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A LYAPUNOV TYPE INVARIANCE THEOREM

FOR THE BOOLEAN ASYNCHRONOUS DYNAMICAL SYSTEMS

Serban E. VLAD, PhD

Oradea City Hall The University of Oradea

Abstract. The asynchronous circuits from digital electronics are modeled by Boolean asynchronous

dynamical systems, consisting in functions Φ : {0, 1}n −→ {0, 1}n that iterate their coordinates

Φ1, ...,Φn independently on each other. The purpose of this work is to give a Lyapunov-Lagrange

type theorem that characterizes the invariance of the sets A ⊂ {0, 1}n in the case of these systems.

Keywords: asynchronous circuits from digital electronics, Boolean asynchronous dynamical sys-

tems, Lyapunov-Lagrange type theorem, invariance of the sets.

O TEOREMĂ A INVARIANŢEI DE TIP LYAPUNOV PENTRU SISTEMELE

DINAMICE ASINCRONE BOOLEENE

Rezumat. Circuitele asincrone ale dispozitivelor digitale sunt modelate de sisteme dinamice asin-

crone booleane, constând ı̂n funcţii Φ : {0, 1}n −→ {0, 1}n care iterează coordonatele lor Φ1, ...,Φn

independent unul pe celalalt. Scopul acestei lucrari este de a formula o teoremă de tip Lyapunov-

Lagrange care caracterizează invarianţa seturilor A ⊂ {0, 1}n ı̂n cazul acestor sisteme.

Keywords: circuite asincrone ale dispozitivelor digitale, sisteme dinamice asincrone booleane,

teorema de tip Lyapunov-Lagrange, invarianţa mulţimilor.

1 Introduction
When modeling the circuits from digital electronics, the coordinates Φ1, ...,Φn of Φ : {0, 1}n →
{0, 1}n are not computed at the same time, synchronously, but independently on each other,

asynchronously.

Table 1: Example

(µ1, µ2, µ3) Φ(µ1, µ2, µ3)

(0, 0, 0) (0, 1, 1)

(0, 0, 1) (0, 1, 1)

(0, 1, 0) (0, 1, 0)

(0, 1, 1) (1, 1, 1)

(1, 0, 0) (0, 0, 0)

(1, 0, 1) (1, 0, 1)

(1, 1, 0) (1, 0, 0)

(1, 1, 1) (1, 1, 0)
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(0, 0, 0) � (1, 0, 0) (1, 0, 1)

(0, 0, 1)
�

(0, 1, 0)

-

(1, 1, 0)

6

(0, 1, 1)
?

-

-

(1, 1, 1)

6

Figure 1. Dependence on the order in which Φ1,Φ2,Φ3are computed

The Boolean asynchronous dynamical systems were first introduced by the author in

2007. The dynamics of these systems is understood [1] by studying the function Φ from

Table 1, whose state portrait was drawn in Figure 1. We analyze Figure 1, where the arrows

show the increase of time. In the state (µ1, µ2, µ3) ∈ {0, 1}3 we have underlined (0, 0, 0)

the coordinates called unstable, or excited, or enabled that fulfill µi 6= Φi(µ), i ∈ {1, 2, 3};
these are the coordinates ready to switch, but the time instant and the order of the switches

are not known. We must consider all the possibilities, as a value of the state has in general

several possible successors.

(1, 0, 1), (0, 1, 0) are fixed points (or equilibrium points, or rest positions, or final states),

where the system stays indefinitely long; they have no underlined coordinates. The transition

(0, 1, 1) −→ (1, 1, 1) consists in the computation of Φ1(0, 1, 1); even if we do not know when

it happens, we know that it happens and the system, if it is in (0, 1, 1) , surely gets to

(1, 1, 1) sometime. And the transitions (1, 1, 1) −→ (1, 1, 0), (1, 1, 0) −→ (1, 0, 0), (1, 0, 0) −→
(0, 0, 0) are similar. The interesting behavior is in (0, 0, 0); since if Φ3(0, 0, 0) is computed

first, or if Φ2(0, 0, 0), Φ3(0, 0, 0) are computed at the same time, the system gets to (0, 1, 1)

sometime; but if Φ2(0, 0, 0) is computed first, then (0, 1, 0) is reached and the system rests

there indefinitely long.

