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Abstract. The nonlinear Volterra integral equations with loads on the desired solution are
studied. Loads are given using the Stieltjes integrals. The equations contain a parameter,
for any value of which the equation has a trivial solution. The necessary and sufficient
conditions on the values of the parameter are derived in the neighborhood where the
equation has nontrivial real solutions.
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Construirea soluţiilor ecuaţiilor integrale cu funcţionale
Stieltjes şi parametri de bifurcaţie

Rezumat. În lucrare sunt studiate ecuat,iile integrale neliniare Volterra cu sarcini pe
solut,ia dorită. Sarcinile sunt date folosind integralele Stieltjes. Ecuat,iile cont,in un
parametru, pentru oricare valoare a căruia ecuat,ia are o solut,ie banală. Condit,iile necesare
s, i suficiente asupra valorilor parametrului sunt obţinute în vecinătatea în care ecuaţia are
soluţii reale nebanale.
Cuvinte cheie: ecuaţii Volterra neliniare, decompoziţia Newton–Puiseux, puncte de
bifurcaţie, asimptotic, integrală Stieltjes, sarcini.

1. Problem statement

Let us address the following equation

𝑥(𝑡) = L(𝑥(𝑡), 𝑥𝛼, 𝑡, _), (1)

where 𝑡 ∈ [0, 𝑇], the desired function 𝑥(𝑡) ∈ C[0,𝑇 ] , _ ∈ R1 is bifurcation parameter, 𝑥𝛼
is given using the linear Stieltjes functional

∫ 𝑡2
𝑡1
𝑥(𝑡) 𝑑𝛼(𝑡),where 𝛼(𝑡) is limited variation

function, [𝑡1, 𝑡2] ∈ (0, 𝑇). Then 𝑥𝛼 can be local as follows 𝑥𝛼 = 𝑥(𝛼), 𝛼 ∈ (0, 𝑇) and
nonlocal. Nonlinear integral operator L(𝑥(𝑡), 𝑥𝛼, 𝑡, _) is defined as formula (2).

In this manuscript we continue our studies [3].
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I. Let us introduce the nonlinear mapping as follows

L(𝑥(𝑡), 𝑥𝛼, 𝑡, _) = 𝑎(𝑡, _)𝑥𝛼 +
𝑁∑︁

𝑖+𝑘=𝑙
𝑓𝑖𝑘 (𝑡, _)𝑥𝑖 (𝑡)𝑥𝑘𝛼+

+
∫ 𝑡

0

𝑁∑︁
𝑖+𝑘=𝑙

𝐾𝑖𝑘 (𝑡, 𝑠_)𝑥𝑖 (𝑠)𝑥𝑘𝛼 𝑑𝑠 + 𝑅(𝑥(𝑡), 𝑥𝛼, 𝑡, _), (2)

where 𝑙 ≥ 2, _ ∈ R1, 𝑡 ∈ [0, 𝑇],

| |𝑅(𝑥(𝑡), 𝑥𝛼, 𝑡, _) | | = O((| |𝑥(𝑡) | | + |𝑥𝛼 |)𝑁+1).

Functions 𝑎(𝑡, _), 𝑓𝑖𝑘 (𝑡, _), 𝐾𝑖𝑘 (𝑡, 𝑠, _) are continuous and smooth with respect to para-
meter _.

For arbitrary _ equation (1) has trivial solution 𝑥(𝑡) = 0, 𝑥𝛼 = 0.

Definition 1.1. Point _0 is called the bifurcation point of the equation (1), if for any Y > 0,
𝛿 > 0 there exist 𝑥(𝑡) and _ which satisfy (1) such as 0 < | |𝑥 | | < Y, |_ − _0 | < 𝛿.

In this work we present the conditions in which point _0 ∈ R1 is bifurcation point of
equation (1) and asymptotic of the nontrivial branches of small solutions of equation (1)
can be constructed.

