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Spat, ii submetrizabele s, i aplicat, ii deschise
Rezumat. În acest articol se caracterizează imaginile continue deschise şi com-
plete a spaţiilor submetrizabile ca spaţii cu pseudo-baza de ordine numărabil.
Sunt demonstrate unele teoreme despre selecţiile pentru aplicaţii cu valori com-
plete în spaţii submetrızabile.
Cuvinte cheie: spaţiu submetrizabil, aplicaţie deschisă, set-valued aplicaţie
multivocă.

1. Introduction

For notation and terminology the reader is referred to [12] and [22]. Space is used here
to mean topological 𝑇1-space.

A pseudo-metric on a space 𝑀 is a function 𝑑 : 𝑀 × 𝑀 −→ R such that for any
𝑥, 𝑦, 𝑧 ∈ 𝑀 the following holds:

(1) 𝑑 (𝑥, 𝑥) = 0 (identity of indiscernibles);
(2) 𝑑 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑥) (symmetry);
(3) 𝑑 (𝑥, 𝑧) ≤ 𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑧) (subadditivity or triangle inequality).

If 𝑑 (𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦, 𝑑 is called a metric on 𝑀 .
Any pseudometric is non-negative: 𝑑 (𝑥, 𝑦) ≥ 0 for any 𝑥, 𝑦 ∈ 𝑀 . Let 𝑑 be a

pseudometric on a topological space 𝑀 . For a point 𝑥 ∈ 𝑀 and a real number 𝑟 > 0 we
define the open ball of radius 𝑟 about 𝑥 as the set 𝐵(𝑥, 𝑑, 𝑟) = {𝑦 ∈ 𝑀 : 𝑑 (𝑥, 𝑦) < 𝑟}. The
pseudometric 𝑑 is continuous on 𝑀 if the balls 𝐵(𝑥, 𝑑, 𝑟) are open in the space 𝑀 .
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A space 𝑋 is called to be submetrizable if on 𝑋 there exists a continuous metric. A
topological space is submetrizable if and only if it admits a continuous bijection onto a
metric space. Let 𝐶𝑝 (𝑋) be the space of continuous functions on the space 𝑋 .

The density of 𝑋 , denoted 𝑑 (𝑋), is defined by 𝑑 (𝑋) = 𝑚𝑖𝑛{|𝐿 | : 𝑙 ⊂ 𝑋, 𝑐𝑙𝑋 (𝐿) = 𝑋}.
The pseudocharacter of a space 𝑋 at a subset 𝐴, denoted by 𝜓(𝐴, 𝑋), is defined as the
smallest infinite cardinal number of the form |U|, where U is a family of open subsets
of 𝑋 such that ∩U = 𝐴. If 𝐴 = {𝑥} is a singleton, then we put 𝜓(𝑥, 𝑋) = 𝜓({𝑥}, 𝑋). The
pseudocharacter of a space 𝑋 is defined to be 𝜓(𝑋) = 𝑠𝑢𝑝{𝜓(𝑥, 𝑋) : 𝑥 ∈ 𝑋}. The superior
pseudocharacter of a space 𝑋 is defined to be Ψ(𝑋) = 𝑠𝑢𝑝{𝜓(𝐴, 𝑋) : 𝐴 ⊂ 𝑋, 𝑐𝑙𝑋 𝐴 = 𝐴}.
If Ψ(𝑋) = ℵ0, then the space 𝑋 is called a perfect space. The diagonal number Δ(𝑋) of a
space 𝑋 is the pseudocharacter of the square 𝑋 × 𝑋 at its diagonal Δ𝑋 = {(𝑥, 𝑥) : 𝑥 ∈ 𝑋}.

The class of spaces with countable pseudocharacter is large and important. For exam-
ple, any 𝑇1-space with countable pseudocharacter is a Moscow space. A space 𝑋 is called
Moscow if the closure of every open subset𝑈 of 𝑋 is the union of a family of 𝐺 𝛿-subsets
of 𝑋 (see [12]). Moreover, it is wellknown that any topological group with countable
pseudocharacter is submetrizable.

In the works [5, 6, 23] were obtained the following assertions.

Theorem 1.1. For any Tychonoff space 𝑋 we have 𝑑 (𝑋) = Δ(𝐶𝑝 (𝑋)) = 𝜓(𝐶𝑝 (𝑋)).

Corollary 1.2. For any Tychonoff space 𝑋 the following assertions are equivalent:

(1) 𝑋 is a separable space.
(2) 𝐶𝑝 (𝑋) is a space of countable pseudocharacter.
(3) 𝐶𝑝 (𝑋) is a submetrizable space.

In [32] V. I. Ponomarev has proven that a space is a first countable space if and only
if it is an open continuous image of a metric space. Naturally arises the question: Is the
analogical theorem of Ponomarev’s theorem valid for spaces with countable pseudochar-
acters? The answer of this question is negative. In [24, 25], in particular it was shown
the following fact.

Theorem 1.3. For any topological space 𝑋 there exist a space 𝑍 and an open continuous
mapping 𝑔 : 𝑍 −→ 𝑋 of 𝑍 onto 𝑋 with the next properties:

(1) 𝑍 is a paracompact submetrizable space.
(2) 𝑍 is union of a sequence of closed discrete subspaces.
(3) 𝑍 is a perfectly normal space.

So the following problem arises: To study the mappings that preserve the property of
being a spaces with countable pseudocharacter and to characterize the open continuous
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images of the submetrizable spaces via such mappings. In the present article this problem
has been solved. Various images of metric spaces and complete metric spaces have been
studied in [3, 4, 19, 30, 32, 33].

2. On uniformly complete mappings

Let 𝜌 be a continuous pseudometric on a space 𝑋 . For every non-empty subset 𝐴

of 𝑋 the number 𝑑𝑖𝑎𝑚𝜌 (𝐴) = sup{𝜌(𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝐴} is the 𝜌-diameter of the set 𝐴.
Consider that 𝑑𝑖𝑎𝑚𝜌 (∅) = 0. There exists a set 𝑋/𝜌, a metric 𝑑 on 𝑋/𝜌 and a mapping
𝑝𝜌 : 𝑋 −→ 𝑋/𝜌 such that 𝑑 (𝑝𝜌 (𝑥), 𝑝𝜌 (𝑦)) = 𝜌(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 . The metric space
(𝑋/𝜌, 𝑑) is called the quotient space of the space 𝑋 relatively to the pseudometric 𝜌.

Denote by 𝜔𝑋 the Wallman compactification of a space 𝑋 .

Definition 2.1. A family F of subsets of a 𝑇1-space 𝑋 is complete if there exists a 𝐺 𝛿-
subset 𝑌 of the Wallman compactification 𝜔𝑋 of the space 𝑋 such that 𝑋 ⊆ 𝑌 and any
subset 𝐹 ∈ F is closed in 𝑌 .

Any family of compact subsets of a regular space is complete.

Proposition 2.1. Let 𝑔 : 𝑋 −→ 𝑌 be an open continuous mapping of a regular space 𝑋

onto a space 𝑌 and F = {𝑔−1(𝑦) : 𝑦 ∈ 𝑌 } be a complete family of subsets of the space 𝑋 .
Then:

(1) 𝜓(𝑌 ) ≤ 𝜓(𝑋).
(2) 𝜓(𝑔(𝑥), 𝑌 ) ≤ 𝜓(𝑥, 𝑋) for every 𝑥 ∈ 𝑋 .
(3) 𝜓(𝑥, 𝑋) = 𝜓(𝑥, 𝑔−1(𝑔(𝑥))) + 𝜓(𝑔(𝑥), 𝑌 ) for every point 𝑥 ∈ 𝑋 .

