
92

 

CZU: 517.9             DOI: 10.36120/2587-3644.v8i2.92-102 

RATIONAL SOLUTIONS OF CERTAIN CLASSES  

OF NON-LINEAR DIFFERENTIAL EQUATIONS 

Binbin ZHANG
1
, candidate 

I. P. MARTYNOV
1
, professor, Dr. 

V. A. PRONKO
1
, associate professor, candidate 

S. L. SOBOLEVSKY
2
, associate professor, Dr. 

1
Faculty of Mathematics and Computer Science,  

Yanka Kupala State University of Grodno, Grodno, Belarus; 
2
Center For Urban Science+Progress, New York University, New York, USA 

Abstract. Resonance method commonly used for Painlevé classification of ordinary differential 

equations often detects negative resonances, other than a trivial one of –1 (which should always be 

present). However, it is asserted by some researchers that the nature of these negative resonances is not 

fully understood. The problem arises as how to use negative nontrivial resonances to obtain information 

about the analytical properties of solutions of non-linear differential equations, in particular, to construct 

rational solutions. In the present paper, the method for constructing rational solutions of certain classes of 

autonomous non-linear ordinary differential equations is presented.  
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SOLUȚII RAȚIONALE ALE UNOR CLASE 

DE ECUAȚII DIFERENȚIALE NELINIARE 

Rezumat. Metoda de rezonanță folosită frecvent pentru clasificarea Painlevé a ecuațiilor diferențiale 

ordinare detectează adesea rezonanțe negative, altele decât una trivială de –1 (care ar trebui să fie 

întotdeauna prezentă). Cu toate acestea, unii cercetători afirmă că natura acestor rezonanțe negative nu 

este pe deplin înțeleasă. Problema apare în modul de utilizare a rezonanțelor nontriviale negative pentru a 

obține informații despre proprietățile analitice ale soluțiilor ecuațiilor diferențiale neliniare, în special, 

pentru a construi soluții raționale. În lucrarea de față este prezentată metoda de construire a soluțiilor 

raționale ale unor clase de ecuații diferențiale neliniare ordinare autonome. 

Cuvinte cheie: ecuații diferențiale neliniare, rezonanțe, soluții raționale. 

Introduction 

There has been a number of studies on rational solutions of the ordinary differential 

equations. Paper [1] provides certain general conditions for algebraic differential 

equations to have rational solutions. Rational solutions of the second-sixth Painlevé 

equations were considered in [2-4]. According to Backlund transformations [3, 5-6] 

rational solutions of higher analogues of the Painlevé equations were obtained and 

represented by special polynomials (generalized polynomials Yablonsky–Vorobiev). A 

recent paper [7] proves that for differential equations with nontrivial negative resonances 

the families of rational solutions always exist.  

We consider the methods of using negative resonances for building rational 

solutions for algebraic autonomous ordinary differential equations of the form 

    1
, , , , 0,

n n
P y y y y

                             (1) 
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where P is polynomial in y and its derivatives with constant coefficients. If the solutions of 

equations (1) are given in the form of series  

𝑦 = ℎ0(𝑧 − 𝑧0)
−𝑠 +⋯+ ℎ𝑟(𝑧 − 𝑧0)

𝑟−𝑠 , 𝑠 ∈ ℤ,                  (2) 

substituting (2) into equation (1) gives the expression  

      0 0 0 0, 0,
d r d

rA h z z B r h h z z
 

     
 

where  0,d n s A h 
 
are polynomials in 

0 ,h
 
and  0,B r h

 
are polynomials of n-th 

degree in r with coefficients depending on 
0.h

 
The number d is called the weight of 

dominant terms of polynomial P. Finding 
0h

 
from the equation  0 =0A h

 
and 

substituting the obtained 
0h

 
into the equation  0, =0,B r h

 
allows to find the 

corresponding values r, called resonance numbers (resonances). 

