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Real cubic differential systems with a linear center and
multiple line at infinity
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Abstract. We classify all cubic differential systems with a linear center and multiple
line at infinity up to multiplicity four. For every class with the multiplicity of the line at
infinity four the center problem is solved. It is proved that the monodromic points are of
the center type if the first three Lyapunov quantities vanish.
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Sisteme diferentiale cubice reale cu centru liniar si linia
de la infinit multipla

Rezumat. Sunt clasificate sistemele diferentiale cubice cu centru liniar si linia de la
infinit de multiplicitate cel mult patru. Pentru fiecare clasé ce are linia de la infinit de
multiplicitate patru este rezolvatd problema centrului. Se aratd ca punctele monodromice
sunt de tip centru, dacd se anuleazd primele trei mdrimi Liapunov.

Cuvinte cheie: sistem diferential cubic, linie invariantd multipla, problema centrului.

1. INTRODUCTION

Consider the real cubic system of differential equations

2+cxy+fyz+k)c3 +m)czy+pxyz+ry3 =p(x,y),

X=y+ax
y= —(x+gx2+dxy+by2 + s5x3 +cpc2y+nxy2 +ly3) =q(x,y), (D)

ng(p’C” = 19 (k7l7m’nap9q’r,s) ¢ O

The critical point (0, 0) of system (1) is a linear center, i.e. for the linearization of (1)
the origin is a center, but for system (1) it is either a focus or a center. The problem of
distinguishing between a center and a focus is called the center problem. 1t is well known
that (0, 0) is a center for system (1) if and only if the Lyapunov quantities Ly, Ly, ..., L, ...
vanish (see, for example, [2], [7], [8], [9]). Also, the critical point (0, 0) is a center if
system (1) has an axis of symmetry ([8]), either an analytical first integral or an integrating

factor in some neighborhood of (0, 0).
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We suppose that at infinity system (1) has at most four distinct critical point, i.e.
sxt 4 (k+ @)Xy + (m+n)x®y* + 1+ p)xy® +ry* £ 0. 2)
The homogeneous system associated to system (1) has the form

i =yZ%+ (ax® + cxy + fyDZ + kx> + mx®y + pxy> +ry> = P (x, v, Z),
y=—(xZ2+ (gx> +dxy + by?)Z + sx> + qx*y + nxy> + 1y°) = Q0 (x,y, Z) .

Denote X = p (x,y) % +q(x,y) %, X =P (x,y,2) % +0(x,y,2) % and E, =
P -X(Q) — Q- X (P). The polynomial E has the form Eo, = Ca(x, y) + C3(x, y)Z +
C4(x,y)Z2 + 4+ Cg(x,y)Z6, where Cj(x,y), j = 2,...,8 are polynomials in x and y.

For example,

Cs(x,y) = My(a,b,c,d, f,g, k,l,m,n,p,q,r,s,x,y) 3)
+My(b,a,d,c,g, f.l.k,n,m,q,p,s,r,y,x),

where

My(a,b,c,d, f,g, k,l,m,n,p,q,r,s,x,y) =
(agk + dgk +2k*> — g°m + agq + kq — a®s + ads — 2cgs — 2ms — s*)x%+
(Badk + d*k + 2bgk — dgm + 3km + 2agn + 2kn — 2¢°p + 2adq — cgq — mq
+2abs — 3acs — cds —4fgs — 3ks —4ps — qs)x°y + (Sabk + 3bdk + 2cdk — fgk
+3agl + 3kl + 2adm — cgm + m* + a*n + 3adn — agp — 3dgp + 2kp + 3abg — acq
—3fgq —kq —3pq —38%r —2c%s —dafs —3dfs — dms — 6rs)x*y>+
(2b%k +4bck + dfk + 4abm + bdm + cdm — 2 fgm + Im + adp — d*p — 2bgp
—2cgp +mp —2np —2agr — 5dgr + kr — 5gr)x>y>.

We say that the line at infinity Z = 0 has multiplicity v if C2(x,y) =0, ...,Cy(x,y) =
0, Cys1(x,y) £ 0,i.e. v — 1 is the greatest positive integer such that Z*~! divides E...

The algebraic line f(x,y) = 0 is called invariant for (1) if there exists a polynomial
K € CJx, y] such that the identity X(f) = f-K(x, y) holds. Some notions on multiplicity
(algebraic, integrable, infinitesimal, geometric) of an invariant algebraic line and its
equivalence for polynomial differential systems are given in [1].

