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Abstract. In this paper, we show that for cubic differential system x = y(x — 1), y = —(x + gx? +
dxy + by? + qx?y) the critical point (0,0) is a center if and only if the first four Lyapunov quantities
vanish (L; = L, = L3 = L4 = 0) or, equivalently, if at least one of the following two sets of conditions:
Db=0, qg=dg;2)d = q =0 holds.
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REZOLVAREA PROBLEMEI CENTRULUI PENTRU UN SISTEM
DIFERENTIAL CUBIC CE ARE O DREAPTA INVARIANTA REALA

SI LINIA DE LA INFINIT DE MULTIPLICITATEA DOI

Rezumat. in lucrarea de fatd se aratd ca pentru sistemul diferential cubic x = y(x —1)%, y = —(x +
gx? + dxy + by? + qx?y), punctul critic (0,0) este de tip centru, daci si numai daci se anuleazi
primele patru marimi Lyapunov (L = L, = L3 = L, = 0) sau, echivalent, daca are loc cel putin unul
dintre seturile de conditii: 1) b =0, g =dg;2)d = q = 0.

Cuvinte cheie: sistem diferential cubic, dreapta invarianta, multiplicitate, problema centrului.
Mathematics Subject Classification (2010): 34C05.

1. Introduction

We consider the polynomial differential system

dx d

—=P(y), —=Q0y), ged(P,Q)=1, 1)

P,Q € R[x,y], and the vector field X = P(x, y)% + Q(x, y)% associated to systems
(1). Denote n = max{deg(P),deg(Q)}. If n = 2 (n = 3), then the system (1) is called
quadratic (cubic).

An algebraic curve f(x,y) =0,f € C[x,y] (a function f =exp (%);g,h €
Clx, y],deg(g) < deg(h),gcd(g,h) = 1) is called an invariant algebraic curve
(exponential factor) of the system (1) if there exists a polynomial K; € C[x,y],degK; <
n — 1 such that the identity

6fé()z,y) -P(x,y) + %’;’3’) Q(x,y) = f(x,y) - Kf (x,) )

holds. The polynomial K¢ (x,y) is called the cofactor of the invariant algebraic curve
(exponential factor) f. In particular, a straight line f(x,y) = ax+ By +y =0,(a,B) #
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(0,0) is invariant for (1) if the following identity aP(x,y) + BQ(x,y) = (ax + By +
¥) - K¢ (x,y) holds.
If f=exp (%),degi?@h) > 0 is an exponential factor, then A(x,y) =0 is an

invariant algebraic curve for (1) [1].

Let f(x,y) = 0 be an invariant straight line and m is the greatest natural number
such that f™ divide P -X(Q) — Q - X(P). In this case we say that the line f(x,y) =0
has multiplcity m. By work [2], if the invariant straight line 2(x,y) = 0 has multiplicity
m,m > 1, then the system (1) has m —1 exponential factors of the form:

exp (gh_l) ), €XP (‘Zz:ll) ’ deg(gl) < deg(hl)
Assume that P(x,y) = Py + P;(x,y) + +P,(x,¥),0(x,y) = Qy + Q;(x,y) +-
+Q,(x,y), where P, Q; are omogeneous polynomials of degree j, and

P(x,y,2),0(x,y,z), are homogenization of P(x,y) and Q(x,y), respectively, i.e.
P(x,y,2) =Py-z" + Pi(x,y) - z" 1+ +P,_1(x,y) - z+ P,(x,y),
Qx,y,2) = Qo z" + Q1 (x,y) 2" 1+ +Qu_1 (v, ¥) 2 + Q,, (%, ).

In this paper we suppose that yP,(x,y) — xQ,,(x,y) £ 0. Denote X = P(x,y, z)% +

Q(x,y,2) % We say that the natural number m + 1 is the multiplicity of the line at