In order to have single-valued solutions of differential equations (1), it is necessary 

that the resonances r are distinct integers [8-11], moreover, one of them is equal to –1 [9]. 

For solutions of the form (2), we will extract the set  

 0 1 2 1, ; 1, , , , .ns h r r r                               (3) 

The n-order’s equations can be divided into three classes: equations for which the set 

(3) has positive integers 
1 2 1, , , nr r r 

; equations having both positive and negative 

resonances (among numbers 
1 2 1, , , nr r r 

); equations having only negative resonances.  

Much attention has been paid recently to the existence of the rational solutions of nonlinear 

differential equations (see, for example, [6, 12, 13]). And the equations with such solutions 

often have negative resonances, i.e. belong to the last two classes from above. In this paper 

we ask a question of how the presence of non-trivial (except –1) negative resonances could 

be used for constructing rational solutions of equations (1). 

The paper [14] argued that negative resonances “are still not fully understood and at 

the present stage are of great interest”. In [15], eight equations having only one set of all 

negative resonances are allocated in a separate section. However, analytical properties of 

solutions of the eight obtained equations are not indicated [15]. The work [16] is devoted to 

this issue. According to [17], a formula is given for constructing rational solutions of 

equation (1) by using negative resonances. 

It is shown in [18] that all nonlinear equations  

    1
, , ,

n n
y P y y y

                              (4) 

of arbitrary order n, which have polynomial right-hand side of degree higher than 2 with 

constant coefficients, which possess strong Painlevé property [11] (all solutions of the 

equation are meromorphic) admit nontrivial negative resonances. In [7] it has been proven 

that from the existence of such nontrivial negative resonances in equations with strong 

Painlevé property follows the presence of families of rational partial solutions in a 

simplified equation corresponding to equation (4). Such simplified equations (4) with 
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solutions of the form (2) where 1s  , have the following form  

      
 

 
2

1 0
1 2

1 1

.
n

j j

n n n

j n

y ayy a y y y
  



 





 

  

   


            (5) 

In this paper, a general method is provided for constructing rational solutions of  

equations of the form (1) using negative resonances, as well as a special method applicable 

to simplified equations (5) corresponding to equations (4). 

Rational solutions of equations (5) 

In this section, families of rational solutions of simplified equations (5) can be found 

by means of uncomplicated algebraic transformations and direct integration of resulting 

equations. 

For equations (5) possessing the strong Painlevé property if 0a  , it implies that 

without loss of generality (up to scale transformation y ku ) all roots 
0h

 
of the equation 

 0 0A h 
 
can be considered rational numbers with the smallest absolute value of 1. 

Assume all these roots are positive integers (a case common among known higher order 

equations). Let q be the largest of these numbers. In this case, the variable change  

y  
 
reduces equation (5) to a homogeneous equation with entire solutions. The 

function  0

q
C z z  

 
will satisfy the resulting equation on ,

 
whereC is an arbitrary 

constant. If the equation  0, =0B r h
 
admits nontrivial negative resonances (according to 

[7] this holds for equations of degree higher than 2), then it can be shown [18] that there 

exists 2m -parametric family of polynomial solutions of the equation on 
 
of degree 

no higher than q, where m is the number of nontrivial negative resonances within the set (3). 

This family can be found from the system composed by the equation 
 1

0
q





 
and the 

equation on ,  obtained from (5) by substituting y   . From this system we obtain 

the homogeneous equation of degree 2m
 
on function  . The general solution of the 

last equation is polynomial and the corresponding 1m -parametric family of rational 

solutions of equation (5) is defined by y   . 