Cubic differential systems with multiple invariant straight lines (including the line at
infinity) were studied in [6], [13], [16], and the center problem for (1) with invariant
straight lines was considered in [2], [3], [4], [5], [10], [12], [14], [15], [17].
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In [11], using the complex variables A, B,C,D,F,G,K,L,M,N, P,Q, R, S, where
A=g-b—-c+ila+d-f),C=2(b+g+i(a+[)),
F=c+g-b+i(a-d-f),K=r+s—-m-n+i(k-1l-p+q),
M=n-m-3(r-s)+i(3(k+0)+p+gq), @
P=m+n+3(r+s)+i(3k=-0)+p-q),
R=m-n—-r+s+i(k+l-p-gq),
B=A,D=C,G=F,L=K,N=M,Q=P,S=R,

cubic differential systems (1) with multiple line at infinity are classified.

In this paper we obtain the classification of these systems in real coefficients. Moreover,

in the classes for which the multiplicity of the line at infinity is four, the center problem

is solved.

2. CLASSIFICATION OF CUBIC SYSTEMS WITH MULTIPLE LINE AT INFINITY

2.1. Cubic systems with the line at infinity of multiplicity two.

In [11], using the variables A, B, ..., R, S, it was shown that the line at infinity in (1)

has multiplicity two if and only if one of the following three sets of conditions holds:

K=L=R=5=0,0Q=MN/P, MN # 0; 5)
M=N=P=0=0,R=KL/S; (6)
P=KN/S, R=KL/S, Q=MS/K, M #0. (7
Taking into account (4), we obtain the following sets of solutions:

- in Case (5):
k=m=p=r=0,q9=1,s=n; (8)
k=n=p=s5s=0,q=1,r=m; 9
k=p,l=q,m=pq/s,n=s,r=pqls; (10)

- in Case (6):
k=m=p=r=0,q=-31,s=-n/3; (11)
k=n=p=s5s=0,qg=-3l,r=-m/3; (12)
k=-p/3,1=-q/3, m=—-pq[(3s), n==3s, r = pq/(9s); (13)

- in Case (7):
k=m=p=r=0; (14)
k=m=n=p=q=s=0; (15)
k=n=p=s5=0,l=qr/m; (16)
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k=s=0,l=nr/p, g =mn/p; 17)

l=rs/k,n=ps/k, g =ms/k. (18)
We change the coefficients [ — -3/, n — —n/3 (respectively, {{ — =3I, m — —m/3}
and {m - m/9, p — -p/3,q — —q/3,r = —r/3, s — =3s}) in (1). This implies
that the set of conditions (11) (respectively, (12) and (13)) is equivalent with the set of
conditions (8) (respectively, (9) and (10)). Conditions (8) are contained in (14), while
{(9), m =0}, {(9), m # 0}, {(10), k =0}, {(10), k # 0} are contained in (14), (16),
(14), (18), respectively.

In this way we proved the following Lemma.

Lemma 2.1. The line at infinity of system {(1), (2)} has multiplicity at least two if and
only if one of conditions (14) — (18) holds.

2.2.  Cubic systems with the line at infinity of multiplicity three.

In complex variables A, B, ..., R, S the line at infinity has the multiplicity at least three
for cubic system {(1),(2)} if and only if the coefficients of {(1),(2)} verify one of the

following six set of conditions:

K=L=R=S5=0,F=BM/P,G=AP/M,N =P*/M, Q = P; (19)
K=L=R=S5=0,D=CN/P, F=BP/N,G=AN/P,Q =MN/P; (20)
M=N=P=Q=0,C=DR/L, F=BR/L,G = AL/R, S = KL/R; 1)

M=N=P=Q=0, F=—(CL?>-DLR - BR?)/(LR),

2 2 3 4 (22)
G = (AL>+ CLR - DR*)/(LR), S=KL/R, KL* - R*=0;