infinity z = 0 if m is the greatest number such that z™ divide P-X(Q)— @ -X(P).
According to [3], if the line at infinity has the multiplicity m,m > 1, then (1) has m — 1
exponential factors of the form e91, ..., e9m-1 where g;,l = 1,---,m — 1, are polynomial
inx and y.
Up to now a great number of works have been dedicated to the investigation of
polynomial differential systems with invariant straight lines (see, for example, [4]-[17]).
In this paper the cubic system
x=y(x—1)7?% y=—(x+gx*+dxy+by?+qx?y) (3)
is examined. For this system the invariant straight line x — 1 = 0, together with the line
at infinity z = 0, has the multiplicity two. Indeed, for (3) we have
P-X(Q)—Q-X(P)=—(x—1)%(x% + 2gx3 + g’x* + dx’y + dgx3y + qx3y
+gqx*y + y? + 2gxy? — x?y? — 2gx*y? + dy3 — bdxy3 + 2qxy?3
—dx?y3 — 2qx?y3 — bqx?y3? + 2by* — b2y* — 2bxy*)
and
P-X(0)—0-X(P) = —z(x — 2)*(gqx*y — dx?y® — 2qx*y® — bqx?y® — 2bxy*
+g%x*z + dgx3yz + qx3yz — x?y?z — 2gx?y?z — bdxy3z + 2qxy3z + 2by*z
—b2y*z + 2g9x3z% + dx?yz? + 2gxy?z? + dy3z? + x?23 + y?z3).
Note that the system (3) is contained in the family of cubic systems
{ x=y+ax®+cxy+ fy? + kx® +mx?y + pxy? + ry3,

4
5’ = —(X +gx2 + dxy + by2 + sx3 + qxzy + nxy2 + ly3). ( )
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For (4) the origin (0,0) is a critical point of a focus or a center type. The problem of
distinguishing between a center and a focus is called the problem of the center or the
center-focus problem. At present, this problem has been solved only for some particular
cases of systems (4). For a better initiation in the study of the center problem we
recommend to readers the monographs [19], [20] and [21].

2. The problem of the center and integrability of polynomial differential systems

Let D be a domain in R* and F € C'(D,R) (u € C'(D,R)). The function F(x,y)
(u(x,y)) is called a first integral (an integrating factor) of system (1) if the following
identity

P(x, y)z—'; +Q(x, y)% =0

Ptn a2 P Rt y)

occursin D.

Let fi, ..., f5 (f5+1 = exp (‘95—“) s [ = €Xp (Z—:)) be invariant algebraic curves

hs+1
(exponential factors) of system (1). If this system has a first integral (an integrating

factor) of the form
a; a;

Feoy) =To £ (nCoy) =T ), 5)
where o; € C,j =1,...,0, |a;| + -+ |a,| #0, then we say that (1) is Darboux
integrable.

It is easy to show that the function F(x,y) (u(x,¥)) (5) is a first integral (an
integrating factor) of (1) if and only if the following identity holds:
(Xlel + aszZ + -+ aaKfJ =0 (6)
oP | 8Q _
(aiKy, + asKp, + o+ a, Ky, F o= 0), (7)
where Kej=12,..,0,are the cofactors of the invariant algebraic curves f;,j = 1, ..., 6,

and the exponential factors f;,j = r + 1, ..., g, respectively.

According to [18] the system (4) has a center at the origin (0,0) if and only if it has
in some neighborhood of (0,0) an analitic first integral F(x,y), i.e. F € C®. Also, the
system (4) has a center at (0,0) if and only if it has in some neighborhood of (0,0) an
integrating factor of the form u(x,y) = 1+ X u; (x,y), u € C®.

3. Calculation of the Lyapunov quantities
It is known there exists a formal power series F(x,y) = X F; (x, y) such that the rate

of change of F(x,y) along trajectories of (4) is a linear combination of the polynomials
{*+y?) )7, ie X(F)=X7,L_;(x*+y*). Quantities L; j=T1,0 are
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polynomials in the coefficients of system (4) called to be the Lyapunov quantities. The
origin (0,0) is a center for (4) if and only if L; = 0,j = 1,c0. Inthe case L; = 0,j = 1,0
the function F(x, y) is a first integral for (4).
With exactity of a non-constant factor, the Lyapunov quantities can be calculated by
formula:
L1 =QG+ DAV 241+ 2jCv_1; +2( — DFy; ;1 + ( + DKY 344
+jMv 5+ G—DPv_1; 1+ (G —2)Rv;_, —2(G+ DBvj 4y, —
—2jDv; ;1 —2(G = DGv_1; — (+ DLy j3—jNv ;o — (G — DOV _1j_1 —
G = 2)S 2,0/ 20), ®
j=234,..where i* = —1,
A=g—b—-—c+i(a+ d—1),C=2(b+g) +2i(a+f),F=c+g—b+i(a—d-—1),
K=r—-m-n+s+i(lk+q—-p—-1),M=3s—m+n—-3r+i(3k+q+p+ 3,
P=3s+m+n+3r+iBk—q+p—-3),R=m+s—n—-r+i(lk—q—p+1)),
B=AD=CG=FL=KN=MQ=P,S=R;vyy=V19="Vg1 =Vso=V11—
1=v9,=0, v, =0,if u>1v,;,=0,if u<0orj<0,and
Uy = ﬁ [2G + DAV, _5j41 + 2jCvy_1; + 2( — DFvyjq + G+ DKV, 3,14
+jMvy_p; + (G—DPv,_y; 1+ (G —2)Rvy 5 — 2(u+ 1)Bvy4q
—2uDv, ;1 —2(u —1)Gv,_1; — W+ DL,y ;3 —uNv,;_,
—(u-— 1)Qvu—1,j—1 —(u- Z)Svu—Z,j];
ifu+j=34.., u=0,j=>0u=#j.
The first Lyapunov quantity of (4), calculated by formula (8), looks as
Li =bd —ac + 2bf —cf —2ag +dg+3k—3l+p—q.