For example, for the equation 

   
24 2 32 11 2 7 0y yy y y y y y y y y                          (6) 

sets of the form (3) will be as following: 

     1,1; 1,1,3,5 , 1,4; 1, 4,1,6 , 1 6; 1, 2, 5,6 .     ,
 

The corresponding equation on function 
 
will be 

       
2 25 42 3 3 2 0.                                  (7) 

The largest root 
0 6h q 

 
of the equation  0 0A h 

 
has the two corresponding 

nontrivial negative resonances 2, 5r r    , so 2m  . The system from equation (7) 

Rational solutions of certain classes of non-linear differential equations
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and  7
=0

 
is equivalent to the equation 

     
2 34

6 3 6 4 0.                                  (8) 

Equation (8) admits the following four-parameter family of polynomial solutions: 

       
6 4 22 3

1 0 1 2 0 1 2 0 3 0 1 2

3 1

5 25
C z z C C z z C C z z C z z C C             (9) 

And besides, equation (8) has the three-parameter family of solutions  

  4

2 0 ,C z z C                                    (10) 

corresponding to the root 
0 4h 

 
as well as the family of singular solutions 

 0 .C z z  
 
Then the equation (6) has rational solutions of the form y  

 
where 

  belongs to one of those three families – last one, (9) or (10). 

Construction of rational solutions of the equations (1) 

In general, rational solutions of differential equations can be constructed in the form 

of converging series on negative powers of an independent variable with direct 

participation of negative resonances. 

Let in set of the form (3) 𝑟1 = −𝑣, 𝑣 ∈ ℕ\{1}. The resonance 
1r
 
corresponds to the 

series 

 0 0

.
k

k

k

s
z z

h
y






 

                              (11) 

For series (11) the Hankel matrix [19, p. 465] will be  

0
.k jH h



                                 (12) 

We represent the rank of matrix (12) in terms of 𝑝, 𝑝 ∈ ℕ{1}. 
 

There are numbers , 1, ,n n p 
 
such that 

1

, 0,1,2, .
p

k p n k p n

n

h h k  



                      (13) 

Under the condition (13), the formula  

 

 

1

0

1 1

0

1

,

p k
p k vpv

k j k j

k j

p
p k vs pv

k

k

h t h h t

y t z z

t t t










 





 
  

   
 

 
 

 


              (14) 

is given in [17], which represents rational solution of the equation (1). It is not difficult to 

draw that  the solution (14) have n poles (taking into account their multiplicity): ,n pv  if 

, 0;pv s    ,n pv s v    if v s  or 0.p   According to [19] if 1,v s   the 

number of poles of the solution (14) will be .n p  

If the rank of matrix (12) is 1p  , the coefficients 
kh of series (11) represent a 
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geometric progression, and then series (11) can easily be written as  

 

    
0 0

0

0 0

, , .

v

s v

h z z
y z C

z z z z C


 

  
                  (15) 

Substitution of (14) or (15) into equation (1) confirms that these formulas indeed 

provide rational solutions of the equation (1).   

Thus, using resonances 4, 5, 2r r r      (where 3p  ) for equation (6) we 

respectively get rational solutions  

 

 

 

   

     

     

3 5

0 0

4 6

0 0 0

5 3 2

0 0 0

6 4 22 3

0 0 0

4 6
, ,

6 20 30
,

5 15 +5

z z z z C
y y

z z C z z C z z

z z C z z C z z
y

z z C z z C z z C

  
 

    

    


    

             (16) 

where 
0 ,z C  are arbitrary constants. 

The first rational solution from (16) can be obtained by the formula y   , where 

the function 
 
is defined in (10); the second rational solution from (16) is obtained if 

counting 
2 0C 

 
in (9); the third rational solution is obtained if in (9) we count 

2 30, 0.C C 
 

Remark 1. Equation (6) has the first integral  

          
3 22 22 2 2 210

2 2 2 2 3 ,
3

y y y yy y y yy y y y y y C                 (17) 

where the arbitrary constant C corresponds to the resonance 6r  . 
     

For equation (7), there is the first integral 
 

     
2 34 36 3 6 4 3 .C                

               
(18) 

When 0C   (8) follows from (18). 

Next, it will be shown how we can obtain rational solution (14) of equation (1), if 

looking for its solution in the form of series of non-negative powers of 
0z z . 

