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Abstract. For the multifrequency system of equations with linear delays and multipoint
and integral conditions, the existence and uniqueness of the solution in space is proved.
The method of averaging over fast variables is substantiated and the error of the method
is estimated, which obviously depends on the small parameter. The obtained result is
illustrated by a model example.
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Sistem multifrecvenţă cu multipunct şi condiţii integrale
Rezumat. Pentru sistemul multifrecvenţă de ecuaţii cu intârzieri liniare şi multipunct şi
condiţii integrale, se demonstrează existenţa şi unicitatea soluţiei în spaţiu. Se fundamen-
teaza metoda de mediere asupra variabilelor rapide si se estimeaza eroarea metodei, care
depinde evident de parametrul mic. Rezultatul obţinut este ilustrat printr-un exemplu.
Cuvinte cheie: sistem multifrecvenţă, condiţie integrală, metoda medierii, parametru
mic, rezonanţă, estimarea erorilor, variabile lente si rapide.

1. Introduction

An important problem in nonlinear mechanics is the study of oscillatory systems,
which in the process of evolution pass through resonance. In many cases, such systems
are described by differential equations of the form

𝑑𝑎

𝑑𝜏
= 𝜀𝑋 (𝜏, 𝑎, 𝜑), 𝑑𝜑

𝑑𝜏
= 𝜔(𝜏, 𝑎) + 𝜀𝑌 (𝜏, 𝑎, 𝜑), (1)

where 𝑎 ∈ 𝐷 ⊂ R𝑛, 𝜑 ∈ R𝑚, 0 ≤ 𝜀 – small parameter, 𝜏 = 𝜀𝑡, vector-functions 𝑋 and 𝑌

2𝜋-periodic by variables 𝜑1, . . . , 𝜑𝑚.
An effective method of research and construction of approximate solutions of such

systems is the method of averaging on the cube of periods over fast variables 𝜑𝜈 [1, 2, 3].
As a result, we obtain a much simpler system of equations

𝑑𝑎

𝑑𝑡
= 𝜀𝑋0(𝜏, 𝑎),

𝑑𝜑

𝑑𝑡
= 𝜔(𝜏, 𝑎) + 𝜀𝑌0(𝜏, 𝑎), (2)

19

https://orcid.org/0000-0002-5545-9041
https://orcid.org/0000-0003-0554-6339
https://orcid.org/0000-0001-9391-1273
https://orcid.org/0000-0001-5386-5903


MULTIFREQUENCY SYSTEM WITH MULTIPOINT AND INTEGRAL
CONDITIONS

Such a procedure does not always lead to the correct result and the deviation of slow
variables ‖𝑎(𝑡, 𝜀) −𝑎(𝜀𝑡)‖ = 𝑂 (1) on the time intervals of the length𝑂 (𝜀−1). The reason
for this is the resonance of frequencies, the condition of which is(

𝑘, 𝜔(𝜏, 𝑎)
)

:= 𝑘1𝜔1(𝜏, 𝑎) + · · · + 𝑘𝑚𝜔𝑚(𝜏, 𝑎) � 0, ‖𝑘 ‖ ≠ 0. (3)

Therefore, it is necessary to impose additional conditions to ensure that the error of
the averaging method was 𝑂 (𝜀𝛼), 𝛼 > 0, on the time interval of the length [0, 𝐿𝜀−1],
𝐿 = 𝑐𝑜𝑛𝑠𝑡 > 0. Such results have been obtained in many works, for example [1, 2, 3].

To adequately describe the processes in applied problems, it is necessary to take into
account the delay factor. Multifrequency systems with delay and initial conditions and
various types of integral conditions were studied in [4, 5, 6] and others. For such systems,
the effect of delay was found, in particular, on the frequency resonance condition [7].

In addition to substantiating the method of averaging and establishing non-improving
estimates for the error of the method of the order 𝜀𝛼, 0 < 𝛼 ≤ 1/𝑚, sufficient conditions
for the existence and uniqueness or existence of the solution of the original problems are
obtained.

In this paper, the following results are obtained for a multifrequency system with a
finite number of delays and multipoint and integral conditions.

2. Methods and materials used

Consider a multifrequency system of equations of the form

𝑑𝑎

𝑑𝜏
= 𝑋 (𝜏, 𝑎Λ, 𝜑Θ), (4)

𝑑𝜑

𝑑𝜏
=
𝜔(𝜏)
𝜀

+ 𝑌 (𝜏, 𝑎Λ, 𝜑Θ), (5)

the solution of which satisfies the condition
𝑟∑︁

𝜈=1
𝛼𝜈𝑎(𝑥𝜈) =

𝜏2∫
𝜏1

𝑓 (𝜏, 𝑎Λ, 𝜑Θ)𝑑𝜏, (6)

𝑟∑︁
𝜈=1

𝛽𝜈𝜑(𝑥𝜈) =
𝜏2∫

𝜏1

𝑔(𝜏, 𝑎Λ, 𝜑Θ)𝑑𝜏, (7)

where 0 ≤ 𝑥1 < · · · < 𝑥𝑟 ≤ 𝐿, 0 ≤ 𝜏1 < 𝜏2 ≤ 𝐿, 𝜏 = 𝜀𝑡 ∈ [0, 𝐿], 𝑎 ∈ 𝐷 – limited
closed area in R𝑛, 𝜑 ∈ R𝑚, parameter 𝜀 ∈ (0, 𝜀0], 𝜀0 � 1, 𝑎Λ = (𝑎𝜆1 , . . . , 𝑎𝜆𝑝

),
𝜑Θ = (𝜑𝜃1 , . . . , 𝜑𝜃𝑞 ), 0 < 𝜆1 < · · · < 𝜆𝑝 ≤ 1, 0 < 𝜃1 < · · · < 𝜃𝑞 ≤ 1, 𝛼𝜈 , 𝛽𝜈 – given
numbers, 𝑎𝜆𝑖 (𝜏) = 𝑎(𝜆𝑖𝜏), 𝜑𝜃 𝑗

(𝜏) = 𝜑(𝜃 𝑗𝜏). Vector-functions 𝑋 , 𝑌 , 𝑓 and 𝑔 defined

20



Bihun Y., Petryshyn R., Skutar I., and Melnyk H.

and smooth enough for all variables in the area 𝐺 = [0, 𝐿] × 𝐷 𝑝 × 𝑅𝑚𝑞, 2𝜋-periodic by
components of the vector 𝜑Θ.

