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ASUPRA REGULARIZARII OPERATORILOR INTEGRALI SINGULARI.
CRITERII NOETHERIENE

Rezumat. Lucrarea este consacrata studiului algebrei (inchise) generata de operatorii integrali singulari
cu coeficienti continui pe conturul I". Sunt stabilite conditiile necesare si suficiente in care operatorii din

algebra A sunt noetherieni in spatiul L, (I, p); sunt construifi regularizatorii operatorilor noetherieni.

Studiul este efectuat in spatiul L, (I, p) cu ponderea p(t) = [[=1|t — tx |ﬁ * si se bazeaza pe teoria lui L.
Ghelfand cu privire la algebrele Banach comutative (a se vedea [1]).

Rezultatele principale ale acestei lucrari au fost prezentate la Congresul al 9-lea al Matematicienilor
Romani, care s-a desfasurat in orasul Galati, 2019.
Cuvinte cheie: operator integral singular, operator compact, regularizare.

1.  Introduction

The results presented in this work are generalizations of the paper [2]. Thus, if, in
particular, there are considered integral singular characteristic operators without
translations, then the results of given work, coincide with these of [2].

We remind that an operator AeL(B) admits a regularization, if there exist an
operator M €L(B) such that AM =1+T,, MA=1+T,, where T, and T, are compact
operators in the space B . The class of operators which admit a regularization is of special
interest due to the fact that operators of this class have the fallowing properties
(F.Noether theorems):

1) The equation Ax = y is solvable if and only if the right-hand side is orthogonal
to all solutions of the equation A*@ = 0. This condition is equivalent to the condition
that the set of values of operator A is a subspace, or such that the relation

ImA = ﬂ Kerf
f€EKer A*
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holds.

2) The equations Ax = 0 and A = 0 have a finite number of linear independent
solutions.

Operators with properties 1) and 2) are called Noetherian and are essential
generalizations of the class of operators of the form 1 +T, with T compact, for which
theorems similar to that of Fredholm are true.

In the case when conditions 1) and 2) are met, then the number dimKerA —
dimKerA* is called the index of noetherian operator A and is denoted by IndA:

IndA = dimKerA — dimKerA".

Let T" be a closed Lyapunov type contour, S be a singular integral operator with

Cauchy kernel and V Dbe an operator of shifting, (Ve)(t)=¢(a(t)), where function

o:I'=> 1" gatisfies the following conditions:
a) o(o)) = o(t) , (ot)) #1);
b) there exists derivative o'(t) #0;

¢) the function w'(t) satisfies the Holder condition on contour I
Consider the complete singular integral equation

Ap = a(D)o(t) + "(”j 20 dr + [k(r,)p(@)dr = f() (keCT xI). (11)
r

mi

To Mihlin (see [3]) the following theorems belong
Theorem 1.1. The operator M is an equivalent regularizer for singular equation
Ag = f for every right hand part f if and only if KerM = {0}.

A similar theorem can be formulated for the case of right-hand regularization. In
this case, the operators A and M are interchanged. Operator M is an equivalent
regularizer for A if itis aregularizer for A and is invertible to the left.

Theorem 1.2. The integral singular equation A@ = f admits an equivalent
regularization for every right-hand part f, if and only if IndA > 0.

It is well known [2] that a singular integral operator' A=al+bS+T admits a
regularization if and only if a®(t)—b?(t) =0 for all teI". For example, as a regularizator
one can take the operator

R=azib2 | —azﬁbzs.

Under these conditions operator A, obviously, also admits a regularization and thus
for A and A" Noether theorems hold.

The main result of this work is given by
Theorem 1.3. Operator

A=al+bS+(cl +dS)V +T, a,b,c,deC_(I), (1.2)

Y By T with indices we denote compact operators.
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admits a regularization in L (T, p) if and only if

(@) +b())* —(c(t) +d(®)* =0,  (a(t)-b(t))* —(c(t) —d(t))* =0 (1.3)
for every €l Under conditions (1.3) operator
(04

_ g s ,
R_a2_5zp+ﬂ2_7/2Q (0[2—52P+ﬂ2—7/2Q)V’ (14)

where a=a+b, f=a-b, o=c+d,y=c—-d, P:%(I+S),Q:%(I—S), iIs a

regularizator for A.
This theorem is proved in §5.