4. Axis of symmetry
Denote by P~ and P* the semi-planes bounded by a straight line ax + By =0,
a,B €R,(a,B) # (0,0). If the trajectories (trajectories segments) of the system (4) are
symmetric with respect to ax + By = 0 and the directions of the trajectories (trajectories
segments) on P~ and P are of the opposite directions, then ax + By = 0 is called an
axis of symmetry for (4).
If the system (4) has an axis of symmetry, then the critical point (0,0) is of center
type.
The necessary and sufficient conditions for (4) to have an axis of symmetry are
obtained in the monograph [21]:
AD3 — BC3 = AF3® — BG3® = A*1® — B*K3 = A>N3 — B>M3 = A*R3® — B?S3 =
CF — DG = C*L — D*K = C?N — D*M = C?R — D?S = F*K — G*L= (9)
F?M — G*N = F?S — G*R = KN? —LM?* = KR> —L§* = MR- NS=P —-Q = 0.
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The conditions (9) ensure the existence of an axis of symmetry and at the same time
they are also sufficient conditions for system (4) to have a center at the origin.

Using the vector field, generated in the phase plane by system (1), it is easy to show
that the coordinate axis Oy (respectively, Ox) is an axis of symmetry for (1), if the
folowing two equalities are realized:

P(—x,y) =P(xy), Q(xy)=-Q0xy)
(respectively, P(x, —y) = —P(x,y), Q(x,—y) = Q(x,y) ).

5. Solution of the problem of the center for system (3)
Lemma 1. Let one of the following conditions be satissfied:

Hb=0,qg=dg or 2)d=q=0.
Then a critical point (0,0) of system (3) is a center, i.e. the conditions 1) and 2) are
sufficient for the origin (0,0) to be a center for (3).
Proof. 1) Assume that b= 0,q = dg. Then the system (3) looks as:

x=y(x—1)? y=—-x(gx+ 1)(dy + 1). (10)
Using the formula (2) it is easy to verify that the straight lines f; = x —1and f, = dy +
1 are invariant for (10) with cofactors: K (x,y) =y(x—1) and K (x,y) =

—dx(gx + 1), respectively. Similarly, using (2) we show that f; = expi?@éx%l) and
fa = expifdgx +y) are exponential factors with cofactors: K (x,y) =—y and
K:, (x,y) = —x + dgy — gx* —dxy — 2dgxy. Putting s = 4 and replacing the
expressions of the cofactors Ky, (x,v),j = 1,2,3,4 in (6), we obtain: a; = —d?(1 + 2g),

a, =1, a3 =d*(1+ g), a, = —d. Thus,

d?(1+
F(x, )’) =1 +dy)(x— 1)_d2(1+29) . e,gfl'w—d(dgx+y)

is a first integral for system (10) and according to [18], the critical point (0,0) is a center
for the given system.
2) Assume that d = g = 0. Under these conditions, the system (3) has the form

x=y(x—1)?% y=—(x+gx®+by?). (11)
The last system (11) has the invariant straight line f; = x — 1 and the exponential factors
fo = exp (xlj) f5 = expifly), which have respectively the cofactors: K (x,y) =
y(x —1),K;,(x,y) = -y, Kp,(x,y) = —x—gx?—by®. For these cofactors the
identitaty {(6), ¢ = 3} holds only if a; = @y = a3 =0, and the identity {(7), o = 3}
holds only if a; = —2, a, = —2b, a3 = 0. Thus, the system (11) has an integrating factor

_ 2b
u(ey) = (x —1)2exp (=) (12)

and, therefore, (0,0) is a center for (11). Lemma 1 is proved.

