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Abstract. The work is centered on the study of algebra A  generated by singular integral operators with 

shifts with continuous coefficients. Necessary and sufficient conditions are established for operators A  to 

be Noetherian and to admit equivalent regularization in the space ),( pL . There are constructed 

regularizators for Noetherian operators. The study is done in the space ),( pL  with weight 𝜌(𝑡) =

  𝑡 − 𝑡𝑘  
𝑛
𝑘=1

𝛽𝑘  and is based on the theory of Ghelfand [1] concerning Banach algebras.  
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ASUPRA REGULARIZĂRII OPERATORILOR INTEGRALI SINGULARI.  

CRITERII NOETHERIENE 

Rezumat. Lucrarea este consacrată studiului algebrei (închise) generată de operatorii integrali singulari 

cu coeficienți continui pe conturul 𝛤. Sunt stabilite condiţiile necesare şi suficiente în care operatorii din 

algebra A  sunt noetherieni în spaţiul 𝐿𝑝(𝛤, 𝜌); sunt construiţi regularizatorii operatorilor noetherieni. 

Studiul este efectuat în spaţiul 𝐿𝑝(𝛤, 𝜌) cu ponderea 𝜌(𝑡) =   𝑡 − 𝑡𝑘  
𝑛
𝑘=1

𝛽𝑘  şi se bazează pe teoria lui I. 

Ghelfand cu privire la algebrele Banach comutative (a se vedea [1]).  

Rezultatele principale ale acestei lucrări au fost prezentate la Congresul al 9-lea al Matematicienilor 

Români, care s-a desfășurat în orașul Galați, 2019.  

Cuvinte cheie: operator integral singular, operator compact, regularizare. 

  

1. Introduction 

The results presented in this work are generalizations of the paper [2]. Thus, if, in 

particular, there are considered integral singular characteristic operators without 

translations, then the results of given work, coincide with these of [2]. 

We remind that an operator )(BLA  admits a regularization, if there exist an 

operator )(BLM   such that 1TIAM  , 2TIMA  , where 1T  and 2T  are compact 

operators in the space B . The class of operators which admit a regularization is of special 

interest due to the fact that operators of this class have the fallowing properties 

(F.Noether theorems):  

1) The equation 𝐴𝑥 = 𝑦 is solvable if and only if the right-hand side is orthogonal 

to all solutions of the equation 𝐴∗𝜑 = 0.  This condition is equivalent to the condition 

that the set of values of operator 𝐴 is a subspace, or such that the relation 

𝐼𝑚𝐴 =  𝐾𝑒𝑟𝑓

𝑓∈𝐾𝑒𝑟𝐴∗

 

Acta et Coomentationes, Exact and Natural Sciences, nr. 2(8), 2019                                 ISSN 2537-6284
p. 58-69                                                                                                                             E-ISSN 2587-3644



59

 

holds. 

2) The equations 𝐴𝑥 = 0 and 𝐴∗𝜑 = 0 have a finite number of linear independent 

solutions.  

Operators with properties 1) and 2) are called Noetherian and are essential 

generalizations of the class of operators of the form TI  , with T  compact, for which 

theorems similar to that of Fredholm are true. 

In the case when conditions 1) and 2) are met, then the number dimKerA −

dimKerA∗ is called the index of noetherian operator A  and is denoted by IndA: 

𝐼𝑛𝑑𝐴 = 𝑑𝑖𝑚𝐾𝑒𝑟𝐴 − 𝑑𝑖𝑚𝐾𝑒𝑟𝐴∗. 

Let   be a closed Lyapunov type contour, S  be a singular integral operator with 

Cauchy kernel and V  be an operator of shifting, ))(())(( ttV   , where function 

:  satisfies the following conditions: 

a) )))((,)())(( tttt   ;  

b) there exists derivative 0)(  t ; 

c) the function 𝜔′(𝑡) satisfies the Hölder condition on contour 𝛤. 

