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Abstract. The Cauchy problem for a parabolic system of integro-differential equations with an
operator of Volterra-Fredholm type is considered. A fundamental matrix of solutions of the problem
in classical Holder spaces is constructed, the estimates for the matrix and its derivatives are
established. This makes it possible to prove the correctness theorem.
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PROBLEMA CAUCHY PENTRU UN SISTEM PARABOLIC
DE ECUATII INTEGRO DIFERENTIALE CU UN OPERATOR
DE TIP VOLTERRA-FREDHOLM

Rezumat. Se considera problema Cauchy pentru un sistem parabolic de ecuatii integro diferentiale
cu un operator de tip Volterra-Fredholm. Se construieste o matrice fundamentald a solutiilor
problemei in spatiile clasice Holder, sunt stabilite estimirile pentru matrice si derivatele ei. Acest
lucru face posibild demonstrarea teoremei corectitudinii.

Cuvinte cheie: sistem parabolic de ecuatii integro diferentiale, operator Volterra-Fredholm, matri-
cea fundamentala a solutiilor, metoda de reducere la un sistem de ecuatii integrale, nuclee ale

operatorului integral, rezolvent, conditii pentru solvabilitate corecta.

Introduction

The theory of the correct solvability of the Cauchy problem and the boundary value
problems is almost completely developed for general Petrovsky parabolic systems
[1]-[5]. The considerable theoretical interest is the further study of problems for
parabolic systems, including those that contain integro-differential operators (IDOs)
[6]-[8]. Such operators arise in mathematical modeling of processes in control theory,
problems of financial theory, thermomechanics, acoustics, viscoelasticity, mathemati-
cal biology, where it is assumed that there is a global mechanism that affects
the process itself. Parabolic IDOs also arise in problems associated with stochastic
Markov-Feller processes with jumps [9].

In recent years, IDO problems for different classes of differential and integro-
differential equations (IDEs) were studied in [10]-[18] and others. Moreover, those
classes of problems, that were studied by imposing additional conditions or restrictions

29



[.M. Danyliuk, A.O. Danyliuk

to the equation, boundary conditions, or the region in which the problem has been
considered, have to be correctly posed.

The article investigates the fundamental matrix of solutions (FMS) of the
Cauchy problem for a parabolic system of IDEs with an operator of Volterra-Fredholm
type. Using the method of reduction to a system of integral equations with the kernel
that is expressed through the kernel of the IDO of the system and the FMS of the
corresponding parabolic system, the FMS of the Cauchy problem in classical Holder
spaces CT(II) is constructed. This is the class of functions u(t,x), that have in
IT = (0,T) x R continuous derivatives D¥u, Dfu = DM ... DEno b = (ky, ..., ky),
|k| = k1+ ...+ Ky, up to and including m, elder derivatives are Holder with exponent

a, 0 < a < 1, and the norm

Ay DRt
s = 32 sup [Dhulto)+ 30 s [BeZetls)]

k| <m (B2) €L o=, (b2),(Le+Az)eTl

Az = (Az? + ...+ Az?)/?

is finite.

It is established that the smoothness of the solution of the Cauchy problem
depends on not only the smoothness of the initial function, but also on the differential
properties of the kernels of the IDOs of the initial system. And here the question arises
of what kind and under what conditions the IDO is included in the system itself for
the possibility of establishing the correctness of the Cauchy problem in the framework

of the classical theory.

1. Problem statement

In the domain II = (0,7") x R™ we consider the Cauchy problem for the uniformly
parabolic system of N IDEs

0
L(t,x,D,B)u = 8—1; — “26 Ag(t, x)DFu —
t ) (1)
- Jar[ ¥ Buttmn.)Diulr€) d = fit,),
0 Rnlsl<p

u’tzozgp(:lz), r e R", 0<p<2h—1. (2)

The definition of uniform parabolicity of the system (1), only without Volterra-
Fredholm-type IDOs, is given in [1].