Note that the exponential factor f; = expily) does not appear in the expression of
the integrating factor (12).
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The existence of a center at the critical point (0,0) is also assured by the fact that the
system (11) has an axis of symmetry. Indeed, it is easy to verify that for (11) the
equalities (9) hold. Moreover, if we denote, P(x,y) =y(x—1)% Q(x,y) =
—(x + gx% + by?), then, obviously, P(x,—y) = —P(x,y), Q(x,—y) = Q(x,y), and
therefore the axis coordinate Ox is an axis of symmetry for system (11).

Theorem 1. The differential system (3) has a critical point of center type at origin (0,0)
if and only if the first four Lyapunov quantities vanish (L, = L, = Ly = L, = 0).

Proof. The first Lyapunov quantity, calculated at the critical point (0,0) of system (3)
looks as Ly = d(b + g) — q. Putting g = d (b + g) and using the formula (8) we calculate
the following three Lyapunov  quantities: L,,L; and L,. We obtain
that L, = —bdG,(b, g)/3, L3 = bdGs(b,d,g)/288 and L, = —bdG,(b,d,g)/34560,
where

G,(b,g) =1+ (b+ g)(6+3b+59);

Gs3(b,d, g) = 289 + 2516b + 6391h? + 6618b° + 2064b* + 61d? + 366bd> +

183b2d? + 2020g + 9498bg + 14614bg + 7046b%g + 366d%g + 488bd?g +

335192 + 9846bg? + 7642b?g? + 305d?g? + 1850g° + 2890bg°> + 230g*;

G4(b,d, g) = 115249 + 1338802b + 5874795b2 + 13391788h° + 16403746b* +
9903060b° + 2218422b° + 73634d? + 644968bd? + 1615430bh%d? + 1571316b3d? +
471768b*d? + 4699d* + 28194bd* + 14097b%d* + 9174029 + 7365308bg +
24061412b%g + 39266708b°g + 30862268bh*g + 9099296h°g + 523952d%g +
2470260bd? g + 3666596b°d? g + 1665412b3d?g + 28194d*g + 37592bd*g +
212125792 + 13024452bg? + 31714428b%g? + 34362848b° g2 + 13462002b* g2 +
900198d2g? + 2649420bd?g? + 1929044b%d? g + 23495d*g? + 1932972g° +
9270116bg° + 15795456b° g° + 8814760b°% g3 + 554140d? g° + 839660hd%g° +
524938g* + 2230156bg* + 2263282b?g* + 104260d%g* — 161660g° — 43080bg° —
72730g°5.

The case bd = 0 was investigated in Lemma 1. Suposse that bd # 0. Then, the
Lyapunov quantities L,,L; and L, vanish if and only if the polynomials G,(b, g),
Gs;(b,d, g) and G,(b,d, g) are equal to zero. The resultant of G,(b,g) and G5(b,d, g)
with respect to the variable b look as

Resultant[G,, Gs, b] = 15552(1 + ¢g)*(5g° — 8).

If g=-1 then G,(b,—1) =bBb—2),6;(3,d,-1) =T #0. If g= iZ\E’ then

G, (b, +2 \E) = (45 + 1210 + 30b + 16v10b + 15b%)/5 and
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2
G| b,d+2 j; =(31197+9960+/10+91348b+:28244+/10b+93091b%+29228+/10b*

+33090b°+14092+/10b°+10320b* + 305G, (b, +2 \/g) d"2) /5.

[ 6, (b,iZ\/é) =0,
kG3<b,d,i2\E> =0

1 2 64
Gy 5(—11\/1_0),d,i2\/; =%(68J_r5\/1_o) # 0.

The system has a single solution b = g(—l ¥ V10), but

Theorem 1 is proved.
From the proof of Theorem 1 and the statement of Lemma 1 it follows the
following assertion.
Theorem 2. The cubic differential system (3) has a critical point of the center type at the
origin (0,0) if and only if its coefficients verify at least one of the following two sets of
conditions:
Db=0 qg=dg; 2)d=q =0.
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