Proof. There exists a sequence {𝐻𝑛 : 𝑛 ∈ N} of open subsets of space 𝜔𝑋 such that
𝑋 ⊂ 𝑍 =∩{𝐻𝑛 : 𝑛 ∈ N} and any subset 𝐹 ∈ F is closed in 𝑍 . We assume that 𝐻𝑛+1 ⊂ 𝐻𝑛

for every 𝑛 ∈ N.
Fix a point 𝑎 ∈ 𝑋 . There exists a family U of open subsets of the space 𝑋 with the

conditions:
- ∩U = {𝑎} and |U| = 𝜓(𝑎, 𝑋);
- for any𝑈,𝑉 ∈ U and 𝑛 ∈ N there exists𝑊 = 𝑤(𝑈,𝑉, 𝑛) ∈ U such that 𝑐𝑙𝑋𝑊 ⊆ 𝑈∩𝑉

and 𝑐𝑙𝑍𝑊 ⊂ 𝐻𝑛.
We put V = {𝑉 = 𝑔(𝑈) : 𝑈 ∈ U}. By construction |V| ≤ |U|. We affirm that ∩V =

{𝑔(𝑎)}. Fix 𝑏 ∈ 𝑌 such that 𝑏 ≠ 𝑓 (𝑎).
By construction, b = {𝑐𝑙𝜔𝑋 𝑓 (𝑈) : 𝑈 ∈ U} is a centered family of closed subsets of

the compact space 𝜔𝑋 and ∩b ⊆ 𝑍 . The set 𝐹 (𝑏) = 𝑐𝑙𝜔𝑋𝑔
−1(𝑏) is a compact subset of

𝜔𝑋 and 𝐹 (𝑏) ∩ 𝑍 ⊂ 𝑋 .
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By construction, b (𝑏) = {𝐹 (𝑏) ∩ 𝑐𝑙𝜔𝑋 𝑓 (𝑈) : 𝑈 ∈ U} is a family of closed subsets
of the compact space 𝜔𝑋 and ∩b (𝑏) = ∅. Since for any two sets 𝐴, 𝐵 ∈ b (𝑏) there exists
𝐶 ∈ b (𝑏) such that𝐶 ⊂ 𝐴∩𝐵. Therefore, there exists𝑈 ∈ U such that 𝑐𝑙𝜔𝑋𝑈∩𝐹 (𝑏) = ∅,
𝑈∩𝑔−1(𝑏) = ∅ and 𝑏 ∉ 𝑔(𝑈). Therefore∩V = {𝑔(𝑎)}. Assertion 2 is proved. Assertions
1 and 3 follow from assertion 2. �

Corollary 2.1. Let 𝑔 : 𝑋 −→ 𝑌 be an open continuous mapping of a regular space 𝑋

onto a space 𝑌 and F = {𝑔−1(𝑦) : 𝑦 ∈ 𝑌 } be a family of compact subsets of the space 𝑌 .
Then:

(1) 𝜓(𝑌 ) ≤ 𝜓(𝑋).
(2) 𝜓(𝑔(𝑥), 𝑌 ) ≤ 𝜓(𝑥, 𝑋) for any point 𝑥 ∈ 𝑋 .
(3) 𝜓(𝑥, 𝑋) = 𝜓(𝑥, 𝑔−1(𝑔(𝑥))) + 𝜓(𝑔(𝑥), 𝑌 ) for any point 𝑥 ∈ 𝑋 .

Definition 2.2. [11]. A family F of subsets of a𝑇1-space 𝑋 is said to be jointly metrizable
if there is a metric 𝑑 on the set 𝑋 such that 𝑑 metrizes all subspaces of 𝑋 which belong to
F , that is, the restriction of 𝑑 to 𝐴 generates the subspace topology on 𝐴 for every 𝐴 ∈ F .

Definition 2.3. A family F of subsets of a 𝑇1-space 𝑋 is said to be jointly continuous
(complete) metrizable if there is a continuous metric 𝑑 on the space 𝑋 such that 𝑑

(complete) metrizes all subspaces of 𝑋 which belong to F . A jointly continuous complete
metrizable family of subsets is called uniformly complete.

The spaces with metrizable familes of sets were studied in [9, 10, 11, 20, 21, 31, 30].

Proposition 2.2. Let F be a uniformly complete family of subspaces of the space 𝑋 . Then
the family F is complete.

Proof. There exists a continuous metric 𝑑 which complete metrizes all subspaces of 𝑋
which belong to F . Let (𝑌, 𝜌) be the metric completion of the metric space (𝑋, 𝑑). The
mapping 𝑓 : 𝑋 −→ 𝑌 , where 𝑓 (𝑥) = 𝑥 for each 𝑥 ∈ 𝑋 , is a continuous injection: if
𝑥, 𝑦 ∈ 𝑋 , then 𝑑 (𝑥, 𝑦) = 𝜌( 𝑓 (𝑥), 𝑓 (𝑦)) and 𝑥 = 𝑦 provided 𝑓 (𝑥) = 𝑓 (𝑦).

Since𝑌 is a metric space and any metric space is normal, then there exists a continuous
mapping 𝑔 : 𝜔𝑋 −→ 𝛽𝑌 = 𝜔𝑋 such that 𝑔(𝑥) = 𝑓 (𝑥) for each 𝑥 ∈ 𝑋 . As a complete
metric space the space 𝑌 is a 𝐺 𝛿-subset of 𝛽𝑌 . Hence 𝑍 = 𝑔−1(𝑌 ) is a 𝐺 𝛿-subset of
𝜔𝑋 and 𝑋 ⊆ 𝑍 . Fix 𝐴 ∈ F . Since (𝐴, 𝑑) = ( 𝑓 (𝐴), 𝜌) is a complete metric space,
then 𝐴 = 𝑓 (𝐴) is a closed subset of the space 𝑌 , 𝐴 is a closed subset of the space 𝑋

and 𝑔−1(𝐴) ∩ 𝑍 is a closed subspace of the space 𝑍 . Since 𝐴 is a closed subspace of
the space 𝑋 we have 𝑐𝑙𝜔𝑋 𝐴 = 𝜔𝐴 and 𝑐𝑙𝜔𝑌 𝑓 (𝐴) = 𝜔 𝑓 (𝐴). Since 𝑓 |𝐴 : 𝐴 −→ 𝑓 (𝐴)
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is a homeomorphism, 𝑔 |𝑐𝑙𝜔𝑋 𝐴 : 𝑐𝑙𝜔𝑋 𝐴 −→ 𝑐𝑙𝜔𝑌 𝑓 (𝐴) is a homeomorphism and 𝐴 =
𝑔−1( 𝑓 (𝐴)) is a closed subset of the space 𝑍 . The proof is complete. �

Definition 2.4. A mapping 𝑓 : 𝑋 −→ 𝑌 of a space 𝑋 into a space 𝑌 is called:
- a complete mapping if the family { 𝑓 −1(𝑦) : 𝑦 ∈ 𝑌 } is a complete family of subspaces

of the space 𝑋;
- a uniformly complete mapping if the family { 𝑓 −1(𝑦) : 𝑦 ∈ 𝑌 } is a complete family of

subspaces of the space 𝑋 .

