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Abstract. For the multifrequency system of equations with linear delays and multipoint
and integral conditions, the existence and uniqueness of the solution in space is proved.
The method of averaging over fast variables is substantiated and the error of the method
is estimated, which obviously depends on the small parameter. The obtained result is
illustrated by a model example.
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Sistem multifrecventa cu multipunct si conditii integrale

Rezumat. Pentru sistemul multifrecventd de ecuatii cu intarzieri liniare i multipunct si
conditii integrale, se demonstreazd existenta si unicitatea solutiei in spatiu. Se fundamen-
teaza metoda de mediere asupra variabilelor rapide si se estimeaza eroarea metodei, care
depinde evident de parametrul mic. Rezultatul obtinut este ilustrat printr-un exemplu.

Cuvinte cheie: sistem multifrecventa, conditie integrald, metoda medierii, parametru

mic, rezonantd, estimarea erorilor, variabile lente si rapide.

1. INTRODUCTION

An important problem in nonlinear mechanics is the study of oscillatory systems,
which in the process of evolution pass through resonance. In many cases, such systems

are described by differential equations of the form

% =eX(1,a,¢p), fi_f =w(t,a)+&Y(1,a, ), (1)
where a € D C R", ¢ € R™, 0 < ¢ — small parameter, T = &f, vector-functions X and Y
2n-periodic by variables ¢1, . . ., .

An effective method of research and construction of approximate solutions of such
systems is the method of averaging on the cube of periods over fast variables ¢, [1, 2, 3].
As a result, we obtain a much simpler system of equations
% =¢eXo(1,a), 6;—": = w(t,a) + eYy(r,a), 2)
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Such a procedure does not always lead to the correct result and the deviation of slow

variables ||a(t, &) —a(et)|| = O(1) on the time intervals of the length O(&~!). The reason

for this is the resonance of frequencies, the condition of which is
(k,w(t,a)) = kiwi(t,a) + -+ kpwm(t,a) = 0, ||k]| #0. 3)

Therefore, it is necessary to impose additional conditions to ensure that the error of
the averaging method was O(g%), @ > 0, on the time interval of the length [0, Le™'],
L = const > 0. Such results have been obtained in many works, for example [1, 2, 3].

To adequately describe the processes in applied problems, it is necessary to take into
account the delay factor. Multifrequency systems with delay and initial conditions and
various types of integral conditions were studied in [4, 5, 6] and others. For such systems,
the effect of delay was found, in particular, on the frequency resonance condition [7].

In addition to substantiating the method of averaging and establishing non-improving
estimates for the error of the method of the order €, 0 < a@ < 1/m, sufficient conditions
for the existence and uniqueness or existence of the solution of the original problems are
obtained.

In this paper, the following results are obtained for a multifrequency system with a

finite number of delays and multipoint and integral conditions.

2. METHODS AND MATERIALS USED

Consider a multifrequency system of equations of the form

da
o X(1,aa, go), 4)
-
d w(T
e ) 5)
T E

the solution of which satisfies the condition

r T2
Yyaatn) = [ f(r.aneldr. ©)
v=1 71
r T2
Z.BVQD(XV):/g(T,aA, pe)dr, @)
v=1 71
where 0 < x; < - - <x, <L, 011 <1m <L t=¢t€]0,L],a €D — limited
closed area in R", ¢ € R™, parameter ¢ € (0,&9], g0 < 1, apx = (a,ll,...,a,lp),

g0@:(9091,...,g09q),0</11 <<, <1,0<0; <+ <0y £ 1,0, B, —given

numbers, a,, (1) = a(A4;7), vo;(t) = ¢(6;7). Vector-functions X, Y, f and g defined
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and smooth enough for all variables in the area G = [0, L] X D x R™4, 2x-periodic by
components of the vector gg.

Multifrequency ODE systems with integrated conditions on [0, L] by the averaging
method were first studied in [1]. Problems with integral conditions of various kinds are
actively studied and applied in applied problems [8, 9, 10].