According to (13), we assume 

1 1 1 1 0, 0,1,2, .p k p p k p k k k               
          

(19) 

When 
22, 0p  

 
from (19) we obtain 

1
2 1

2 2

1
0,, 0,1,2, .k k k k


  

 
    

                
(20) 

Theorem 1. Suppose that for differential equation (1) we have set (3), where 

𝑟 = −𝑣, 𝑣 ∈ ℕ, 𝑣 > 1, and the rank of matrix (12) is 2.p   Then the rational solution 

(14) of equation (1) can be represented as series 

 0

0

,
k s

k

k

y z z
 




 



 
                        

(21) 

Rational solutions of certain classes of non-linear differential equations
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where the coefficients 
k  are subject to equality (20), and 

1 2,   are taken from (13) for

2p  , while 

1 1
0 0 1 1 0 0

2 2 2 2

1 1
, .h h h

 
  

   
    

                
(22) 

Series (21) converges in the region 

2
0 20 .vz z   

                           
(23) 

Proof. Assuming ,k

k 
 
the number 

 
will be the root of the equation 

2 1

2 2

1
0.


 

 
  

                            
(24) 

Then, two cases are considered as follows.  

a) When 
2

1 24 0,   the equation (24) will have two different roots 
1 2, , 

herewith, 
1 2 1 2 1 2 2, 1 .           

 
Through initial conditions (22) and the 

linearity of equality (20), we find that 

    1 2 0 1 0 1 1 2

1 2

1
, 0,1,2, .k k

k k        
 

    
         

(25) 

   2 2

1 2 0 1 2 1 0 1 0 1 2 0 1 1, .h h h h              
             

(26) 

If the conditions  0 1, 0,1,2k z z k


     are satisfied, then 

   

     

1 2 0 0 1 1
1 2

0 01 2 1 2

1 2 0 0 1 1

1 2 1 1 2 2

1 2 0 2 0 1 1 1

21 2 1 2
1 2

1 2 1 2

+

1 1
+

1 1

1 1
,

1

k k

s v s

k k

s s

s

y t t t t

t t
t t

t tt

t t

  

 

 

 

 

     
 

   

     

     

       

   
 

   

 
 

 

 



 
 

 

 
   

   

    
 

  
  

 

 

 

where 
0.t z z 

 
Taking into account (26), we get (14) while 2.p 

 

b) When 
2

1 24 =0, 
 
it occurs that 

1 2 12 .     
 
Instead of (25) acquire 

1
0 0+ , 0,1,2, .k

k k k


   


  
    

                  
(27) 

Thus 
2 2

0 1 0 1 0 02 , 2 .h h h         Because of   ( ) ,
k

k t
k t t

v

  


 if 

1,t  
 
then 
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 

   

 

1

0 01 1
0 0 2

0 01
2 22 2

0 1 1 0 0 1 1 0

02 2 2

1 21

1

1 1 1 1

2

, .
1

2

s ss
s

s

s s

t tt t
y t

t t t t

t t
h t h h t h t h h t

t z z
t t t

t t t t

  


   

 
   

 
 

   
 

      

 

   

 



  



     

           
        

  
             

    
    

   

 

The theorem is proved. 

Remark 2. When 
1 20, 0, 2,p   

 
from (19) obtain 

1

1

, 1,2, .k
k k





  

 

Assuming 
1 1 0 0 1 1, , ,h l h l l       

 
we have 1 ,k

k l  
 

1,2, .k 
 
Then 

 

   

0

0 1 1

0 1 00 0 1 1 0

1 1
1

1

,

1

k

k s s

k s
k k

s

s s s

h l t
y t lt

t

h t l hh l h t h hlt

t t t t tt




 

 




 

 




 
 

 



 
    

 

   
   

   
 

 

 

 

so 

 
0 1 1 0

0

1

, .
s

h t h h
y t z z

t t









 
  

                      
(28) 

Remark 3. Under the conditions of 
1 2 30, 0, 3,p       in order to find the 

coefficients 
k

 
of series (21), the formulas (26) will be satisfied for 1,2,k  , and the 

initial values 
1 2 3, ,    must be specified. 

