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THE PROBLEM OF THE NUMBER π

AND ANOTHER CONSTRUCTION OF TRIGONOMETRY
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Abstract. In this paper, the solution of the problem of the number π has been described. A

definition of this number was formulated according to the model of the definition of the number

e, mathematically well understood. Then this number was based on the definition of the length of

the circle and of the arcs of the circle, and as well as on the definition of trigonometric functions

of real variable.
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PROBLEMA NUMĂRULUI π

ŞI ALTĂ CONSTRUCŢIE A TRIGONOMETRIEI

Rezumat. În această lucrare se descrie rezolvarea problemei numarului π. S-a formulat definiţia

acestui număr după modelul definiţiei numarului e, bine inchegată din punct de vedere matematic.

Apoi acest numar a fost pus la baza definiţiei lungimii cercului şi arcelor de cerc, precum şi la baza

definiţiei funcţiilor trigonometrice de variabilă reală.

Cuvinte-cheie: numărul π, lungimea cercului, trigonometria absolută.

1. Introduction

In this paper the oldest and most controversial mathematical problem in the history

of mankind is studied. Thousands of years ago the barrels builders observed that between

the length of the circle and its diameter there is a ratio that does not depend on the length

of the diameter. This ratio today is known as the ”number π”. Famous stories about the

problem of the number π are contained in the books [1, 2, 3, 4, 6, 9]. Problem of the ratio

π it has become an enigma for mathematicians of all times. Over the years for this ratio

chronologically were proposed different numbers that approximate it. The approximation of

π is found in the Old Testament as π = 3, and in the Ancient Chinese used the inaccurate

value π = 3. The Babylonians used the estimation 25/8. In the Egyptian Rhind Papyrus

(around 1650 BC, copied by the scribe Ahmes from a document dated to 1850 BC), in the

formula for the area of a circle, treats π as (169 )2 ≈ 3.16.

Antiphon of Rhamnus (480 - 411 BC) and Bryson of Heraclea (5th century BC) used

the inscribed and circumscribed polygons and found an approximate method of solving the

problem of squaring the circle. Squaring the circle is a famous problem proposed by ancient

geometries whose solution depends on the nature of the number π. The Ancient mathemati-

cian Archimedes of Syracuse (287 - 212 BC) is considered to be the first who proposed an

effective method, the polygonal approach, to estimate the value of π. Archimedes proved

that 223/71 < π < 22/7. Mathematicians, using polygonal algorithms, obtained distinct

approximations of π. The Chinese mathematician Liu Hui iu Hui (3rd century CE) obtained

a value of π of 3.1416, the Chinese mathematician Zu Chongzhi (around 480 AD) determined

that 3.1415926 < π < 3.1415927, the Italian mathematician Fibonacci of Pisa (c. 1170 - c.
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1240-50) employed the value π ≈ 3 +
√
2

10 ' 3.14142, in 1593 the French mathematician Fran-

cois Viete (1540 - 1603) discovered the first infinite product in the history of mathematics

by giving an expression of π, named Viete’s formula:
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In 1655 the English mathematician John Wallis (1616 - 1703) discovered the second

infinite product:
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The Welsh mathematician William Jones (1675 - 1749) in 1706 used the symbol π to

represent the ratio of the circumference of a circle to its diameter. Leonhard Euler (1707

- 1783) started using π form beginning with his ”Essay Explaining the Properties of Air”

(1727). The Euler’s Identity eiπ + 1 = 0 is one of the simplest and most elegant equations.

Euler established that
π2
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22
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+ · · ·.

Distinct infinite representation of the number π were proposed by many mathematicians

and, in particular, by English scientist Isaac Newton (1642 - 1726), German mathematician

Gottfried Wilhelm Leibniz (1646 - 1716), Scottish mathematician James Gregory (1638 -

1675). In 1706 professor of astronomy John Machin (1686 - 1751) at Gresham College,

London, in 1706 using the formula π
4 = arctg 15 - arctg 1

239 computed π to 100 decimal places.

