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Abstract. In this paper, we show that for cubic differential system 𝑥 = 𝑦(𝑥 − 1)2 ,   𝑦 = −(𝑥 + 𝑔𝑥2 +

𝑑𝑥𝑦 + 𝑏𝑦2 + 𝑞𝑥2𝑦) the critical point (0,0) is a center if and only if the first four Lyapunov quantities 

vanish (𝐿1 = 𝐿2 = 𝐿3 = 𝐿4 = 0) or, equivalently, if at least one of the following two sets of conditions: 

1) 𝑏 = 0, 𝑞 = 𝑑𝑔; 2) 𝑑 = 𝑞 = 0 holds.  
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REZOLVAREA PROBLEMEI CENTRULUI PENTRU UN SISTEM 

DIFERENŢIAL CUBIC CE ARE O DREAPTĂ INVARIANTĂ REALĂ 

ŞI LINIA DE LA INFINIT DE MULTIPLICITATEA DOI  

Rezumat. În lucrarea de faţă se arată că pentru sistemul diferenţial cubic 𝑥 = 𝑦(𝑥 − 1)2 ,   𝑦 = −(𝑥 +

𝑔𝑥2 + 𝑑𝑥𝑦 + 𝑏𝑦2 + 𝑞𝑥2𝑦), punctul critic (0,0) este de tip centru, dacă şi numai dacă se anulează 

primele patru mărimi Lyapunov (𝐿1 = 𝐿2 = 𝐿3 = 𝐿4 = 0) sau, echivalent, dacă are loc cel puţin unul 

dintre seturile de condiţii: 1) 𝑏 = 0, 𝑞 = 𝑑𝑔; 2) 𝑑 = 𝑞 = 0.  

Cuvinte cheie: sistem diferențial cubic, dreaptă invariantă, multiplicitate, problema centrului. 
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1. Introduction 

We consider the polynomial differential system 
𝑑𝑥

𝑑𝑡
= 𝑃 𝑥,𝑦 ,   

𝑑𝑦

𝑑𝑡
= 𝑄 𝑥,𝑦 ,     gcd 𝑃,𝑄 = 1,                         (1) 

𝑃,𝑄 ∈ ℝ 𝑥, 𝑦 , and the vector field 𝕏 = 𝑃 𝑥,𝑦 
𝜕

𝜕𝑥
+ 𝑄(𝑥,𝑦)

𝜕

𝜕𝑦
 associated to systems 

(1). Denote 𝑛 = max deg 𝑃 , deg 𝑄  . If 𝑛 = 2  𝑛 = 3 , then the system (1) is called 

quadratic (cubic). 

An algebraic curve 𝑓 𝑥,𝑦 = 0, 𝑓 ∈ ℂ[𝑥,𝑦] (a function 𝑓 = 𝑒𝑥𝑝  
𝑔

ℎ
 ;𝑔, ℎ ∈

ℂ 𝑥,𝑦 , deg 𝑔 ≤ deg ℎ , gcd 𝑔, ℎ = 1) is called an invariant algebraic curve 

(exponential factor) of the system (1) if there exists a polynomial 𝐾𝑓 ∈ 𝑪 𝑥,𝑦 ,𝑑𝑒𝑔𝐾𝑓 ≤

𝑛 − 1 such that the identity   

𝜕𝑓 (𝑥 ,𝑦)

𝜕𝑥
∙ 𝑃 𝑥, 𝑦 +

𝜕𝑓 𝑥 ,𝑦 

𝜕𝑦
∙ 𝑄 𝑥,𝑦 ≡ 𝑓(𝑥, 𝑦) ∙ 𝐾𝑓(𝑥, 𝑦)                        (2) 

holds. The polynomial 𝐾𝑓 𝑥,𝑦  is called the cofactor of the invariant algebraic curve 

(exponential factor) 𝑓. In particular, a straight line 𝑓 𝑥,𝑦 ≡  𝛼𝑥 + 𝛽𝑦 + 𝛾 = 0,  𝛼,𝛽 ≠
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 0,0  is invariant for (1) if the following identity 𝛼𝑃 𝑥, 𝑦 + 𝛽𝑄(𝑥,𝑦)  ≡ (𝛼𝑥 + 𝛽𝑦 +

𝛾) ∙ 𝐾𝑓(𝑥,𝑦) holds.    