3. On pseudocharacter of rectifiable spaces

A rectification on a space 𝑋 is a homeomorphism 𝜑 : 𝑋 × 𝑋 −→ 𝑋 × 𝑋 with the
following two properties:

- 𝜑({𝑥} × 𝑋) = {𝑥} × 𝑋 for every 𝑥 ∈ 𝑋;
- there exists a point 𝑒 ∈ 𝑋 such that 𝜑(𝑥, 𝑥) = (𝑥, 𝑒) for every point 𝑥 ∈ 𝑋 .
The point 𝑒 ∈ 𝑋 is called the neutral element of the space 𝑋 . A space with a rectification

is called a rectifiable space. Every rectifiable space is homogeneous (see [7, 16, 17, 18]).
A topological space 𝑆 is rectifiable (see [16, 17, 18]) if and only if there are two

continuous mappings 𝑝, 𝑞 : 𝑆 × 𝑆 −→ 𝑆 such that for any 𝑥, 𝑦 ∈ 𝑆 and some fixed 𝑒 ∈ 𝑆

the next identities hold: 𝑝(𝑥, 𝑞(𝑥, 𝑦)) = 𝑞(𝑥, 𝑝(𝑥, 𝑦)) = 𝑦, 𝑞(𝑥, 𝑥) = 𝑒.
Any rectifiable 𝑇0-space is a Hausdorff space. Fix a point 𝑠 ∈ 𝑆. Then the mappings

𝑃𝑠 (𝑥) = 𝑝(𝑠, 𝑥) and 𝑄𝑠 (𝑥) = 𝑞(𝑠, 𝑥) are homeomorphisms of the space 𝑆, 𝑃−1
𝑠 = 𝑄𝑠,

𝑄𝑠 (𝑒) = 𝑒 and 𝑃𝑠 (𝑒) = 𝑠. Hence 𝑆 is a homogeneous space and 𝜓(𝑆) = 𝜓(𝑒, 𝑆).
Obviously, 𝜓(𝑆) ≤ Ψ(𝑆) and 𝜓(𝑆) ≤ Δ(𝑆).

Any topological quasigroup is a rectifiable space..

Theorem 3.1. Let 𝑆 be a rectifiable 𝑇0-space. Then 𝜓(𝑒, 𝑆) = 𝜓(𝑆) = Ψ(𝑆) = Δ(𝑆).

Proof. Any rectifiable 𝑇0-spac is a Hausdorff space. Fix a rectification 𝜑 : 𝑆 × 𝑆 −→
𝑆 × 𝑆 on a space 𝑆 with the neutral point 𝑒 ∈ 𝑆.

Let U be a family of open subsets of 𝑆 and ∩U = {𝑒}. For any set 𝑈 ∈ U we put
𝑉 (𝑈) = 𝑆 × 𝑈 and 𝑊 (𝑈) = 𝜑−1(𝑉 (𝑈)). Since 𝜑(Δ𝑆) = 𝑆 × {𝑒} ⊂ 𝑉 (𝑈) and 𝜑 is a
homeomorphism, we have Δ𝑆 ⊂ 𝑊 (𝑈) for any𝑈 ∈ U and the sets𝑉 (𝑈), 𝑊 (𝑈) are open
in 𝑆 × 𝑆.

Since ∩U = {𝑒} and ∩{𝑉 (𝑈) : 𝑈 ∈ U} = 𝑆 × {𝑒}, we have ∩{𝑊 (𝑈) : 𝑈 ∈ U} =
Δ𝑆 . Therefore Δ(𝑆) ≤ 𝜓(𝑆). Obviously, 𝜓(𝑋) ≤ Ψ(𝑆) and 𝜓(𝑆) ≤ Δ(𝑆). The proof is
complete. �

Example 3.1. Let 𝑀 = R be the real numbers, Q be the rational numbers and 𝑇𝑀 =
{𝑈 : 𝑈 is open in R} ∪ {𝐴 ⊂ R : 𝐴 ∩ Q = ∅} be the topology on 𝑀 . Then (𝑀,𝑇𝑀 ) is a
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topological space called the Michael line. The space 𝑀 is a paracompact submetrizable
space with first axiom of countability and the set Q is closed and a non 𝐺 𝛿-subset of
𝑀 . The free topological group 𝐹 (𝑀) and the Abelian free topological group 𝐴(𝑀) are
submetrizable groups. Any topological group is a rectifiable space. Since 𝑀 is a closed
subspace of the free groups, the set Q is closed and is not a 𝐺 𝛿-subset in 𝐹 (𝑀) and
𝐴(𝑀). Hence, if 𝐺 ∈ {𝐹 (𝑀), 𝐴(𝑀)}, then 𝜓(𝐺) = Δ(𝐺) = ℵ0, Ψ(𝐺) > ℵ0 and 𝐺 is a
submetrizable group.

4. Spaces with monotonical pseudo-bases

Let 𝑋 be a space.
Let 𝛾 = {𝛾𝑛 = {𝑈𝛼 : 𝛼 ∈ 𝐴𝑛} : 𝑛 ∈ N} be a sequence of open families of 𝑋 , and let 𝜋

= {𝜋𝑛 : 𝐴𝑛+1 → 𝐴𝑛 : 𝑛 ∈ N} be a sequence of mappings. A sequence 𝛼 = {𝛼𝑛 : 𝑛 ∈ N}
is called a 𝑐-sequence if 𝛼𝑛 ∈ 𝐴𝑛 and 𝜋𝑛 (𝛼𝑛+1) = 𝛼𝑛 for every 𝑛 ∈ N. A 𝑐-sequence
𝛼 = {𝛼𝑛 : 𝑛 ∈ N} is called an 𝑚𝑐-sequence if ∩{𝑈𝛼𝑛

: 𝑛 ∈ N} is nonempty.
Consider the following conditions:
(𝑆1) ∪{𝑈𝛽 : 𝛽 ∈ 𝐴𝑛} = 𝑋 for each 𝑛 ∈ N.
(𝑆2) ∪{𝑈𝛽 : 𝛽 ∈ 𝜋−1

𝑛 (𝛼)} = 𝑈𝛼 for all 𝛼 ∈ 𝐴𝑛 and 𝑛 ∈ N.
The sequence (𝛾, 𝜋) = ({𝛾𝑛 = {𝑈𝛼 : 𝛼 ∈ 𝐴𝑛} : 𝑛 ∈ N}, {𝜋𝑛 : 𝐴𝑛+1 → 𝐴𝑛 : 𝑛 ∈ N}) is

called an 𝐴-sieve on the space 𝑋 .

Definition 4.1. A space 𝑋 is called a space with a pseudo-base of countable order if there
exists an 𝐴-sieve (𝛾, 𝜋) = ({𝛾𝑛 = {𝑈𝛼 : 𝛼 ∈ 𝐴𝑛} : 𝑛 ∈ N}, {𝜋𝑛 : 𝐴𝑛+1 → 𝐴𝑛 : 𝑛 ∈ N})
such that if 𝛼 = {𝛼𝑛 : 𝑛 ∈ N} is a 𝑐-sequence, then ∩{𝑈𝛼𝑛

: 𝑛 ∈ N} is empty or a
singleton set.

Definition 4.2. A space 𝑋 is called a space with a uniform pseudo-base if there exists an
𝐴-sieve (𝛾, 𝜋) = ({𝛾𝑛 = {𝑈𝛼 : 𝛼 ∈ 𝐴𝑛} : 𝑛 ∈ N}, {𝜋𝑛 : 𝐴𝑛+1 → 𝐴𝑛 : 𝑛 ∈ N}) such that:

- any cover 𝛾𝑛 is point-finite;
- if 𝛼 = {𝛼𝑛 : 𝑛 ∈ N} is a 𝑐-sequence, then ∩{𝑈𝛼𝑛

: 𝑛 ∈ N} is empty or a singleton set.