Corresponding (4)—(7) averaged over fast variables dgg, ... dgg, the problem takes

the form .
d—“ = Xo(7.ap), ®)
-
92 _ 9@ |y (ran), ©)
T E
Za/va(xv) = / fO(T’aA)dT’ (10)
v=1 71
Y 8w = [ solr.andr. an
v=1

71

The averaged problem is much simpler compared to the original problem (4)—(7). In
particular, the problem (8), (10) for slow variables a integrates independently of fast
variables @. If the solution @(7) and the initial value ©(0) = ¢ at 7 = 0 found, then

finding fast variables is reduced to the problem of integration. Let
r
bi=> By #0. (12)
v=1

Then the initial value ¥ = %(0;y,, &) of the problem (9)—(11) takes the form

T2 Ty
v=b" - g [ (D s vyran o) |ar.
v [Tl/gO(T anedr = 3y [ (27 s far

e
0
the solution of the problem (9), (11) is

Py ¥.8) = ¢ +9(1:5,0,¢).
Let us investigate the existence and uniqueness of a continuous differentiated solution
of the problem (4)—(7) for a fairly small & € (0, &¥), €* < g9, assuming the existence of
the unique solution to the averaged problem. We will also construct an estimate of the

method of averaging of the form
Ix(r:y. 0. 8) = K(T: 3.4 8)|| < c187, (13)
where k(7;y,¥, &) = (a(T;y,l//,S),QD(T;y,l//,a)),?(T;i,J, €)= (E(r;i)@(f;i% 3))’

a = (mqg)~', ¢; = const > 0.
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The resonance condition at the point 7 for the system of equations (4)—(7) is formulated
in [7] and has the form

q
')’k(T) = Z ev(kv, wv(gvT)) =0
v=1

ky € Z, ||kl +- -+ [|kpl| # O.

3. OBTAINED RESULTS AND DISCUSSION

Let a(0;y) =y, Q(y) — matrix of the order n of the form

0() = Z (9a(xV’y) Z/ afo(T aA(T y) aa(/alyq- y)

v=1

Theorem 3.1. Let the conditions be met:

1) vector-functions X and Y 2n-periodic by components of the vector g, for each
e € (0,&0], a sufficient number of times differentiated by variables 7, a,;, ¢e;,
namely F € CL(G,0), F € C(’Mi(G,a'), F e Cfp_ﬁi(G,(T), F := (X,Y), where
[ >gm+1,G=[0,L] x D? x R™q, by constant o= > 0 limited vector-functions
X, Y and their partial derivatives in G;

2) w, € C™a71[0, L], v = 1, m and Wronsky determinant is not zero for t € [0, L];

3) there exists the unique solution to the averaged problem (8),(10), there is only
one solution to the averaged problem a(t;y) of which is the area D with some
p-circumference;

4) the inequality holds (12) and detQ(y) # 0.

Then for rather small €* € (0, &y] there is the unique solution to the problem (4)—(7)
with initial conditions Y+ u € D1 C D and y + £ € R™,

Il < e28®, €Nl < c3e®,  a=(mg)™!,

for which inequality holds (13) for each € € (&g, "] and T € [0, L], ¢ > 0 and does not

depend on €.

The proof of Theorem 3.1 is based on the application of the oscillatory integral estimate

t S

i) = [ eso)ew ([ vz

0 0
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asfort € [0,L], € € (0,g0], g € C'[0, L] Ve € (0, £0] and the fulfillment of condition

4 of the theorem takes the form
1

lklle

dg(s, )
ds

1t &)1 < o1 (sup g s. )| + = sup | ) (14)

q
where 0| > 0 and does not depend on ¢, ||k||le = > O,k |-

Oscillatory integrals for combinational frequer‘l/(;ies Vi = kiwi(T) + - + kpwm (T),
k # 0, were built and used for multifrequency ODE systems in the works of A.M.
Samoilenko and R.I. Petryshyn [1].