Multifrequency ODE systems with integrated conditions on [0, 𝐿] by the averaging
method were first studied in [1]. Problems with integral conditions of various kinds are
actively studied and applied in applied problems [8, 9, 10].

Corresponding (4)–(7) averaged over fast variables 𝑑𝜑𝜃1 . . . 𝑑𝜑𝜃𝑞 the problem takes
the form

𝑑𝑎

𝑑𝜏
= 𝑋0(𝜏, 𝑎Λ), (8)

𝑑𝜑

𝑑𝜏
=
𝜔(𝜏)
𝜀

+ 𝑌0(𝜏, 𝑎Λ), (9)

𝑟∑︁
𝜈=1

𝛼𝜈𝑎(𝑥𝜈) =
𝜏2∫

𝜏1

𝑓0(𝜏, 𝑎Λ)𝑑𝜏, (10)

𝑟∑︁
𝜈=1

𝛽𝜈𝜑(𝑥𝜈) =
𝜏2∫

𝜏1

𝑔0(𝜏, 𝑎Λ)𝑑𝜏. (11)

The averaged problem is much simpler compared to the original problem (4)–(7). In
particular, the problem (8), (10) for slow variables 𝑎 integrates independently of fast
variables 𝜑. If the solution 𝑎(𝜏) and the initial value 𝜑(0) = 𝜓 at 𝜏 = 0 found, then
finding fast variables is reduced to the problem of integration. Let

𝑏 :=
𝑟∑︁

𝜈=1
𝛽𝜈 ≠ 0. (12)

Then the initial value 𝜓 = 𝜑(0; 𝑦, 𝜓, 𝜀) of the problem (9)–(11) takes the form

𝜓 = 𝑏−1
[ 𝜏2∫
𝜏1

𝑔0(𝜏, 𝑎Λ(𝜏))𝑑𝜏 −
𝑟∑︁

𝜈=1
𝛽𝜈

𝜏𝜈∫
0

(𝜔(𝜏)
𝜀

+ 𝑌0(𝜏, 𝑎Λ(𝜏))
) ]
𝑑𝜏,

the solution of the problem (9), (11) is

𝜑(𝜏; 𝑦, 𝜓, 𝜀) = 𝜓 + 𝜑(𝜏; 𝑦, 0, 𝜀).

Let us investigate the existence and uniqueness of a continuous differentiated solution
of the problem (4)–(7) for a fairly small 𝜀 ∈ (0, 𝜀∗), 𝜀∗ ≤ 𝜀0, assuming the existence of
the unique solution to the averaged problem. We will also construct an estimate of the
method of averaging of the form

‖𝜅(𝜏; 𝑦, 𝜓, 𝜀) − 𝜅(𝜏; 𝑦, 𝜓, 𝜀)‖ ≤ 𝑐1𝜀
𝛼, (13)

where 𝜅(𝜏; 𝑦, 𝜓, 𝜀) =
(
𝑎(𝜏; 𝑦, 𝜓, 𝜀), 𝜑(𝜏; 𝑦, 𝜓, 𝜀)

)
, 𝜅(𝜏; 𝑦, 𝜓, 𝜀) =

(
𝑎(𝜏; 𝑦), 𝜑(𝜏; 𝑦, 𝜓, 𝜀)

)
,

𝛼 = (𝑚𝑞)−1, 𝑐1 = 𝑐𝑜𝑛𝑠𝑡 > 0.
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The resonance condition at the point 𝜏 for the system of equations (4)–(7) is formulated
in [7] and has the form

𝛾𝑘 (𝜏) :=
𝑞∑︁

𝜈=1
𝜃𝜈

(
𝑘𝜈 , 𝜔𝜈 (𝜃𝜈𝜏)

)
= 0,

𝑘𝜈 ∈ Z, ‖𝑘1‖ + · · · + ‖𝑘𝑚‖ ≠ 0.

3. Obtained results and discussion

Let 𝑎(0; 𝑦) = 𝑦, 𝑄(𝑦) – matrix of the order 𝑛 of the form

𝑄(𝑦) =
𝑟∑︁

𝜈=1
𝛼𝜈

𝜕𝑎(𝑥𝜈; 𝑦)
𝜕𝑦

−
𝑝∑︁
𝑖=1

𝜏2∫
𝜏1

𝜕 𝑓0(𝜏, 𝑎Λ(𝜏; 𝑦)
𝜕𝑎𝜆𝑖

𝜕𝑎(𝜆𝑖𝜏, 𝑦)
𝜕𝑦

𝑑𝜏.

Theorem 3.1. Let the conditions be met:

1) vector-functions 𝑋 and 𝑌 2𝜋-periodic by components of the vector 𝜑Θ, for each
𝜀 ∈ (0, 𝜀0], a sufficient number of times differentiated by variables 𝜏, 𝑎𝜆𝑖 , 𝜑𝜃 𝑗

,
namely 𝐹 ∈ 𝐶𝑙

𝜏 (𝐺, 𝜎), 𝐹 ∈ 𝐶𝑙
𝑎𝜆𝑖

(𝐺, 𝜎), 𝐹 ∈ 𝐶𝑙−1
𝜑𝜃 𝑗

(𝐺, 𝜎), 𝐹 := (𝑋,𝑌 ), where
𝑙 ≥ 𝑞𝑚 + 1, 𝐺 = [0, 𝐿] × 𝐷 𝑝 × R𝑚𝑞, by constant 𝜎 > 0 limited vector-functions
𝑋 , 𝑌 and their partial derivatives in G;

2) 𝜔𝜈 ∈ 𝐶𝑚𝑞−1 [0, 𝐿], 𝜈 = 1, 𝑚 and Wronsky determinant is not zero for 𝜏 ∈ [0, 𝐿];
3) there exists the unique solution to the averaged problem (8),(10), there is only

one solution to the averaged problem 𝑎(𝜏; 𝑦) of which is the area 𝐷 with some
𝜌-circumference;

4) the inequality holds (12) and 𝑑𝑒𝑡𝑄(𝑦) ≠ 0.