Let’s further construct the FMS of the Cauchy problem (1) — (2), and also estab-
lish conditions under which it can be built, and find estimates for the FMS and its

derivatives.
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2. Construction of the FMS of the Cauchy problem, obtaining estimates
of the FMS and its derivatives

Let’s introduce the substitution

Ou Z Ap(t,x) Dy = y(t, ), (3)

|k|<2b
where y(t,x) — is an unknown N-vector-function. Then the problem (3), (2) is the
Cauchy problem for a parabolic system with heterogeneity y(¢, z). For this Cauchy
problem under the assumption that y € C¢(II) the solution is written through the
FMS Z
¢

Zwﬂxfhd%wax—aa+/d@/@ﬁﬁw—ywwm@a%@wzGWH%

T

in the form [1, c. 269|

u(t,x)z/Z(tOx§ d§+/d7/ (t,T,2z,&)y(T, &)dE (4)
Rn
and for the derivatives Z the next estimates

|D];G0(t, T, T, 5)’ < C(t . 7_>_";,Lk| e—c,o(tﬂ',:z:,f)7

n+lk|—a
2b

6_Cp(t77—7$7§) ,

| DiWo(t, 7 2,8)| < C(t —7)°
k| <20, t>71, z,&€R"
are correct.
Hereinafter, the letter C' with and without indices will denote positive limited
finite constants.
The FMS Z is the main component in constructing the FMS of the Cauchy

problem for the considered parabolic system of IDEs. We substitute the expression
for u (4) to the initial system (1):

y(t,x):f(tx+/ /ZBtng/Dg (1,0, &, 2)p(2)dzdé +

Rn Is|<p

/dT/ZBthf/dﬁ/Dg 7,8, €, 2)y(B, 2)dzdE. (6)

Rn IsI<p
Thus we have the Volterra-Fredholm mtegral equation of the second kind with respect
to the unknown vector function y. In the last integral by the formula Dirichlet we

change the order of integration and immediately redefine the integration variables

/dT/ZB tT:L’g/dﬁ/Dg (1, 8,&, 2)y(B, 2)dzde =

Rn Is|<p
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/dT/ /db’/ZB (t.8,2,2) D325, 7. 2,€)dz | y(r, €)dg

T RW«||<

to highlight the kernel which we denote by

H(t,7,x,&) = / /ZB Byx,2)DEZ(B, T, 2,€)dz

T Rn |s|<p
If in the second term of the integral equation (6) we change the order of integrati-
on over spatial variables, it will hightligt the kernel H and then the equation can be

written in the form
t
yita) = Ft.o)+ [[dr [ H(t.rn, Ot €)de, 7)
Rn

where

F(t,z) = f(t,x) —f—/H(t,O,x,ﬁ)gp(f)df.

According to the theory of integral equations with regular or with a quasiregular
kernel, the kernel H(t, 7, x,&) corresponds to a resolvent

R(t,7,2,§) = ZHtr:pg

where

H,(t,T,2,§) = /dﬁ/Hl Bz, 2)H, (B, 1,2,8)dz, v=2,3,...., H =H.

The quasiregularity of the kernel H is established below. So we get a solution of the
equation (7) in the form

y(t,x) = F(t,x) +/dT/R(t,T7:1:,§)F(T, £)d¢

RTL
or

y(t,x) = f(t, ) /Ht0x§ d§+/d7/ (t,7,2,&) f(r,&)dE+
t

+/dT/R(t,T,:1:,§)/H(T,0,§, 2)(z)dzdE. (8)

0 Rn
Thus, if we substitute the found solution y(¢, ) in the representation for u (4),

then the solution of the initial Cauchy problem (1) — (2) will take the form
¢

u(t, x) :/Z(t,O,x,ﬁ)go(f)dﬁ—i—/dT/Z(t,T,x,f)f(T,ﬁ)d&—

Rn 0 R
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/dT/ thf/dﬁ/ T,05,&,2) (B, z)dzdé+
+/d7/{Z(t7x§)/( (7,0,6,0)+

Rn

/ a8 / 0,6, 2D H3,0. 2,00 )0 o )

Let’s write the solutlon (9) through the operator of symbolic convolution
u=(Z+Z**R)sxxf+Zxp+Z*x[(H+ R*xH)x*
and consider the last two terms
Zxp+Zxx[(H+ RxxH)xp|={Z+ZxxH+ [Zx*x(R*xxH)|} xp =
={Z+Zxx[H+ RxxH|}xpo={Z+ Z xR} * ¢,

because of R = >  H, and H + R+ xH = R. As a result, for the solution we get an
v=1
image

u={Z+Z*xR}x p+{Z+ Z**R} *x]f.
So, the kernel of the inverse operator of the Cauchy problem (1) — (2) is allocated

L(t,r,2,&) = Z(t,1,2,¢) /dﬁ/ t,B,x,2)R(B,T,2,§)dz (10)

T

by which the decision is written in the form

t
uta) = [ D00 0@ e+ [dr [Dere ) de
R™ 0 R»

Let’s determine the conditions, under which the resolvent R can be constructed
for the equation (7). Let’s pretend that

|DZLBS(t77—7 CC,{)’ < Cms(t - T)i%l"mliaeicp(t’ﬁx’g), (11)
t>7, x,£€R", |m[=0,1, [s] <p.