In the previous discussion:

a) a system is identified with a function Φ : {0, 1}n −→ {0, 1}n, with a state portrait

and also with the flow φ defined by Φ;

b) the system that we refer to is non-initialized, without input, non-deterministic, with

a variable structure given by the coordinates that are computed independently on each other;

c) time is discrete.

In [2] many results are stated, connecting several types of systems with several in-

variance/stability properties, as well as boundedness properties. The common part of these

results is the existence of the Lyapunov-Lagrange functions. The purpose of our paper is

to give a Lyapunov-Lagrange type invariance theorem, that is analogue with Theorem 3.3.1

from page 93, and Theorem 4.1.3 from page 151 in [2], in the case of the Boolean asyn-

chronous dynamical systems.

Serban E. Vlad



86

2 Preliminaries
Notation 1 We denote with B = {0, 1} the binary Boole algebra, endowed with the usual

laws: complement , product ·, union ∪, exclusive or ⊕.

Definition 2 Let α : N → Bn a sequence α0, α1, ... of binary n−tuples. It is said to

be progressive if ∀i ∈ {1, ..., n}, the set {k|k ∈ N, αki = 1} is infinite. The set of the

progressive sequences α is denoted by Πn.

Definition 3 The λ−iterate of Φ : Bn → Bn, where λ ∈ Bn, is the function Φλ : Bn → Bn

defined by ∀µ ∈ Bn,∀i ∈ {1, ..., n},

Φλ
i (µ) =

{
µi, if λi = 0,

Φi(µ), if λi = 1.

Definition 4 Function Φ : Bn → Bn defines the flow φ : Πn × Bn ×N → Bn by ∀α ∈
Πn,∀µ ∈ Bn,∀k ∈ N,

φα(µ, k) =

{
µ, if k = 0,

Φαk−1

(φα(µ, k − 1)), if k ≥ 1.

Φ is called generator function (of φ), α is the computation function (of Φ), µ is the

initial state, and k is the time variable.

Remark 5 The flows model the asynchronous computations, which are made in the absence

of an input (equivalently: under constant input). We notice in Definition 4 that the coordi-

nates Φ1, ...,Φn are computed independently on each other, asynchronously. The computation

functions show when and how the iterations of Φ are made. Progressiveness of α asks that

each coordinate Φi is computed infinitely many times.

Definition 6 We define the Hamming distance between µ ∈ Bn and the set A ⊂ Bn, A 6=
∅ by

d(µ,A) = min
ν∈A

card({i|i ∈ {1, ..., n}, µi 6= νi}).

3 Definitions of invariance
Lemma 7 If Φ : A→ A and A is a finite set, then the following statements are equivalent:

a) Φ is injective,

b) Φ is surjective,

c) Φ is bijective.

Proof. This result is elementary and its proof is omitted.

Theorem 8 Let the function Φ : Bn −→ Bn and the set A ⊂ Bn, A 6= ∅. The relations

∀µ ∈ A, ∃α ∈ Πn,∀k ∈ N, φα(µ, k) ∈ A, (1)

∃α ∈ Πn,∀µ ∈ A,∀k ∈ N, φα(µ, k) ∈ A, (2)

A Lyapunov type invariance theorem for the Boolean asynchronous dynamical systems
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∀α ∈ Πn,∀µ ∈ A,∀k ∈ N, φα(µ, k) ∈ A, (3)

∀λ ∈ Bn,Φλ(A) ⊂ A, (4)

∀λ ∈ Bn,Φλ(A) = A (5)

fulfill

(5) =⇒ (4)⇐⇒ (3) =⇒ (2) =⇒ (1).

Proof. The implications are obvious in general, we prove two of them.

(3)=⇒(4) Let λ ∈ Bn, µ ∈ A arbitrary, fixed. We take α ∈ Πn arbitrary, with α0 = λ.

Then:

Φλ(µ) = φα(µ, 1)
(3)
∈ A.

(4)=⇒(3) We take α ∈ Πn, µ ∈ A arbitrary, fixed and we prove (3) by induction on k.