Consider the complete singular integral equation  

𝐴𝜑 = 𝑎(𝑡)𝜑(𝑡) +
𝑏(𝑡)

𝜋  𝑖
 

𝜑(𝜏)

𝜏−𝑡
𝛤

 𝑑𝜏 +  𝑘(𝜏, 𝑡)𝜑(𝜏)𝑑𝜏 = 𝑓(𝑡)
𝛤

    (𝑘 ∈ 𝐶(𝛤 × 𝛤)).       (1.1) 

To Mihlin (see [3]) the following theorems belong  

Theorem 1.1. The operator M is an equivalent regularizer for singular equation  

𝐴𝜑 = 𝑓 for every right hand part f  if and only if 𝐾𝑒𝑟𝑀 =  0 . 

A similar theorem can be formulated for the case of right-hand regularization. In 

this case, the operators A  and 𝑀 are interchanged. Operator M is an equivalent 

regularizer for A  if it is a regularizer for A  and is invertible to the left. 

Theorem 1.2. The integral singular equation 𝐴𝜑 = 𝑓 admits an equivalent 

regularization for every right-hand part 𝑓, if and only if 𝐼𝑛𝑑𝐴 ≥ 0. 

It is well known [2] that a singular integral operator
1

TbSaIA   admits a 

regularization if and only if 0)()( 22  tbta  for all t . For example, as a regularizator 

one can take the operator  

S
ba

b
I

ba

a
R

2222 



 . 

Under these conditions operator A , obviously, also admits a regularization and thus 

for A  and 
A  Noether theorems hold. 

The main result of this work is given by  

Theorem 1.3. Operator 

TVdScIbSaIA  )( , )(,,,  Cdcba ,                               (1.2) 

                                                           
1)

 By T with indices we denote compact operators. 
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admits a  regularization in ),( pL  if and only if 

0))()(())()(( 22  tdtctbta ,      0))()(())()(( 22  tdtctbta                (1.3) 

for every  t . Under conditions (1.3) operator  

VQPQPR )(
22222222 

























 ,                          (1.4) 

where ,ba  ,ba   dcdc   , , )(
2

1
,)(

2

1
SIQSIP  , is a 

regularizator for .A  

This theorem is proved in §5.  

 

2. Properties of operators S and V 

It is known the fact that the operator 




 


td
ti

tS ,
)(1

))(( 





 ,                                                (2.1) 

where the integral is understood in the sense of main value, is defined on the set of 

rational functions on contour 𝛤. If 𝛽𝑘 > −1, then this set is dense in the space  𝐿𝑝 𝛤, 𝜌 ,  

where 

𝜌 𝑡 =   𝑡 − 𝑡𝑘  
𝑛
𝑘=1

𝛽𝑘 . 

Hvedelidze proved that if   

−1 < 𝛽𝑘 < 𝑝 − 1, 𝑘 = 1,2, … , 𝑛,                                             (2.2) 

then the operator 𝑆 is bounded in the space 𝐿𝑝(𝛤, 𝜌). Conditions (2.2) are also [4] 

necessary in which 𝑆  is bounded in 𝐿𝑝(𝛤, 𝜌). In what follows we suppose that conditions 

(2.2) are verified. 

We shall also mention some properties of operator S, necessary in what follows: 
01 . IS 2 , where 𝐼 is the identity operator on ),( pL  . 

.20

Operator S , which acts in the space ,1),,()),(( 111   qpLL q

qp   

differs from operator S  in this space by compact: TSS  . 

.30

 For every function 𝑎(𝑡) continuous on 𝛤 operator 𝑎  𝑆 − 𝑆 𝑎𝐼 is compact. 

40 . The relation  𝐻 𝑆∗𝐻 = −𝑆 + 𝑇, where   𝐻𝜑  𝑡 = 𝜑(𝑡)       is realized. 

The proof of properties 10 − 30 is contained in monograph [4], and property 4
0
 can 

be easily proved, if respective results from [4-5] will be applied (see also [6-7]) 

From the properties of the function    it results that the operator 

))(())(( ttV                                                                   (2.3) 

is involutive, .2 IV   We shall establish its continuity in the space ),( pL . Let 

),(   pL ,  then 
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  



n

k

p
n

k

pp
dtttttdttttV

kk

11

)()()())(( 


.               (2.4) 

Since the function   has derivative and 0)(  t , there exist constants 0kc  and 

,...,,2,1,0~ nkck   such that 

k

k

k

k c
tt

tt
c

k









 )(~ .                                          (2.5) 

Taking into account (2.4) and (2.5), we get 

p
n

k

p
n

k

p
cdtttttcV

k 


  
 11

)()(  

and continuity of operator V is proved. 