Other mathematicians created variants, now known as Machin-like formulae, for calculating

digits of π.

Swiss mathematician Johann Heinrich Lambert (1728 -1777) in 1761 proved that the

number π is irrational, in 1794 French mathematician Adrien-Marie Legendre (1752 - 1833)

proved that π2 is also irrational. Finally, in 1882 German mathematician Ferdinand von

Lindemann (1852 - 1939) proved that π is transcendental. Hence it is impossible to square

the circle by compass and straightedge. Moreover, the number π is not the root of some

polynomial with rational coefficients and, in particular, cannot be obtained from the rational

numbers with the help of operations +,−,×, : and the extraction of the root of any order.

The development of computers in the mid-20th century revolutionized the hunt for

digits of π. There are distinct motives for computing the number π: cosmological calculations

for the circumference of the observable universe; the number π it is found in many formulae

from the fields of geometry, trigonometry, statistics, physics, Fourier analysis, and so.

This article includes introduction, conclusions and four sections. In the Section 2 we

present a new definition of the number π. In Section 3 we calculate the length of the circle

and the circle arcs. In Section 4 we presented the definition of trigonometric functions of

real variables. In Section 5 we deduce the formulas of the algebraic sum of two real numbers

for the trigonometric functions cosine and sine. Sections 3 - 5 are aspect methodological

too.

2. A new definition of the number π

Let R be the field of reals, Q be the subfield of rationals and I = [0, 2−1]. Consider

Sergiu Miron



45

the function f : I −→ R, where f(r) = sin(r1800) for any r ∈ I.

Figure 1.

We then consider a trigonometric circle, fig.1, and note with P0 the point with the coor-

dinates (1; 0), the intersection point of the circle with the positive semi-axis Ox. For the

rational numbers r1 and r2 from I, 0 ≤ r1 < r2 ≤ 1
2 , we associate the points P1 and P2

on the trigonometric circle, so that the arcs P0P1 = r11800 and P0P2 = r21800 are oriented

counterclockwise. We carry the chord P1P2 and the segments A2P1 = sin(r11800), and A1P2

= sin(r21800). As a result we obtain the trapezoid A1A2P1P2, where AC is the mid line.

The semi-right OC passes through the middle of the chord P1P2 and so is the bisector of

the angle P1OP2 and passes through the middle P of the arc P1P2. It is easy to believe

that the arc P0P contains r1+r2
2 1800. Indeed, from fig.1 we deduce the following: ∠P0OP =

∠P0OP1 + ∠P1OP and ∠P0OP = ∠P0OP2 - ∠POP2. We gather together these equality

and taking into account that ∠P1OP = ∠POP2, we obtain 2∠P0OP = ∠P0OP1 + ∠P0OP2

= (r1 + r2)1800 and so ∠P0OP = r1+r2
2 1800. From OC < OP it follows that the segment

AC < A′P = sin(r1+r22 1800) and therefore
sin(r1180

0)+sin(r2180
0)

2 = A2P1+A1P2

2 = AC < A′P

= sin(
(r1+r2)

2 · 1800). Thus, for 0 ≤ r1 < r2 ≤ 1
2 we obtain

sin(r11800) + sin(r21800) < 2sin(
(r1+r2)

2 · 1800). (1)

From inequality (1) we deduce that the function f(r) = sin(r1800) is concave. Ac-

cording to the concavity criterion, the function f1(r) =
sin(r1800)−sin0

r−0 = 1
r · sin(r1800) is

decreasing on the set (0, 2−1]. For r = p−1, p ∈ R, p ≥ 2, we obtain the function f2(p) =

psin(180
0

p ) which is increasing on the sets Q2 = {p ∈ Q : p ≥ 2} and R2 = {p ∈ R : p ≥ 2}.
We consider p = n ≥ 2, n ∈ N = {1, 2, ...}, and obtain the strictly increasing string

{n · sin(180
0

n ) : n ∈ N}. The perimeter of a regular polygon with n sides inscribed in a circle

is 2Rn · sin(180
0

n ), and the perimeter of a square circumscribed by the circle is 8R. Thus

we have inequality 2Rn · sin(180
0

n ) < 8R, from which it follows that n · sin(180
0

n ) < 4. So

the string {n · sin(180
0

n ) : n ∈ N} is strictly increasing and marginally superior and therefore

convergent. We note the limit of this string with the letter π = limn→∞n · sin(180
0

n ).