When proving the theorem, a simpler scheme of proving the existence and uniqueness
of the solution of the problem is proposed (4)—(7) and weaker restrictions on the right
side (4), (5).

Proof. 1f conditions 1-3 are met, it is proved [4], that the existence of the unique solution
k(T;y,¥,€8),y € D1 C D, every point y € D; enters D together with p-circumference.
Alsofory=y+u € D,

||K(T§y,l//,3)_E(TQJ’"’[’,E)” SEIEQ’ (15)

(1,€) € [0, L] x (0,&0],c1 > 0 and does not depend on &.

Let u € R" and

lull < cae® < p/2. (16)

The value of ¢4 will be defined below. It follows that when & < &1 = min(gg, (0/2c4)"™?)
the solution a(7;y + u, ¥ + &, &) lies in D with (p/2)-circumference.

From the equations (4), (8) and smoothness of vector-functions X and f for the vector
u in the initial condition for the solution a(7;y + u, ¥ + &, €) the equation is received of
the form

M= (Dl(ua'f’g)’

where vector-function

r

O (1,£,8) = =07 (D[ ) v (Riy () + (@ T+ 1,0 +£,8) =T, T + )+

v=1

+R2(/~19§:98)) +R3(ﬂ)]’
da(xy;y
Rl,v(/l) =a(xy;y+p) —a(x,;y) - %/«h

RZ(/"? é:’ 8) =

Ly

= / [f(r,an (T, + 1,0 +£,8), 00 (1.5 + 1,0 + £,8)) — fo(r,an (7Y + p))]dr,

71
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Rt = [ olrar (i3 1) - e n () - 3. NI Ry e
? = ,
For esinlation Ry, () let us apply the estimate [2]
h(5) = h(a) - Zl T (b, - al < Cllb - alP, a7)

where h — vecor-function of the variable x € D c R, h € C?>(D). Then ||Ry,(u)| <

2
C3y “,u H .
Let us write down R in the form

Ro(tip,é,¢) = /fk(T an)exp(i Z(kp%)

lk|l>0 7
+ / ot an(r. T + 10 +£.6)) — folran(r: T + )| dr =

=Ry 1(miu,é,8) + Rop(Tip, € 8).

The estimate R, »(7; u, &, €) is obtained on the basis of the estimation of the deviation
of the solutions of the systems (4), (5) and (8), (9) with the same initial conditions (15),
and the estimate R, 1 from the estimation of the integral (14). We get

0 _ — _ —
||R2,2<T;y,§,s></2|| SO flan, (154 T+ £.8) ~ A, (735 + )l <

Ly

P
< ZO’LV / ciedr =cse”,  ||Rai(tiu, &, 8)| < cee”,

v=1 7

where cg = c6(0) > 0,0 < & < &5.
Let us build an estimate R3(7; u), applying inequalities (14) and (17). We will get the

estimate

2

p
IRl < [ (Y orlan @5+ -, ()l

7 v=1

p p
+Z aciylRyl)dT < (12 = 71) Z o1y (@(r2) + crlluDllull = S llulle® + & llull,

v=1 v=1

P _ P
where ¢7 = (1, — 71)¢ X, 01,y, C7 = (T2 — T1)C1 2, T,y
y=1 v=1
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So, for ®(u, &, €) at € < &3 = min(ey, &;) the estimate received is

[®1(u. &, 8)| < IIQ_I(i,J)II(Z @y IR Nl + (ca + ce)e® +Trllull + e llull?) <

v=1

< cg(Co + Collull) e + esllll?,

—_ r - —
where cg = (¢7+¢1 2 |ay,DIQ™' (3. ¥)Il, €9 = (ca + c6)/cs, o = C7/cs.
Let in the inequality (15) ¢, = 2cgcy, € < &4 = min(es, (2¢g) ™4, (80%59)"”‘1). The

estimate received is

[®1 (. &, &)l

Reflection ®; : S; — S, where S| = {u e R™: ||u| < 028“}.