If 𝑓 = 𝑒𝑥𝑝  
𝑔

ℎ
 , deg(ℎ) > 0 is an exponential factor, then ℎ 𝑥, 𝑦 = 0 is an 

invariant algebraic curve for (1) [1].   

Let 𝑓 𝑥, 𝑦 = 0 be an invariant straight line and 𝑚 is the greatest natural number 

such that 𝑓𝑚  divide  𝑃 ∙ 𝕏 𝑄 − 𝑄 ∙ 𝕏 𝑃 . In this case we say that the line 𝑓 𝑥,𝑦 = 0 

has multiplcity  𝑚. By work [2], if the invariant straight line ℎ 𝑥,𝑦 = 0 has multiplicity 

𝑚,𝑚 > 1, then the system (1) has 𝑚 − 1 exponential factors of the form: 

𝑒𝑥𝑝  
𝑔1

ℎ
 ,⋯ , 𝑒𝑥𝑝  

𝑔𝑚−1

ℎ
𝑚−1 , deg 𝑔𝑙 ≤ deg ℎ𝑙 . 

Assume that 𝑃 𝑥,𝑦 = 𝑃0 + 𝑃1 𝑥,𝑦 +∙∙∙+𝑃𝑛 𝑥, 𝑦 ,𝑄 𝑥,𝑦 = 𝑄0 + 𝑄1 𝑥,𝑦 +∙∙∙

+𝑄𝑛 𝑥,𝑦 , where 𝑃𝑗 , 𝑄𝑗  are omogeneous polynomials of degree 𝑗, and 

𝑃  𝑥,𝑦, 𝑧 ,𝑄  𝑥,𝑦, 𝑧 , are homogenization of 𝑃(𝑥, 𝑦) and 𝑄(𝑥,𝑦), respectively, i.e. 

𝑃  𝑥,𝑦, 𝑧 = 𝑃0 ∙ 𝑧
𝑛 + 𝑃1 𝑥,𝑦 ∙ 𝑧𝑛−1 +∙∙∙ +𝑃𝑛−1 𝑥, 𝑦 ∙ 𝑧 + 𝑃𝑛 𝑥,𝑦 , 

𝑄  𝑥,𝑦, 𝑧 = 𝑄0 ∙ 𝑧
𝑛 + 𝑄1 𝑥, 𝑦 ∙ 𝑧𝑛−1 +∙∙∙ +𝑄𝑛−1 𝑥,𝑦 ∙ 𝑧 + 𝑄𝑛 𝑥,𝑦 . 

In this paper we suppose that 𝑦𝑃𝑛 𝑥,𝑦 − 𝑥𝑄𝑛(𝑥, 𝑦) ≢ 0. Denote 𝕏 = 𝑃  𝑥,𝑦, 𝑧 
𝜕

𝜕𝑥
+

𝑄 (𝑥, 𝑦, 𝑧)
𝜕

𝜕𝑦
. We say that the natural number 𝑚 + 1 is the multiplicity of the line at 

infinity 𝑧 = 0 if 𝑚 is the greatest number such that 𝑧𝑚  divide  𝑃 ∙ 𝕏  𝑄  − 𝑄 ∙ 𝕏  𝑃  . 

According to [3], if the line at infinity has the multiplicity 𝑚,𝑚 > 1, then (1) has 𝑚 − 1 

exponential factors of the form 𝑒𝑔1 ,⋯ , 𝑒𝑔𝑚−1 , where 𝑔𝑙 , 𝑙 = 1,⋯ ,𝑚 − 1, are polynomial 

in 𝑥 and 𝑦. 

Up to now a great number of works have been dedicated to the investigation of 

polynomial differential systems with invariant straight lines (see, for example, [4]-[17]).  