For further estimates we will use the statement.

Lemma 1. (On the estimation of an improper volume integral). For volume integral

e—cp(t,ﬁ z,Y) —Cp(ﬁyﬂyvf)
Z(t, 72,8 = / (-5 G- dy

R’I’L
the next inequality is correct [1, c. 39]
:Z,.(t, T,7, 5) S O{S(t — 7‘>_%6_(C_5)p(t77ax7£), 0<e<e.
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We estimate the kernel H using estimates for derivatives of the FMS Z (5) and
kernels By (11):

t

H <tm5|</d@/2|8 B2, 2)|D32 (8,7, 2, )ldz <

T Rn S|<p

—Cp t ﬁ x, Z _Cp(/877_727€)
<Co/d/8/ n+2ba(ﬁ_7_)n2—;pdz§

/ d —cp(t,8,0,2) p=cplBi7.2)
S CO/ 2b*0¢6 P / ‘ n ‘ n dZ
(t—ﬂ) 2b (ﬁ—’;’)%Rn (t—ﬁ)% (6—7')21;
—c(1—¢)p(t,r,z,8)
n+p—a )

€
< OB (%2, 5)
2b 7 2b (t . 7_) 2

Ci=Cy-C., O0<e<l, t>71, x&eR"

IN

(12)

In obtaining the estimate we use the lemma on estimating improper volume integral,
and the integral over ( is counted using the B - function. Next we will evaluate the
repeated kernels. To estimate Hs, we again use the lemma, and in the integral over

£ we pass to the B - function:

) p(t,8,x,2) o—c(1-€)p(B,7,2,)
|H2(t T, T £)| < CIB ( 2 72() / 6/ n+p o ntp—a dz <
(ﬂ — 7-) 2b

t>71, x &R

< C2C. . B? (M 2) ‘B (2bp+a, 2b—p+a

2b 7 2b 2b 2b n72b+i(p*a) )
2

) e*C(l*Q&‘)ﬂ(t,T,m,f)
(t—r1)

By induction, we have

\H,,(t,7,2,6)] < CVCVL . B”(—_ z)x

2b 7 2b
2b— p+a 2b—pta) | ) 2b—p+a  (v—1)(2b—p+a)
xB ( , =5 ) ...- B ( =, 5% X

n—(v—1)2b4+v(p—a)
) (t — 1) U elpltrn ) f s g e € R

Y

As seen from the last estimate, starting with v > vy = [%”tiba] + 1, kernels do not

have singularities and for H,,, the inequality
|HV0 (t7 7-7 I‘7£)| S Cyoe—cuop(t,7,$,§)7 t > T? xvg € Rn?

Cv = (1 — vge),
Ol/o _ Cl/()Cl/() 1 Byo( a) B(Zb—p—i—a 2b—p+a) o B(Qb—p—i—a (uo—l)(Qb—p+a))

2b 7 2b 26 2b 20 2b

is correct. For all the next kernels we obtain estimates

et 7,,€)| < CCTC,, - B (252, 8) x
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XB(% pta 1) B(Qb pFa 1+ (m—1)(2b— p+a)) %

2b 2b 2b

(2b—p4a)-m

X(t—71) @ e wPbTT oy sz £eRY, m=1,23, ..,

where in the power of exponent we split from ¢(1 — ¢) the value ¢,, and use the
inequality p(t, B, x, 2) + p(B, 7, 2,&) > p(t, T, z,&). In the result, we obtain an integral
of the Poisson type, and in integral over the time variable we get the B-function.

0.9]

If we consider the residual series > H, and the constants obtained in the
v=rg+1
estimates of the repeated kernels

m e 2b—p+ 2b—p+ (m—1)(2b—p+a) \ __
An =B (T’%> B( 2117)a1) "B( T Lt o )_

(%) (s)
F(1+ m(2b— p+a)) ’

in which the transition from B- to I'-functions is carried out, then the majorant
o

number series Y A,, converges according to the d’Alembert criterion, which means
m=1
that the functional series converges uniformly and absolutely according to the Wei-

erstrass criterion. This allows us to construct a resolvent for which from the inequali-
ties for the repeated kernels we can obtain the following estimate

n+p

|R(t,7,2,8)| < Ct—7)" " e wftmm8) 5 70 g ¢ e R (13)