We obtain the solution of the problem by constructing an equation with respect to the
load with bifurcation parameter _ and investigating it using the method of successive
approximations, methods of power geometry and rotation of finite-dimensional vector
fields. A combination of such methods go back to the classical approaches outlined in
[1, 2, 6] and has found application in solving a number of complex problems in mechanics,
mathematical physics and energy [4, 5]

2. Construction of the equation with respect to the load and its
analysis

For transparency, we first give a single-load statement. Using the method of successive
approximations and the implicit singularity theorem in the analytic case, we solve 𝑥(𝑡) of
the Volterra integral equation (1) as the following series

𝑥(𝑡) =
∞∑︁
𝑛=1

𝑎𝑛 (𝑡, _)𝑥𝑛𝛼. (3)

We successively calculate functions 𝑎𝑛 (𝑡, _) as follows

𝑎1(𝑡, _) = 𝑎(𝑡, _),

44



Dreglea A., Sidorov N., and Sidorov D.

𝑎𝑛 (𝑡, _) =
1
𝑛!

𝜕𝑛

𝜕𝑥𝑛𝛼
L

(
𝑛−1∑︁
𝑘=1

𝑎𝑘 (𝑡, _)𝑥𝑘𝛼, 𝑥𝛼, 𝑡, _
)�����

𝑥𝛼=0

, 𝑛 = 2, 3, . . . . (4)

Based on the implicit mapping theorem, series (3) will converge in a sufficiently small
neighborhood 𝑥𝛼 = 0. It follows from the above

Lemma 2.1. Let condition I be fulfilled. Then load 𝑥𝛼 satisfies the equation

𝐴1(_)𝑥𝛼 +
∞∑︁
𝑖=𝑙

𝐴𝑖 (_)𝑥𝑖𝛼 = 0, (5)

where

𝐴1(_) =
∫ 𝑡2

𝑡1

𝑎1(𝑡, _) 𝑑𝛼(𝑡) − 1,

𝐴𝑖 (_) =
∫ 𝑡2

𝑡1

𝑎𝑖 (𝑡, _) 𝑑𝛼(𝑡), 𝑖 = 𝑙, 𝑙 + 1, . . .

Proof follows from the possibility of representing the solution 𝑥(𝑡) in the form of a series
(3) and specifying the load using a linear functional 𝑥𝛼.

Corollary 2.1. (The necessary conditions of bifurcation) In order that _0 be bifurcation
point it is necessary 𝐴1(_0) = 0.

Proof. Equation (5) for all _ has a trivial solution 𝑥𝛼 ≡ 0. If 𝐴1(_0) ≠ 0, then |_−_0 | ≤ 𝜌1

in the neighborhood of |𝑥𝛼 | < 𝜌2. Based on the implicit function theorem, the small
solution of equation (5) is singular. Hence, in this case 𝑥𝛼 ≡ 0 and _0 by Definition 1.1
is not a bifurcation point of the equation (1). �

Corollary 2.2. Let all coefficients of 𝐴𝑖 (_) at _0 be zero in equation (5). Then _0 is the
bifurcation point. Moreover, equation (1) at _ = _0 has 𝑐–parametric non-trivial 𝑥(𝑡, 𝑐),
depending on a sufficiently small enough parameter 𝑐. At 0 < |_ − _0 | < 𝜌1 there are no
other small solutions to equation (1).

Proof is obvious. Since by virtue of the conditions of Corollary 2.2, the load 𝑥𝛼 at _ = _0

in expansion (3) of the solution of equation (1) remains an arbitrary parameter 𝑐 from the
interval |𝑐 | ≤ 𝜌2, in which series (3) converges.

Constructive sufficient conditions for the existence of bifurcation points are obtained.
By defining real solutions, 𝑥𝛼 → 0 at _ → _0 + 0 (_ → _0 − 0) in equation (5) and
substitute them into the right-hand side of formula (3).