2. Properties of operators S and V
It is known the fact that the operator

590 == 24z ter, 2.1)

where the integral is understood in the sense of main value, is defined on the set of
rational functions on contour I'. If §, > —1, then this set is dense in the space L,(I",p),
where
p(®) = Iyt — |,
Hvedelidze proved that if
-1<B.<p-1, k=12, ..,n, (2.2)

then the operator S is bounded in the space L,(I',p). Conditions (2.2) are also [4]
necessary in which S is bounded in L, (T, p). In what follows we suppose that conditions
(2.2) are verified.

We shall also mention some properties of operator S, necessary in what follows:

17 s% =1, where I is the identity operator on L (T, p) .

*

2°.0perator S°, which acts in the space (LT p) =L (T, "), p™+q7" =1,

differs from operator S in this space by compact: S*=S+T .

3". For every function a(t) continuous on I" operator a S — Sal is compact.

49  The relation HS*H = —S + T, where (Hop)(t) = ¢(t) is realized.

The proof of properties 1° — 3° is contained in monograph [4], and property 4° can
be easily proved, if respective results from [4-5] will be applied (see also [6-7])

From the properties of the function @ it results that the operator

Vo)(t) = p((t)) 2.3)
is involutive, V?=1. We shall establish its continuity in the space L, (T,p). Let

pel,(T,p), then
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Vol = [et@O) T Tlt-td*[dt = [lo®] T T -t.* lo'®]dt (2.4)

Since the function @ has derivative and «'(t) =0, there exist constants c, >0 and

¢, >0,k=12,..,n, such that

B

o0 ¢ 2.5)

~

k

Taking into account (2.4) and (2.5), we get
Vel” < Te. - [lo)" T Tit-t|" '@t < clo|”
1 r 1

and continuity of operator V is proved.
We mention also the property of Vv contained in
5. VS=SV+T.
Indeed

VS — SV = = jM dr—ijw dz=ij(ﬂ—i)<p(w(r))dr.
r r r

7l | () i —t 7i | \o@-w@) -t
From properties of function w it follows [4] that the kernel of operator VS — SV,
o' 1
o(r)-ot) -t
has weak singularities on contour I" and, hence, this operator is compact in the space
L, (T, p).

k(t,7) =

Denote P =%

relations are easily proved:
6. P2=P,0%=0Q,PQ=QP=0, P+Q=1, P-Q=S, VP=PV+T,,
VQ=QV+T,, HPH =Q+T; , HQH = P + T, , where (Hp)(t) = @(t).

(I+S)and Q = %(1 — §). Then, using the above properties, the following

3.  Algebras A and A
Denote by C_(I') (c C(I")) the set of functions a(t) continuous on I' and satisfying

condition a(w(t)) =a(t). Evidently, this set forms a commutative algebra with identity

and norm |fal. - :||a||cm. It is also obvious that every function of the form
a(t) =b(t) -b(a(t)), where b e C(I'), is contained in C_(I'). The converse to this statement
is also true: every function aeC_ (") may be represented in the form a(t) = b(¢t) -

b(w(t)), where b eC(I'). We can join these remarks in assertion that algebra C_(I') is

characterized by relation
C, (1) = {b(t) -b(a(t)) |b € C(T)}. (3.1)
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Representation of functions from C_ (') in the form a(t) =b(t) - b(e(t)) is unique up
to some constant factors ¢, and c,, where c -c, =1. Later on we shall assume that
¢, =c, =1. Thus, for example, if T is the unit circle and w(t)=-t, then functions
a,(t) =—-t*, a,(t)=t* belong to C_(I') and they can be represented as a, (t) =t-(-t) and,
respectively a,(t) =it-(-it).

Denote by A the algebra generated by S,V and the set of operators al of

multiplication by functions a(t),aeC_(I'). A is a subalgebra of algebra L (Lp (r, p))
formed by set of linear and bounded operators, acting in the space L, (T, p).

Theorem 3.1. A is a closed algebra.

In the proof of this theorem we use the properties of operators S and V and
characterization of algebra C,, (I'"). Preliminary is also necessary
Lemma 3.1. If operator (Mg) = a(t)e(t) of multiplication by function a(t), continuous on
', can be represented in the form M =B+T , where B is invertible and T is compact
operator in L (T, p), then [2] the function a(t) is not vanished on T'.