Then for rather small 𝜀∗ ∈ (0, 𝜀0] there is the unique solution to the problem (4)–(7)
with initial conditions 𝑦 + 𝜇 ∈ 𝐷1 ⊂ 𝐷 and 𝜓 + 𝜉 ∈ R𝑚,

‖𝜇‖ ≤ 𝑐2𝜀
𝛼, ‖𝜉‖ ≤ 𝑐3𝜀

𝛼, 𝛼 = (𝑚𝑞)−1,

for which inequality holds (13) for each 𝜀 ∈ (𝜀0, 𝜀
∗] and 𝜏 ∈ [0, 𝐿], 𝑐1 > 0 and does not

depend on 𝜀.

The proof of Theorem 3.1 is based on the application of the oscillatory integral estimate

𝐼𝑘 (𝑡, 𝜀) =
𝑡∫

0

𝑔(𝑠, 𝜀)
[
exp

( 𝑖
𝜀

𝑠∫
0

𝛾𝑘 (𝑧)𝑑𝑧
)]
𝑑𝑠,
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as for 𝜏 ∈ [0, 𝐿], 𝜀 ∈ (0, 𝜀0], 𝑔 ∈ 𝐶1 [0, 𝐿] ∀𝜀 ∈ (0, 𝜀0] and the fulfillment of condition
4 of the theorem takes the form

‖𝐼𝑘 (𝑡, 𝜀)‖ ≤ 𝜎1𝜀
𝛼
(
sup ‖𝑔(𝑠, 𝜀)‖ + 1

‖𝑘 ‖Θ
sup




𝑑𝑔(𝑠, 𝜀)
𝑑𝑠




) , (14)

where 𝜎1 > 0 and does not depend on 𝜀, ‖𝑘 ‖Θ =
𝑞∑

𝜈=1
𝜃𝜈 ‖𝑘𝜈 ‖.

Oscillatory integrals for combinational frequencies 𝛾𝑘 := 𝑘1𝜔1(𝜏) + · · · + 𝑘𝑚𝜔𝑚(𝜏),
𝑘 ≠ 0, were built and used for multifrequency ODE systems in the works of A.M.
Samoilenko and R.I. Petryshyn [1].

When proving the theorem, a simpler scheme of proving the existence and uniqueness
of the solution of the problem is proposed (4)–(7) and weaker restrictions on the right
side (4), (5).

Proof. If conditions 1-3 are met, it is proved [4], that the existence of the unique solution
𝜅(𝜏; 𝑦, 𝜓, 𝜀), 𝑦 ∈ 𝐷1 ⊂ 𝐷, every point 𝑦 ∈ 𝐷1 enters 𝐷 together with 𝜌-circumference.
Also for 𝑦 = 𝑦 + 𝜇 ∈ 𝐷1

‖𝜅(𝜏; 𝑦, 𝜓, 𝜀) − 𝜅(𝜏; 𝑦, 𝜓, 𝜀)‖ ≤ 𝑐1𝜀
𝛼, (15)

(𝜏, 𝜀) ∈ [0, 𝐿] × (0, 𝜀0], 𝑐1 > 0 and does not depend on 𝜀.
Let 𝜇 ∈ R𝑛 and

‖𝜇‖ ≤ 𝑐4𝜀
𝛼 ≤ 𝜌/2. (16)

The value of 𝑐4 will be defined below. It follows that when 𝜀 ≤ 𝜀1 = min(𝜀0, (𝜌/2𝑐4)𝑚𝑞)
the solution 𝑎(𝜏; 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀) lies in 𝐷 with (𝜌/2)-circumference.

From the equations (4), (8) and smoothness of vector-functions 𝑋 and 𝑓 for the vector
𝜇 in the initial condition for the solution 𝑎(𝜏; 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀) the equation is received of
the form

𝜇 = Φ1(𝜇, 𝜉, 𝜀),
where vector-function

Φ1(𝜇, 𝜉, 𝜀) = −𝑄−1(𝑦)
[ 𝑟∑︁
𝜈=1

𝛼𝜈

(
𝑅1,𝜈 (𝜇) + (𝑎(𝑥𝜈; 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀) − 𝑎(𝑥𝜈; 𝑦 + 𝜇))+

+𝑅2(𝜇, 𝜉, 𝜀)
)
+ 𝑅3(𝜇)

]
,

𝑅1,𝜈 (𝜇) = 𝑎(𝑥𝜈; 𝑦 + 𝜇) − 𝑎(𝑥𝜈; 𝑦) − 𝜕𝑎(𝑥𝜈; 𝑦)
𝜕𝑦

𝜇,

𝑅2(𝜇, 𝜉, 𝜀) =

=

𝜏2∫
𝜏1

[
𝑓 (𝜏, 𝑎Λ(𝜏, 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀), 𝜑Θ(𝜏, 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀)) − 𝑓0(𝜏, 𝑎Λ(𝜏; 𝑦 + 𝜇))

]
𝑑𝜏,
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𝑅3(𝜇) =
𝜏2∫

𝜏1

[
𝑓0(𝜏, 𝑎Λ(𝜏; 𝑦 + 𝜇)) − 𝑓0(𝜏, 𝑎Λ(𝜏; 𝑦)) −

𝑝∑︁
𝑗=1

𝜕 𝑓0(𝜏, 𝑎Λ(𝜏; 𝑦))
𝜕𝑎𝜆 𝑗

𝑅1,𝜈 (𝜇)
]
𝑑𝜏.

For esimation 𝑅1,𝜈 (𝜇) let us apply the estimate [2]

‖ℎ(𝑏) − ℎ(𝑎) −
𝑛∑︁

𝜈=1

𝜕ℎ(𝑎)
𝜕𝑥𝜈

(𝑏𝜈 − 𝑎𝜈)‖ ≤ 𝐶‖𝑏 − 𝑎‖2, (17)

where ℎ – vecor-function of the variable 𝑥 ∈ 𝐷 ⊂ R, ℎ ∈ 𝐶2(𝐷). Then ‖𝑅1,𝜈 (𝜇)‖ ≤
𝑐3,𝜈 ‖𝜇‖2.

Let us write down 𝑅2 in the form

𝑅2(𝜏; 𝜇, 𝜉, 𝜀) =
∑︁
‖𝑘 ‖>0

𝜏2∫
𝜏1

𝑓𝑘 (𝜏, 𝑎Λ)𝑒𝑥𝑝
(
𝑖

𝑞∑︁
𝑗=1

(𝑘 𝑗 , 𝜑𝜃 𝑗
)
)
+

+
𝜏2∫

𝜏1

[
𝑓0(𝜏, 𝑎Λ(𝜏, 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀)) − 𝑓0(𝜏, 𝑎Λ(𝜏; 𝑦 + 𝜇))

]
𝑑𝜏 =

= 𝑅2,1(𝜏; 𝜇, 𝜉, 𝜀) + 𝑅2,2(𝜏; 𝜇, 𝜉, 𝜀).