By Lemma 2.1 to construct the asymptotic function 𝑥𝛼 in equation (5), put _ = _0 + `,
where ` is a small real parameter. Let us introduce the conditions:

45



CONSTRUCTION OF SOLUTIONS OF INTEGRAL EQUATIONS WITH
STIELTJES FUNCTIONALS AND BIFURCATION PARAMETERS

II. _0 is the root of the equation 𝐴1(_) = 0 of multiplicity 𝑝;

III. 𝐴(𝑝)
𝑙

(_0) ≠ 0.

As a result, equation (5) at _ = _0 + ` converts to(
1
𝑝!
𝐴
(𝑝)
1 (_0)`𝑝 + O(|` |𝑝+1)

)
𝑥𝛼 + (𝐴𝑙 (_0) + O(|` |))𝑥𝑙𝛼 + O(|𝑥𝛼 |𝑙+1) = 0 (6)

in the vicinity of points 𝑥𝛼 = 0, ` = 0. The solution to equation (6) can be found using
the Newton-Puso expansion (Newton’s diagram defines the exponent 𝑝/(𝑙 − 1)):

𝑥𝛼 = (𝑐0 + O(|` |))`
𝑝

𝑙−1 , 𝑐0 ≠ 0.

To determine 𝑐0 we get the equation

sign `𝑝 1
𝑝!
𝑑 𝑝𝐴1(_)
𝑑_𝑝

����
_=_0

𝑐 + 𝐴𝑙 (_0)𝑐𝑙 = 0. (7)

It is, therefore, obvious that when 𝑝 is odd, these are two equations, namely

1
𝑝!
𝐴
(𝑝)
1 (_0)𝑐 + 𝐴𝑙 (_0)𝑐𝑙 = 0, in ` > 0, (8)

− 1
𝑝!
𝐴
(𝑝)
1 (_0)𝑐 + 𝐴𝑙 (_0)𝑐𝑙 = 0, p ` < 0. (9)

For odd 𝑝 and any 𝑙, equation (7) in at least one half-cross point ` = 0 has a simple
real solution 𝑐0 ≠ 0.

Theorem 2.1. Let conditions I, II be fulfilled. Let _0 be the root of the equation 𝐴1(_) = 0
of odd multiplicity. Then _0 is the bifurcation point of equation (1). Moreover, if
conditions III are satisfied, then for even 𝑙 one can construct asymptotic solutions in the
neighbourhood of point _0.

Theorem 2.1 makes possible the representing of other manifolds of solutions of equation
(5) in the form of Newton–Puiseux decompositions and admits generalizations.

The described approach allows one to construct solutions of the equation (1) directly as
a series of integer or fractional powers of the parameter _−_0, where _0 is the bifurcation
point. The coefficients of the series, as in the well-known Nekrasov-Nazarov method [12]
will be determined from a recurrence sequence of linear equations.
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3. Integral equations with vector load and vector bifurcation
parameter

Let 𝑥𝛼 = (𝑥𝛼1 , . . . , 𝑥𝛼𝑛
), _ = (_1, . . . , _𝑚) in equation (1). The values of the load and

the bifurcation parameter lie in the vicinity of the zeros of vector spaces R𝑛 and R𝑚. Let
us consider equation (1) where

L(𝑥(𝑡), 𝑥𝛼, 𝑡, _) =
𝑛∑︁

𝑘=1
𝑏𝑘 (𝑡, _1, . . . , _𝑚)𝑥𝛼𝑘

+

+
∞∑︁
𝑠=𝑙

∑︁
𝑗+𝑘1+···+𝑘𝑛=𝑠

[
𝑓 𝑗𝑘1...𝑘𝑛 (𝑡, _1, . . . , _𝑚)𝑥 𝑗 (𝑡)𝑥𝑘1

𝛼1 . . . 𝑥
𝑘𝑛
𝛼𝑛
+∫ 𝑡

0
𝐾 𝑗𝑘1,...,𝑘𝑛 (𝑡, 𝑠, _1, . . . , _𝑚)𝑥(𝑠) 𝑗𝑥𝑘1

𝛼1 . . . 𝑥
𝑘𝑛
𝛼𝑛
𝑑𝑠

]
,

𝑏𝑘 , 𝑓 𝑗𝑘1,...,𝑘𝑛 , 𝐾 𝑗𝑘1,...,𝑘𝑛 be continuous functions, sufficiently smooth over all _𝑖 in the
neighborhood of | |_ − _0 | | ≤ 𝛿. We find sufficient conditions when _0 ∈ R𝑚 is the point
of bifurcation and we can construct the asymptotics of real solutions at _𝑖 = _0𝑖 + `,
𝑖 = 1, . . . , 𝑚, where ` ∈ [0, 𝛿] (or at ` ∈ [−𝛿, 0]).