We mention also the property of V contained in  

5
0
.  𝑉 𝑆 = 𝑆 𝑉 + 𝑇. 

Indeed  

(𝑉𝑆 − 𝑆𝑉)𝜑 =
1

𝜋  𝑖
 

𝜑(𝜏)

𝜏−𝜔(𝑡)
 

𝛤

𝑑𝜏 −
1

𝜋  𝑖
 

𝜑(𝜔(𝜏))

𝜏−𝑡
 

𝛤

𝑑𝜏 =
1

𝜋  𝑖
  

𝜔 ′(𝜏)

𝜔(𝜏)−𝜔(𝑡)
−

1

𝜏−𝑡
  

𝛤

𝜑(𝜔(𝜏)) 𝑑𝜏. 

From properties of function   it follows [4] that the kernel of operator 𝑉𝑆 − 𝑆𝑉,  

tt
tk














1

)()(

)(
),( , 

has weak singularities on contour   and, hence, this operator is compact in the space 

),( pL . 

Denote )(
2

1
SIP  and  𝑄 =

1

2
(𝐼 − 𝑆). Then, using the above properties, the following 

relations are easily proved:  

6
0
. 𝑃2 = 𝑃  ,  𝑄2 = 𝑄  ,  𝑃𝑄 = 𝑄𝑃 = 0 ,    𝑃 + 𝑄 = 𝐼 ,   𝑃 − 𝑄 = 𝑆,    𝑉𝑃 = 𝑃𝑉 + 𝑇1, 

𝑉𝑄 = 𝑄𝑉 + 𝑇2  , 𝐻𝑃𝐻 = 𝑄 + 𝑇3   ,  𝐻𝑄𝐻 = 𝑃 + 𝑇4 , where (𝐻𝜑)(𝑡) = 𝜑(𝑡)      . 

 

3. Algebras A  and Â  

Denote by )(C  ))(( C  the set of functions )(ta  continuous on   and satisfying 

condition )())(( tata  . Evidently, this set forms a commutative algebra with identity 

and norm 
)()( 


CC

aa


. It is also obvious that every function of the form 

))(()()( tbtbta  , where )(Cb , is contained in )(C . The converse to this statement 

is also true: every function )( Ca  may be represented in the form 𝑎 𝑡 = 𝑏 𝑡 ⋅

𝑏 𝜔 𝑡  , where )(Cb . We can join these remarks in assertion that algebra )(C  is 

characterized by relation  

 )(|))(()()(  CbtbtbC  .                                           (3.1) 
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Representation of functions from )(C  in the form ))(()()( tbtbta   is unique up 

to some constant factors 1c  and 2c , where 121  cc . Later on we shall assume that 

121  cc . Thus, for example, if   is the unit circle and tt )( , then functions 

2

1 )( tta  , 2

2 )( tta   belong to )(C  and they can be represented as )()(1 ttta   and, 

respectively )()(2 ititta  . 

Denote by A  the algebra generated by VS,  and the set of operators aI  of 

multiplication by functions )(,)(  Cata . A  is a subalgebra of algebra 𝐿  𝐿𝑝 𝛤, 𝜌   

formed by set of linear and bounded operators, acting in the space ),( pL . 

Theorem 3.1. A  is a closed algebra. 

In the proof of this theorem we use the properties of  operators S  and  V  and 

characterization of algebra 𝐶𝜔  𝛤 . Preliminary is also necessary 

Lemma 3.1. If operator )()()( ttaM    of multiplication by function 𝑎 𝑡 , continuous on 

 , can be represented in the form TBM  , where B  is invertible and T  is compact 

operator in ),( pL , then [2] the function )(ta  is not vanished on  . 