Proof. Suppose, by absurd that the function a(t) vanishes on a set ¢ € I' of nonzero
measure. Then equation a(t)e(t) =0 in L (T,p) has an infinite set of linear

independent solutions.

So the equation (B + T)¢ = 0, which is equivalent to the equation (I + B™1T)¢p =
0, has an infinite number of linear independent solutions, which is absurd, since the
operator B~1T is compact in L,(I', p). The function a(t) cannot be vanished even on a
set of zero measure. Really, otherwise, the equation a(t)@(t) = 0 would have only the
trivial solution and, by virtue of Fredholm theorem, operator M should be invertible.

Since the operator (M;¢)(t) = %(p(t) is unbounded in the space L, (I', p). It results

that the operator M is not invertible. Thus, function a(t) does not vanished on I', and
lemma is proved.
From this lemma it follows directly the following corollary.
Corollary 3.1. Operator(M¢) = a(t)@(t) is compact if and only if a(t) = 0.
Proof of Theorem 3.1. Let the sequence (4,,), where
A, =a,l+b,S+ (c, ] +d,S)V+T,,a,b,c,d, €C,(I),
be fundamental. Then the sequence (HA'H),HA'H =a_ | -b S+(c I —d SV +T,, is

fundamental. In consequence, the sequence

R, =a,l +CV +T,, (R, = 2oty (3:2)
is also fundamental. Define the following operator (Ng)(t) = (w(t) —t)e(t), which linear
and bounded in L, (I', p). Since function o preserves orientation on I', it has no (see [5])

fixed points on I". Hence, there exists operator N,
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1
o -1

Obviously, NaN™ =al and NVN™ =-V .Together with sequence (3.2) it will be also

(N“o)(t) = (t).

fundamental the sequence (N 1R, N), which by the above has the form

N*RN=al-cV+T". (3.3)
From the fact that sequence strings (3.2) and (3.3) are fundamental, it is deduced that the
half-sum of these strings is also fundamental. In other words, for every € > 0 there exists
a natural number ng,, such that for every n > n, and for every m > n, the inequality

s [T T ;Tnj (3.4)

H(an _am)l +:I:n _:I:m

holds.
From relation (3.4) it results that operator (a,, — a,,)I can be represented in the form
(a, —ay ) =T, —T, + By,
where ||B, .|| < &. For every complex number 4, || > € and every n,m > n, operator
Al — B, ., is invertible. Thus, for these values of A and n,m the operator (1-(a, —a,,))!

can be represented as a sum of two operators,(1-a, +a,,)e = ((Al - anm)—('r:m —ﬁ))(p,
from which one is invertible and other is compact. Applying to operator (1 — (a, —
a,,))I Corollary 2.1, we obtain that the values of function a, (t) — a,, (t) are in the disk
with centre in zero of radius ¢. That is
la,(t)-a, ()| <&, vn,m>n,, and VteT.
Thus, the sequence of continuous function (a,) converges uniformly. Similarly,
considering the half-difference of operators (3.2) and (3.3), we obtain that the sequence
of continuous functions (c,) converges uniformly. Then, essentially repeating the
reasoning that led us to the convergence of sequences (a,,) and (c,,), we shall obtain that
the sequences (b,)) and (d,,) are uniformly convergent too. Let a,b,c,d and T be the
limits of the sequences (a,,), (b,), (c,), (d,)) and (T,,). Since
|A, = Al < max|a, (t) — a(t)| + max|p, (t) - b(t)[|S[ +
max|c, (1) - ¢V ||+ max|d, () - d @SV [+ [T, 7| ,
it results that the sequence (A,), A, =a,l +b,S+(c,1 +d,S)V +T,, converges to the
operator
A=al+bS+ (cI +dS)V +T.
Theorem 3.1 is proved.