Now we return to the solution (4) of the Cauchy problem (3), (2), to find which it
has been assumed that the function y is a Hoélder function with respect to the spatial
variable. We show that the function y is a Hélder function with the same exponent «
as the coefficients and kernels of the IDOs of the initial system. To do this, we firstly
establish estimates for the kernel increments B, H and the resolvent. For the kernels

B, the estimates (11) are correct, from which we obtain estimates for the growth of

the kernels for |[Az| > {3/t —7:
| Ay By(t,7,2,8)| < |Bs(t, 7,2 + Az, )| + | Bs(t, 7, 3,8)| <
< C|A$|a<t o 7_)—%,)21’ (6 cp(t,rz+Ax,E) +e (trm,&))’ (14)
t>1, x,£ R, |s] <p.

If |Az| < %/t — 1, then according to the Lagrange theorem

—cp(t T,2+0Ax,8)

|8 By(t,7,7,6)| = |DeBy(t, 7,2 + 001, €)| - |Ax| < C - |Ax|

( 7_) n+21)2-g1—a °

Consider e~¢?(tm2+052.8) 19| < 1. Using the lemma from [19, p. 144] there exists such
a constant c¢; > 0, that

e_c(lf,:esf/_zf‘)q < 6_61((t,‘i;f}zb)qec/('e'(t,‘f)mll/%)q <C- 6_61(@,‘:15/'21:)‘1

)
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[ Azl

as long as s < 1. Thus

N By(t,7,2,8)| <C | ————= . <
} ( 7-375)| ((t_7.>1/2b t_T>n;bb
n+2b

< ClAz|*(t—7)" B et -t s g e R, |s| < p.

11—« «
| Al ) A e <
(

So, the inequalities (14) are correct for the growth of By kernels. This means
that the kernels satisfy the non-uniform Hélder condition with exponent a.

We estimate the kernel increment H. Let |Az| > % Y/t — 7. Then the estimate
of the kernel increment H follows from the estimate for H (12):

}AxH(t,T,{E,f)} < ‘H(t,T,SC-FAQZ’,g)‘ + ‘H(t,T,{L’,f)‘ <
< C|lAz|*(t — T)_%p (6 coltmatBTt) | o= (”x’g)), t>r1, x&eR" (15)

Let’s estimate the kernel increment H at |Az| < 1(t — 7)Y/

N H(t,T,2,8) = / /ZAB Byx,2)DEZ(B, T, 2,€)dz =

T Rn |SI<p
4 t—|Ax|? t
:/...+ / o+ / coo=1 4+ I+ Is,
T 31 t—|Ax|?b

where t; = 7 + 57, Using the estimate (14) and the fact that t — 8 > =7, we have

a Cp t ﬁ $+A-T Z) Cﬂ(t 6 Y Z) _Cp(ﬁ77—7z7£)
|Il\<C'|Ax| /dB/ + e~

dz <
t—p)F FEEEaE

< C|A$|a(t _ 7_)—"2—";” (6 cp(t,mx+Ax,€) +e (th,g))

And now let us also estimate the second term. We use the Lagrange’s mean value

theorem:
t—| x|
|[ ’ c / dﬁ / ‘A |€—cp(t,ﬁ,x+9Aac,z) e—cp(B,T,z,f) p
2 S x n —« n+p < S
A N (R N CE

trze TG (tir..6)

e—cr(t,T, dﬂ e ePLTT,
SCA.T—n / — pSCA.Ta—M.

DR TR T

Similar to kernel evaluation By, e~?(t82+0082.2) < O gmerbBe2) ag | Az| < (t—F)Y/?
and f—1 > 57
To estimate I3, we use the estimate (11) for kernels B and the fact that 5 —7 >

t—71.
5

B3| [ a8 [ 1Bt pa s baz) - D272l ds +
RTL

|s|<p t—| Az|2b
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t

+ / dﬁ/]Bs(t,ﬁ,x,z)-D;Z(B,T,z,fﬂdz <

t—|Az[2b  Rn

—cp(t,ﬂ,x+Az,z) _Cp(taﬁ7m7z) —CP(B,T,Z,é)
<c / daﬂ /e +§ e e <
) = e G-n7

< C|lAz]o(t — T)—"th (e—cp(t,T,az+AI,§) n e—cp(t,T,x,g))‘
Using estimates for I1, I, I3 and (15) finally we get
B H(t,7,2,)] < ClAw|*(t = r)7F (moltrartnd) o emerltrnd)) (1)
t>7, x&eR"
For the resolvent increment we obtain a similar estimate
‘AxR(t, T, T, 5)’ < C|Ax|*(t — T)*”TJZP (ecp(t,r,erAa:,&) 4+ ecp(t,mx,ﬁ))7 (17)

t>1, x,&eR"