In this paper the cubic system  

𝑥 = 𝑦(𝑥 − 1)2,    𝑦 = −(𝑥 + 𝑔𝑥2 + 𝑑𝑥𝑦 + 𝑏𝑦2 + 𝑞𝑥2𝑦)                  (3) 

is examined. For this system the invariant straight line 𝑥 − 1 = 0, together with the line 

at infinity  𝑧 = 0, has the multiplicity two. Indeed, for (3) we have 

𝑃 ∙ 𝕏 𝑄 − 𝑄 ∙ 𝕏 𝑃 = −(𝑥 − 1)2(𝑥2 + 2𝑔𝑥3 + 𝑔2𝑥4 + 𝑑𝑥2𝑦 + 𝑑𝑔𝑥3𝑦 + 𝑞𝑥3𝑦

+𝑔𝑞𝑥4𝑦 + 𝑦2 + 2𝑔𝑥𝑦2 − 𝑥2𝑦2 − 2𝑔𝑥2𝑦2 + 𝑑𝑦3 − 𝑏𝑑𝑥𝑦3 + 2𝑞𝑥𝑦3

−𝑑𝑥2𝑦3 − 2𝑞𝑥2𝑦3 − 𝑏𝑞𝑥2𝑦3 + 2𝑏𝑦4 − 𝑏2𝑦4 − 2𝑏𝑥𝑦4)

 

and 

𝑃 ∙ 𝕏  𝑄  − 𝑄 ∙ 𝕏  𝑃  = −𝑧(𝑥 − 𝑧)2(𝑔𝑞𝑥4𝑦 − 𝑑𝑥2𝑦3 − 2𝑞𝑥2𝑦3 − 𝑏𝑞𝑥2𝑦3 − 2𝑏𝑥𝑦4

+𝑔2𝑥4𝑧 + 𝑑𝑔𝑥3𝑦𝑧 + 𝑞𝑥3𝑦𝑧 − 𝑥2𝑦2𝑧 − 2𝑔𝑥2𝑦2𝑧 − 𝑏𝑑𝑥𝑦3𝑧 + 2𝑞𝑥𝑦3𝑧 + 2𝑏𝑦4𝑧

−𝑏2𝑦4𝑧 + 2𝑔𝑥3𝑧2 + 𝑑𝑥2𝑦𝑧2 + 2𝑔𝑥𝑦2𝑧2 + 𝑑𝑦3𝑧2 + 𝑥2𝑧3 + 𝑦2𝑧3).

 

Note that the system (3) is contained in the family of cubic systems 

 
𝑥 = 𝑦 + 𝑎𝑥2 + 𝑐𝑥𝑦 + 𝑓𝑦2 + 𝑘𝑥3 +𝑚𝑥2𝑦 + 𝑝𝑥𝑦2 + 𝑟𝑦3 ,

𝑦 = − 𝑥 + 𝑔𝑥2 + 𝑑𝑥𝑦 + 𝑏𝑦2 + 𝑠𝑥3 + 𝑞𝑥2𝑦 + 𝑛𝑥𝑦2 + 𝑙𝑦3 .
              (4) 
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For (4) the origin (0,0) is a critical point of a focus or a center type. The problem of 

distinguishing between a center and a focus is called the problem of the center or the 

center-focus problem. At present, this problem has been solved only for some particular 

cases of systems (4). For a better initiation in the study of the center problem we 

recommend to readers the monographs [19], [20] and [21].  

 

2. The problem of the center and integrability of polynomial differential systems  

Let 𝐷 be a domain in ℝ2 and 𝐹 ∈ 𝐶1 𝐷,ℝ      𝜇 ∈ 𝐶1 𝐷,ℝ  . The function 𝐹 𝑥, 𝑦  

(𝜇 𝑥,𝑦 ) is called a first integral (an integrating factor) of system (1) if the following 

identity  

    0,, 
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occurs in 𝐷. 