IA

[lell < c28”.

Consider the matrix derivative

w -0 (_)[ /fk(T aA)exp(lZ(kJ’()DeJ))dT+
3 & TR0

+Z/ 6f05(;a/\) 0 9 _a/l)dT+Z/ ORy v(IJ &, ¢€) dr] =

= R4(ﬂ7 é‘:’ ‘9) + R5(ﬂ7 é:’ ‘9)

Applying the estimation of the oscillatory integral (14) and estimates similar to (15)

for derivatives deviations of solutions
max (- (9o, - G0l s (ar, — d)l) < croe® (18)
I aé: J g/ aé: v v - ’

for R4(u, &, €) we will receive

1 N 3 fi(t, ap) a
IRa( &) < 1R DI D) (D sup =520 erody (12 = 11)8+

k>0 v=1 G day

+ ) supllfi(r, aA>||Z|k 1006+

k>0 G
dfx(t,ap)
+m Z (Ilklle supllfk(r,aA)ll+sglpllTll)s“] =cne?,

IkT>0 @
Now consider the estimate Rs(u, &, €). Since

OR JE e N
%” <ciye®+enylléll, v=1,p,
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then, using the estimate (18), we will get

P TZ p ]
IRs .20 < 1070, [ orveerdr+ Y [(enve® +enliélar) =
v=1 v=1
1 1

P
=0.5107((m2 — 71)%c108” Z o1y Ayt

v=1

p p
+e¥ (1 — 1) Z c12,y + |IEl[(r2 = 71) Z c13,v) = Cae® + c15l|€].

v=1 v=1
Thus, in the end we have

aqﬁ(ﬂ7§’8)

I~ 5

| < crue®+cislléll,  cia=cii+7<is.
Choose ¢ € R" and ¢ so, that
I€]l < cl6e”, & < &5 =min(eq4, (8c14)™™9),

where c1¢ = min(ci4/c15, 1), Where c1g — will be indicated below.

Then we get

aqﬁ(ﬂ’f’g)

T

1
[ 1 (19)

for each & < &5, ||u|| < 26, and ||€]| < c16&®.

Consider the derivative of the vector function

6¢H(#’§’8) —_ _n-1 . .ji
o =-0 [;i;‘yv((altl?l,v(/1)+

d R o 9 3
+a(a(xv§y+ﬂ,¢+§,8)—a(xv;}’+,u)))+£R2(ﬂ,§’8)+£133(/1)]-

. OR,
Since [|R1,, (1)l = O([lu]®). then [| 52| = O(u), therefore

aI?Lv(ﬂ)

| o

Il < cizvllpll (20)
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Let us construct an estimate for the matrix derivative

8R2 (,u’ é:’ 8)

LS = [ ((ran(o) = folran(r))drs

71

Ly

q
>l %[(fk(r,aA(r»—fk<r,aA(r>>)exp(izl<k,-,soaf<r>))]dr+
Z

IKI>07,

2

q
- / %[fk<r,a~A<r>)exp(iZI(kj’%(T)))]df=
=

R
= Ry (. &,8) + Ryo(p, &, &) + Rz (. €, &).

From the smoothness of the vector function fy(7,as) by ax we obtain

p
[R21 (i, &, )|l < Z 03,vC184, (T2 = T1)e¥ + 198 = cp0€”.

v=1

The estimate for Ry (u, &, €) is build as for Ry (u, &, €):

0
R (p.£.)] < / Z B} an (o) - an(o)l+

I£]1>0 7
a o
+||6—R2vk(,u,§, e)ll)dr < cre”.
U
Further we have
IRy (1. €.8) _ /{Z 0 fi(t,dp) 0da, (7) RS
R exp(i Y (ky, @0, (7)))+
o 1T>0 0dr, — Op o
q