Remark 4. The rational solution (15) can be represented as the series  

 1

0 0

0

, 1,
k sk

k

y h z z a
 

 


 



    

converging in the region 
1

00 z z a    . 

Remark 5. Theorem 1 can be generalized in case 2p  . Then, in order to find the 

values of  , instead of the equation (24) we will have an equation of degree p , which can 

greatly complicate the calculation of its roots. 
 

Some cases 

1). For the Chazy equation [20]  
2 2 412 72 54y y y y y     , sets of the form (3) will 

be as following:  
1 5

1,1; 1, 3,10 , 1, ; 1,2,5 .
6

 
   

   
Resonance 3r    corresponds 

to the rational solution [17] 
5 2

6 3 2

5
,

5 5

t at
y

t at a




 
 

0 0, , .t z z z a  
 
Herewith
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2

1 25 , 5 .a a  
 
Equation (24) in this case has roots 1 2

3 5 3 5
, .

2 5 2 5a a
 

 
  

 

Then series (21) has the form  
3 2

0

0

,
k

k

k

y z z






 
 
where according to formulas (25) 

coefficients 

 
     

1

1

11 5
3 5 3 5 , 0,1,2 .

22 5

k
k k

k k
k

a






 
     

 
 

 

2). For equation      
2 3 222 1 1

3
3 3 3

y y y yy y y y y         
 
obtained from [21], sets 

of the form (3) will be    1,1; 1,1,3 , 1, 10; 1, 5,6 .   
 
The resonance 5r  

corresponds to the rational solution 
9 4

0 010 5 2

10 90
, , , .

18 +6

t at
y t z z z a

t at a


   

  
Herewith

 

2

1 218 , 6 .a a   
 
In this case, equation (24) has roots 

1 2

3 3 5 3 3 5
, .

2 3 2 3a a
 

 
 

 
And series (21) submits to  

3 2

0

0

,
k

k

k

y z z






 
 
where 

 

1 1

1

5 5 5
3 3 , 0,1,2 .

3 32

k k

k k
k

a


 



    
               

3). The equation (see in [9], [20])
 4 330 60y yy y 

 
has the corresponding sets 

   2,1; 1,2,3,10 , 2,2; 1, 2,5,12 .  
 
And by resonance 2r    it has the rational 

solution 

 

2

0 02
2

2 2
, , , .

t a
y t z z z a

t a


   


Herewith

 

2

1 22 , .a a    In this case, for 

equation (24) there are roots 
1 2 1 .a  

 
Thus, finding coefficients 

k
 
from (27) the 

series (21) tend to be    
21

0 0

0

2 2 1 , 1, .
kk

k

y k z z a z z a 






     
  

4). For equation [9]
   

24 320 10 40 ,y yy y y     sets of the form (3) correspond to

   2,1; 1,2,5,8 , 2,3; 1, 3,8,10 .  
 
Using resonance 3r  

 
its rational solution is 

found in the form 

 

4

0 02
3

3 6
, , , .

t at
y t z z z a

t a


   

  
This solution can be represented in 

the form of series    
3 11

0

0

3 3 2 ,
kk

k

y k z z






  
 

1,a 
 

3
0 ,z z a 

 
which is 

obtained from (21) with coefficients calculated by the formula (27), moreover 

0 1 2

6 15 1
, , .

a a a
    
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5). The equation [20]  
2 25y yy y y y      possess the corresponding sets 

   1, 1; 1,1,5 , 1, 6; 1, 5,6 .    
 
The rational solution 

 

5

5

6t a
y

t t a


 


 is found by 

resonance 5r   , where 
0 0, , .t z z z a  

 
Herewith

  
2,p 

 
1 ,a 

 
2 0. 