Let 𝑓1,… , 𝑓𝛿     𝑓𝛿+1 = exp  
𝑔𝛿+1

ℎ𝛿+1
 ,… , 𝑓𝜎 = exp  

𝑔𝜎

ℎ𝜎
    be invariant algebraic curves 

(exponential factors) of system (1). If this system has a first integral (an integrating 

factor) of the form  

𝐹 𝑥, 𝑦 =  𝑓
𝑗

𝛼𝑗𝜎
𝑗=1         𝜇 𝑥,𝑦 =  𝑓

𝑗

𝛼𝑗𝜎
𝑗=1  ,                             (5) 

where 𝛼𝑗 ∈ 𝑪, 𝑗 = 1,… ,𝜎,  𝛼1 +⋯+  𝛼𝜎  ≠ 0, then we say that (1) is Darboux 

integrable.  

It is easy to show that the function 𝐹 𝑥,𝑦    𝜇 𝑥, 𝑦   (5) is a first integral (an 

integrating factor) of (1) if and only if the following identity holds: 

𝛼1𝐾𝑓1
+ 𝛼2𝐾𝑓2

+ ⋯+ 𝛼𝜎𝐾𝑓𝜎 ≡ 0                                       (6) 

  𝛼1𝐾𝑓1
+ 𝛼2𝐾𝑓2

+⋯+ 𝛼𝜎𝐾𝑓𝜎 +
𝜕𝑃

𝜕𝑥
+

𝜕𝑄

𝜕𝑦
≡ 0 ,                           (7) 

where 𝐾𝑓𝑗 , 𝑗 = 1,2,… ,𝜎, are the cofactors of the invariant algebraic curves 𝑓𝑗 , 𝑗 = 1,… , 𝛿, 

and  the exponential factors 𝑓𝑗 , 𝑗 = 𝑟 + 1,… ,𝜎, respectively.   

According to [18] the system (4) has a center at the origin (0,0) if and only if it has 

in some neighborhood of (0,0) an analitic first integral 𝐹(𝑥,𝑦), i.e. 𝐹 ∈ 𝐶𝜔 . Also, the 

system (4) has a center at  0,0  if and only if it has in some neighborhood of (0,0) an 

integrating factor of the form 𝜇 𝑥,𝑦 = 1 +  𝜇𝑗  𝑥,𝑦 ,   𝜇 ∈ 𝐶𝜔 .  

 

3. Calculation of the Lyapunov quantities 

It is known there exists a formal power series 𝐹 𝑥,𝑦 =  𝐹𝑗  𝑥,𝑦  such that the rate 

of change of 𝐹 𝑥,𝑦  along trajectories of (4) is a linear combination of the polynomials 

  𝑥2 + 𝑦2 𝑗  𝑗=2
∞ , i.e. 𝕏(𝐹) ≡  𝐿𝑗−1 𝑥

2 + 𝑦2 𝑗∞
𝑗=2 . Quantities 𝐿𝑗 ,   𝑗 = 1,∞      are 

Solution of the center-focus problem for a cubic differential system with a real invariant straight line
and the line at infinity of multiplicity two
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polynomials in the coefficients of system (4) called to be the Lyapunov quantities. The 

origin (0,0) is a center for (4) if and only if 𝐿𝑗 = 0, 𝑗 = 1,∞     . In the case 𝐿𝑗 = 0, 𝑗 = 1,∞      

the function 𝐹(𝑥,𝑦) is a first integral for (4).  

With exactity of a non-constant factor, the Lyapunov quantities can be calculated by 

formula: 

𝐿𝑗−1 = (2 𝑗 + 1 𝐴𝑣𝑗−2,𝑗+1 + 2𝑗𝐶𝑣𝑗−1,𝑗 + 2 𝑗 − 1 𝐹𝑣𝑗 ,𝑗−1 +  𝑗 + 1 𝐾𝑣𝑗−3,𝑗+1

+ 𝑗𝑀𝑣𝑗−2,𝑗 +   𝑗 − 1 𝑃𝑣𝑗−1,𝑗−1 +  𝑗 − 2 𝑅𝑣𝑗 ,𝑗−2 − 2 j + 1 B𝑣𝑗+1,𝑗−2 − 

−2jD𝑣𝑗 ,𝑗−1 − 2 𝑗 − 1 𝐺𝑣𝑗−1,𝑗 −    𝑗 + 1 𝐿𝑣𝑗+1,𝑗−3 − 𝑗𝑁𝑣𝑗 ,𝑗−2 −  𝑗 − 1 𝑄𝑣𝑗−1,𝑗−1 −