We start by constructing a system to determine the vector load. To do this, plot the
solution 𝑥(𝑡) using the series (10) on the homogeneous forms components of the vector
load 𝑥𝛼 :

∞∑︁
𝑗=1
𝑎 𝑗 (𝑡, _, 𝑥𝛼). (10)

Here
𝑎 𝑗 (𝑡, _, `𝑥𝛼1 , . . . , `𝑥𝛼𝑛

) = ` 𝑗𝑎 𝑗 (𝑡, _, 𝑥𝛼1 , . . . , 𝑥𝛼𝑛
).

Note that the 𝑗-single forms can be computed uniquely following the work of [3].

Lemma 3.1. The required load 𝑥𝛼 in solution (10) must satisfy 𝑛 non-linear equations
with parameters _𝑖

𝐴1(_)𝑥𝛼 +
∞∑︁
𝑗=𝑙

𝐹𝑗 (_, 𝑥𝛼) = 0. (11)

Here 𝐹𝑗 = (𝐹𝑗1, . . . , 𝐹𝑗𝑛)𝑇 , _ = (_1, . . . , _𝑚), 𝐹𝑗𝑖 , 𝑖 = 1, . . . , 𝑛 are j-uniform forms of
vector components 𝑥𝛼, 𝐴1(_).

Examining system (11) leads to the following result.

Theorem 3.1. (Necessary bifurcation condition in the vector case) In order for the point
_0 ∈ R𝑚 to be a bifurcation point it is necessary that det 𝐴1(_0) = 0.
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Proof. A point _0 can be a bifurcation point of the integral equation if and only if it is a
bifurcation point of system (11). But if det 𝐴1(_0) ≠ 0, then for system (11) besides the
trivial solution there are no other small solutions based on the implicit function theorem.
Hence, due to formula (10) establishing an one-to-one correspondence between a small
solution of the integral equation and a small solution of the system (11), the integral
equation will also have only a trivial small solution 𝑥(𝑡) ≡ 0. �

We derive the necessary conditions of bifurcation solutions of equation (1) in vector
case. Let matrix 𝐴1(_) be the null matrix in the point _0 and, therefore, conditions of
Theorem 3.1 be satisfied. Let _ = (_0

1 + `, · · · , _
0
𝑚 + `) in system (11), where ` is a small

real parameter. Then, system (11) becomes

𝐿 (𝑥𝛼, `) := 𝐵(`)𝑥𝛼 + O(||𝑥𝛼 | |2) = 0.

Here square matrix 𝐵(`) = [𝑏𝑖𝑘 (`)]𝑛𝑖,𝑘=1 is the null matrix in the point ` = 0 due to
selection of _0. Let the following condition be satisfied:
V. 𝑏𝑖𝑘 (`) = 𝑐𝑖𝑘`𝑝𝑘 + 𝑟𝑖𝑘 (`), 𝑖, 𝑘 = 1, . . . 𝑛, det[𝑐𝑖𝑘]𝑛𝑖,𝑘=1 ≠ 0, |𝑟𝑖𝑘 (`) | = 𝑜( |` |𝑝𝑘 ), where
𝑝𝑘 is natural number.

Then the following theorem is valid.

Theorem 3.2. Let the load 𝑥𝛼 and paramter _ be vectors in equation (1). Let condition V
be satisfied and matrix 𝐴1 be the null matrix in the point _0 of system (11). If 𝑝1 + · · · + 𝑝𝑛
is odd number, then _0 is a bifurcation point.
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