+ific(T.dn (1)) Z(k], (00,0 =20, )]exp i Y- (ks 0 (0)+
j=1
d | d (1 @) 3)
#i ) (kjs 5 @o, (D)exp (i ) (kjs g (D)7 = Ryg (. &.8) + Ry (. ,0) + R (. €.,
j=1 J=1
Applying the estimates (17) and (18), we will obtain

Ly

IR (&, 8)l < ) / sup || fi (7, aA>||Z licjllc1s620 <

IkI>0y,  ©1
< (0.5(3 = tP)ers Y. llkllo sup | fi(r, an)l)e® = cxns”.
K]0 G
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Let

P

Ofc(r,an(r;y +p)) daa, (13 +u)
F =
«(7) Z Ga o

There exist constants c¢,3 and §23 such as

8fk(7' as) 5a/lv( 7) drFy(7) =

| Fe (D) = ZS pll Il | <eca, |l = | =< c23.
1

=1

Then [|RY (1, €, &l + ||R<”<u £, || < c248%, Where c24 = 24(C23,23).

Summarizing the estimates obtained, we receive

ORx;(u, ¢, €)
ou

and for the norm of the derivative ®@; by u

0D (u, &, )
ou

| < (c22+ca)e?,

l Il < IIQ_I(i)II[(Z |y leray )+
v=1

+(CIS(Z lay|xy) + C1o + €20 + €21 + €20 + €24) ¥ | = Cos|lul| + Case®.
v=1

Since ||ul| < c2&?, then

0D (u, é, e 1
||%|| < (c2Cas + Ca5)e™ < 21
u 4
if £ < &6 = min(es, (4(c2Cas +¢25)) 7.
Consider the question of finding the value of a vector &.
Before constructing the equation for the & of the form
§=D(p, ¢, ) (22)

and estimating the norm of the vector-function ®, and its derivatives by vector variables

U, &, let us introduce the following notation:
0Yo(t,ap) (9a,l / 6go(T ap) 0ay,
P y ‘d —tdr,
G5.¥) = Zﬁ Z / G Z G5

ky, 909

Il M’Q

Subtract from (7) relevant averaging conditions (11) and separate the linear parts in

them by u. After the transformation, we obtain

bé+P(y, ) =D, &, 8), (23)
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where

Ly

O(u,é,e) = / [(gO(TvaA) —go(7,an)) + Pi(7, ) + ng(ﬁ a,) exp (iq’k)]d"'_

4 k#0

k#0

—Zrlﬁv[/ (Yo(r,an) = Yo(7,dn)) + P2y (7, ) +ZYk(TaaA) exp (i‘Pk)]dT =
v=1 0

= Rﬁ(/l,f’ 8) + R7(/1’§’ 8)’

Pi(t,p) and P, , (7, u) — remnants after separating the linear part of u, their norms are
in order || u||*.
From the equation (23) and the equation u = ®(u, &, £) we obtain

f = b_l (q)(lu"f’ 8) - P@,E)‘Dl(ﬂaf, 8)) = Qz(ﬂ,f,{-j).

Let us construct an estimate of the norm of the vector-function ®(u, &, &) and its

derivatives by u and & according to the scheme of estimates for @ (u, &, £). We obtain

p
IR (. €, )|l < €278, IR7(1, €, )|l < (Z 1Bvlcae,v)e” = cage®.
v=1

Therefore,
||| < (c27 + c28)e?,

once & € (0, &s], [lull < 26, [I€]] < c168”.
Returning to the equation (22), we obtain @, such an estimate:

@2 (. &, &)l < (@I + 1Pl - |@1]) /b < c208,
where

€29 = (€27 + c28 +¢2¢30) /b, sup

dgo(t,ap)
(9— < 03,y,
Gl a/lv

P
c30 = 0_2—1 Z |ﬁv|/l1_/1 |:0'2,y(eo—2/lvxv _ 1) + O_S’V(eO'z/lsz _ eO'Z/lVTl):|.
v=1