Proof. Suppose, by absurd that the function 𝑎(𝑡) vanishes on a set 𝜍 ∈ 𝛤 of nonzero 

measure. Then equation 𝑎(𝑡)𝜑(𝑡)  = 0 in ),( pL  has an infinite set of linear 

independent solutions. 

So the equation (𝐵 + 𝑇)𝜑 = 0, which is equivalent to the equation (𝐼 + 𝐵−1𝑇)𝜑 =

0, has an infinite number of linear independent solutions, which is absurd, since the 

operator 𝐵−1𝑇 is compact in 𝐿𝑝(𝛤, 𝜌). The function a(t) cannot be vanished even on a 

set of zero measure. Really, otherwise, the equation 𝑎(𝑡)𝜑(𝑡)  = 0 would have only the 

trivial solution and, by virtue of Fredholm theorem, operator 𝑀 should be invertible. 

Since the operator (𝑀1𝜑)(𝑡) =
1

𝑎(𝑡)
𝜑(𝑡) is unbounded in the space 𝐿𝑝 𝛤, 𝜌 . It results 

that the operator 𝑀 is not invertible. Thus, function 𝑎(𝑡) does not vanished on  𝛤, and 

lemma is proved. 

From this lemma it follows directly the following corollary. 

Corollary 3.1. Operator 𝑀𝜑 = 𝑎 𝑡 𝜑(𝑡) is compact if and only if 𝑎(𝑡) ≡ 0. 

Proof of Theorem 3.1. Let the sequence (𝐴𝑛), where 

𝐴𝑛 = 𝑎𝑛𝐼 + 𝑏𝑛𝑆 + (𝑐𝑛𝐼 + 𝑑𝑛𝑆)𝑉 + 𝑇𝑛 , 𝑎𝑛 , 𝑏𝑛 , 𝑐𝑛 , 𝑑𝑛   ∈ 𝐶𝜔 (𝛤), 

 be fundamental. Then the sequence ,
~

)(),( nnnnnnn TVSdIcSbIaHAHHAH 
 is 

fundamental. In consequence, the sequence  

nnnn TVcIaR  ,  (Rn =
An +HAn

∗ H

2
),                                    (3.2) 

is also fundamental. Define the following operator )())(())(( ttttN   , which linear 

and bounded in 𝐿𝑝(𝛤, 𝜌). Since function ω preserves orientation on 𝛤, it has no (see [5]) 

fixed points on 𝛤. Hence, there exists operator ,1N  
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)(
))(

1
))(( 1 t

tt
tN 





 . 

Obviously, aINaN 1  and VNVN 1 .Together with sequence (3.2) it will be also 

fundamental the sequence (𝑁−1𝑅𝑛𝑁), which by the above has the form 

nnnn TVcIaNRN 1 .                                           (3.3) 

From the fact that sequence strings (3.2) and (3.3) are fundamental, it is deduced that the 

half-sum of these strings is also fundamental. In other words, for every ε > 0 there exists 

a natural number n0,  such that for every  n > n0 and for every m > n0 the inequality   








 


2

~~
,

~~~~
)( nn

nmnmn

TT
TTTIaa                                   (3.4) 

holds. 

From relation (3.4) it results that operator (𝑎𝑛 − 𝑎𝑚)𝐼 can be represented in the form 

 𝑎𝑛 − 𝑎𝑚 𝐼 = 𝑇  𝑚 − 𝑇  𝑛 + 𝐵𝑛,𝑚 , 

where  𝐵𝑛,𝑚 < 𝜀. For every complex number 𝜆 ,   𝜆 > 𝜀 and every  𝑛,𝑚 > 𝑛0 operator  

𝜆𝐼 − 𝐵𝑛,𝑚  is invertible. Thus, for these values of 𝜆 and mn,  the operator Iaa mn ))((   

can be represented as a sum of two operators,  ))
~~~~

()(()( , nmmnmn TTBIaa  , 

from which one is invertible and other is compact. Applying to operator (𝜆 − (𝑎𝑛 −