 𝑗 − 2 𝑆𝑣𝑗−2,𝑗 )/(2𝑖),     (8) 

 𝑗 = 2,3,4,…, where 𝑖2 = −1, 

𝐴 = g− b − c + i a +  d− f , C = 2 b + g + 2i a + f ,𝐹 = c + g − b + i(a − d− f), 

𝐾 = r −m− n + s + i k + q − p− l , M = 3s −m + n− 3r + i(3k + q + p + 3l), 

𝑃 = 3s + m + n + 3r + i 3k − q + p − 3l , R = m + s − n− r + i(k − q− p + l), 

𝐵 = 𝐴 ,𝐷 = 𝐶 ,𝐺 = 𝐹 , 𝐿 = 𝐾 ,𝑁 = 𝑀 ,𝑄 = 𝑃 , 𝑆 = 𝑅 ; 𝑣0,0 = 𝑣1,0 = 𝑣0,1 = 𝑣2,0 = 𝑣1,1 −

1 = 𝑣0,2 = 0, 𝑣𝑢 ,𝑢 = 0, if   𝑢 > 1,  𝑣𝑢 ,𝑗 = 0, if   𝑢 < 0 or 𝑗 < 0, and 

𝑣𝑢 ,𝑗 =
1

8(𝑢 − 𝑗)
 2 𝑗 + 1 𝐴𝑣𝑢−2,𝑗+1 + 2𝑗𝐶𝑣𝑢−1,𝑗 + 2 𝑗 − 1 𝐹𝑣𝑢 ,𝑗−1 +  𝑗 + 1 𝐾𝑣𝑢−3,𝑗+1

+ 𝑗𝑀𝑣𝑢−2,𝑗 +   𝑗 − 1 𝑃𝑣𝑢−1,𝑗−1 +  𝑗 − 2 𝑅𝑣𝑢 ,𝑗−2 − 2 𝑢 + 1 𝐵𝑣𝑢+1,𝑗−2

− 2𝑢𝐷𝑣𝑢 ,𝑗−1 − 2 𝑢 − 1 𝐺𝑣𝑢−1,𝑗 −  𝑢 + 1 𝐿𝑣𝑢+1,𝑗−3 − 𝑢𝑁𝑣𝑢 ,𝑗−2

−  𝑢 − 1 𝑄𝑣𝑢−1,𝑗−1 −  𝑢 − 2 𝑆𝑣𝑢−2,𝑗  , 

if 𝑢 + 𝑗 = 3,4,… , 𝑢 ≥ 0, 𝑗 ≥ 0,𝑢 ≠ 𝑗.  

The first Lyapunov quantity of (4), calculated by formula (8), looks as  

𝐿1 = 𝑏𝑑 − 𝑎𝑐 + 2𝑏𝑓 − 𝑐𝑓 − 2𝑎𝑔 + 𝑑𝑔 + 3𝑘 − 3𝑙 + 𝑝 − 𝑞. 

 

4. Axis of symmetry 

Denote by 𝒫− and 𝒫+ the semi-planes bounded by a straight line 𝛼𝑥 + 𝛽𝑦 = 0,

𝛼,𝛽 ∈ ℝ,  𝛼,𝛽 ≠  0,0 .  If the trajectories (trajectories segments) of the system (4) are 

symmetric with respect to 𝛼𝑥 + 𝛽𝑦 = 0 and the directions of the trajectories (trajectories 

segments) on 𝒫− and 𝒫+ are of the opposite directions, then 𝛼𝑥 + 𝛽𝑦 = 0  is called an 

axis of symmetry for (4)   

If the system (4) has an axis of symmetry, then the critical point (0,0) is of center 

type.  