The estimate 𝑅2,2(𝜏; 𝜇, 𝜉, 𝜀) is obtained on the basis of the estimation of the deviation
of the solutions of the systems (4), (5) and (8), (9) with the same initial conditions (15),
and the estimate 𝑅2,1 from the estimation of the integral (14). We get

‖𝑅2,2(𝜏; 𝜇, 𝜉, 𝜀) ≤
𝜏2∫

𝜏1

𝑝∑︁
𝜈=1

‖ 𝜕 𝑓0
𝜕𝑎𝜆𝜈

‖ · ‖𝑎𝜆𝜈
(𝜏; 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀) − 𝑎𝜆𝜈

(𝜏; 𝑦 + 𝜇)‖𝑑𝜏 ≤

≤
𝑝∑︁

𝜈=1
𝜎1,𝜈

𝜏2∫
𝜏1

𝑐1𝜀
𝛼𝑑𝜏 = 𝑐5𝜀

𝜈 , ‖𝑅2,1(𝜏; 𝜇, 𝜉, 𝜀)‖ ≤ 𝑐6𝜀
𝛼,

where 𝑐6 = 𝑐6(𝜎1) > 0, 0 < 𝜀 ≤ 𝜀2.
Let us build an estimate 𝑅3(𝜏; 𝜇), applying inequalities (14) and (17). We will get the

estimate

‖𝑅3(𝜏; 𝜇)‖ ≤
𝜏2∫

𝜏1

( 𝑝∑︁
𝜈=1

𝜎1,𝜈 ‖𝑎𝜆𝜈
(𝜏; 𝑦 + 𝜇) − 𝑎𝜆𝜈

(𝜏; 𝑦)‖+

+
𝑝∑︁

𝜈=1
𝜎1,𝜈 ‖𝑅1,𝜈 ‖

)
𝑑𝜏 ≤ (𝜏2 − 𝜏1)

𝑝∑︁
𝜈=1

𝜎1,𝜈 (𝑐(𝜏2) + 𝑐1‖𝜇‖)‖𝜇‖ = 𝑐7‖𝜇‖𝜀𝛼 + 𝑐7‖𝜇‖2,

where 𝑐7 = (𝜏2 − 𝜏1)𝑐
𝑝∑

𝜈=1
𝜎1,𝜈 , 𝑐7 = (𝜏2 − 𝜏1)𝑐1

𝑝∑
𝜈=1

𝜎1,𝜈 .
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So, for Φ1(𝜇, 𝜉, 𝜀) at 𝜀 ≤ 𝜀3 = min(𝜀1, 𝜀2) the estimate received is

‖Φ1(𝜇, 𝜉, 𝜀)‖ ≤ ‖𝑄−1(𝑦, 𝜓)‖
( 𝑟∑︁
𝜈=1

|𝛼𝜈 |‖𝑅1,𝜈 ‖ + (𝑐4 + 𝑐6)𝜀𝛼 + 𝑐7‖𝜇‖ + 𝑐7‖𝜇‖2) ≤
≤ 𝑐8

(
𝑐9 + 𝑐9‖𝜇‖

)
𝜀𝛼 + 𝑐8‖𝜇‖2,

where 𝑐8 = (𝑐7 + 𝑐1
𝑟∑

𝜈=1
|𝛼𝜈 |) ‖𝑄−1(𝑦, 𝜓)‖, 𝑐9 = (𝑐4 + 𝑐6)/𝑐8, 𝑐9 = 𝑐7/𝑐8.

Let in the inequality (15) 𝑐2 = 2𝑐8𝑐9, 𝜀 ≤ 𝜀4 = min(𝜀3, (2𝑐8)−𝑚𝑞, (8𝑐2
8𝑐9)−𝑚𝑞). The

estimate received is

‖Φ1(𝜇, 𝜉, 𝜀)‖ ≤ ‖𝜇‖ ≤ 𝑐2𝜀
𝛼.

Reflection Φ1 : 𝑆1 → 𝑆1, where 𝑆1 =
{
𝜇 ∈ R𝑛 : ‖𝜇‖ ≤ 𝑐2𝜀

𝛼
}
.

Consider the matrix derivative

𝜕Φ1(𝜇, 𝜉, 𝜀)
𝜕𝜉

= −𝑄−1(𝑦)
[ 𝜕
𝜕𝜉

∑︁
‖𝑘 ‖>0

𝜏2∫
𝜏1

𝑓𝑘 (𝜏, 𝑎Λ)𝑒𝑥𝑝(𝑖
𝑞∑︁
𝑗=1

(𝑘 𝑗 , 𝜑𝜃 𝑗
))𝑑𝜏+

+
𝑝∑︁

𝜈=1

𝜏2∫
𝜏1

𝜕 𝑓0(𝜏, 𝑎̃Λ)
𝜕𝑎𝜆𝜈

𝜕

𝜕𝜉
(𝑎𝜆𝜈

− 𝑎̃𝜆)𝑑𝜏 +
𝑝∑︁

𝜈=1

𝜏2∫
𝜏1

𝜕𝑅4,𝜈 (𝜇, 𝜉, 𝜀)
𝜕𝜉

𝑑𝜏
]
=

= 𝑅4(𝜇, 𝜉, 𝜀) + 𝑅5(𝜇, 𝜉, 𝜀)