𝑎𝑚))𝐼 Corollary 2.1, we obtain that the values of function  𝑎𝑛(𝑡) − 𝑎𝑚 (𝑡) are in the disk 

with centre in zero of radius  𝜀. That is 

,,,)()( 0nmntata mn    and .t  

Thus, the sequence of continuous function  an  converges uniformly. Similarly, 

considering the half-difference of operators (3.2) and (3.3), we obtain that the sequence 

of continuous functions  𝑐𝑛  converges uniformly. Then, essentially repeating the 

reasoning that led us to the convergence of sequences  𝑎𝑛  and  𝑐𝑛 , we shall obtain that 

the sequences  𝑏𝑛  and  𝑑𝑛  are uniformly convergent too. Let 𝑎, 𝑏, 𝑐, 𝑑 and T  be the 

limits of the sequences  𝑎𝑛 ,  𝑏𝑛 ,   𝑐𝑛 ,  𝑑𝑛  and  𝑇𝑛 . Since 

 StbtbtataAA nnn )()(max)()(max

TTVStdtdVtctc nnn  )()(max)()(max , 

it results that the sequence )( nA , nnnnnn TVSdIcSbIaA  )( , converges to the 

operator  

𝐴 = 𝑎𝐼 + 𝑏𝑆 + (𝑐𝐼 + 𝑑𝑆)𝑉 + 𝑇.  

Theorem 3.1 is proved. 

Remark 3.1. The norm of algebra A , defined as operator norm, is topologically 

equivalent to the norm  

TtdtctbtaA  )(max)(max)(max)(max
1

.                           (3.5) 
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The set ))),(((  pLLTT  of compact operators in the space ),( pL  is included in 

A  and form a two-sided closed ideal. Consider the quotient algebra TAA /ˆ  , which is 

also a Banach algebra. Four continuous function ))(),(,)( tctbta  and )(td  uniquely define 

an cosets from Â  and, conversely, every element belonging to a coset adjacent class of 

Â  is of form TVdScIbSaI  )( , where T  is a compact operator. Indeed, if elements 

TVdScIbSaI  )(  and 11111 )( TVSdIcSbIa   are cosets, then their difference 

11111 ))()(()()( TTVSddIccSbbIaa   must be a compact operator. Under 

these conditions from Theorem 3.1 one can deduce that operators ,)( 1 Iaa  ,)( 1 Ibb   

,)( 1 Icc  Idd )( 1  are compact, but from Lemma 3.1 this is possible if and only if 

)()( 1 tata  , )()( 1 tbtb  , )()( 1 tctc  , )()( 1 tdtd  . 

Let us return to algebra Â . The element of Â , determined by functions 

𝑎 𝑡 , 𝑏 𝑡 , 𝑐(𝑡) and 𝑑 𝑡 , is denoted by  VdScIbSaI )(  . From properties of 

operators S  and V  and by direct calculations we get  

Theorem 3.2. Algebra Â  is commutative and, besides, the equality  

   VSdIcSbIaVdScIbSaI )()( 1111  = 

  SdccdbaabIddccbbaa )()( 11111111                           (3.6) 

VScbbcdaadIdbbdcaac ))()(( 11111111   

is true. 

The norm in Â  is defined by the equality  

   VdScIbSaI )( VdScIbSaI
T

)(inf 
T

                          (3.7) 

and it is topologically equivalent to the norm 

  
1

)( VdScIbSaI )(max)(max)(max)(max tdtctbta  .            (3.8) 

 

IV. The structure of maximal ideals of algebra Â  

Further, elements of algebra Â  will be expressed in the form 

 VdQcPbQaP )(  , ,)(,,,  Cdcba                                 (4.1) 

where )(
2

1
SIP  and )(

2

1
SIQ  . 

We shall describe all maximal ideals of Â . This result will enable us to establish 

necessary and sufficient condition under which element of Â  are invertible. Using this 

result we shall also construct regularizations for Noetherian operators.  

Theorem 4.1. The set of elements  VdQcPbQaP )(  Â  forms a maximal ideal of 

Â  if the function )()( tcta   vanishes at some point .0 t  The set of elements 

 VdQcPbQaP )(  Â  for which one of the functions )()( tcta  , )()( tdtb   or 
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)()( tdtb   vanishes at some point (every function at his own point) also form a maximal 

ideal. There are no other maximal ideals. 