The necessary and sufficient conditions for (4) to have an axis of symmetry are 

obtained in the monograph [21]:       

𝐴𝐷3 − 𝐵𝐶3 = 𝐴𝐹3 − 𝐵𝐺3 = 𝐴4𝐿3 − 𝐵4𝐾3 = 𝐴2𝑁3 − 𝐵2𝑀3 = 𝐴2𝑅3 − 𝐵2𝑆3 = 

𝐶𝐹 − 𝐷𝐺 = 𝐶4𝐿 − 𝐷4𝐾 = 𝐶2𝑁 − 𝐷2𝑀 = 𝐶2𝑅 − 𝐷2𝑆 = 𝐹4𝐾 − 𝐺4𝐿=                (9) 

𝐹2𝑀 − 𝐺2𝑁 = 𝐹2𝑆 − 𝐺2𝑅 = 𝐾𝑁2 − 𝐿𝑀2 = 𝐾𝑅2 − 𝐿𝑆2 =  𝑀𝑅 − 𝑁𝑆 = 𝑃 − 𝑄 = 0. 
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The conditions (9) ensure the existence of an axis of symmetry and at the same time 

they are also sufficient conditions for system (4) to have a center at the origin.      

Using the vector field, generated in the phase plane by system (1), it is easy to show 

that the coordinate axis Oy (respectively, Ox) is an axis of symmetry for (1), if the 

folowing two equalities are realized: 

𝑃 −𝑥,𝑦 = 𝑃 𝑥,𝑦 , 𝑄 −𝑥, 𝑦 = −𝑄(𝑥, 𝑦) 

(respectively, 𝑃 𝑥,−𝑦 = −𝑃 𝑥,𝑦 , 𝑄 𝑥,−𝑦 = 𝑄 𝑥, 𝑦  ). 

 

5. Solution of the problem of the center for system (3) 

Lemma 1. Let one of the following conditions be satissfied:  

1) 𝑏 = 0, 𝑞 = 𝑑𝑔       or       2) 𝑑 = 𝑞 = 0. 

Then a critical point  0,0  of system (3) is a center, i.e. the conditions 1) and 2) are 

sufficient for the origin  0,0  to be a center for (3). 

Proof. 1) Assume that b= 0, 𝑞 = 𝑑𝑔. Then the system (3) looks as: 

𝑥 = 𝑦(𝑥 − 1)2, 𝑦 = −𝑥 𝑔𝑥 + 1  𝑑𝑦 + 1 .                            (10) 

Using the formula (2) it is easy to verify that the straight lines 𝑓1 = 𝑥 − 1 and 𝑓2 = 𝑑𝑦 +

1 are invariant for (10) with cofactors: 𝐾𝑓1
 𝑥, 𝑦 = 𝑦(𝑥 − 1) and 𝐾𝑓2

 𝑥,𝑦 =

−𝑑𝑥 𝑔𝑥 + 1 , respectively. Similarly, using (2) we show that 𝑓3 = exp 
1

𝑥−1
  and 

𝑓4 = exp(𝑑𝑔𝑥 + 𝑦) are exponential factors with cofactors: 𝐾𝑓3
 𝑥, 𝑦 = −𝑦 and 

𝐾𝑓4
 𝑥,𝑦 = −𝑥 + 𝑑𝑔𝑦 − 𝑔𝑥2 − 𝑑𝑥𝑦 − 2𝑑𝑔𝑥𝑦. Putting s = 4 and replacing the 

expressions of the cofactors 𝐾𝑓𝑗 (𝑥, 𝑦), 𝑗 = 1,2,3,4 in (6), we obtain: 𝛼1 = −𝑑2(1 + 2𝑔),  

𝛼2 = 1,  𝛼3 = 𝑑2 1 + 𝑔 ,  𝛼4 = −𝑑. Thus, 

𝐹 𝑥,𝑦 = (1 + 𝑑𝑦)(𝑥 − 1)−𝑑
2(1+2𝑔) ∙ ⅇ

𝑑2(1+𝑔)
𝑥−1

−𝑑(𝑑𝑔𝑥+𝑦)
 

is a first integral for system (10) and according to [18], the critical point (0,0) is a center 

for the given system. 