D=CL/R,F=BR/L,G=AL/R, P=NR/L,Q=LM/R, S=KL/R, (23)
D =L(FKL> - BKLR - FLMR + BMR? + CR?)/R*,
G =-L(FKL - BKR — AR*)/R3, N = —(KL3> — L>MR - R*)/R3, (24)
P=—(KL*-L>MR -R*%/(LR*),Q=LM/R, S=KL/R
(see [11]).
Using (4), we will solve in the real coefficient a, b, c, d, f, g, k,l,m,n,p,q,r,s of (1)
the equalities (19)-(24). Firstly, we solve the equalities:
K=L=R=S5=0;
M=N=P=0=0.
We obtain, respectively
k=p,l=q,m=r,n=s; (25)
k=-p/3,1=—-q/3, m=-3r, n=-3s. (26)
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Suppose (25) is realised. Then equations (19) give us two series of conditions:
d=k=l=n=p=q=5=0,b=g, m=r, r#0; 27
a=(gq+fs—bq)s,c=dq/s,k=1=p=q,m=q*/s,n=s,r=q%/s, (28)
and (20) yields the conditions
a=c=f=k=m=p=r=0,l=¢qg,n=s; (29)
l=m=q=r=0,b=fs/p,d=cs/p,g=as/p, k=p,n=s; (30)

b= fq/r,d=cqlr,g=aq/r,k=p,l=qg,m=r,n=pqlr,s=pqlr. (31)
Let equalities (26) hold. Then,
set (21) implies:

a:c:f:k:m:p:}”:o,l:—q/3,n:_3s; (32)
l=m=q=r=0,b=-3fs/p,d=-3cs/p,g =—3as/p.k =—p/3,n=-3s; (33)

b=-fq/(3r),d=-cq/Q3r), g=-aq/(3r), k=-p/3,l =-q/3,

(34)
m = =3r, n=-pq/Q3r), s = pq/(9r);
set (22) yields:
c=k=l=m=p=q=r=0,a=-f/3,n=-3s, 5 #0; 35
d=k=l=n=p=q=5=0,b=—-g/3, m==-3r,r #0; (36)
l=m=q=r=0,b==fp/(9s), g =(dp +3cs —ap)/(9s), 37)
k=-p/3,n=-3s, p> =27s> =0;
a= —(cq3 + 3dq2r - 27cqr2 + 72gqr2 - 81dr3)/(24q2r),
f= (cq3 + 3dq2r - 24bqr2 - 3cqr2 - 9dr3)/(8q2r), (38)
p=-3k =-q(q* - 27r*)/(3(¢g* - 3r?)), | = —q/3,
m==3r, n=-3s = q*(¢*> - 27r*) / (9r(q*> - 3r?)).
set (23) gives:
b=d=g=1l=n=q=s5=0; 39)
a:c:f:k:m:p:rzo; (40)
k=l=n=p=r=s5s=0,a=gm/q, c=dm/q, f =bm/q; 41)
k=n=p=s=0,a=gr/l,c=dr/l, f=br/l, m=qr/l, (42)
n=p=0,a=gk/s,c=dk/s, f =bk[/s, m=kq/s, r =kl/s, (43)
a=gp/n,c=dp/n, f =bp/n, k=ps/n,m=pq/n,r=Ip/n. (44)
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The system {Q = LM /R, S = KL/R} has the solutions:

DNk=l=n=p=r=s5s=0, g+0; (iyl=n=p=r=0,m=kq/s,
(ii)l=r=0, k=ps/n, m=pq/n; (iv)yl=¢g=0,s=n;
) k=rs/l,m=qr/l, p=nr/l.

Nextly, we solve (24) taking into account the equalities (i) — (v). We obtain conditions
a=f=k=l=m=n=p=r=5=0, q#0; 45)
in Case (i); conditions
f=k=l=m=n=p=r=0, c=aq/s; (46)
l=n=p=r=0,b=fs/k,d=cs/k, m=kqls, g =k, 47
in Case (ii); conditions

k:l:m:p:r:(),d:fs/n,C:fq/i’l; (48)

l=r=0,a=(cnpq - cn’ + dnzp +gnp2 - dpzq)/(nzp), f=bp/n,

k =(pq—-n®)/p, m=pgq/n, s=n(pqg—n?)/p* @

in Case (iii); conditions
b=g=k=l=m=n=q=r=s5=0, p#0; (50)
b=k=l=n=q=r=s5=0,d=gp/m; (51)
k=l=n=q=5=0,d=>bp/r, g =bm/r; (52)

in Case (iv); and conditions

a=(fl*=bPr - flPnr + blnr* + flgr’ + glr® — bgr?) | (I*r?),
¢ = (blPr = fI+ flnr +dIr* — bnr?) [ (1%r), k = (I = Inr + qr?)/r?, (53)
m=(gr)/l,p=nr/l, s =1(I> - lnr + qr*)/r.

in Case (v). From the above, the next statement follows.