Since the perimeter of a regular polygon with n sides inscribed in a circle is Cn =

2Rn · sin(180
0

n ) and limn→∞Cn is th circumference C of the circle, we obtain that C =

limn→∞2Rn · sin(180
0

n ) = 2Rπ. By the definition, the number C = 2Rπ represents the

length of the circle.

With the formulated definition, the puzzle generated by the problem of the number π

was put to an end, and we obtained a new solution of one of the oldest and most controversial

mathematical problems in the history.

The problem of the number π and another construction of trigonometry
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Remark. The mechanism elaborated in this paper for the definition of the number π

can also be applied to the definition of the number e.

Indeed, the logarithmic function in base 10 is concave and increasing throughout its

definition field. We consider the arbitrary values x1 > −1 and x2 > −1 and obtain

lg(1 + x1) + lg(1 + x2) = 2 lg
√

(1 + x1)(1 + x2) < 2lg
(1+x1)+(1+x2)

2 .

Thus, the function lg(1 + x) given on the interval (−1,∞) is concave. According to

the concavity criterion the function g(x) =
lg(1+x)−lg1
(1+x)−1 = lg(1 + x)(1/x) is decreasing on the

perforated interval (−1,∞), x 6= 0. It follows that the function g1(x) = (1 + x)1/x is also

decreasing on this perforated interval, and on the interval (0,+∞) is bounded higher by

the value g1(−1/2) = 4. Therefore at the point x = 0 there is the right lateral limit of the

function g1(x) which is denoted by the letter e.

Thus by definition e= limx→0+(1+x)(1/x) or for x = 1
n , n ∈ N, we have e= limn→∞(1+

1
n)n. Thus these two real numbers π and e are discovered in different historical millennia,

have entered the set of real numbers by the same mechanism, and both have been placed -

one at the basis of trigonometric functions, and another at the basis of hyperbolic functions.

3. The length of the circle and the circle arcs

By the definition, the number C = 2Rπ represents the length of the circle of radius R.

Next we consider a circle arc of radius R and size α0, fig.2.

Figure 2.

Then we write in this circle arc a regular polygonal line with n sides. The perimeter

ln of this polygonal line is ln = = 2Rn · sin(α
0

2n). In the obtained formula we substitute: α0

2n

= 1800

p . Hence 2n = α0

1800 · p and the perimeter ln takes the form: ln = lp = α0

1800Rpsin( !80
0

p )

= α0R
1800 (psin( !80

0

p )), where the function psin(180
0

p ) is ascending and contains the convergent

string to the number π. So there is the finite limit l of the perimeter ln of the polygonal line

and l = limn→∞ln = limp→∞lp = αR
180 · limp→∞(psin(180

0

p )) = αR
180 · π = πR α

180 .

Therefore, by definition, the length l of a circle arc of radius R and size α0 is calculated

from the formula

l = πR α
180 . (2)

From (2) it follows that α0 = l
πR · 1800 and l

2πR = α0

3600 .

From the last equality, adopted by consensus in the school textbooks, results the for-

mula (2).
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4. Definition of trigonometric functions of real variables

In our definition of the number π we used the function sin. Next we will present the

definition of the functions cos and sin using the trigonometric circle. We will first express

any real number x by the number π. We consider the number x and note by n(x), n(x) ∈ Z
= {0,±1,±2, · · · }, the whole part of the fraction x

2π , and the fractional part of the number
x
2π is denoted by θ(x), 0 ≤ θ(x) < 1. Thus, from x

2π - n(x) = θ(x) we obtain the equality

x = 2n(x)π + 2θ(x)π. After the representation of the number x by the numbers n(x) and

θ(x), we consider a trigonometric circle and note with P0(1; 0) the intersection point of the

circle with the positive semi-axis Ox, fig.3.