2) Assume that 𝑑 = 𝑞 = 0. Under these conditions, the system (3) has the form 

𝑥 = 𝑦(𝑥 − 1)2, 𝑦 = −(𝑥 + 𝑔𝑥2 + 𝑏𝑦2).                                (11) 

The last system (11) has the invariant straight line 𝑓1 = 𝑥 − 1 and the exponential factors 

𝑓2 = exp  
1

𝑥−1
 ,  𝑓3 = exp(𝑦), which have respectively the cofactors: 𝐾𝑓1

 𝑥, 𝑦 =

𝑦 𝑥 − 1 ,𝐾𝑓2
 𝑥,𝑦 = −𝑦, 𝐾𝑓3

 𝑥,𝑦 = −𝑥 − 𝑔𝑥2 − 𝑏𝑦2. For these cofactors the 

identitaty {(6), 𝜎 = 3} holds only if 𝛼1 = 𝛼2 = 𝛼3 = 0, and the identity {(7), 𝜎 = 3} 

holds only if 𝛼1 = −2, 𝛼2 = −2𝑏,𝛼3 = 0. Thus, the system (11) has an integrating factor  

𝜇 𝑥,𝑦 = (𝑥 − 1)−2 exp  
2𝑏

1−𝑥
                                             (12) 

and, therefore, (0,0) is a center for (11). Lemma 1 is proved.          

Note that the exponential factor 𝑓3 = exp(𝑦) does not appear in the expression of 

the integrating factor (12).       
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The existence of a center at the critical point (0,0) is also assured by the fact that the 

system (11) has an axis of symmetry. Indeed, it is easy to verify that for (11) the 

equalities (9) hold. Moreover, if we denote, 𝑃 𝑥,𝑦 = 𝑦 𝑥 − 1 2, 𝑄 𝑥,𝑦 =

− 𝑥 + 𝑔𝑥2 + 𝑏𝑦2 , then, obviously, 𝑃 𝑥,−𝑦 = −𝑃 𝑥,𝑦 , 𝑄 𝑥,−𝑦 = 𝑄(𝑥,𝑦), and 

therefore the axis coordinate 𝑂𝑥 is an axis of symmetry for system (11).  

Theorem 1. The differential system (3) has a critical point of center type at origin (0,0) 

if and only if the first four Lyapunov quantities vanish (𝐿1 = 𝐿2 = 𝐿3 = 𝐿4 = 0).  

Proof. The first Lyapunov quantity, calculated at the critical point (0,0) of system (3) 

looks as 𝐿1 = 𝑑 𝑏 + 𝑔 − 𝑞. Putting q = d (b + g) and using the formula (8) we calculate 

the following three Lyapunov quantities: 𝐿2, 𝐿3 and 𝐿4. We obtain 

that 𝐿2 = −𝑏𝑑𝐺2(𝑏,𝑔)/3, 𝐿3 = 𝑏𝑑𝐺3(𝑏, 𝑑,𝑔)/288 and 𝐿4 = −𝑏𝑑𝐺4(𝑏,𝑑,𝑔)/34560, 

where  

𝐺2 𝑏,𝑔 = 1 +  𝑏 + 𝑔  6 + 3𝑏 + 5𝑔 ; 

𝐺3 𝑏,𝑑,𝑔 = 289 + 2516𝑏 + 6391𝑏2 + 6618𝑏3 + 2064𝑏4 + 61𝑑2 + 366𝑏𝑑2   +

183𝑏2𝑑2 + 2020𝑔 + 9498𝑏𝑔 + 14614𝑏2𝑔 + 7046𝑏3𝑔 + 366𝑑2𝑔  + 488𝑏𝑑2𝑔 +

3351𝑔2 + 9846𝑏𝑔2 + 7642𝑏2𝑔2 + 305𝑑2𝑔2 + 1850𝑔3 + 2890𝑏𝑔3 + 230𝑔4;  

