Matem.

Obshchestva, nr. 23, 1970. p. 277-301. English translation: Trans. Moscow Math.

Soc. 23, 1970. p. 286-310.

3. Choban M. General theorems on selections and their applications. In: Serdica, 4, 1978.

p. 74-90.

4. Choban M.M. Reduction theorems on existence of continuous selections. Selections

under subsets of the quotient spaces of topological groups. In: Mat. Issled., Shtiintsa,

Kishinev VIII, 4, 1973. p. 111-156.

5. Choban M. Reduction principles in the theory of selections. In: Topology and its

applications 155, 2008. p.787-796.

6. Choban M. On completion of topological groups. In: Vestnik Moskovskogo Univer-

siteta, 1970. nr. 1, p. 33-38. English translation: Moscow University Mathematics

Bulletin 25, 1972. no. 1-2, p. 23-26.

7. Corson H., Lindenstrauss J. Continuous selections with non-metrizable ranges. In:

Trans. Amer. Math. Soc. 121, 1966. p. 492-504.

8. Dobrowolski T., van Mill J. Selections and near-selections in linear spaces without local

convexity. In: Fund. Math. 192, 2006. p. 215-232.

9. Filippov V. On a question of E.A. Michael. In: Comm. Math. Univ. Carol. 45, 2004.

p. 735-737.

10. Klee V.L. Invariant metrics in groups (solution of a problem of Banach). In: Proc.

Am. Math. Soc. 3, 1952. p. 484-487.

11. Michael E. Continuous selections, I. In: Ann. of Math. 63, 1956. p. 361-382.

12. Michael E. Continuous selections II. In: Ann. of Math. (2) 64, 1956. p. 562-580.

13. Michael E. A theorem on semi-continuous set-valued functions. In: Duke. Math. J.

26, 1959. p. 647-651.
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