Proof. Denote by 𝑀𝑡0
 the set of elements  𝑎𝑃 + 𝑏𝑄 + (𝑐𝑃 + 𝑑𝑄)𝑉  for which 𝑎(𝑡0) +

𝑐(𝑡0) = 0 and let  𝑎1𝑃 + 𝑏1𝑄 + (𝑐1𝑃 + 𝑑1𝑄)𝑉  be any element of algebra Â . Then by 

relations (3.6), it is easily shown that  

 𝑎𝑃 + 𝑏𝑄 + (𝑐𝑃 + 𝑑𝑄)𝑉 ⋅  𝑎1𝑃 + 𝑏1𝑄 + (𝑐1𝑃 + 𝑑1𝑄)𝑉   = 

 (𝑎𝑎1 + 𝑐𝑐1)𝑃 + (𝑏𝑏1 + 𝑑𝑑1)𝑄 + ((𝑎𝑐1 + 𝑎1𝑐)𝑃 + (𝑏𝑑1 + 𝑏1𝑑𝑄)𝑉         (4.2) 

and 

 𝑎 𝑡0 𝑎1 𝑡0 + 𝑐 𝑡0 𝑐1 𝑡0  +  𝑎 𝑡0 𝑐1 𝑡0 + 𝑎1 𝑡0 𝑐 𝑡0  =

(𝑎(𝑡0) + 𝑐(𝑡0))(𝑎1(𝑡0) + 𝑐1(𝑡0)) = 0.  

Thus, the set 𝑀𝑡0
 forms an ideal. We shall prove that this ideal is maximal, that is it does 

not exist such an ideal M  which contain 𝑀𝑡0
 and an element   

 𝑎2𝑃 + 𝑏2𝑄 + (𝑐2𝑃 + 𝑑2𝑄)𝑉 ∉ 𝑀𝑡0
 (𝑎2 𝑡0 + 𝑐 𝑡0 ). 

Let us admit that such an ideal M exists. Then any element   Â)(  VdQcPbQaP  

can be expressed in the form  

 𝑎𝑃 + 𝑏𝑄 + (𝑐𝑃 + 𝑑𝑄)𝑉 = 𝜍  𝑎2𝑃 + 𝑏2𝑄 + (𝑐2𝑃 + 𝑑2𝑄)𝑉  + 

 (𝑎 − 𝜍 𝑎2)𝑃 + (𝑏 − 𝜍 𝑏2)𝑄 + ((𝑐 − 𝜍 𝑐2)𝑃 + (𝑑 − 𝜍 𝑑2)𝑄)𝑉 ,           (4.3) 

where   is a complex number. We determine σ from condition that the second term from 

the right-hand side of (4.3) is an element of 𝑀𝑡0
. For this the number   must verify the 

equation 

))()(( 020 tata  + 0))()(( 020  tctc 
)()(

)()(

0202

00

tcta

tcta




  .                (4.4) 

From relation (4.3), in which the number σ is determined from equality (4.4), it follows 

that the ideal M coincides with algebra Â . Therefore, the ideal 𝑀𝑡0
is maximal. Similarly, 

cases, in which ,0)()( 00  tcta  0)()( 00  tdtb  and b(t0) − d(t0) = 0, are examined. It 

remains to prove that algebra Â  does not contain other maximal ideals. Indeed, let M be 

a maximal ideal. We shall prove that for every element   MVdQcPbQaP  )(  one 

of the function )()( tcta  , )()( tcta  , )()( tdtb   or )()( tdtb   is vanished in a point  

