A note on some open problems in topological algebra

A. V. Arhangel'skii

Abstract. One of the old open problem of C_p -theory, where *I* is the unit segment is the following question: Are the spaces $C_p(I)$ and $C_p(I^2)$ homeomorphic? In the present article distinct open problems of the topological algebra are examined

2010 Mathematics Subject Classification: Primary 54A25; Secondary 54B05 **Keywords:** topological group, homogeneous space, convergent sequence, quasire-traction.

Privitor la unele probleme nerezolvate ale algebrei topologice

Rezumat. Una dintre vechile probleme deschise ale teoriei C_p , unde I este segmentul unitate, este urmatoarea întrebare: Sunt oare homeomorfe spațiile $C_p(I)$ și $C_p(I^2)$? În prezentul articol sunt examinate probleme deschise distincte ale algebrei topologice

Cuvinte cheie: grup topologic, spațiu omogen, secvență convergentă, cvasiretracție.

Objects of topological algebra, defined as a certain combination of algebraic and topological structures, often give rise to original and unusual questions. A special additional topological property of many topological spaces of this kind is homogeneity. A topological space X is called *homogeneous* if, for any x, y in X there exists a homeomorphism f of X onto itself such that f(x) = y and f(X) = X. Clearly, all topological groups, in particular, all linear topological spaces are homogeneous. This simple fact provides us with a natural way to construct many homogeneous compact spaces, since there are many compact topological groups. Some of them are non-metrizable. This occurs precisely when a compact topological group is not sequential - that is, when its topology cannot be described in terms of convergent sequences. In this connection, it is especially interesting that every infinite compact topological group has many non-trivial convergent sequences. But the following question, posed by Walter Rudin [7, 8] more than 60 years ago, is still open: **Problem 0.1.** (W. Rudin) Is it true that every infinite homogeneous compact Hausdorrf space contains a non-trivial convergent sequence?

Many compact topological groups contain, in fact, dense sequential subgroups. In this connection I have formulated, about forty years ago, the next question, which seems to be still not answered (see [1]):

Problem 0.2. *Is it true that every infinite compact topological group contains a dense sequential subspace?*

However, the next statement holds (see [5]):

Theorem 0.3. Under CH, every homogeneous sequential compact Hausdorff space is first countable, and hence, its cardinality does not exceed 2^{ω} .

In this connection, the following questions arise:

Problem 0.4. *Is it true in ZFC that every homogeneous sequential compact Hausdorff space is first countable?*

I also want to mention another open question [1]:

Problem 0.5. Suppose that X is a paracompact p-space. Then is its free topological group F(X) (or the Abelian version of it) paracompact?

It had been shown in [1] that if X is metrizable, then the answer to the last question is "yes".

Here are some open problems for linear topological spaces over the field R of real numbers. First of all, locally convex infinite dimensional linear topological spaces of this kind should be considered. We have them in mind below. We use 0 to denote also the zero vector of such spaces.

Suppose that *L* is a linear topological space. Put $L_0 = L \setminus \{0\}$. Suppose also that *bL* is a Hausdorff compactification of *L*, and that *Y* is the remainder $bL \setminus L$.

For each $x \in L_0$ and each $n \in \omega$, put $B_{x,n} = \overline{\{\alpha x : \alpha \in R, \alpha > n\}}, B_x = \cap \{B_{x,n} : n \in \omega\}$, and $Y_x = B_x \cap Y$.

A mapping f of the subspace L_0 of L into Y will be called a *quasiretraction* of L_0 into Y, if f is continuous and $f(x) \in Y_x$, for each $x \in L_0$.

In this general setting, it is natural to ask the next basic question:

Problem 0.6. For which linear topological spaces L there exists a Hausdorff compactification bL of L such that there exists a quasiretraction of L_0 into Y? Any space *L* satisfying the condition in the last problem can be called a *rain space*. In the next question we use the notation described in the preceding question and before it.

Problem 0.7. Suppose that $L = R^{\tau}$, where τ is an infinite cardinal, and let Y be the Stone-Čech remainder $\beta L \setminus L$ of L. Then is it true that there exists a quasiretraction of L_0 into Y?

The next double question is closely related to the preceding problem, but is formulated in much simpler terms.

Problem 0.8. We again use the notation described in the preceding two questions. Suppose that $L = R^{\tau}$, where τ is an infinite cardinal, and that bL is the Stone-Čech compactification βL of L. Then is it true that there exists a continuous mapping of the space $L_0 = L \setminus \{0\}$ onto some dense subspace of the space $\beta L \setminus L$? Is it true that there exists a continuous mapping of the space L onto some dense subspace of the space of the space $\beta L \setminus L$?

The last open problem in this short list is more than 30 years old. See [2] for one of the early appearances of it in print and for some related questions and references. For a Tychonoff space X, $C_p(X)$ denotes the space of continuous real-valued functions on X endowed with the topology of pointwise convergence (see [2]).

Problem 0.9. Let I be the closed unit interval, I^2 be the square of I, and K be the Cantor set, all taken with the usual topologies. Then we have the following three simply formulated questions:

- a): Are the spaces $C_p(I)$ and $C_p(I^2)$ homeomorphic?
- b): Are the spaces $C_p(I)$ and $C_p(K)$ homeomorphic?
- c): Are the spaces $C_p(K)$ and $C_p(I^2)$ homeomorphic?

Note that the answers to the last three questions are in the negative for linear homeomorphisms. This follows from a deep theorem of V.G. Pestov, see [6].

For more problems and references on topological problems in topological algebra, see [3], [4], and [5].

References

- A. V. Arhangel'skii, *Classes of topological groups*. Russian Math. Surveys 36 no. 3 (1981), 151-174. Russian original in: Uspekhi Mat. Nauk 36 (1981), 127-146.
- [2] A.V. Arhangelskii, *Problems in C_p-theory*, 603-615 in: J. van Mill and G.M. Reed, Ed-rs: Open Problems in Topology, Chapter 31, North-Holland, Amsterdam, 1990.

- [3] A. V. Arhangel'skii, *Topological invariants in algebraic environment*. In: Recent Progress in General Topology II, M. Husek and J. van Mill, Eds., pp. 1-57, North-Holland, Amsterdam 2002.
- [4] A. V. Arhangel'skii, Some open problems on homogeneous compacta. In: Paul Erdös and his Mathematics. 2 Bolyai Society Mathematical Studies, 11, pp. 15-31. Budapest, 2002.
- [5] A. V. Arhangel'skii and J. van Mill, *Topological homogeneity*. In: Recent Progress in General Topology III (KP Hart, J. van Mill, P. Simon (eds.)), Springer 2014, pp. 1-68.
- [6] V. G. Pestov, *The coincidence of the dimensions dim of l-equivalent topological spaces*, Soviet Math. Dokl. 26 (1982), 380-382. (in Russian).
- [7] Rudin W. Homogeneity problems in the theory of Ĉech compactifications. Duke Math. J. 23 (1956),409-419.
- [8] Rudin W. Averages of continuous functions on compact spaces. Duke Math. J. 25 (1958), 197-204.

(Alexander V. Arhangel'skii) MPGU, Moscow, Russian Federation *E-mail address*: arhangel.alex@gmail.com