𝐺4 𝑏,𝑑,𝑔 = 115249 + 1338802𝑏 + 5874795𝑏2 + 13391788𝑏3 + 16403746𝑏4 +

9903060𝑏5 + 2218422𝑏6 + 73634𝑑2 + 644968𝑏𝑑2 + 1615430𝑏2𝑑2 + 1571316𝑏3𝑑2 +

471768𝑏4𝑑2 + 4699𝑑4 + 28194𝑏𝑑4 + 14097𝑏2𝑑4 + 917402𝑔 + 7365308𝑏𝑔 +

24061412𝑏2𝑔 + 39266708𝑏3𝑔 + 30862268𝑏4𝑔 + 9099296𝑏5𝑔 + 523952𝑑2𝑔 +

2470260𝑏𝑑2𝑔 + 3666596𝑏2𝑑2𝑔 + 1665412𝑏3𝑑2𝑔 + 28194𝑑4𝑔 + 37592𝑏𝑑4𝑔 +

2121257𝑔2 + 13024452𝑏𝑔2 + 31714428𝑏2𝑔2 + 34362848𝑏3𝑔2 + 13462002𝑏4𝑔2 +

900198𝑑2𝑔2 + 2649420𝑏𝑑2𝑔2 + 1929044𝑏2𝑑2𝑔2 + 23495𝑑4𝑔2 + 1932972𝑔3 +

9270116𝑏𝑔3 + 15795456𝑏2𝑔3 + 8814760𝑏3𝑔3 + 554140𝑑2𝑔3 + 839660𝑏𝑑2𝑔3 +

524938𝑔4 + 2230156𝑏𝑔4 + 2263282𝑏2𝑔4 + 104260𝑑2𝑔4 − 161660𝑔5 − 43080𝑏𝑔5 −

72730𝑔6. 

The case 𝑏𝑑 = 0 was investigated in Lemma 1. Suposse that 𝑏𝑑 ≠ 0. Then, the 

Lyapunov quantities 𝐿2, 𝐿3 and 𝐿4 vanish if and only if the polynomials 𝐺2 𝑏,𝑔 , 

𝐺3 𝑏,𝑑,𝑔  and 𝐺4 𝑏,𝑑,𝑔  are equal to zero. The resultant of 𝐺2 𝑏,𝑔  and 𝐺3 𝑏, 𝑑,𝑔  

with respect to the variable 𝑏 look as  

𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡[𝐺2,𝐺3,𝑏] = 15552 1 + 𝑔 2 5𝑔2 − 8 . 

If 𝑔 = −1, then 𝐺2 𝑏,−1 = 𝑏 3𝑏 − 2 ,𝐺3  
2

3
,𝑑,−1 =

16

3
≠ 0. If 𝑔 = ±2 

2

5
 , then 

𝐺2  𝑏,±2 
2

5
 = (45 ± 12 10 + 30𝑏 ± 16 10𝑏 + 15𝑏2)/5 and 
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G3  b,d,±2 
2

5
 =(31197±9960 10+91348b±28244 10b+93091b

2
±29228 10b

2
 

+33090b
3
±14092 10b

3
+10320b

4 + 305𝐺2  𝑏,±2 
2

5
 𝑑^2) ⁄ 5. 

The system 

 
 
 

 
 𝐺2  𝑏,±2 

2

5
 = 0,

 𝐺3  𝑏,𝑑,±2 
2

5
 = 0

  has a single solution 𝑏 =
1

3
 −1∓  10 , but  

𝐺4  
1

3
 −1∓  10 ,𝑑,±2 

2

5
 =

64

75
(68± 5 10) ≠ 0. 

Theorem 1 is proved. 

From the proof of Theorem 1 and the statement of Lemma 1 it follows the 

following assertion. 

Theorem 2. The cubic differential system (3) has a critical point of the center type at the 

origin (0,0) if and only if its coefficients verify at least one of the following two sets of 

conditions: 

1) 𝑏 = 0, 𝑞 = 𝑑𝑔;        2) 𝑑 = 𝑞 = 0. 
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