 
This 

solution can be represented in the form of series  

 
5 4+1 5

0 0

00

1
5 , 1, 0 .

kk

k

y z z a z z a
z z

 






       



 

6). For equation [15]
   

24 3 62 10 4 ,yy y y y y y y        the corresponding sets are 

   1, 1; 1,2,3,4 , 1, 2; 1, 3,4,8 .    
 
By resonance 3r    rational solution of the 

equation is 
 

3

0 03

2 +
, , , .

t a
y t z z z a

t t a
    

  
In this case,

  
2,p 

 
1 ,a 

 
2 0. 

 

This solution can be represented in the form of series
 

 
3 21 3

0 0

00

1
3 , 1, 0 .

kk

k

y z z a z z a
z z

 






     



 

7). For equation [15]
 4 2 4+14 12 ,yy y y y y y    sets of the form (3) are 

   2,1; 1,2,5,6 , 2,6; 1, 5,6,12 .   The Hankel matrix (12) corresponding to the 

resonance 5r  
 
has rank 3.p  Herewith, 

2

1 22 , ,a a   
 

2

3 0 1 20, 6, 30 , 55 .h h a h a    
 
The corresponding rational solution is 

 

10 5 2

0 02
2 5

6 18
, , , ,

t at a
y t z z z a

t t a

 
   

  
which can be represented in the form of series

 

   
5 31 5

0 02
00

1
5 5 4 , 1, 0 .

( )

kk

k

y k z z a z z a
z z

 






       



 

8). For equation 33 0,y yy y     there is the general solution [3, p.122] 

1 2

1 1
.y

z C z C
 

                              
(29) 

This equation has the sets of the form (3)    1,1; 1,1 , 1,2; 1, 2 .    The series (11), 

corresponding to the resonance 2,r    can be written as 

 
01

10 0

2
2 , , ,

k

k
k

a
y z a

z z z z






  
 

  

which defines rational solution 

 

 
0

2

0

2
.

z z
y

z z a




                               
(30) 

Solution (30) matches (29) when 
2

0 1 2 0 1 22 , .z C C a z C C   
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Rational solution (30) can be represented in the form of series 

 
2 11

0

0

2 , 1,
kk

k

y z z a 






   
 
converging in the region 0 .z z a 

 
Assume 

0 1,z C  then we can also write 

 
 2 1 11

11 1

2
, , ;

k

k
k

h
y h C C z C V

z C z C






      
 


 

 1

11
01

2
, 0 ;

k

k
k

z C
y z C h

z C h







    




 

 1 21 1
0 1 2

1 1
, , min , .k

k k
k

y z z C C C C
C C



 


 
     

 


 

 

Conclusion  

This paper describes the relationship between the negative resonance numbers of 

nonlinear ordinary differential equations and their rational solutions. In particular, the 

relation determining the number of poles of possible rational solutions through the value of 

the negative resonance and the rank of the Hankel matrix is indicated. Two methods are 

presented for constructing such rational solutions. First, by means of direct algebraic 

transformations, which allow construction of directly integrable equations describing 

families of rational solutions for the simplified equations. And second, by means of 

converging series by negative powers of an independent variable, directly illustrating the 

role of negative resonances in the construction of rational solutions. In addition to the 

practical significance of this approach for building partial solutions of certain classes of 

non-linear equations, the results also shed light on the nature and significance of negative 

resonances, which were considered by many authors to be obscure until now.  

 

References 

1.  Gorbuzov V.N., Nemets V.S. Rational solutions of algebraic differential equations. 

In: Differential equations. 1993, vol. 29, no. 10, p. 1675–1683. 

2. Gromak V.I., Lukashevich N.A. Analytical properties of solutions of the Painlevé 

equations. Minsk: University’s, 1990. 