0t . Assume contrary, that is for every t ∈ Γ  in ideal M  there exist elements 

 ,)( VQPcQPa tt     VQPcQPa tt )
~~(~~   ,  VQdPQbP tt )(    and 

  𝛾  𝑃 + 𝑏 𝑡  𝑄 + (𝛿  𝑃 + 𝑑 𝑡  𝑄)  𝑉  , such that ,0)()(  tcta tt  ,0)(~)(~  tcta tt  0)()(  tdtb tt  

and respectively .0)(
~

)(
~

 tdtb tt  Hence there exist a neighbourhood U(t) of point 𝑡 such 

that  

0)()(  ttt ca  , 0)(~)(~  ttt ca  , 0)()(  ttt db  , 0)(
~

)(
~

 ttt db   
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for every )(tU . By Borel-Lebesgue theorem from the cover )(tU  extract a finite 

one. Let  
nttt ,...,, 21
  be respective point of obtained cover. Elements  

PVcPa
kk tt  , VPaPc

kk tt  , VPcPa
kk tt

~~  , VPaPc
kk tt

~~  , 

QVdQb
kk tt  , QVbQd

kk tt  , QVdQb
kk tt

~~
 , QVbQd

kk tt

~~
 ,  

,...,2,1 nk   belong to ideal M. Together with these elements the ideal M contains  









 


)(
1

11 PVacPaaPVcPa
kkkk tt

n

k

tt ,   








 


)(
1

22 PVcaPccPVcPa
kkkk tt

n

k

tt , 









 


)~~~~(
1

33 PVacPaaPVcPa
kkkk tt

n

k

tt ,  








 


)~~~~(
1

44 PVcaPccPVcPa
kkkk tt

n

k

tt , 









 


)(
1

11 QVdbQbbQVdQb
kkkk tt

n

k

tt ,  








 


)(
1

22 QVdbQddQVdQb
kkkk tt

n

k

tt , 









 


)
~~~~

(
1

33 QVbdQbbQVdQb
kkkk tt

n

k

tt ,  








 


)
~~~~

(
1

44 QVdbQddQVdQb
kkkk tt

n

k

tt , 

as well as sum of these elements 

  VQdPcQbPa )( 0000
 

 VQddddPccccQbbbbPaaaa ))()(()()( 4321432143214321  . 

On the other hand, the element   VQdPcQbPa )( 0000   is invertible in Â . Really, we 

have  

02)(~)(~)()()()( 2

2

1

2

1

00  


 ncacaca
n

k

tt

n

k

tt kkkk
 and

02)(
~

)(
~

)()()()( 2

2

1

2

1

00  


 ndbdbdb
n

k

tt

n

k

tt kkkk
, 

where .),...,,min(
21 nttt    Hence, the element 



















VQ

db

d
P

ca

c
Q

db

b
P

ca

a
)(

2

0

2

0

0

2

0

2

0

0

2

0

2

0

0

2

0

2

0

0  

belong to ideal  M. Using relation (4.2), it is directly verified that  

  VQdPcQbPa )( 0000
 IVQ

db

d
P

ca

c
Q

db

b
P

ca

a




















)(

2

0

2

0

0

2

0

2

0

0

2

0

2

0

0

2

0

2

0

0 . 

From the last relation it results that M= Â . The obtained contradictions prove the 

theorem. 

By virtue of Ghelfand [1] results, according to which an element of some Banach 

algebra is invertible if and only if it does not belong to any maximal ideal, we obtain the 

following 

Theorem 4.2. An element   Â)(  VdQcPbQaP  is invertible in  Â  if and only if 

functions )()( tcta   and )()( tdtb   are not vanished on contour  . 
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We shall establish some other properties of algebra Â . Observe that the intersection 

of all maximal ideals of Â  coincides to the null ideal. In fact, by Theorem 4, if 

  tMVdQcPbQaP  )( , then 0)()(  tcta , 0)()(  tcta , 0)()(  tdtb  and 

0)()(  tdtb , that is    0)(  VdQcPbQaP . Consequently,  

1
0
. Algebra Â  has no radical. 

2
0
. Â  is an involutive algebra. 

Define the involution by 

   VQdPcQbPaVdQcPbQaP )()( 


. 

All properties of involution are evident. We shall show that only for every element

  Â)(  VdQcPbQaP  there exists in Â  the element  

   1
))(())((


 VQdPcQbPaVdQcPbQaPI . 

Compute 

   ))(())(( VQdPcQbPaVdQcPbQaPI

 VQdbdbPcacaQdbPca ))()(()1()1(
2222

 , 

22
)()(1 tcta   0)()(1))()()()((

2
 tctatctatcta , 

22
)()(1 tdtb   0)()(1))()()()((

2
 tdtbtdtbtdtb . 