Figure 3. Figure 4.

We then define an application (a mapping) of the set of real numbers in the set of points

of the trigonometric circle according to the following rule: the arbitrary number x ∈ R we

correspond to the point P (u; v) on the trigonometric circle so that the arc P0P is oriented

counterclockwisein and the length of this arc is equal to 2θ(x)π, i.e. ^ (P0P ) = 2θ(x)π.

According to this rule each real number x corresponds to a well-determined value of the

abscissa u and a well-determined value of the ordinate v of the point P (u; v). Therefore

both the abscissa u and the ordinate v of the point P (u; v) are functions of real variable x.

The function u : R → R, where u = cosx, is called the trigonometric cosine. The function

v : R → R, where v = sinx, is called trigonometric sine, x ∈ R. From the definition of the

functions sinus and cosine, we have |sinx| ≤ 1, |cosx| ≤ 1 and identity sin2x + cos2x = 1.

The periodicity property also results - the sinx and cosx functions are periodic and their

general period is 2nπ, n ∈ Z, and the main period is 2π. From the formula α0 = l
πR · 1800,

for R = 1 and l = 2θπ it turns out that α0 = 2θ1800. Thus, the arc of length ^ (P0P ) =

2θπ contains 2θ1800. In this case from Fig. 4 it is easy to calculate the abscissa and the

ordinate of the point P (u; v). Indeed u = OA = cos(2θπ) = cos(2θ1800) and v = AP =

sin(2θπ) = sin(2θ1800).

Example. sin5
6π = sin(2 5

121800) = sin1500 = 1
2 .

It is easy to prove that the function cosx is even, and the function sinx is odd. For

this we consider a trigonometric circle, fig.5. The intersection point of the circle with the

positive semi-axis Ox is also denoted by P0(1; 0). The number x = 2nπ + 2θπ corresponds

the point P1(cosx; sinx) to the trigonometric circle, and the number −x = −2nπ - 2θπ =

−2(n + 1)π + 2(1 − θ)π corresponds the point P2(cos(−x); sin(−x)) to the circle. Since

The problem of the number π and another construction of trigonometry
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^ (P0P1) = 2θπ and ^ (P0P2) = 2(1 − θ)π = 2π − 2θπ, it turns out that ^ (P0P1) +

^ (P0P2) = 2π and ^ (P2P0) + ^ (P0P2) = 2π. Therefore ^ (P0P1) = ^ (P2P0) and

so the points P1 and P2 are symmetrical with respect to the axis Ox, where it follows that

cos(−x) = cosx, and sin(−x) = −sinx.

Figure 5.

5. The cosine and sine of the algebraic sum of two real numbers

The most rational way to establish the relations between the trigonometric functions

sinus and cosine begins with the cosine formula of the sum of two real numbers.

We consider a trigonometric circle, fig. 6, where P0(1, 0) is the intersection point of

the circle with the positive semi-axis Ox.

Figure 6.
Now we consider the arbitrary real numbers x, t and their sum x + t. We represent

these numbers by the number π as follows: x = 2nπ + 2θ1π, t = 2kπ + 2θ2π and x + t

= 2mπ + 2(θ1 + θ2)π, where 0 ≤ θ1 < 1, 0 ≤ θ2 < 1 and m,n, k ∈ Z. According to the

definition of the functions sinus and cosine the real numbers x and t are associated with the

points P1(cosx, sinx) = P1(cos2θ1π, sin2θ1π) and P2(cost, sint) = P2(cos2θ2π, sin2θ2π) of

the trigonometric circle respectively, and the sum x+ t corresponds to the point P (cos(x+

t), sin(x+t)) = P (cos2(θ1+θ2)π, sin2(θ1+θ2)π) such that the arcs P0P1, P0P2 and P0P are

oriented counterclockwise and the lengths of the arcs P0P1 and P0P2 are as follows: ^ P0P1

= 2θ1π and ^ P0P2 = 2θ2π.