3. Kudryashov N.A. Analytical theory of nonlinear differential equations 

Moscow-Izhevsk: Institute of Computer Research, 2004 . 

4. Yuan W., Li Y. Rational solutions of Painleve equation. In: Canadian Journal of 

Mathematics. 2002, vol. 54, no. 3, p. 648–670. 

5. Demina M.V. Rational and special solutions of the second Painlevé equation and its 

higher analogues. Moscow, 2009. (Dissertation PhD) 

6. Gromak V.I. On rational solutions of the equations of the generalized hierarchy of the 

second Painlevé equation. Proceedings of Analytical Methods of Analysis and 

Differential Equations, September, 17-21, 2018, Minsk, p. 25–26. 

Binbin Zhang, I. P. Martynov, V. A. Pronko, S. L. Sobolevsky



102

 

7. Sobolevsky S.L. Existence of Nontrivial Negative Resonances for Polynomial 

Ordinary Differential Equations With Painleve Property. In: arXiv preprint arXiv: 

1412.8761(2014). 

8. Ablowitz M.J., Ramani A., Segur H. A connection between nonlinear evolution 

equations and ordinary differential equation of P-type. I. In: J. Math. Phys. 1980, vol. 

21, no. 4. p. 715–721.  

9. Martynov I.P. On differential equations with moving critical singular points. In: 

Differential equations. 1973, vol. 9, no. 10, p. 1780–1791. 

10. Vankova T.N., Martynov I.P., Parmanchuk O.N., Pronko V.A. About some analytic 

properties of solutions of algebraic differential equations. In: Vesnik of Yanka Kupala 

State University of Grodno. Series 2. Mathematics. Physics. Informatics, Computer 

Technology and its Control. 2008, no. 1 (64). p. 8–16. 

11. Sobolevsky S.L. Moveable singularities of solutions of ordinary differential 

equations. Minsk (BSU), 2008.   

12. Cosgrove C.M. Higher-order Painleve equations in the polynomial class I. Bureau 

symbol PII. In: Stud. Appl. Math. 2000, vol. 104, no. 1, p. 1–65. 

13. Cosgrove C. M. Chazy classes IX-XI of third-order differential equations. In: Stud. 

Appl. Math. 2001, vol. 104, no. 3, p. 171–228. 

14. Clarkson P.A., Olver P.J. Symmetry and the Chazy equation. In: Journal of 

differential equation. 1996, vol. 124, no. 3. p. 225-246. 

15. Jrad F., Muğan U. Non-polynomial fourth order equations which pass the Painleve 

test. In: Zeitschrift für Naturforschung A. 2005, vol. 60a, no 6, p. 387–400. 

16. Zhang B., Martynov I.P. Rational solutions of a class of non-polynomial differential 

equations of the fourth order. In: Vesnik of Yanka Kupala State University of Grodno. 

Series 2. Mathematics. Physics. Informatics, Computer Technology and its Control. 

2018, vol. 8, no. 2, 32–40. 

17. Zdunek A.G., Martynov I.P., Pronko V.A. Rational solutions of differential equations. 

In: Vesnik of Yanka Kupala State University of Grodno. Series 2. Mathematics. 

Physics. Informatics, Comp. Technology and its Control. 2000, vol. 3, no.1, p. 33–39. 

18. Sobolevsky S.L. The existence of rational solutions of differential equations with the 

Painlevé property and negative resonance numbers. In: Reports of the National 

Academy of Sciences of Belarus. 2012, vol. 56, no. 3, p. 5–9. 

19. Gantmakher F.R. Matrix Theory. Moscow: Science, 1988.  

20. Chazy J. On the differential equations of the third order and of higher order, whose 

integrable has its fixed critical points. 1911, vol.34, p. 317–385. 

21. Vankova T.N. Analytical properties of solutions of certain classes of differential 

equations of the third and higher orders. Grodno, 2013.(Dissertation PhD)  

Rational solutions of certain classes of non-linear differential equations