Applying the estimation of the oscillatory integral (14) and estimates similar to (15)
for derivatives deviations of solutions

max
𝑗

(
‖ 𝜕

𝜕𝜉
(𝜑𝜃 𝑗

− 𝜑̃𝜃 𝑗
)‖, ‖ 𝜕

𝜕𝜉
(𝑎𝜆𝜈

− 𝑎̃𝜆𝜈
)‖
)
≤ 𝑐10𝜀

𝛼, (18)

for 𝑅4(𝜇, 𝜉, 𝜀) we will receive

‖𝑅4(𝜇, 𝜉, 𝜀)‖ ≤ ‖𝑄−1(𝑦)‖
[ ∑︁
‖𝑘 ‖>0

( 𝑝∑︁
𝜈=1

sup
𝐺1

‖ 𝜕 𝑓𝑘 (𝜏, 𝑎Λ)
𝜕𝑎𝜆𝜈

‖
)
𝑐10𝜆𝜈 (𝜏2 − 𝜏1)𝜀𝛼+

+
∑︁
‖𝑘 ‖>0

sup
𝐺1

‖ 𝑓𝑘 (𝜏, 𝑎Λ)‖
𝑞∑︁
𝑗=1

|𝑘 𝑗 |𝑐10𝜃 𝑗𝜀
𝛼+

+𝑚
∑︁
‖𝑘 ‖>0

(
‖𝑘 ‖Θ sup

𝐺1

‖ 𝑓𝑘 (𝜏, 𝑎Λ)‖ + sup
𝐺1

‖ 𝑑𝑓𝑘 (𝜏, 𝑎Λ)
𝑑𝜏

‖
)
𝜀𝛼

]
= 𝑐11𝜀

𝛼,

Now consider the estimate 𝑅5(𝜇, 𝜉, 𝜀). Since

‖
𝜕𝑅5,𝜈 (𝜇, 𝜉, 𝜀)

𝜕𝜉
‖ ≤ 𝑐12,𝜈𝜀

𝛼 + 𝑐13,𝜈 ‖𝜉‖, 𝜈 = 1, 𝑝,
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then, using the estimate (18), we will get

‖𝑅5(𝜇, 𝜉, 𝜀)‖ ≤ ‖𝑄−1‖
( 𝑝∑︁
𝜈=1

𝜏2∫
𝜏1

𝜎1,𝜈𝑐10𝜀
𝛼𝜆𝜈𝜏𝑑𝜏 +

𝑝∑︁
𝜈=1

𝜏2∫
𝜏1

(𝑐12,𝜈𝜀
𝛼 + 𝑐13,𝜈 ‖𝜉‖)𝑑𝜏

)
=

= 0.5‖𝑄−1‖
(
(𝜏2 − 𝜏1)2𝑐10𝜀

𝜈

𝑝∑︁
𝜈=1

𝜎1,𝜈𝜆𝜈+

+𝜀𝜈 (𝜏2 − 𝜏1)
𝑝∑︁

𝜈=1
𝑐12,𝜈 + ‖𝜉‖(𝜏2 − 𝜏1)

𝑝∑︁
𝜈=1

𝑐13,𝜈
)
= 𝑐14𝜀

𝛼 + 𝑐15‖𝜉‖.

Thus, in the end we have

‖ 𝜕Φ1(𝜇, 𝜉, 𝜀)
𝜕𝜉

‖ ≤ 𝑐14𝜀
𝛼 + 𝑐15‖𝜉‖, 𝑐14 = 𝑐11 + 𝑐14.

Choose 𝜉 ∈ R𝑚 and 𝜀 so, that

‖𝜉‖ ≤ 𝑐16𝜀
𝛼, 𝜀 ≤ 𝜀5 = min(𝜀4, (8𝑐14)−𝑚𝑞),

where 𝑐16 = min(𝑐14/𝑐15, 𝑐18), where 𝑐18 – will be indicated below.
Then we get

‖ 𝜕Φ1(𝜇, 𝜉, 𝜀)
𝜕𝜉

‖ ≤ 1
4

(19)

for each 𝜀 ≤ 𝜀5, ‖𝜇‖ ≤ 𝑐2𝜀, and ‖𝜉‖ ≤ 𝑐16𝜀
𝛼.

Consider the derivative of the vector function

𝜕Φ1(𝜇, 𝜉, 𝜀)
𝜕𝜇

= −𝑄−1 [ 𝑟∑︁
𝜈=1

𝛼𝜈

( 𝜕
𝜕𝜇

𝑅1,𝜈 (𝜇)+

+ 𝜕

𝜕𝜇
(𝑎(𝑥𝜈; 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀) − 𝑎(𝑥𝜈; 𝑦 + 𝜇))

)
+ 𝜕

𝜕𝜇
𝑅2(𝜇, 𝜉, 𝜀) +

𝜕

𝜕𝜇
𝑅3(𝜇)

]
.

Since ‖𝑅1,𝜈 (𝜇)‖ = 𝑂 (‖𝜇‖2), then ‖ 𝜕𝑅1,𝜈 (𝜇)
𝜕𝜇

‖ = 𝑂 (𝜇), therefore

‖
𝜕𝑅1,𝜈 (𝜇)

𝜕𝜇
‖ ≤ 𝑐17,𝜈 ‖𝜇‖. (20)
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Let us construct an estimate for the matrix derivative

𝜕𝑅2(𝜇, 𝜉, 𝜀)
𝜕𝜇

=

𝜏2∫
𝜏1

𝜕

𝜕𝜇

(
𝑓0(𝜏, 𝑎Λ(𝜏)) − 𝑓0(𝜏, 𝑎̃Λ(𝜏))

)
𝑑𝜏+

+
∑︁
‖𝑘 ‖>0

𝜏2∫
𝜏1

𝜕

𝜕𝜇

[ (
𝑓𝑘 (𝜏, 𝑎Λ(𝜏)) − 𝑓𝑘 (𝜏, 𝑎̃Λ(𝜏))

)
𝑒𝑥𝑝

(
𝑖

𝑞∑︁
𝑗=1

(𝑘 𝑗 , 𝜑𝜃 𝑗
(𝜏))

) ]
𝑑𝜏+

+
∑︁
‖𝑘 ‖>0

𝜏2∫
𝜏1

𝜕

𝜕𝜇

[
𝑓𝑘 (𝜏, 𝑎̃Λ(𝜏))𝑒𝑥𝑝

(
𝑖

𝑞∑︁
𝑗=1

(𝑘 𝑗 , 𝜑𝜃 𝑗
(𝜏))

) ]
𝑑𝜏 =

= 𝑅21(𝜇, 𝜉, 𝜀) + 𝑅22(𝜇, 𝜉, 𝜀) + 𝑅23(𝜇, 𝜉, 𝜀).

From the smoothness of the vector function 𝑓0(𝜏, 𝑎Λ) by 𝑎Λ we obtain

‖𝑅21(𝜇, 𝜉, 𝜀)‖ ≤
𝑝∑︁

𝜈=1
𝜎3,𝜈𝑐18𝜆𝜈 (𝜏2 − 𝜏1)𝜀𝛼 + 𝑐19𝜀

𝛼 = 𝑐20𝜀
𝛼.