Example 4.1. A base B of a space 𝑋 is called a uniform base if for any open set 𝑉 of
𝑋 and each point 𝑥 ∈ 𝑉 the set {𝑈 ∈ B : 𝑥 ∈ 𝑈,𝑈 𝑉 ≠ ∅} is finite. The concept of a
uniform base was introduced by P. S. Alexandroff [1]. A. V. Arhangel’skii has proved (see
[3, 4]) that a space is an open continuous image with compact fibers of a metric space if
and only if 𝑋 is a space with a uniform base. Any regular space with a uniform base is a
space with a uniform pseudo-base.
Example 4.4. Recall that a collection of sets is said to be perfectly decreasing if and
only if each of its elements properly includes an element of the collection. A base B of
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a space 𝑋 is called a base of countable order if for any perfectly decreasing collection of
sets b ⊂ B and any point 𝑥 ∈ ∩b the family b is a base of 𝑋 at the point 𝑥. The concept
of a uniform base was introduced by A. V. Arhangel’skii [2, 3, 4]. H.H. Wicke and J. M.
Worrell has proved (see [33]) that a space is an open continuous image with a complete
family of fibers of a metric space if and only if 𝑋 is a space with a base of countable
order. Any regular space with a base of countable order is a space with a pseudo-base of
countable order.

Fix a 𝑇1-space 𝑋 with a pseudo-base of countable order (𝛾, 𝜋) = ({𝛾𝑛 = {𝑈𝛼 : 𝛼 ∈
𝐴𝑛} : 𝑛 ∈ N}, {𝜋𝑛 : 𝐴𝑛+1 → 𝐴𝑛 : 𝑛 ∈ N}).

On any set 𝐴𝑛 we consider the discrete topology. Denote by 𝐴 the family of all 𝑚𝑐-
sequences 𝛼 = (𝛼𝑛 ∈ 𝐴𝑛 : 𝑛 ∈ N). If 𝛼 = (𝛼𝑛 ∈ 𝐴𝑛 : 𝑛 ∈ N) and 𝛽 = (𝛽𝑛 ∈ 𝐴𝑛 : 𝑛 ∈ N),
then we put 𝜌(𝛼, 𝛽) = Σ{2−𝑛 : 𝛼𝑛 ≠ 𝛽𝑛, 𝑛 ∈ N}. Then (𝐴, 𝜌) is a metric space. If
𝑚 ∈ N and ` ∈ 𝐴𝑚, then we put 𝑉 (`, 𝑚) = {𝛼 = (𝛼𝑛 : 𝑛 ∈ N) ∈ 𝐴 : 𝛼𝑚 = `}. If 𝛼 =
(𝛼𝑛 : 𝑛 ∈ N) ∈ 𝐴, then {𝑉 (𝛼𝑛, 𝑛) : 𝑛 ∈ N} is a base of the point 𝛼 in 𝐴 in the topology
𝑇 (𝜌). The metric 𝜌 is the Baire metric on the product of a sequence of discrete spaces.

For every point 𝛼 = (𝛼𝑛 ∈ 𝐴𝑛 : 𝑛 ∈ N) ∈ 𝐴 we put 𝑓 (𝛼) = ∩(𝑈𝛼𝑛
: 𝑛 ∈ N).

Property 1. 𝑓 : 𝐴 −→ 𝑋 is a single-valued mapping of the set 𝐴 onto the space 𝑋 .
Fix a point 𝛼 = (𝛼𝑛 ∈ 𝐴𝑛 : 𝑛 ∈ N) ∈ 𝐴. Since 𝛼 is an 𝑚𝑐-sequence, 𝑓 (𝛼) ≠ ∅. Fix

𝑥 ∈ 𝑓 (𝛼) and 𝑦 ∈ 𝑋 \ {𝑥}. The set 𝑈 = 𝑋 \ {𝑥} is open in 𝑋 . Then there exist an open
subset 𝑉 of 𝑋 and a natural number 𝑚 ∈ N such that 𝑥 ∈ 𝑉 ⊂ 𝑋 𝑈 and 𝑈𝛼𝑚

∩ 𝑀 ⊆ 𝑈

provided 𝑀 ∈ A and 𝑀 ∩ 𝑉 ≠ ∅. Hence 𝑓 (𝛼) ⊂ 𝑈𝛼𝑚
⊂ 𝑈 and 𝑦 ∉ 𝑓 (𝛼). Property 1 is

proved.
Let 𝑇 (𝜌) be the topology on 𝐴 generated by the metric 𝜌. On 𝐴 consider the topology

𝑇 generated by the open base B = {𝑈 ∩ 𝑓 −1(𝑉) : 𝑈 ∈ 𝑇 (𝜌), 𝑉 is an open subset of 𝑋}.
Obviously, (𝐴,𝑇) is a Hausdorff space and 𝜌 is a continuous metric on the space 𝐴.

Property 2. The mapping 𝑓 : 𝐴 −→ 𝑋 is an open continuous mapping of the space 𝐴

onto the space 𝑋 .
Since 𝑓 −1(𝑉) ∈ B ⊂ 𝑇 for any open subset 𝑉 of the space 𝑋 , the mapping 𝑓 is

continuous. Let 𝑈 be an open subset of 𝐴 and 𝛼 = (𝛼𝑛 ∈ 𝐴𝑛 : 𝑛 ∈ N) ∈ 𝑈. Then there
exist an open subset 𝑉 of 𝑋 and 𝑚 ∈ N such that 𝑉𝛼,𝑛 ∩ 𝑓 −1(𝑉) ⊂ 𝑈. Then 𝑓 (𝑉 (𝛼, 𝑛))
= 𝑈𝛼𝑛

and the set 𝑓 (𝑉𝛼,𝑛 ∩ 𝑓 −1(𝑉)) = 𝑈𝛼𝑛
∩𝑉 is open. Therefore, the set 𝑓 (𝑈) is open

in 𝑋 as the union of open sets. Property 2 is proved.
Property 3. If 𝑎 ∈ 𝑋 , then on 𝑓 −1(𝑎) the topologies 𝑇 (𝜌) and 𝑇 coincide and the set

𝑓 −1(𝑎) is complete metrizable by the metric 𝜌. Hence 𝑓 is a uniformly complete mapping.
By construction, the topologies 𝑇 (𝜌) and 𝑇 coincide on 𝑓 −1(𝑎). We put 𝐴𝑛 (𝑎) =

{𝛼 ∈ 𝐴𝑛 : 𝑎 ∈ 𝑈𝛼}. In this case the set 𝐴(𝑎) = 𝑓 −1(𝑎) = 𝐴 ∩ Π{𝐴𝑛 (𝑎) : 𝑛 ∈ N} is a
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closed subset of the space Π{𝐴𝑛 : 𝑛 ∈ N} with the Baire metric 𝜌. Hence (𝐴(𝑎), 𝜌) is a
complete metric space. Property 3 is proved.

Property 4. Assume that the cover 𝛾𝑛 is point-finite for any 𝑛 ∈ N. Then the fibers
𝑓 −1(𝑥), 𝑥 ∈ 𝑋 , are compact subsets of the space 𝐴.

In this case the sets 𝐴𝑛 (𝑎), 𝑎 ∈ 𝑋 , are finite, the space Π{𝐴𝑛 (𝑎) : 𝑛 ∈ N} is compact
and 𝑓 −1(𝑎) is compact as a closed subset of the space Π{𝐴𝑛 (𝑎) : 𝑛 ∈ N}. Property 4 is
proved.