Let ¢c3 = min(ci6, c29). Then @, : S, — S = {f eR™: €] < 6386’}.
Similarly, as for ®; we obtain estimates
0P 0P
”a_,f” <3167, Wﬁn < Tpe”. (24)
If
£ < g6 = min(es, (4c31) ", (4c3)™9),

then the norms of derivatives are limited to 0.25.
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From the estimates (19), (21) and (24), it follows that

[®3 (. €, )l < 1/2,

once 0 < & < &g, ||ull < c26%, |I€]l < c3&?, where @3 — matrix of the order m + n is

composed of derivatives @ and ®, by u and £. Hence the reflection @ — compressive,
and on the basis of the theorem on compressive mappings there is the unique solution
(u, &) foreach € € (0, gg]. For the problem (4)—(7) this means the existence of the unique
solution in the class of continuously differentiated functions.

Estimation of the error of the method of averaging with a constant ¢33 = ¢y +c1(L)ca +
c13(c3) follows from inequality (15) at y =y + u and ¢ = ¢ + £ and inequality

k(s V+p, Yy +&, 8)—k(T; 7,8, 8) || < T1(L)||ull+c1se® < (cac1(L)+cis(c3))e® = c1e”.

O

Remark 3.1. Under conditions (6) and (7) instead of scalar coefficients a, and 3, can

be matrix. In this case, instead of the condition (12) it is needed to impose a condition
r
det )" By #0.
v=1

4. EXAMPLE

Consider a single-frequency system of equations

d d 1+2
“@_y + cosyg, @ _ —T, 7€ [0,1]; (25)
dr dt €

with integral conditions

3 3

—3a(0)+2a(§) :/(1+cosg09(‘r))d‘r, 4g0(0)+g0(§) :/(1+c0sg09(7))d7, (26)

1

i

where Lpg(T) = kltp(‘[‘) + kztp(QT), ki,kr€Z,0< |k1| < |k2|, ki + k26 =0.
In the system (25) the resonance is achieved at 7 = 0, since

kiw(T) + k20w (07) = 27(k + 6%ks) = 0.

Solution for the average problem
da dp 1427 _ _3 1 _ _3 1
I, —= , —3a(0) +2a(1) = 5,480(0) + <P(Z) =3

dr  ° dt e

takes the form of

a(t)=t+y, ()= +0)1/e+y, y=1, ¥ =(g-10)/(10¢).
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The solution of the problem (25), (26) satisfies the initial condition a(0) := y =y + g,
©(0) := ¢ = + £ and takes the form

T
2

a(t;0,y,é,8) =y+1+ / COS(S—g —y)ds,
0
o(1:0,y,6,8) =y +(L+1)1/e, ' =ki + k6.

The values y and £ in the initial conditions are solutions of the equations

% 2
&= l / cos¥(s, &, e)ds, Y(s, & ¢) = L —J—f,
5 ce

1

u=2 [ cos¥(s,& e)ds— | cos¥(s,é&,e)ds.

O\

ININ

m»—-\
L]

From the estimates of the Fresnel integrals [11], it follows that

3
7

1 2 _os? .
E=— [ (cos—cos(y +¢) +sin— sin(y + &))ds =
5 ce ce
0
3 3
es Nes
= %( / cos 12dr + / sin2dt) = O(Ve)
0 0

at e— > 0. Similarly, we obtain that u = O (+/¢).

For errors of the averaging method at 7 = 1 we obtain

a(1,0,y,¢,e) —a(1,0,5) = u+2 | cos¥(s,&, e)ds = 0O(Ve),

0(1,0,3,0,6) = 5(1,0.7) =£ + ¢ [ coW(s, £, £)ds = O(¥R).