The estimate for 𝑅22(𝜇, 𝜉, 𝜀) is build as for 𝑅21(𝜇, 𝜉, 𝜀):

‖𝑅22(𝜇, 𝜉, 𝜀)‖ ≤
∑︁
‖𝑘 ‖>0

𝜏2∫
𝜏1

𝑝∑︁
𝜈=1

(
‖ 𝜕 𝑓𝑘 (𝜏, 𝑎̃Λ)

𝜕𝑎𝜆𝜈

‖ · ‖𝑎Λ(𝜏) − 𝑎̃Λ(𝜏)‖+

+‖ 𝜕

𝜕𝜇
𝑅2𝜈𝑘 (𝜇, 𝜉, 𝜀)‖

)
𝑑𝜏 ≤ 𝑐21𝜀

𝛼.

Further we have

𝜕𝑅23(𝜇, 𝜉, 𝜀)
𝜕𝜇

=
∑︁
‖𝑘 ‖>0

𝜏2∫
𝜏1

{ 𝑝∑︁
𝜈=1

𝜕 𝑓𝑘 (𝜏, 𝑎̃Λ)
𝜕𝑎̃𝜆𝜈

𝜕𝑎̃𝜆𝜈
(𝜏)

𝜕𝜇
𝑒𝑥𝑝

(
𝑖

𝑞∑︁
𝑗=1

(𝑘 𝑗 , 𝜑𝜃 𝑗
(𝜏))

)
+

+𝑖 𝑓𝑘 (𝜏, 𝑎̃Λ(𝜏))
[ 𝑞∑︁
𝑗=1

(𝑘 𝑗 ,
𝜕

𝜕𝜇

(
𝜑𝜃 𝑗

(𝜏) − 𝜑̃𝜃 𝑗
(𝜏)

) ]
𝑒𝑥𝑝

(
𝑖

𝑞∑︁
𝑗=1

(𝑘 𝑗 , 𝜑 𝑗 (𝜏))
)
+

+𝑖
𝑞∑︁
𝑗=1

(
𝑘 𝑗 ,

𝜕

𝜕𝜇
𝜑̃𝜃 𝑗

(𝜏)
)
𝑒𝑥𝑝

(
𝑖

𝑞∑︁
𝑗=1

(𝑘 𝑗 , 𝜑 𝑗 (𝜏))
)}
𝑑𝜏 = 𝑅

(1)
23 (𝜇, 𝜉, 𝜀) + 𝑅

(2)
23 (𝜇, 𝜉, 𝜀) + 𝑅

(3)
23 (𝜇, 𝜉, 𝜀).

Applying the estimates (17) and (18), we will obtain

‖𝑅 (2)
23 (𝜇, 𝜉, 𝜀)‖ ≤

∑︁
‖𝑘 ‖>0

𝜏2∫
𝜏1

sup
𝐺1

‖ 𝑓𝑘 (𝜏, 𝑎Λ)‖
𝑞∑︁
𝑗=1

‖𝑘 𝑗 ‖𝑐18𝜃 𝑗𝜀𝛼 ≤

≤
(
0.5(𝜏2

2 − 𝜏2
1 )𝑐18

∑︁
‖𝑘 ‖>0

‖𝑘 ‖Θ sup
𝐺1

‖ 𝑓𝑘 (𝜏, 𝑎Λ)‖
)
𝜀𝛼 = 𝑐22𝜀

𝛼.
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Let

𝐹𝑘 (𝜏) =
𝑝∑︁

𝜈=1

𝜕 𝑓𝑘 (𝜏, 𝑎̃Λ(𝜏; 𝑦 + 𝜇))
𝜕𝑎̃𝜆𝜈

𝜕𝑎̃𝜆𝜈
(𝜏; 𝑦 + 𝜇)
𝜕𝜇

.

There exist constants 𝑐23 and 𝑐23 such as

‖𝐹𝑘 (𝜏)‖ =
𝑝∑︁

𝜈=1
sup
𝐺1

‖ 𝜕 𝑓𝑘 (𝜏, 𝑎Λ)
𝜕𝑎𝜆𝜈

‖‖
𝜕𝑎𝜆𝜈

(𝜏)
𝜕𝜇

‖ ≤ 𝑐23, ‖ 𝑑𝐹𝑘 (𝜏)
𝑑𝜏

‖ =≤ 𝑐23.

Then ‖𝑅 (1)
23 (𝜇, 𝜉, 𝜀‖ + ‖𝑅 (3)

23 (𝜇, 𝜉, 𝜀‖ ≤ 𝑐24𝜀
𝛼, where 𝑐24 = 𝑐24(𝑐23, 𝑐23).

Summarizing the estimates obtained, we receive

‖ 𝜕𝑅23(𝜇, 𝜉, 𝜀)
𝜕𝜇

‖ ≤ (𝑐22 + 𝑐24)𝜀𝛼,

and for the norm of the derivative Φ1 by 𝜇

‖ 𝜕Φ1(𝜇, 𝜉, 𝜀)
𝜕𝜇

‖ ≤ ‖𝑄−1(𝑦)‖
[ ( 𝑟∑︁

𝜈=1
|𝛼𝜈 |𝑐12,𝜈

)
‖𝜇‖+

+
(
𝑐18(

𝑟∑︁
𝜈=1

|𝛼𝜈 |𝑥𝜈) + 𝑐19 + 𝑐20 + 𝑐21 + 𝑐22 + 𝑐24
)
𝜀𝛼

]
= 𝑐25‖𝜇‖ + 𝑐25𝜀

𝛼.