Remark 3.1. The norm of algebra A, defined as operator norm, is topologically
equivalent to the norm

|All, = max|a(t)| + max|b(t)| + max|c(t)| + max|d (t)| +[T|. (3.5)
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The set T=T(L(L, (T, p))) of compact operators in the space L (T, p) is included in

A and form a two-sided closed ideal. Consider the quotient algebra A=A/T, which is
also a Banach algebra. Four continuous function a(t),b(t), c(t)) and d(t) uniquely define
an cosets from A and, conversely, every element belonging to a coset adjacent class of
A is of form al +bS+(cl +dS)V +T, where T is a compact operator. Indeed, if elements
al +bS+(cl +dS)V +T and al +bS+(c,l +d,S)V +T, are cosets, then their difference
(@-a)l+(b-b)S+((c—c)l+(d—d,)S)V+T T, must be a compact operator. Under
these conditions from Theorem 3.1 one can deduce that operators (a—a,)l, (b—b)lI,
(c—=c)I, (d-d,)I are compact, but from Lemma 3.1 this is possible if and only if
a(t)=a,(t), b(t)=b,(t), c(t) =c,(t), d(t) =d,(t).

Let us return to algebra A. The element of A, determined by functions
a(t),b(t),c(t) and d(t), is denoted by {al+bS+(cl +dS)V}. From properties of
operators S and V and by direct calculations we get
Theorem 3.2. Algebra A is commutative and, besides, the equality

{al +bS +(cl +dS)V }-{a,1 +b,S +(c,1 +d,S)V }=
{(aa, +bb, +cc, +dd,)l +(ab, +ab+cd, +¢,d)S + (3.6)
((ac, +a,c +bd, +b,d)1 + (ad, +a,d +bc, +b,c)S)V}
is true.
The normin A is defined by the equality
[{al +bS + (cl +dS)V = inffal +bS +(cl +dS)V| (3.7)
and it is topologically equivalent to the norm
[{al +bS + (cl +dS)V |, = max|a(t)|+ max|b(t)| + max|c(t)| + max|d (t)| . (3.8)

IV. The structure of maximal ideals of algebra A
Further, elements of algebra A will be expressed in the form
{aP+bQ+ (cP +dQ)V}, a,b,c,deC, (I, (4.1)

where P:%(I +S) and Qzé(l -9).

We shall describe all maximal ideals of A. This result will enable us to establish
necessary and sufficient condition under which element of A are invertible. Using this
result we shall also construct regularizations for Noetherian operators.

Theorem 4.1. The set of elements {aP+bQ+ (cP +dQ)V} e A forms a maximal ideal of
A if the function a(t)+c(t) vanishes at some point t,<I. The set of elements

{aP+bQ+(cP+dQ\V} e A for which one of the functionsa(t)—c(t), b(t)+d() or



Vasile Neagu

b(t) —d(t) vanishes at some point (every function at his own point) also form a maximal
ideal. There are no other maximal ideals.
Proof. Denote by M, the set of elements {aP + bQ + (cP + dQ)V} for which a(ty) +
c(ty) = 0 and let {a;P + b;Q + (¢, P + d;Q)V} be any element of algebra A. Then by
relations (3.6), it is easily shown that
{aP + bQ + (cP +dQ)V} -{a1P + b1Q + (tP + d1Q)V} =
{(aay + ccy)P + (bby +ddy)Q + ((acy + a,¢)P + (bd, + b1dQ)V} (4.2)
and
(a(to)a1(to) + C(to)C1(to)) + (a(to)c1(to) + a1(to)C(to)) =
(a(to) + c(to))(ar(to) + c1(to)) = 0.
Thus, the set M,, forms an ideal. We shall prove that this ideal is maximal, that is it does
not exist such an ideal M which contain M, and an element
{azP + b,Q + (c;P + d,Q)V} & M, (ay(ty) + c(ty)).
Let us admit that such an ideal M exists. Then any element {aP +bQ+ (cP +dQ)V}c A
can be expressed in the form
{aP + bQ + (cP + dQ)V} = c({ay,P + b,Q + (c,P +d,Q)V}) +
{la—cda))P+(b—0by))Q+ ((c—0c))P+(d—0ady)Q)V}, (4.3)
where o is a complex number. We determine ¢ from condition that the second term from
the right-hand side of (4.3) is an element of M, . For this the number o must verify the
equation
a(t,) +c(ty) _ (4.4)
a,(t,)+c,(t,)
From relation (4.3), in which the number o is determined from equality (4.4), it follows