If 0 < θ1 + θ2 < 1, which occurs at least in cases when P1 and P2 belong to the

semicircle located in quadrants 1 and 2, then the length of the arc P0P is represented by the

formula:

Sergiu Miron



49

^ (P0P ) = 2(θ1 + θ2)π = 2θ1π + 2θ2π = ^ (P0P1) + ^ (P0P2).

If, however, 1 ≤ θ1 + θ2 < 2, which occurs at least in cases where the points P1 and

P2 belong to the semicircle located in quadrants 3 and 4, then ^ (P0P ) = 2(θ1 + θ2)π =

2(θ1 + θ2 − 1)π + 2π, where 0 < θ1 + θ2 − 1 < 1. In this case the arc P0P covers the circle,

but so is represented the sum ^ (P0P1) + ^ (P0P2) = 2θ1π +2θ2π = 2(θ1 + θ2− 1)π + 2π.

So in this case we have ^ (P0P ) = ^ (P0P1) + ^ (P0P2) too.

Now we consider on the unit circle the point P ′1(cosx,−sinx), symmetrical with the

point P1(cosx, sinx) with respect to the axis Ox and so ^ (P ′1P0) = ^ (P0P1). Thus

^ (P0P ) = ^ (P0P1) + ^ (P0P2) = ^ (P ′1P0) + ^ (P0P2) = ^ (P ′1P2).

From the equality of the lengths of the arcs P0P and P ′1P2 results the equality of the

respective chords. So

P0P =
√

(cos(x+ t)− 1)2 + sin2(x+ t) =
√

(cosx− cost)2 + (sinx+ sint)2 = P ′1P2.

From this equality we obtain: cos(x+ t) = cosxcost− sinxsint.
We substitute t with -t and obtain: cos(x− t) = cosxcost+ sinxsint.

In order to deduce the formula of the sine of the sum, we will use the coordinates of

the intersection point of the circle trigonometric with positive semi-axis Oy. These are u =

cosπ2 = 0 and v = sinπ2 = 1.

Also, to deduce some relations between the functions sinus and cosine, we will use the

coordinates of the intersection point of the circle trigonometric with negative semi-axis Ox.

These are u = cosπ = −1 and v = sinπ = 0.

Therefore cos(π2 − x) = cosπ2 cosx + sinπ2 sinx = sinx. In this formula we substitute x

with π
2 − x and we obtain sin(π2 − x) = cos(π2 − (π2 − x)) = cosx.

We now deduce the formula of the sum of the sine: sin(x + t) = cos(π2 − (x + t)) =

cos((π2 −x)− t) = cos(π2 −x)cost + sin(π2 −x)sint = sinxcost+cosxsint. Thus sin(x+ t) =

sinxcost+ cosxsint. We substitute t with −t and obtain: sin(x− t) = sinxcost− cosxsint.
From the established formulas, we deduce the other relations between sine and cosine.

For example, we have sin(π + t) = sinπcost+ cosπsint = −sint.
In his work [8] the author sets out a solution to this problem, but too voluminous.

6. Conclusions

In the exposed work number π was defined as the limit of the well determined string,

using the circumference of a circle and the function sine for the small angles. Then, this

number was the basis for defining the trigonometric functions of a real variable. We also

mention the fact that the mechanism elaborated in this work opens the same path that

enters the set of real numbers, both number π and number e, although these two numbers

have appeared in history, in different millennia and in different circumstances.

Some of the theses of this work have been presented by the author at the international

conference CAIM-18 in September 2018 [7].

The problem of the number π and another construction of trigonometry
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