Property 5. If 𝑋 is a 𝑇𝑖-space and 𝑖 ∈ {2, 3, 31
2 }, then (𝐴,𝑇) is a 𝑇𝑖-space too.

By construction, (𝐴,𝑇) is a subspace of the product of a metric space 𝐴 and a 𝑇𝑖-space
𝑋 . Property 5 is proved.

From properties 1 - 5 it follows the next two theorems.

Theorem 4.1. Let 𝑋 be a space with a pseudo-base of countable order. Then there exist a
submetrizable space 𝑆 and an open continuous uniformly complete mapping 𝑓 : 𝑆 −→ 𝑋

of the space 𝑆 onto the space 𝑋 . If the space 𝑋 is regular or completely regular, then the
space 𝑆 is regular or complete regular too.

Theorem 4.2. Let 𝑋 be a space with a uniform pseudo-base. Then there exist a sub-
metrizable space 𝑆 and an open continuous compact mapping 𝑓 : 𝑆 −→ 𝑋 of the space
𝑆 onto the space 𝑋 . If the space 𝑋 is regular or completely regular, then the space 𝑆 is
regular or complete regular too.

Theorem 4.3. Let 𝑋 be a regular space with a pseudo-base of countable order and F be
a complete family of subsets of 𝑋 . Then there exist a submetrizable space 𝐴, a continuous
pseudometric 𝑑 on 𝐴 and an open continuous uniformly complete mapping 𝑓 : 𝐴 −→ 𝑋

of the space 𝐴 onto the space 𝑋 such that for any 𝐹 ∈ F the subpace 𝑓 −1(𝐹) is complete
metrizable by the metric 𝑑. In particular, each subspace 𝐹 ∈ F has a complete base of
countable order.

Proof. Fix a sequence {𝑉𝑛 : 𝑛 ∈ N} of open subsets of the Wallman compactification 𝜔𝑋

such that 𝑋 ⊂ 𝑍 = ∩{𝑉𝑛 : 𝑛 ∈ N} and the set 𝐹 is closed in the space 𝑍 for each 𝐹 ∈ F .
Since 𝑋 is a regular space, on 𝑋 there exists a pseudo-base of countable order (𝛾, 𝜋) =

({𝛾𝑛 = {𝑈𝛼 : 𝛼 ∈ 𝐴𝑛} : 𝑛 ∈ N}, {𝜋𝑛 : 𝐴𝑛+1 → 𝐴𝑛 : 𝑛 ∈ N}) such that:
(𝑆3) ∪{𝑈𝛽 : 𝛽 ∈ 𝜋−1

𝑛 (𝛼)} = ∪{𝑐𝑙𝑋𝑈𝛽 : 𝛽 ∈ 𝜋−1
𝑛 (𝛼)} = 𝑈𝛼 for all 𝛼 ∈ 𝐴𝑛 and 𝑛 ∈ N;

(𝑆4)𝑈𝛼 ⊆ 𝑐𝑙𝜔𝑋𝑈𝛼 ⊂ 𝑉𝑛 for all 𝑛 ∈ N and 𝛼 ∈ 𝐴𝑛.
Fix a set 𝐹 ∈ F and a 𝑐-sequence 𝛼 = {𝛼𝑛 : 𝑛 ∈ N} such that 𝐹 ∩ 𝑈𝛼𝑛

≠ ∅
for any 𝑛 ∈ N. Then, since 𝐹 is a closed subset of 𝑍 , ∩{𝐹 ∩ 𝑈𝛼𝑛

: 𝑛 ∈ N} =
∩{𝑐𝑙𝜔𝑋 (𝐹 ∩ 𝑈𝛼𝑛

) : 𝑛 ∈ N} is a singleton set {𝑏} ⊂ 𝐹 and {𝐹 ∩ 𝑈𝛼𝑛
: 𝑛 ∈ N} is
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a base of the subspace 𝐹 at the point 𝑏 ∈ 𝐹. Hence the subspace 𝐹 has a complete base
of countable order (see [8]).

Now we consider the space 𝐴 =
∏{𝐴𝑛 : 𝑛 ∈ N} with the Baire metric 𝑑 and the

open continuous projection 𝑓 : 𝐴 −→ 𝑋 . In this case 𝑓 −1(𝐹) is complete metrizable by
the metric 𝑑 as a closed subset of

∏{𝐴𝑛 : 𝑛 ∈ N} and 𝑓 | 𝑓 −1(𝐹) : 𝑓 −1(𝐹) −→ 𝐹 is a
continuous open mapping of ( 𝑓 −1(𝐹), 𝑑) onto 𝐹. The proof is complete. �

5. Open images of submetrizable spaces

Theorem 5.1. Let 𝑓 : 𝑋 −→ 𝑌 be an open continuous complete mapping of a regular
space 𝑋 with a pseudo-base of countable order onto a space 𝑌 . Then 𝑌 is a space with a
pseudo-base of countable order.

Proof. Fix a sequence {𝑉𝑛 : 𝑛 ∈ N} of open subsets of the Wallman compactification
𝜔𝑋 such that 𝑋 ⊂ 𝑍 = ∩{𝑉𝑛 : 𝑛 ∈ N} and the set 𝑓 −1(𝑦) is closed in the space 𝑍 for each
point 𝑦 ∈ 𝑌 .

Since 𝑋 is a regular space, on 𝑋 there exists a pseudo-base of countable order (𝛾, 𝜋) =
({𝛾𝑛 = {𝑈𝛼 : 𝛼 ∈ 𝐴𝑛} : 𝑛 ∈ N}, {𝜋𝑛 : 𝐴𝑛+1 → 𝐴𝑛 : 𝑛 ∈ N}) such that:

(𝑆3) ∪{𝑈𝛽 : 𝛽 ∈ 𝜋−1
𝑛 (𝛼)} = ∪{𝑐𝑙𝑋𝑈𝛽 : 𝛽 ∈ 𝜋−1

𝑛 (𝛼)} = 𝑈𝛼 for all 𝛼 ∈ 𝐴𝑛 and 𝑛 ∈ N;
(𝑆4)𝑈𝛼 ⊆ 𝑐𝑙𝜔𝑋𝑈𝛼 ⊂ 𝑉𝑛 for all 𝑛 ∈ N and 𝛼 ∈ 𝐴𝑛.
Fix a point 𝑏 ∈ 𝑌 and a 𝑐-sequence 𝛼 = {𝛼𝑛 : 𝑛 ∈ N} such that 𝑏 ∈ ∩{𝑊𝛼𝑛

= 𝑓 (𝑈𝛼𝑛
) :

𝑛 ∈ N}.
Let 𝑎 ∈ 𝑋 and 𝑓 −1( 𝑓 (𝑎)) ∩𝑈𝛼𝑛

≠ ∅ for each 𝑛 ∈ N. We affirm that 𝑓 (𝑎) = 𝑏.
The sets 𝐻 (𝑎) = 𝑐𝑙𝜔𝑋 𝑓 −1( 𝑓 (𝑎)) and 𝐹𝑛 = 𝑐𝑙𝜔𝑋𝑈𝛼𝑛

are closed in a compact space𝜔𝑋

and 𝐹𝑛+1 ⊂ 𝐹𝑛, 𝐹𝑛 ∩ 𝐻 (𝑎) ≠ ∅ for each 𝑛 ∈ N. Hence 𝐹 = ∩{𝐹𝑛 ∩ 𝐻 (𝑎) : 𝑛 ∈ N} ≠ ∅.
Since 𝐹𝑛 ⊂ 𝑉𝑛 for each 𝑛 ∈ N, we have 𝐹 ⊂ 𝑍 . Since 𝑓 −1( 𝑓 (𝑎)) is a closed subset of
𝑍 and 𝐻 (𝑎) ∩ 𝑍 = 𝑓 −1( 𝑓 (𝑎)), we have 𝐹 ⊆ 𝑓 −1( 𝑓 (𝑎)). Then 𝑎 ∈ ∩{𝑈𝛼𝑛