alty) —oa,(t,))*+ (c(t,) —oc,(t,)) =0=3c =

that the ideal M coincides with algebra A. Therefore, the ideal M, is maximal. Similarly,
cases, in which a(t,)—c(t,) =0, b(t,)+d(t,) =0 and b(ty) — d(ty) = 0, are examined. It
remains to prove that algebra A does not contain other maximal ideals. Indeed, let M be
a maximal ideal. We shall prove that for every element {aP +bQ+ (cP +dQ)V}c M one
of the function a(t)+c(t), a(t)—c(t), b(t)+d() or b(t)—d(t) is vanished in a point
t,e. Assume contrary, that is for every te " in ideal M there exist elements
B P+aQ+(CP+AV), (AP+aQ+@EP+AQV], {P+bQ+(P+d,QV} and
{#P +b,Q + (6P +d,Q)V}, such that a,(t)—c, (t)#0, &(t)+C,(t)=0, b (t)—d,(t)=0
and respectively Et(t) + Jt (t) # 0. Hence there exist a neighbourhood U(t) of point t such
that

la,(r) ¢, () > 2> 0, [3,(r) +C,(2)| > 2> 0, |b, () - d, ()| > 2,> 0,

t?t(r)+(—j~t (z‘)‘ >A,>0
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for every reU(t). By Borel-Lebesgue theorem from the cover JU(t) extract a finite
one. Let t,t,,..,t, be respective point of obtained cover. Elements

a P+c PV,c P+a PV, 3 P+C PV, C P+3 PV,

b, Q+d, QV, d Q+b QV, b Q+d, QV, d Q+b QV,
k =12,..n, belong to ideal M. Together with these elements the ideal M contains

P+clPV:Z(atkétkP+ctk§tkPV)}, {a2P+c2PV Z(c ¢, P+a.c,P }
k=1 k=1

{a3P+c PV = Z(a a_P+C.aP )}, {a P+c,PV = Z(c ¢, P+4,c PV)

Q_1|

b,Q+d,QV = Z(b b, Q+b, d, QV)} {b2Q+d2QV Z(dtkdtkmbtkdthV)},

{b Q+d,QV = 2(6 b, Q+d, b, QV } {b Q+d,QV = Z(dtkdth+6
as well as sum of these elements
{a,P +0,Q +(c,P+d,Q)\V }=
{(a1 +a,+a,+a,)P+(, +b, +b,+b,)Q+((c, +¢, +¢c; +¢c,)P+(d, +d, +d, +d4)Q)V}.
On the other hand, the element {a,P +b,Q +(c,P +d,Q)V} is invertible in A. Really, we

have

2 n 2
a, (1) +c, (1) +Y [, (7)€, (z) >2n4%>0 and
k=1

8y (1) £0o(0) =Y

bo(r)ido(r):zn:‘btk (1) 2d, (7) +Zn:‘5(r)tk +d, (7)) >2n2°>0,

where 4 =min(4,,4, ,..,4,_). Hence, the element

aO
P+ \Y
{aé—cé b2—d2Q ( c0 b —dZQ) }
belong to ideal M. Using relation (4.2), it is dlrectly verified that
a
{a0P+b0Q+(c0P+d0Q)V}-{ag_ocgP 07 Q (ao_c0 7 _sz)V} {1}.

From the last relation it results that M=A. The obtained contradictions prove the
theorem.

By virtue of Ghelfand [1] results, according to which an element of some Banach
algebra is invertible if and only if it does not belong to any maximal ideal, we obtain the
following
Theorem 4.2. An element {aP+bQ+(cP+dQ)V}e A is invertible in A if and only if

functions a(t) c(t) and b(t) £d(t) are not vanished on contour TI'.
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We shall establish some other properties of algebra A . Observe that the intersection
of all maximal ideals of A coincides to the null ideal. In fact, by Theorem 4, if
{aP+bQ+(cP+dQV}eNM,, then a(t)+ct)=0, a(t)-c(t)=0, bt)+d({t)=0 and
b(t)—d(t) =0, that is {aP +bQ + (cP + dQ)V } = {0}. Consequently,

1°. Algebra A has no radical.

2°. A is an involutive algebra.
Define the involution by

{aP+bQ+(cP +dQ)\V} = {EP +bQ+(@CP+ c_IQ)V}.