For k = 0, µ = φα(µ, 0) ∈ A and we suppose that (3) is true for k. Then:

φα(µ, k + 1) = Φαk

(φα(µ, k))
(4)
∈ A.

Definition 9 Relations (1),...,(5) are called of invariance of A. We say that A is a

k′−invariant set (or k′−stable set), k′ ∈ {(1), ..., (5)} (relative to Φ).

Remark 10 The invariance of a set A is the property of a system that, if it starts from an

initial value µ ∈ A, all the other values are in A. The different behaviours of the system in

this situation make us have several definitions of invariance.

Remark 11 The concepts of invariance (of a set) and of stability (of a set) are borrowed

from the real numbers systems theory, where they are distinct and present in several versions.

Their brought in the Boolean context has produced a single concept.

Remark 12 Lemma 7 shows that property (5) has the following meaning: ∀λ ∈ Bn, the

restriction of Φλ to A has the values in A, and the resulted Φλ : A→ A function is bijective.

4 Examples
Example 13 We consider the state portrait from Figure 2,

(0, 1, 0) � (1, 1, 0) - (1, 1, 1) (0, 0, 1)

(0, 0, 0)

6

-

-

(1, 0, 0) (0, 1, 1)

-

(1, 0, 1)

Figure 2. Function Φ(µ1, µ2, µ3) = (µ2 µ3 ∪ µ1µ3, µ1 µ3 ∪ µ2µ3 ∪ µ1µ2, µ1µ2 ∪ µ3)

where the set A = {(0, 0, 0), (1, 1, 0), (1, 1, 1)} is (1)−invariant. In order to see this, we

notice that for α ∈ Π3 with α0 = (1, 1, 0), α1 = (0, 0, 1) we have

φα((0, 0, 0), ·) = (0, 0, 0), (1, 1, 0), (1, 1, 1), (1, 1, 1), ... ∈ A,
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for β ∈ Π3 with β0 = (0, 0, 1) we have

φβ((1, 1, 0), ·) = (1, 1, 0), (1, 1, 1), (1, 1, 1), ... ∈ A,

and for arbitrary γ ∈ Π3 we have

φγ((1, 1, 1), ·) = (1, 1, 1), (1, 1, 1), ... ∈ A.

We prove now that (2) is false. Indeed, if at time instant k ≥ 1 the system runs through

A (invariance), then (0, 0, 0)→ (1, 1, 0), (1, 1, 0)→ (1, 1, 1) are the only possibilities, giving

the contradiction:

(0, 0, 0) = φα(µ, k − 1) 6= Φαk−1

(φα(µ, k − 1)) = (1, 1, 0) implies αk−11 = 1,

(1, 1, 0) = φα(µ, k − 1) 6= Φαk−1

(φα(µ, k − 1)) = (1, 1, 1) implies αk−11 = 0.

We have obtained that the choice of α ∈ Π3 such that (1) holds depends on µ ∈ A.

Example 14 Let in Figure 3 the set A = {(0, 0), (0, 1)}.

(0, 0) - (0, 1)

(1, 0)
?

- (1, 1)

-

Figure 3. Function Φ(µ1, µ2) = (µ1 ∪ µ2, 1)

A is (2)−invariant: for this, it is enough to choose α ∈ Π2 with α0 = (0, 1) and see that

φα((0, 0), ·) = (0, 0), (0, 1), (0, 1), ... ∈ A.

A is not (3)−invariant since if, for α ∈ Π2, we take α0 = (1, 1), we get ∀k ≥ 1, φα((0, 0), k) =

(1, 1) /∈ A. A′ = {(0, 1)} is (5)-invariant.

For this system, B = {(0, 0), (1, 0), (1, 1)} is (2)-invariant, B′ = {(1, 0), (1, 1)} is (3)-

invariant, and B′′ = {(1, 1)} is (5)-invariant.

Example 15 In Figure 4,

(0, 0, 0) - (0, 1, 0) (1, 0, 1) � (0, 0, 1)

(1, 0, 0)
?

- (1, 1, 0)
?

�

-

(1, 1, 1)
?

�
�

(0, 1, 1)
?