Now let us show that the function y, which is represented as (8) and which can also

be written as a sum
yEf+J1+J2+J3,

is Holder function in the spatial variable x. f is a Hélder function by assumption.
Using the inequalities (16) and (17), we estimate the growth of the following terms
fort >0,z € R™

Audi (1)) < / ALH(1,0,2,6)||0(E)|dé <

Rn
e—cp(t,x+Ax,§) +e—cp(t,x,§) ,
< Cloal* - felo | — d < Clgle - B - t5; (18)
25
Rn
Ay Jo(t,x)| <
t
—cp(t,r,x+Ax,) —cp(t,m,z,£) B
< Clflafal® [ar [ © L T g < Clfla- 1Aale 457 (19)
0 Rn <t N T) *
Ay Js(t, x)| <
t
—cp(t,rx+Ax,E) —cp(t,m,z,£) —c(1—¢)p(7,0,&,2)
< C|¢|0|Ax|a/d7/e re /e B
(t—7)720 T2
0 Rn Rn
t
« dT b— o b— o 2b—2p+a
< Cly|c|Azx| / i 7_)%7% <CB (2 2:!{7)4- ’%) lole - | Azl -t 2 . (20)
0
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From the inequalities (18) — (20) we get that y satisfies the non-uniform Holder
condition with exponent a. So the estimate

Day(t, )] <182 (Cr+ Calfla+ Colple - tH), >0, v eR

1s correct.

Now we establish estimates for the FMST' = Z+ W (10) and its derivatives. For
Z = Gy + Wy we have the estimates (5). Let’s estimate the derivatives of the volume
potential W. According to the volume potential differentiation lemma [1, p.68| the
lower derivatives are found by direct differentiation under the integral sign, and the

higher derivatives are calculated by special formulas

D®W(t,1,2,6) = /dﬁ/DzbZ B2, 2)R(B, T, 2,&)dz+

T

t

/Q@/Dm; Bz — 2,2) [R(B,72,€) — R(B,7,2,€)] dot

t1
t

/dﬁ/ [D2G,(t, 8,2 — z,2) — DXG,(t, B,x — z,x)] R(B, 7, 2,&)dz+

t1
t

/ R(B,7,2,§ dﬁ/DQbG ,Byx — 2z, x)dz+

t1
t

/dﬁ/D%W 8,2, 2)R (BTzfdz—ZAl, (21)
t1
where D means differentiation only in the third argument.
The estimate A; is obtained from the estimates (5) and (13):

|A1(t, T, CL‘,S)| S C(t — ’7')_7“2171:6x @_Cp(tﬂ',ﬂ?,f)7 t > T, I,f c R™.

We estimate Ay due to the non-uniform Holder condition (17) of the resolvent R by
the third argument

—cp (t,8,x,z) e
|A2<t T, g)l < C/ B/ n+2b |CIZ’ Z|n+p (6—00(5,7’,275) +e—cp(,8,7,x,§))dz <
(ﬂ — 7-) 2%

dﬁ 6—(c—€)p(t,5,m,z) e—CP(B,T,Z,E)
5)/ 2o » / i n dz+
(% B-nk ) @—pE G-nE

/ e—(C—S)p(t,ﬁ,x,z) e_cp(5777$7€) d
+ n n ¥ 9
(—p)F (p-nh
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«
where we have taken advantage of the obvious inequality (%) e—er(tpr.2) <

C(g), &>0. Further, applying the lemma on estimating the volume integral to the

first volume integral, and in the second, using the fact that 6 — 7 > t_TT and n of

Poisson integrals are bounded quantities, we finally obtain

_ntp—«o

|Ag(t, 7, 2,8)| < C(t—T1)" 2 e_Cp(t’T’x’g), t>r1, x,£€R"

In A3 we use the Holder property of the Green matrix G in the fourth argument

e—Cp t,ﬁ,x,z) e_cuop(ﬁ>7—727£)

(
n+2b n+p—o d
(t— B)" (5 — )5~

z <

t
|As(t, 7, 2,6)] gc/dﬂ/u—zw
t1 Rn

)

—cp(t,m,x,£) ntp—2a
<0t — / T s T U
t—=7)= ) (t—5)

25 (B—T)T
t1
t>r1, x,&eR".