3
f
0

3
j
1
1

5. CONCLUSION

The paper gives an unimproved estimate of the averaging method for a multifrequency
system with a finite number of linear delays and integral conditions on [7}, 2] € [0, L].
The result according to the scheme presented in the paper is transferred to the case

when the integral conditions are given on the union of intervals [7;, 7;+1] which do not
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intersect. The condition of the system out of resonance can be weakened, as was done

in [1], assuming an equality of zero multiplicity of «, which does not exceed Wronsky
determinant on [0, L]. The estimation will be of the order £, 8 = 1/(mq + ). The

obtained results can be used in the study of complex oscillatory systems in the case of the

resonance, as well as in networks of coupled phase oscillators.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

REFERENCES

Samoilenko, A., Petryshyn, R. Multifrequency Oscillations of Nonlinear Systems. Dordrecht:
Boston/London: Kluwer Academic Publishers, 2004.

I'pe6enukoB, E.A., Psa6oB, 10.A. Hogvle kauecmegenivie memoodol 6 HebecHoli mexanurxe. MOCKBa:
Hayxka, 1971.

Neishtadt, A.I. Averaging, passage through resonances and capture into resonance in two-frequency
system. Russian Mathematical Surveys, 2014, vol. 69, no. 5, 771-843.

Biryn, S.U. YeepeHeHHs B 6ararouacToTHUX cucTeMax audepeHIianbHO-pyHKIIOHATBHUX PiBHSHb:
JHC. ... JOKT. ¢i3.-mart. Hayk: 01.01.02 — nudepeHuianeHi piBHsAHHA. KUiBChbKuMii HallioHaIbHUI YHIBEp-
cureT imMeHi Tapaca IlleBuenka. Kuis, 2009. 925

Biryn, S.M., Kpachokyrceka, 1.B., Tlerpumms, PI. VcepeaHeHHs B 6araTouacTOTHMX CHCTEMaXx i3
JHIHO epeTBOPEHNMH apTyMEHTaMHM i 0araTOTOYKOBUMH Ta iHTErpaJIbHUMU YMOBaMHU. BYKOGUHCbK L
Mamemamuynuii scypran, 2016, vol, 4, no. 3—4, 30-35.

Bihun, Ya., Petryshyn, R., Krasnokutska, I. Averaging method in multifrequency systems with linearly
transformed arguments and with point and integral condstions. Acta et Coomentationes, Exact and
Natural Sciences, 2018, vol. 6, no. 2, 20-27.

Bihun, Ya.l. On existence of solution and averaging for multipoint boundary-value problems for many-
frequency systems with linearly transformed argument. Nonlinear oscillations, 2008, vol. 11, no. 4,
462-471.

Boituyk, A.A., Kypasnes, B.®., Camoiinenko, A.M. Hopmanero paspewumole kpaesvie 3a0auu. Kuis:
HayxkoBa nymka, 2019.

Henderson, J., Luca, R. Boundary Value Problems for Systems of Differential, Difference and Fractional
Equation. Kluwer, Dordrecht—-Boston—London, Netherlands, 2016.

Ahmad, B., Ntouyas S.K. A study of higher-order nonlinear ordinary differential equations with four-
point nonlocal integral boundary conditions. Journal of Applied Mathematics and Computing, 2012,
vol. 39, 97-108.

[11] Bateman, H. Erdelyi, A. Higher transcendental functions. New York: McGraw-Hill, vol. I, 1953.

(Bihun Yaroslav, Petryshyn Roman, Skutar Thor, Melhyk Halyna) CHERNTVTST NATIONAL UNIVERSITY,
STR. UNIVERSYTETSKA 28, CHERNIVTSI, UKRAINE
E-mail address: y.bihun@chnu.edu.ua, r.petryshyn@chnu.edu.ua, i.skutar@chnu.edu.ua,

g.melnik@chnu.edu.ua

32



	Introduction
	Methods and materials used
	Obtained results and discussion
	Example
	Conclusion