Figure 4. Function Φ(µ1, µ2, µ3) = (1, 1, µ1µ3 ∪ µ2µ3)

the set A = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)} is (3)−invariant.

The subsets A′ = {(1, 0, 0), (1, 1, 0)}, A′′ = {(0, 1, 0), (1, 1, 0)} are (3)-invariant and A′′′ =

{(1, 1, 0)} is (5)-invariant.

We see that B = {(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1), (1, 1, 0)} is (3)-invariant also, to-

gether with some of its subsets.

A Lyapunov type invariance theorem for the Boolean asynchronous dynamical systems



89

Example 16 We have the example from Figure 5,

(0, 0) (0, 1)

(1, 0)
?

6

(1, 1)
?

6

Figure 5. Function Φ(µ1, µ2) = (µ1, µ2).

where the whole space B2 is (5)−invariant. Indeed, for different values of λ ∈ B2, from

Φλ(µ1, µ2) = (µ1 ⊕ λ1, µ2) we get two functions, 1B2(µ1, µ2) = (µ1, µ2) and Φ(µ1, µ2) =

(µ1 ⊕ 1, µ2). Functions 1B2 and Φ are both bijective.

In this example the sets {(0, 0), (1, 0)}, {(0, 1), (1, 1)} are (5)-invariant too.

Example 17 The identity 1B2

(0, 0) (0, 1)

(1, 0) (1, 1)

Figure 6. Function 1B2.

has the property that any nonempty subset of B2 is (5)−invariant.

5 A Lyapunov-Lagrange Type Invariance Theorem

Definition 18 We use to say about a function ϕ : N→ N that it is strictly increasing if

∀k ∈ N,∀k′ ∈ N, k < k′ =⇒ ϕ(k) < ϕ(k′) and decreasing if ∀k ∈ N,∀k′ ∈ N, k < k′ =⇒
ϕ(k) ≥ ϕ(k′).

Theorem 19 Let Φ : Bn → Bn and the nonempty set A ⊂ Bn. We consider the following

statements involving the functions V : Bn → N and ϕ1, ϕ2 : N→ N:

ϕ1(0) = ϕ2(0) = 0, (6)

ϕ1, ϕ2 are strictly increasing, (7)

∀µ ∈ Bn, ϕ1(d(µ,A)) ≤ V (µ) ≤ ϕ2(d(µ,A)), (8)

∀µ ∈ A,∃α ∈ Πn, V (φα(µ, ·)) is decreasing, (9)

∃α ∈ Πn,∀µ ∈ A, V (φα(µ, ·)) is decreasing, (10)

∀µ ∈ A,∀α ∈ Πn, V (φα(µ, ·)) is decreasing, (11)

∀µ ∈ A,∀µ′ ∈ A,∀λ ∈ Bn, µ 6= µ′ =⇒ Φλ(µ) 6= Φλ(µ′). (12)
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a) The functions V, ϕ1, ϕ2 exist such that (6), (7), (8), (9) hold if and only if A is

(1)−invariant;

b) the functions V, ϕ1, ϕ2 exist such that (6), (7), (8), (10) hold if and only if A is

(2)−invariant;

c) the functions V, ϕ1, ϕ2 exist such that (6), (7), (8), (11) hold if and only if A is

(3)−invariant.

d) the functions V, ϕ1, ϕ2 exist such that (6), (7), (8), (11), (12) hold if and only if A

is (5)−invariant.

Proof. a) If. We prove the truth of the implication for V (µ) = d(µ,A) and ϕ1 = ϕ2 = 1N.

Indeed, (6), (7), (8) are true. For (9), we take an arbitrary µ ∈ A. The hypothesis states

the existence of α ∈ Πn with the property that ∀k ∈ N, φα(µ, k) ∈ A, in other words

∀k ∈ N, d(φα(µ, k), A) = 0. This implies V (φα(µ, 0)) ≥ V (φα(µ, 1)) ≥ V (φα(µ, 2)) ≥ ...