A4 = 0 according to the property of the Green matrix Gy, and the derivatives W}, in
As have a lower order of singularity according to the FMS construction Z. Therefore,
from the estimates for A, Ay, As, which have been obtained for |k| = 2b, the estimate
of the derivatives of the volume potential for |[k| < 2b, 0 < p < 2b — 1 is finally

followed:

_ ntlkl4p—2b—a

\DFW(t, 7, 2,6)| < Ct —7)" 2 e T p s 1 g e R (22)

3. Theorems about the FMS and the correctness of the Cauchy problem

The following statements about the FMS and the correctness of the Cauchy problem
are correct.

Theorem 1. (About FMS). Suppose that the system (1) is uniformly parabolic, the
coefficients of the system Ay(t,x) are defined in the domain 11, continuous in t and
uniformly in x for |k| = 2b, A € C(II). The kernels of the IDOs of the system Bs =
(ij)szl, |s| < p, are continuous for t > 7, x,& € R" and satisfy the inequalities
(11). Then there is the FMS of the system (1)

t

L(t,r,2,8)=Z(t,1,2,§) —|—/dﬁ/Z(t,B,x,z)R(ﬁ,T,z,g) dz=Z+ W,
T Rn
which for t > 7 satisfies a homogeneous system. Here R is the resolvent of the
corresponding system of Volterra-Fredholm integral equations of the second kind, the
repeated kernels of which are expressed through the kernels By of the IDOs of the
system (1) and the FMS Z of the corresponding parabolic system (3). For the deri-

vatives of the volume potential W, the estimates (22) are correct.
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Theorem 2. (On the correctness of the Cauchy problem). Let the conditions of the
theorem 1 on the existence of the FMS T are satisfied and f € C(II). Then

1) if the initial function ¢ € C(R™), then the solution of the Cauchy problem
(1) = (2) is determined by the sum of the potentials

ult,x) = / T(1,0,2,€)p(¢) dé + / dr / T(t,7,2,6)f(,€) de
Rn 0 R

and for the deriwatives of the solution the estimates
|Diu| < C (t—fb'|so|c + Ifla) .kl <20

are correct.
2) If o € C®*T*(R") and the kernels of the IDOs of the system B satisfy the

inequality
_ n+2b+|m|—v

|D?Bs(t7 T, X, £>| < Cms<t - 7_) TG_CP(LT’%@, (23)
y>a, t>1, x,£€R" |m|=0,1, |s|]<p, 0<p<2b-—1,

then the solution of the Cauchy problem belongs to the class C***(II) and

[ul2pra < C(|@l2p1a + | fla)- (24)

Proof. In the case of only continuous and bounded initial function the estimates of
the derivatives of the solution are obtained directly from the derivatives estimates of
the FMS T'.

In the second case, the Cauchy problem can be reduced to a problem with zero

initial conditions

t
L(t,z,.D.B)v = f + Y Ax(t,z)Dp + / dr / > Bu(t,7,2,8)Dip(6) dE = fult,x),
0

|k|§2b Rn|5|§p
U|t:0 - 07

where v(t,z) = wu(t,z) — ¢(z). Under the conditions (23) on B kernels, their

increments can be estimated in this way

|ALB,(t,7,2,8)| < C|Az|*(t — )~ "5 (e—cp<t,r,x+Am,§) n e—cp@m&)) 7

e=y—a>0, t>7, z,£eR" |s|<p.

This estimate guarantees the Holder heterogeneity of f; with respect to the argument

x, which in turn ensures the inequality for the norm (24).

Concluding remarks
Thus, in this work, for the parabolic system of IDEs with Volterra-Fredholm type 1DO,
the estimates of the FMS I for the Cauchy problem are constructed and obtained.
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The construction of the FMS I' is preserved similar to the construction the FMS Z of

a uniformly parabolic system. The main term is the FMS Z of the uniformly parabolic

system. The additional term is an integral with the kernel Z and density, which is the

resolvent of the system of Volterra-Fredholm integral equations of the second kind,

the repeated kernels of which are expressed through the kernels of the IDOs By of

the parabolic system of IDEs and FMS Z of the corresponding parabolic system. At

the same time, the smoothness of the solution of the Cauchy problem depends not

only on the smoothness of the initial function, but also on the differential properties
of the kernels of the IDOs of the parabolic system of IDEs.
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