: 𝑛 ∈ N} =
∩{𝑐𝑙𝑋𝑈𝛼𝑛

: 𝑛 ∈ N} = 𝐹 and 𝑓 (𝑎) = 𝑏.
Therefore for any 𝑐-sequence 𝛼 = {𝛼𝑛 : 𝑛 ∈ N} we have:
- the set ∩{𝑊𝛼𝑛

= 𝑓 (𝑈𝛼𝑛
) : 𝑛 ∈ N} is empty or a singleton set;

- the set ∩{𝑊𝛼𝑛
: 𝑛 ∈ N} is a singleton set if and only if the set ∩{𝑈𝛼𝑛

: 𝑛 ∈ N} is a
singleton set;

- ∩{𝑊𝛼𝑛
: 𝑛 ∈ N} = 𝑓 (∩{𝑈𝛼𝑛

: 𝑛 ∈ N}).
Therefore ( 𝑓 (𝛾), 𝜋) = ({ 𝑓 (𝛾𝑛) = {𝑊𝛼 = 𝑓 (𝑈𝛼) : 𝛼 ∈ 𝐴𝑛} : 𝑛 ∈ N}, {𝜋𝑛 : 𝐴𝑛+1 →

𝐴𝑛 : 𝑛 ∈ N}) is a pseudo-base of countable order of the space 𝑌 . �

Since any space with a 𝐺 𝛿-diagonal is a space with a pseudo-base of countable order,
from Theorem 5.1 it follows
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Corollary 5.1. Let 𝑓 : 𝑋 −→ 𝑌 be an open continuous complete mapping of a regular
space 𝑋 with a 𝐺 𝛿-diagonal onto a space 𝑌 . Then 𝑌 is a space with a pseudo-base of
countable order.

Corollary 5.2. For a regular space 𝑋 the following assertions are equivalent:

(1) 𝑋 is a space with a pseudo-base of countable order.
(2) 𝑋 is an open continuous complete image of some regular space with a 𝐺 𝛿-

diagonal.
(3) 𝑋 is an open continuous complete image of some regular submetrizable space.

Theorem 5.2. Let 𝑓 : 𝑋 −→ 𝑌 be an open continuous uniformly complete mapping of a
submetrizable space 𝑋 onto a space 𝑌 . Then 𝑌 is space with a pseudo-base of countable
order. If the mapping 𝑓 is compact, then 𝑌 is a space with a uniform pseudo-base.

Proof. Assume that the mapping 𝑓 is uniformly complete relatively to the continuous
metric 𝑑 and 𝑇 be the topology of the space 𝑋 .

Since 𝑑 is a continuous metric on 𝑋 , on 𝑋 there exists an 𝐴-sieve (𝛾, 𝜋) = ({𝛾𝑛 =

{𝑈𝛼 : 𝛼 ∈ 𝐴𝑛} : 𝑛 ∈ N}, {𝜋𝑛 : 𝐴𝑛+1 → 𝐴𝑛 : 𝑛 ∈ N}) with the following properties:
1. 𝑈𝛼 ∈ 𝑇 (𝑑) and 𝑑𝑖𝑎𝑚𝑑 (𝑈𝛼) < 2−𝑛 for all 𝑛 ∈ N and 𝛼 ∈ 𝐴𝑛.
2. 𝛾𝑛 = {𝑈𝛼 : 𝛼 ∈ 𝐴𝑛} is an open locally finite cover of the metric space (𝑋, 𝑑) for

each 𝑛 ∈ N.
By construction, since 𝑑 is a continuous metric, 𝛾𝑛 = {𝑈𝛼 : 𝛼 ∈ 𝐴𝑛} is an open locally

finite cover of the topological space 𝑋 for each 𝑛 ∈ N.
Obviously, (𝛾, 𝜋) is a uniform pseudo-base of the space 𝑋 .
For any subset 𝐴 of 𝑋 the closures 𝑐𝑙 (𝑋,𝑇 )𝐴 and 𝑐𝑙 (𝑋,𝑑)𝐴 are closed in 𝑋 , 𝑐𝑙 (𝑋,𝑇 )𝐴 ⊂

𝑐𝑙 (𝑋,𝑑)𝐴 and 𝑑𝑖𝑎𝑚𝑑 (𝑐𝑙 (𝑋,𝑑)𝐴) = 𝑑𝑖𝑎𝑚𝑑 (𝐴).
Fix a point 𝑏 ∈ 𝑌 and a 𝑐-sequence 𝛼 = {𝛼𝑛 : 𝑛 ∈ N} such that 𝑏 ∈ ∩{𝑊𝛼𝑛

= 𝑓 (𝑈𝛼𝑛
) :

𝑛 ∈ N}.
Let 𝑎 ∈ 𝑋 and 𝑓 −1( 𝑓 (𝑎)) ∩ 𝑐𝑙 (𝑋,𝑑)𝑈𝛼𝑛

≠ ∅ for each 𝑛 ∈ N. We affirm that 𝑓 (𝑎) = 𝑏.
The sets 𝐻 (𝑎) = 𝑓 −1( 𝑓 (𝑎)) and 𝐹𝑛 = 𝑐𝑙 (𝑋,𝑑)𝑈𝛼𝑛

are closed in the space (𝑋, 𝑑) and
𝐹𝑛+1 ⊂ 𝐹𝑛, 𝑑𝑖𝑎𝑚𝑑 (𝐹𝑛) ≤ 2−𝑛, 𝐹𝑛 ∩ 𝐻 (𝑎) ≠ ∅ for each 𝑛 ∈ N. Since (𝐻 (𝑎), 𝑑) is a
complete metric space, 𝐹 = ∩{𝐹𝑛 ∩ 𝐻 (𝑎) : 𝑛 ∈ N} ≠ ∅. Hence 𝐹 = {𝑎}. If 𝑓 (𝑎) ≠ 𝑏,
then 𝑎 ∉ 𝑓 −1(𝑏), 𝑓 −1(𝑏) is a closed subset of (𝑋, 𝑑) and 𝑑 (𝑎, 𝑓 −1(𝑏)) = 2𝑟 > 0. Assume
that 2−𝑚 < 𝑟. Then 𝐹𝑛 ∩ 𝑓 −1(𝑏) = ∅ and 𝑏 ∉ 𝑓 (𝐹𝑛) and 𝑏 ∉ 𝑓 (𝑈𝛼𝑛

), a contradiction.
Hence 𝑓 (𝑎) = 𝑏.