Only if. We suppose against all reason that the (1)−invariance property of A is false,

i.e. µ′ ∈ A exists such that

∀α′ ∈ Πn,∃k′ ∈ N, φα
′
(µ′, k′) /∈ A. (13)

We can write

0
(6)
= ϕ1(0) = ϕ1(d(µ′, A))

(8)

≤ V (µ′)
(8)

≤ ϕ2(d(µ′, A)) = ϕ2(0)
(6)
= 0,

therefore V (µ′) = 0. We get from (9) the existence of α ∈ Πn with

0 = V (µ′) = V (φα(µ′, 0)) ≥ V (φα(µ′, 1)) ≥ V (φα(µ′, 2)) ≥ ... ≥ 0, (14)

wherefrom

∀k ∈ N, V (φα(µ′, k)) = 0. (15)

The truth ∀k ∈ N of

0 ≤ ϕ1(d(φα(µ′, k), A))
(8)

≤ V (φα(µ′, k))
(15)
= 0 (16)

proves that

∀k ∈ N, ϕ1(d(φα(µ′, k), A)) = 0 (17)

i.e., from (6), (7), ∀k ∈ N, d(φα(µ′, k), A) = 0, in other words ∀k ∈ N, φα(µ′, k) ∈ A. We

have obtained a contradiction with (13). A is (1)−invariant.

c) If. We prove similarly with the If part of the proof of a) that V (µ) = d(µ,A) and

ϕ1 = ϕ2 = 1N fulfill (6), (7), (8), (11).

Only if. The proof is similar with the Only if part of the proof of a), with slight

differences concerning the use of the quantifiers. We take α ∈ Πn and µ ∈ A arbitrary, fixed.

We have

0
(6)
= ϕ1(0) = ϕ1(d(µ,A))

(8)

≤ V (µ)
(8)

≤ ϕ2(d(µ,A)) = ϕ2(0)
(6)
= 0,

A Lyapunov type invariance theorem for the Boolean asynchronous dynamical systems
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thus V (µ) = 0. From (11), function V satisfies

0 = V (µ) = V (φα(µ, 0)) ≥ V (φα(µ, 1)) ≥ V (φα(µ, 2)) ≥ ... ≥ 0,

therefore

∀k ∈ N, V (φα(µ, k)) = 0. (18)

But the truth ∀k ∈ N of

0 ≤ ϕ1(d(φα(µ, k), A))
(8)

≤ V (φα(µ, k))
(18)
= 0

shows us that

∀k ∈ N, ϕ1(d(φα(µ, k), A)) = 0. (19)

As α, µ were arbitrary, (19) is true for any α and any µ. We suppose now against all reason

that the (3)−invariance property of A is false, thus α ∈ Πn, µ ∈ A, k ∈ N exist such that

φα(µ, k) /∈ A, in other words d(φα(µ, k), A) > 0. We infer from (7) that ϕ1(d(φα(µ, k), A)) >

0, representing a contradiction with (19). We have obtained that A is (3)−invariant.

d) If. Let λ ∈ Bn arbitrary. From Φλ(A) = A we have Φλ(A) ⊂ A and this, from

Theorem 8, is equivalent with the (3)-invariance of A thus, taking into account item c),

V, ϕ1, ϕ2 exist such that (6), (7), (8), (11) take place. In addition, the surjectivity of the

function Φλ : A→ A implies, from Lemma 7, its injectivity, i.e. (12) is true.

Only if. The existence of V, ϕ1, ϕ2 such that (6), (7), (8), (11) be true shows due to c)

that (3) is fulfilled, thus (4) is fulfilled also, see Theorem 8. From (4), from the injectivity

of Φλ with arbitrary λ ∈ Bn, and from Lemma 7, we have that Φλ : A → A is surjective,

therefore (5) holds.

Example 20 (Example 13 revisited) The functions ϕ1, ϕ2 : N→ N,ϕ1 = ϕ2 = 1N and V :

B3 → N, ∀µ ∈ B3, V (µ) = d(µ,A) satisfy (6), (7), (8), (9) for A = {(0, 0, 0), (1, 1, 0), (1, 1, 1)}.
In (9) for any µ ∈ A, we choose α ∈ Π3 such that ∀k ∈ N, d(φα(µ, k), A) = 0, i.e.

V (φα(µ, k)) = 0.
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