All properties of involution are evident. We shall show that only for every element
{aP+bQ+(cP +dQ)V } e A there exists in A the element

[1 +{(@P+bQ+ (cP +dQ)V)- (@P +bQ+ (P +dQV)|| .
Compute

|1 +{(@P+bQ+(cP +dQ)V) - (@P +bQ + (cP+dQ)V)||=

{+[a” +c)P + @+ ]b* +]d[)Q + (T +EC)P + (bd +Dd)QV |,
1+[a@)]” +|c)|” £ @MTE) +a(t)ct)) =1+[alt) £ct)|” >0,

1+ ()" +[d(@®)|" £ (b(t)d (t) +b(©)d (1)) =1+|b(t) £ d (1) > 0.
Hence, there exists

|1 +{(@P +bQ+(cP+dQV)- (@P+bQ + (cP+dQV) || =

1+|a|2 +|c|2 1+|b|2+|d|2
A+la-c)a+fa+c’)  @+rp-dHa+b+d|)
~ ac +ac . bd +bd
Q+la-c)@+fa+c)  @+p-d)a+b+d|*)

and this element belongs to A . Property 2° is proved.

Denote by M the bicompact of maximal ideals of A.

3°. M is isomorphic to the topological product (I'x j)x (I'xk): M= (I'x j)x (I'xk),
where j=+land k=+1.

It is know [1] that every commutative Banach algebra without radical is
isomorphically mapped into an algebra of functions, defined on bicompact of maximal
ideals. In our case it is easy to observe that to element A={aP+bQ+(cP+dQV}eA
corresponds the function A(M) = (a(t) + jc(t))(b(t) + kd(t)).

4°, Algebra A is a symmetric algebra without radical.

In commutative and symmetric algebra R every element x is invertible or is a
generalized zero divisor (see [1]), that is, there exists a sequence(y,), y, €R,|y,|=1 and

lim|y,x|=0. Thus, every element A= {aP+bQ+ (cP +dQ)V }, for which one of functions

N—0o0
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a(t)+c(t), a(t)—c(t), b(t)+d(t) or b(t)—d(t) is vanished on T, is a generalized zero
divisor.
Obvious, L(L,(I',p))\T isa (no commutative) Banach algebra including A.

5°. An element Ae A is invertible in L(L, (T, p))\T if and only if it is invertible in

A~

A.
In fact, let A be invertible in L(L (", p))\ T and suppose that it is not invertible in

A, At ¢ A. Then, by virtue of 4°, A is a generalized zero divisor. But this is impossible,
since in this case the invertible operator A should be a generalized zero divisor in
L(L, (T, o)\ T.

V. Regularization of operators of the formA = al + bS + (cI + dS)V + T
Let us approach the problem of regularization of singular integral operators with
shift @, A=al+bS+(cl +dS)V +T. It is easy to observe that operator A admits a

regularization in algebra L(L, (T, p)) if and only if element {al +bS+(cl +dS)V}e A is
invertibile in L(L, (T, p))\T. In order to apply assertions of Theorem 4.2 and property 50
we use operators
P=-(I+5),Q=5U-5),1=P+Q and S=P-Q
Then operators A is transcribed as A=aP+p8Q+(SP+yQ)V +T, where
a=a+b, B=a-b, §=c+d, y=c—d. From Theorem 4.2 and property 5° it results
that {aP+BQ+(SP+yQ)\V} is invertible in L(L,(I,p)\T if and only if functions
a’(t)-o%(t) and p2(t)—»%(t) do not vanish on I'. In other words, a singular integral
operator A with shift, A=al +bS+(cl +dS)V +T, admits a regularization in L(L, (T, p))
if and only if
a®(t) - &% (t) = (@) +b(t))* — (c(t) +d(®)* # 0,
B2~ 7 () = () +d(®)* — (c®) +d(1))* 0.
Thus, condition (1.3) of Theorem 1.3 is satisfied. With the help of judgments used
in the proof of Theorem 4.2 it is supplementary obtained that AR=1+T, and RA=1+T,

, where R is defined by relation (1.4) and T,, T, are compact operators.
Theorem 5.1. Operator A=aP+pQ+(0P+yQV+T admits an equivalent
regularization if and only if the following conditions
: () =5%(t)
a2 ()= 52(1) 20, B2 °(1) 0, ind D=9 O 4
O -7 (1)

are verified. Under these conditions
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indA =~ Ling 20 =9"O
2. pr)-r°(t)

For IndA<0 all solutions of equation Ax=y are obtained from din relationx=Rz,

where z runs all solutions to equation RAz =y and R is defined by (1.4).

Cases when the function of shifting @, changes the orientation of contour I" and

systems of singular integral equation with shift will be approached, possibly, in other
works of author.
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