Therefore for any 𝑐-sequence 𝛼 = {𝛼𝑛 : 𝑛 ∈ N} we have:
- the set ∩{𝑊𝛼𝑛

= 𝑓 (𝑈𝛼𝑛
) : 𝑛 ∈ N} is empty or a singleton set;
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- the set∩{ 𝑓 (𝑐𝑙 (𝑋,𝑑)𝑈𝛼𝑛
) : 𝑛 ∈ N} is a singleton set if and only if the set∩{𝑐𝑙 (𝑋,𝑑)𝑈𝛼𝑛

:
𝑛 ∈ N} is a singleton set;

- ∩{𝑊𝛼𝑛
: 𝑛 ∈ N} ⊆ 𝑓 (∩{𝑐𝑙 (𝑋,𝑑)𝑈𝛼𝑛

: 𝑛 ∈ N}).
Therefore ( 𝑓 (𝛾), 𝜋) = ({ 𝑓 (𝛾𝑛) = {𝑊𝛼 = 𝑓 (𝑈𝛼) : 𝛼 ∈ 𝐴𝑛} : 𝑛 ∈ N}, {𝜋𝑛 : 𝐴𝑛+1 →

𝐴𝑛 : 𝑛 ∈ N}) is a pseudo-base of countable order of the space 𝑌 .
If 𝑓 is a compact mapping, then the covers 𝑓 (𝛾𝑛) are point-finite and ( 𝑓 (𝛾), 𝜋) is a

uniform pseudo-base. The proof is complete. �

Now let us mention the following assertion

Proposition 5.1. Any metacompact space with a pseudo-base of countable order is a
space with a uniform pseudo-base.

6. On set-valued mappings

We say that \ : 𝑋 −→ 𝑌 is a set-valued mapping of a space 𝑋 into a space 𝑌 if \ (𝑥)
is a closed non-empty subset of 𝑌 for any point 𝑥 ∈ 𝑋 . If 𝐴 ⊂ 𝑋 and 𝐵 ⊂ 𝑌 , then \ (𝐴)
= ∪{\ (𝑥) : 𝑥 ∈ 𝐴} and \−1(𝐵) = {𝑥 ∈ 𝑋 : \ (𝑥) ∩ 𝐵 ≠ ∅}. The set-valued mapping \ is
called lower (upper) semi-continuous if for any open (closed) subset 𝐻 of the space 𝑌 the
set \−1(𝐻) is open (closed) in the space 𝑋 .

Theorem 6.1. Let \ : 𝑋 −→ 𝑌 be a lower semi-continuous set-valued mapping of a
paracompact 𝑘-space 𝑋 into a submetrizable space 𝑌 and for any compact subset 𝐹
of 𝑋 there exist a compact subset 𝑒(𝐹) such that \ (𝐹) ⊂ 𝑒(𝐹). Then there exists an
upper semi-continuous mapping 𝑔 : 𝑋 −→ 𝑌 and a lower semi-continuous mapping
𝑓 : 𝑋 −→ 𝑌 such that:

(1) The sets 𝑔(𝑥) and 𝑓 (𝑥) are non-empty compact subsets of 𝑌 and 𝑓 (𝑥) ⊂ 𝑔(𝑥) ⊂
\ (𝑥) for each point 𝑥 ∈ 𝑋 .

(2) If 𝑑𝑖𝑚𝑋 = 0, then 𝑓 = 𝑔 is a continuous single-valued mapping.

Proof. Assume that 𝑑 is a continuous metric on 𝑌 . For any point 𝑥 ∈ 𝑋 the set \ (𝑥) is
closed in𝑌 , 𝑒({𝑥}) is a compact subset of𝑌 and \ (𝑥) ⊆ 𝑒({𝑥}). Hence \ (𝑥) is a metrizable
compact subset of 𝑌 for any point 𝑥 ∈ 𝑋 . In particular, the family F = {\ (𝑥); 𝑥 ∈ 𝑋}
is uniformly complete relatively to the continuous metric 𝑑. Let 𝑇 be the topology of
the space 𝑌 . By virtue of the E. Michael’s selection theorems [28, 29] there exist an
upper semi-continuous mapping 𝑔 : 𝑋 −→ (𝑌, 𝑑) and a lower semi-continuous mapping
𝑓 : 𝑋 −→ (𝑌, 𝑑) such that:

1. The sets 𝑔(𝑥) and 𝑓 (𝑥) are non-empty compact subsets of𝑌 and 𝑓 (𝑥) ⊂ 𝑔(𝑥) ⊂ \ (𝑥)
for each point 𝑥 ∈ 𝑋 .
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2. If 𝑑𝑖𝑚𝑋 = 0, then 𝑓 = 𝑔 is a continuous single-valued mapping of the space 𝑋 into
the space (𝑌, 𝑑).

Fix a compact subset 𝐹 of 𝑋 . Then the topologies 𝑇 and 𝑇 (𝑑) coincide on the compact
set 𝑒(𝐹). Hence the restrictions 𝑔 |𝐹 and 𝑓 |𝐹 are respectively upper and lower semi-
continuous mappings of 𝐹 into (𝑌,𝑇). Since 𝑋 is a 𝑘-space, the mappings 𝑔 and 𝑓 are
respectively upper and lower semi-continuous of 𝑋 into (𝑌,𝑇). The proof is complete. �

Theorem 6.2. Let \ : 𝑋 −→ 𝑌 be a lower semi-continuous mapping of a paracompact
𝑘-space 𝑋 into a locally convex linear space 𝑌 of countable pseudocharacter. Assume
that for any point 𝑥 ∈ 𝑋 the set \ (𝑥) is convex and for any compact subset 𝐹 of 𝑋 there
exist a compact subset 𝑒(𝐹) such that \ (𝐹) ⊂ 𝑒(𝐹). Then there exists a single-valued
continuous mapping 𝑔 : 𝑋 −→ 𝑌 such that 𝑔(𝑥) ∈ \ (𝑥) for each point 𝑥 ∈ 𝑋 .

Proof. For any point 𝑥 ∈ 𝑋 the set \ (𝑥) is closed in 𝑌 , 𝑒({𝑥}) is a compact subset of 𝑌
and \ (𝑥) ⊆ 𝑒({𝑥}). Hence \ (𝑥) is a compact convex subset of 𝑌 for any point 𝑥 ∈ 𝑋 .

If 𝐴 ⊂ 𝑌 , 𝐵 ⊂ 𝑌 and 𝐶 ⊂ R, then 𝐴 + 𝐵 = {𝑥 + 𝑦 : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} and 𝐶 · 𝐴 =
{𝑡 · 𝑥 : 𝑥 ∈ 𝐴, 𝑡 ∈ 𝐶}. There exists a sequence {𝑈𝑛 : 𝑛 ∈ N} of open convex subsets
of the space 𝑌 such that 𝑈𝑛+1 +𝑈𝑛+1 +𝑈𝑛+1 ⊂ 2−2𝑈𝑛 ⊂ 𝑈𝑛 = −𝑈𝑛 for each 𝑛 ∈ N and
∩{𝑈𝑛 : 𝑛 ∈ N} = {0}.