Since ‖𝜇‖ ≤ 𝑐2𝜀
𝛼, then

‖ 𝜕Φ1(𝜇, 𝜉, 𝜀)
𝜕𝜇

‖ ≤ (𝑐2𝑐25 + 𝑐25)𝜀𝛼 ≤ 1
4
, (21)

if 𝜀 ≤ 𝜀6 = 𝑚𝑖𝑛(𝜀5, (4(𝑐2𝑐25 + 𝑐25))−1.
Consider the question of finding the value of a vector 𝜉.
Before constructing the equation for the 𝜉 of the form

𝜉 = Φ2(𝜇, 𝜉, 𝜀) (22)

and estimating the norm of the vector-function Φ2 and its derivatives by vector variables
𝜇, 𝜉, let us introduce the following notation:

𝑃(𝑦, 𝜓) =
𝑟∑︁

𝜈=1
𝛽𝜈

𝑝∑︁
𝑖=1

𝑥𝜈∫
0

𝜕𝑌0(𝜏, 𝑎Λ)
𝜕𝑎𝜆𝑖

𝜕𝑎𝜆𝑖

𝜕𝑦
𝑑𝜏 −

𝑝∑︁
𝑖=1

𝜏2∫
𝜏1

𝜕𝑔0(𝜏, 𝑎Λ)
𝜕𝑎𝜆𝑖

𝜕𝑎𝜆𝑖

𝜕𝑦
𝑑𝜏,

Ψ𝑘 =

𝑞∑︁
𝜈=1

(
𝑘𝜈 , 𝜑𝜃𝜈

)
.

Subtract from (7) relevant averaging conditions (11) and separate the linear parts in
them by 𝜇. After the transformation, we obtain

𝑏𝜉 + 𝑃(𝑦, 𝜓)𝜇 = Φ(𝜇, 𝜉, 𝜀), (23)
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where

Φ(𝜇, 𝜉, 𝜀) =
𝜏2∫

𝜏1

[ (
𝑔0(𝜏, 𝑎Λ) − 𝑔0(𝜏, 𝑎̃Λ)

)
+ 𝑃1(𝜏, 𝜇) +

∑︁
𝑘≠0

𝑔𝑘 (𝜏, 𝑎Λ) exp
(
𝑖Ψ𝑘

) ]
𝑑𝜏−

−
𝑟∑︁

𝜈=1
𝛽𝜈

[ 𝑥𝜈∫
0

(
𝑌0(𝜏, 𝑎Λ) − 𝑌0(𝜏, 𝑎̃Λ)

)
+ 𝑃2,𝜈 (𝜏, 𝜇) +

∑︁
𝑘≠0

𝑌𝑘 (𝜏, 𝑎Λ) exp
(
𝑖Ψ𝑘

) ]
𝑑𝜏 =

= 𝑅6(𝜇, 𝜉, 𝜀) + 𝑅7(𝜇, 𝜉, 𝜀),

𝑃1(𝜏, 𝜇) and 𝑃2,𝜈 (𝜏, 𝜇) – remnants after separating the linear part of 𝜇, their norms are
in order ‖𝜇‖2.

From the equation (23) and the equation 𝜇 = Φ1(𝜇, 𝜉, 𝜀) we obtain

𝜉 = 𝑏−1
(
Φ(𝜇, 𝜉, 𝜀) − 𝑃(𝑦, 𝜓)Φ1(𝜇, 𝜉, 𝜀)

)
=: Φ2(𝜇, 𝜉, 𝜀).

Let us construct an estimate of the norm of the vector-function Φ(𝜇, 𝜉, 𝜀) and its
derivatives by 𝜇 and 𝜉 according to the scheme of estimates for Φ1(𝜇, 𝜉, 𝜀). We obtain

‖𝑅6(𝜇, 𝜉, 𝜀)‖ ≤ 𝑐27𝜀
𝛼, ‖𝑅7(𝜇, 𝜉, 𝜀)‖ ≤

( 𝑝∑︁
𝜈=1

|𝛽𝜈 |𝑐26,𝜈
)
𝜀𝛼 = 𝑐28𝜀

𝛼.

Therefore,
‖Φ‖ ≤ (𝑐27 + 𝑐28)𝜀𝛼,

once 𝜀 ∈ (0, 𝜀5], ‖𝜇‖ ≤ 𝑐2𝜀
𝛼, ‖𝜉‖ ≤ 𝑐16𝜀

𝛼.
Returning to the equation (22), we obtain Φ2 such an estimate:

‖Φ2(𝜇, 𝜉, 𝜀)‖ ≤
(
‖Φ‖ + ‖𝑃‖ · ‖Φ1‖

)
/𝑏 ≤ 𝑐29𝜀

𝛼,

where

𝑐29 = (𝑐27 + 𝑐28 + 𝑐2𝑐30)/𝑏, sup
𝐺1

���𝜕𝑔0(𝜏, 𝑎Λ)
𝜕𝑎𝜆𝜈

��� ≤ 𝜎3,𝜈 ,

𝑐30 = 𝜎−1
2

𝑝∑︁
𝜈=1

|𝛽𝜈 |𝜆−1
𝜈

[
𝜎2,𝜈

(
𝑒𝜎2𝜆𝜈 𝑥𝜈 − 1

)
+ 𝜎3,𝜈

(
𝑒𝜎2𝜆𝜈 𝜏2 − 𝑒𝜎2𝜆𝜈 𝜏1

) ]
.

Let 𝑐3 = min(𝑐16, 𝑐29). Then Φ2 : 𝑆2 → 𝑆2 =
{
𝜉 ∈ R𝑚 : ‖𝜉‖ ≤ 𝑐3𝜀

𝛼
}
.

Similarly, as for Φ1 we obtain estimates

‖ 𝜕Φ2
𝜕𝜇

‖ ≤ 𝑐31𝜀
𝛼, ‖ 𝜕Φ2

𝜕𝜉
‖ ≤ 𝑐32𝜀

𝛼. (24)

If
𝜀 ≤ 𝜀6 = min(𝜀5, (4𝑐31)−𝑚𝑞, (4𝑐32)−𝑚𝑞),

then the norms of derivatives are limited to 0.25.

29



MULTIFREQUENCY SYSTEM WITH MULTIPOINT AND INTEGRAL
CONDITIONS

From the estimates (19), (21) and (24), it follows that

‖Φ3(𝜇, 𝜉, 𝜀)‖ ≤ 1/2,

once 0 < 𝜀 ≤ 𝜀6, ‖𝜇‖ ≤ 𝑐2𝜀
𝛼, ‖𝜉‖ ≤ 𝑐3𝜀

𝛼, where Φ3 – matrix of the order 𝑚 + 𝑛 is
composed of derivatives Φ1 and Φ2 by 𝜇 and 𝜉. Hence the reflection Φ – compressive,
and on the basis of the theorem on compressive mappings there is the unique solution
(𝜇, 𝜉) for each 𝜀 ∈ (0, 𝜀6]. For the problem (4)–(7) this means the existence of the unique
solution in the class of continuously differentiated functions.