Hence, there exists  

   
1

))(())(( VQdPcQbPaVdQcPbQaPI













































VQ
dbdb

dbdb
P

caca

caca

Q
dbdb

db
P

caca

ca

)
)1)(1()1)(1(

(

)1)(1(

1

)1)(1(

1

2222

22

22

22

22

 

and this element belongs to Â . Property 2
0
 is proved. 

Denote by M  the bicompact of maximal ideals of Â . 

3
0
. M  is isomorphic to the topological product )()( kj  : ),()( kj M  

where 1j and 1k . 

It is know [1] that every commutative Banach algebra without radical is 

isomorphically mapped into an algebra of functions, defined on bicompact of maximal 

ideals. In our case it is easy to observe that to element   Â)(  VdQcPbQaPA  

corresponds the function ))()())(()(()( tkdtbtjctaMA  . 

4
0
. Algebra Â  is a symmetric algebra without radical. 

 In commutative and symmetric algebra R  every element x  is invertible or is a 

generalized zero divisor (see [1]), that is, there exists a sequence )( ny , 1,  nn yy R  and 

0lim 


xyn
n

. Thus, every element  VdQcPbQaPA )(  , for which one of functions 
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)()( tcta  , )()( tcta  , )()( tdtb   or   )()( tdtb   is vanished on  , is a generalized zero 

divisor. 

Obvious,  T\)),(( pLL  is a (no commutative) Banach algebra including Â . 

5
0
. An element ÂA  is invertible in T\)),(( pLL  if and only if it is invertible in 

Â . 

In fact, let A  be invertible in T\)),(( pLL  and suppose that it is not invertible in 

Â , Â
1 A . Then, by virtue of 4

0
, A  is a generalized zero divisor. But this is impossible, 

since in this case the invertible operator A  should be a generalized zero divisor in 

T\)),(( pLL . 

 

V. Regularization of operators of the form 𝑨 = 𝒂𝑰 + 𝒃𝑺 +  𝒄𝑰 + 𝒅𝑺 𝑽 + 𝑻  

Let us approach the problem of regularization of singular integral operators with 

shift  , .)( TVdScIbSaIA   It is easy to observe that operator A  admits a 

regularization in algebra )),(( pLL  if and only if  element   Â)(  VdScIbSaI  is 

invertibile in T\)),(( pLL . In order to apply assertions of Theorem 4.2 and property 5
0
 

we use operators  

𝑃 =
1

2
(𝐼 + 𝑆) ,  𝑄 =

1

2
(𝐼 − 𝑆), QPI  and .QPS   

Then operators A  is transcribed as TVQPQPA  )(  , where 

,ba  ,ba   dcdc   , . From Theorem 4.2 and property 5
0
 it results 

that  VQPQP )(    is invertible in T\)),(( pLL  if and only if functions 

)()( 22 tt    and )()( 22 tt    do not vanish on  . In other words, a singular integral 

operator A  with shift, TVdScIbSaIA  )( ,  admits a regularization in )),(( pLL  

if and only if  

0))()(())()(()()( 2222  tdtctbtatt  ,  

0))()(())()(()()( 2222  tdtctdtctt  . 

Thus, condition (1.3) of Theorem 1.3 is satisfied. With the help of judgments used 

in the proof of Theorem 4.2 it is supplementary obtained that 1TIAR   and 2TIRA   

, where R  is defined by relation (1.4) and 21 , TT  are compact operators.  

Theorem 5.1. Operator TVQPQPA  )(   admits an equivalent 

regularization if and only if the following conditions 

0)()( 22  tt  , 0)()( 22  tt  , 0
)()(

)()(
22

22






tt

tt
ind




 

are verified. Under these conditions 
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)()(

)()(

2

1
22

22

tt

tt
indIndA








 . 

For 0IndA  all solutions of equation yAx  are obtained from din relation Rzx  , 

where z  runs all solutions to equation yRAz   and R  is defined by (1.4). 

Cases when the function of shifting  , changes the orientation of contour   and 

systems of singular integral equation with shift will be approached, possibly, in other 

works of author. 
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