For any 𝑛 ∈ N we define the Minkowski functional 𝑝𝑛 : 𝑌 −→ [0,∞), defined
by 𝑝𝑛 (𝑦) = 𝑖𝑛 𝑓 {𝑟 ∈ [0,∞) : 𝑦 ∈ 𝑟 · 𝑈𝑛}. Let 𝑞𝑛 (𝑦) = 𝑚𝑖𝑛{1, 𝑝𝑛 (𝑦)} and 𝑞(𝑦) =
Σ{2−𝑛𝑞𝑛 (𝑦) : 𝑛 ∈ N} for each 𝑦 ∈ 𝑌 . From the properties of the Minkowski functionals
and constructions follows the next properties:

- 𝑝𝑛 (𝑢+𝑣) ≤ 𝑝𝑛 (𝑢) + 𝑝𝑛 (𝑣) and 𝑞(𝑢+𝑣) ≤ 𝑞(𝑢) +𝑞(𝑣) for each 𝑛 ∈ N and all 𝑢, 𝑣 ∈ 𝑌 ;
- 𝑞(𝑦) = 0 if and only if 𝑦 = 0;
- if 𝑛 ∈ N and 𝑦 ∈ 𝑈𝑛+1, then 𝑞𝑛+1(𝑦) = 𝑝𝑛+1(𝑦) ≤ 1, 𝑞𝑛 (𝑦) = 𝑝𝑛 (𝑦) ≤ 2−2 and

𝑞(𝑦) ≤ 2−𝑛.
Hence 𝑑 (𝑢, 𝑣) = 𝑞(𝑢 − 𝑣), 𝑢, 𝑣 ∈ 𝑌 , is an invariant continuous metric on the space 𝑌

and 𝑇 (𝑑) is a locally convex topology on the linear space 𝑌 . Therefore \ : 𝑋 −→ (𝑌, 𝑑)
is a lower semi-continuous compact and convex-valued mapping of the paracompact
space 𝑋 into a metrizable locally convex topological linear space (𝑌, 𝑑). By virtue of
E. Michael’s selection theorem [26, 27], there exists a single-valued continuous mapping
𝑔 : 𝑋 −→ (𝑌, 𝑑) a such that 𝑔(𝑥) ∈ \ (𝑥) for each point 𝑥 ∈ 𝑋 . Since 𝑋 is a 𝑘-space
and the restriction 𝑔 |𝐹 : 𝐹 −→ 𝑒(𝐹) is continuous for any compact subset 𝐹 of 𝑋 , the
mapping 𝑔 : 𝑋 −→ (𝑌,𝑇) is continuous too. The proof is complete. �

For regular spaces Theorem 6.1 follows from the next theorem.
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Theorem 6.3. Let \ : 𝑋 −→ 𝑌 be a lower semi-continuous mapping of a paracompact
𝑘-space 𝑋 into a regular space 𝑌 with a pseudo-base of countable order. Assume that for
any compact subset 𝐹 of 𝑋 there exist a compact subset 𝑒(𝐹) such that \ (𝐹) ⊂ 𝑒(𝐹). Then
there exist an upper semi-continuous mapping 𝑔 : 𝑋 −→ 𝑌 and a lower semi-continuous
mapping 𝑓 : 𝑋 −→ 𝑌 such that:

(1) The sets 𝑔(𝑥) and 𝑓 (𝑥) are non-empty compact subsets of 𝑌 and 𝑓 (𝑥) ⊂ 𝑔(𝑥) ⊂
\ (𝑥) for each point 𝑥 ∈ 𝑋 .

(2) If 𝑑𝑖𝑚𝑋 = 0, then 𝑓 = 𝑔 is a continuous single-valued mapping.

Proof. For any point 𝑥 ∈ 𝑋 the set \ (𝑥) is closed in 𝑌 , 𝑒({𝑥}) is a compact subset of
𝑌 and \ (𝑥) ⊆ 𝑒({𝑥}). Hence \ (𝑥) is a compact subset of 𝑌 for any point 𝑥 ∈ 𝑋 . Hence
F = {𝐹 ⊂ 𝑌 : 𝐹 is a compact subset of 𝑌 } is a complete family of subsets of the space 𝑌
and \ (𝑥) ∈ F for each point 𝑥 ∈ 𝑋 .

By virtue of Theorem 4.7, there exist a submetrizable space 𝐴, a continuous metric 𝑑

on 𝐴 and an open continuous uniformly complete mapping ℎ : 𝐴 −→ 𝑌 of the space 𝐴

onto the space 𝑌 such that for any 𝐹 ∈ F the subspace ℎ−1(𝐹) is complete metrizable by
the metric 𝑑. Let 𝑇 be the regular topology on the space 𝐴.

Consider the set-valued mapping Θ : 𝑋 −→ 𝐴, where Θ(𝑥) = ℎ−1(\ (𝑥)) for each
𝑥 ∈ 𝑋 . Since the mapping ℎ is open, the mapping Θ is lower semi-continuous and the
images Θ(𝑥) are complete metrizable by the metric 𝑑.

By virtue of the E. Michael’s selection theorems [28, 29] there exist an upper semi-
continuous mapping 𝐺 : 𝑋 −→ (𝐴, 𝑑) and a lower semi-continuous mapping Φ : 𝑋 −→
(𝐴, 𝑑) such that:

1. The sets 𝐺 (𝑥) and Φ(𝑥) are non-empty compact subsets of (𝐴, 𝑑) and Φ(𝑥) ⊂
𝐺 (𝑥) ⊂ Θ(𝑥) for each point 𝑥 ∈ 𝑋 .

2. If 𝑑𝑖𝑚𝑋 = 0, then Φ = 𝐺 is a continuous single-valued mapping of the space 𝑋 into
the space (𝐴, 𝑑).

Fix a compact subset 𝐹 of 𝑋 . Then the topologies 𝑇 and 𝑇 (𝑑) coincide on the compact
set ℎ−1(𝑒(𝐹)). Hence the restrictions 𝐺 |𝐹 and Φ|𝐹 are respectively upper and lower
semi-continuous mappings of 𝐹 into (𝐴,𝑇). Since 𝑋 is a 𝑘-space, the mappings 𝐺 and
Φ are respectively upper and lower semi-continuous mappings of 𝑋 into (𝐴,𝑇). Now we
put 𝑔(𝑥) = ℎ(𝐺 (𝑥)) and 𝑓 (𝑥) = ℎ(Φ(𝑥)). The proof is complete. �

Similarly, with the respective results from [13, 14, 15], we can prove other results for
selections. Let us mention the following theorem.

Theorem 6.4. Let \ : 𝑋 −→ 𝑌 be a lower semi-continuous mapping of a paracompact
𝑘-space 𝑋 into a regular space 𝑌 with a pseudo-base of countable order. Assume that
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𝑑𝑖𝑚𝑋 = 𝑚, 𝑚 ∈ N, and for any compact subset 𝐹 of 𝑋 there exist a compact subset 𝑒(𝐹)
such that \ (𝐹) ⊂ 𝑒(𝐹). Then there exists an upper semi-continuous mapping 𝑔 : 𝑋 −→ 𝑌

such that 𝑔(𝑥) ⊂ \ (𝑥) and |𝑔(𝑥) | ≤ 𝑚 + 1 for each point 𝑥 ∈ 𝑋 .

Example 6.5. Let 𝑌 = {0} ∪ {2−𝑛 : 𝑛N} be a compact subset of the reals in the usual
topology. In the article [19] was constructed a space 𝑆 and an open continuous mapping
𝑔 : 𝑆 −→ 𝑌 such that:

- 𝑑𝑖𝑚𝑆 = 0 and any compact subset of 𝑆 is finite;
- the fibers 𝑔−1(𝑦), 𝑦 ∈ 𝑌 are finite.
Hence the space 𝑆 is submetrizable, 𝑌 is a 𝑘-space as a compact space and 𝑔 is a

uniformly complete mapping. If 𝑓 : 𝑌 −→ 𝑆 is a mapping and 𝑓 (𝑦) ∈ 𝑔−1(𝑦) for each
𝑦 ∈ 𝑌 , then the mapping 𝑓 is not continuous. Thus, in the previous Theorems 6.1 - 6.4,
the requirement that the image of a compact set is contained in a compact set is essential.
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