Estimation of the error of the method of averaging with a constant 𝑐33 = 𝑐1 + 𝑐1(𝐿)𝑐2 +
𝑐18(𝑐3) follows from inequality (15) at 𝑦 = 𝑦 + 𝜇 and 𝜓 = 𝜓 + 𝜉 and inequality

‖𝜅(𝜏; 𝑦+𝜇, 𝜓+𝜉, 𝜀)−𝜅(𝜏; 𝑦, 𝜓, 𝜀)‖ ≤ 𝑐1(𝐿)‖𝜇‖+𝑐18𝜀
𝛼 ≤

(
𝑐2𝑐1(𝐿)+𝑐18(𝑐3)

)
𝜀𝛼 = 𝑐1𝜀

𝛼.

�

Remark 3.1. Under conditions (6) and (7) instead of scalar coefficients 𝛼𝜈 and 𝛽𝜈 can
be matrix. In this case, instead of the condition (12) it is needed to impose a condition

𝑑𝑒𝑡

𝑟∑︁
𝜈=1

𝛽𝜈 ≠ 0.

4. Example

Consider a single-frequency system of equations
𝑑𝑎

𝑑𝜏
= 1 + 𝑐𝑜𝑠𝜑𝜃 ,

𝑑𝜑

𝑑𝜏
=

1 + 2𝜏
𝜀

, 𝜏 ∈ [0, 1]; (25)

with integral conditions

−3𝑎(0) +2𝑎(3
4
) =

3
4∫

1
4

(1+𝑐𝑜𝑠𝜑𝜃 (𝜏))𝑑𝜏, 4𝜑(0) +𝜑(3
4
) =

3
4∫

1
4

(1+𝑐𝑜𝑠𝜑𝜃 (𝜏))𝑑𝜏, (26)

where 𝜑𝜃 (𝜏) = 𝑘1𝜑(𝜏) + 𝑘2𝜑(𝜃𝜏), 𝑘1, 𝑘2 ∈ Z, 0 < |𝑘1 | < |𝑘2 |, 𝑘1 + 𝑘2𝜃 = 0.
In the system (25) the resonance is achieved at 𝜏 = 0, since

𝑘1𝜔(𝜏) + 𝑘2𝜃𝜔(𝜃𝜏) = 2𝜏(𝑘1 + 𝜃2𝑘2) = 0.

Solution for the average problem
𝑑𝑎

𝑑𝜏
= 1,

𝑑𝜑

𝑑𝜏
=

1 + 2𝜏
𝜀

, −3𝑎(0) + 2𝑎(3
4
) = 1

2
, 4𝜑(0) + 𝜑(3

4
) = 1

2
takes the form of

𝑎(𝜏) = 𝜏 + 𝑦, 𝜑(𝜏) = (1 + 𝜏)𝜏/𝜀 + 𝜓, 𝑦 = 1, 𝜓 = (𝜀 − 10)/(10𝜀).
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The solution of the problem (25), (26) satisfies the initial condition 𝑎(0) := 𝑦 = 𝑦 + 𝜇,
𝜑(0) := 𝜓 = 𝜓 + 𝜉 and takes the form

𝑎(𝜏; 0, 𝑦, 𝜉, 𝜀) = 𝑦 + 𝜏 +
𝜏∫

0

𝑐𝑜𝑠( 𝑠
2

𝑐𝜀
− 𝜓)𝑑𝑠,

𝜑(𝜏; 0, 𝑦, 𝜉, 𝜀) = 𝜓 + (1 + 𝜏)𝜏/𝜀, 𝑐−1 = 𝑘1 + 𝑘2𝜃
2.

The values 𝜇 and 𝜉 in the initial conditions are solutions of the equations

𝜉 =
1
5

3
4∫

1
4

𝑐𝑜𝑠Ψ(𝑠, 𝜉, 𝜀)𝑑𝑠, Ψ(𝑠, 𝜉, 𝜀) = 𝑠2

𝑐𝜀
− 𝜓 − 𝜉,

𝜇 = 2

3
4∫

0

𝑐𝑜𝑠Ψ(𝑠, 𝜉, 𝜀)𝑑𝑠 −

3
4∫

1
4

𝑐𝑜𝑠Ψ(𝑠, 𝜉, 𝜀)𝑑𝑠.

From the estimates of the Fresnel integrals [11], it follows that

𝜉 =
1
5

3
4∫

0

(
cos

𝑠2

𝑐𝜀
cos(𝜓 + 𝜉) + sin

𝑠2

𝑐𝜀
sin(𝜓 + 𝜉)

)
𝑑𝑠 =

=

√
𝑐𝜀

5
( 3

4
√
𝑐𝜀∫

0

cos 𝑡2𝑑𝑡 +

3
4
√
𝑐𝜀∫

0

sin 𝑡2𝑑𝑡
)
= 𝑂 (

√
𝜀)

at 𝜀− > 0. Similarly, we obtain that 𝜇 = 𝑂 (
√
𝜀).

For errors of the averaging method at 𝜏 = 1 we obtain

𝑎(1, 0, 𝑦, 𝜓, 𝜀) − 𝑎(1, 0, 𝑦) = 𝜇 + 2

3
4∫

0

𝑐𝑜𝑠Ψ(𝑠, 𝜉, 𝜀)𝑑𝑠 = 𝑂 (
√
𝜀),

𝜑(1, 0, 𝑦, 𝜓, 𝜀) − 𝜑(1, 0, 𝜓) = 𝜉 + 1
5

3
4∫

1
4

𝑐𝑜𝑠Ψ(𝑠, 𝜉, 𝜀)𝑑𝑠 = 𝑂 (
√
𝜀).

5. Conclusion

The paper gives an unimproved estimate of the averaging method for a multifrequency
system with a finite number of linear delays and integral conditions on [𝜏1, 𝜏2] ⊂ [0, 𝐿].
The result according to the scheme presented in the paper is transferred to the case
when the integral conditions are given on the union of intervals [𝜏𝑖 , 𝜏𝑖+1] which do not
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intersect. The condition of the system out of resonance can be weakened, as was done
in [1], assuming an equality of zero multiplicity of 𝜅, which does not exceed Wronsky
determinant on [0, 𝐿]. The estimation will be of the order 𝜀𝛽 , 𝛽 = 1/(𝑚𝑞 + 𝜅). The
obtained results can be used in the study of complex oscillatory systems in the case of the
resonance, as well as in networks of coupled phase oscillators.
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