Lemma 2.2. The line at infinity of system {(1), (2)} has multiplicity at least three if and
only if one of the series of conditions (27) — (53) holds.

It is easy to show that under each of the conditions (27)—(38), (42), (47), (48) and (51)
the polynomial (3), i.e. C4(x,y), is not equivalently zero. Therefore, the assertion of the

following Lemma is true.

Lemma 2.3. Under each of the conditions (27)—(38), (42), (47), (48) and (51) the line at
infinity of system {(1), (2)} has multiplicity exactly three.
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2.3. Cubic systems with the line at infinity of multiplicity four.

According to [11], the line at infinity in complex variables A, B, ..., R, S has the mul-
tiplicity at least four for cubic system {(1),(2)} if and only if the coefficients of {(1),(2)}

verify one of the following two sets of conditions:

D=CS/K, F=BK/S,G=AS/K, L=-S*/K3,

M=SN=R=-5%K? Q=-P=5?/K,; 64
A=2(K3L+5%/(S*(BK - FS)) - S(BK —2FS)/(KL),
C =2K’L+ 5% /(KS(BK - FS)) - (BK*L - 2FK?LS — FS°)/(K*LS?),
D = (FK*L +BS?)/(K’L) +2(K3L + $*)/(K*(BK - FS)), 55)

G =FS?/(K*L) +2(K>L + §%))/(KS(BK - FS)),
M = (K3L +25%/8% N = 2K>L + 5% /(K%S), P = 2K3L + §*)/(KS?),
Q= (KL+25%/(KS?), R=KL/S.
The equalities M = S, Q = —P occur if | = -k, m = -2r — sn = —r — 2s. The
last equalities together with D = CS/K, F = BK/S, G = AS/K, L = —-S*/K>,R =
—-S83/K?, P = —S%/K from (54) give us the following three series of conditions:

a:C:f:k:l:m:n:p:]":S:O,q#:O; (56)
b:d:g:k:l:m:n:q:r:s:(),p;éo; (57)

b=fslk,d=cslk, g=aslk, | =—k, m=2k*/s—s, 58)
n==k*/s-2s, p=-2k+k3/s* q=2k —s*/k, r =—-k?/s.

Similarly, in Case (55), solving the system of equalities M = (KL +25%)/83, N =
(2K3L + 8% /(K?S), P = 2K3L+ 5% /(KS?),Q = (K’L+25%)/(KS?), R=KL/S, we

get:

k=s5s=0,1=p/2,m=n/2, qg=n*/(2p), r = p*/(2n); (59)
1= (ps?>-Kk3)/(2s?), m = (3k> + ps?)/(2ks), n = ps/k,
(60)
q = (3k> + ps®)/(2k?), r = =k (k* = ps*) [ (25%);
k=l=m=n=p=r=0; (61)
k=l=m=n=q=s5s=0. (62)

Then under each of conditions (59)—(62), we solve the system
A=2(K’L+S5%/(S*(BK - FS)) - S(BK - 2FS)/(KL),

C =2K’L+5%/(KS(BK — FS)) — (BK*L —2FK3LS — FS?)/(K?LS?),

D = (FK*>L +BS?)/(K’L) +2(K3L + $*)/(K*(BK - FS)),
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G =FS?/(K*L) +2(K>L + §%))/(KS(BK - FS))
and obtain, in Case (59):

k=s=0,a=-np/(2(cn—dp)), b= (2c*n—-2cdp + p*)/(2(cn — dp)),
f = p(4c*n* — 6¢cdnp +2d°p* + np?)/(2n*(cn — dp)), g = —n*/(2(cn — dp)),
l=p/2,m=n/2, q=n*/(2p), r = p*/(2n);

(63)
in Case (60):
b= (—agk* + k> + a’k>s — 2k3s> + agkps® — k*ps® — a’ps’)/ (2k>s-
(gk —as)), | = (=k> + ps?)/(2s?), m = (3k> + ps?)/ (2ks),
c =—(28°k> — Sagk*s — ks + 3a’k>s* + 2k>s® — agkps® + k% ps’
+a’ps*) [ (2k%s* (gk — as)), q = 3k + ps?)[(2k?), 64)

d = (-g%k* +3aghk’s + k*s — 2a’k*s* + g’k ps® — 2k*s> — agps®
—kps®) ] (2k%s(gk — as)), r = —k(k3 = ps?)/(2s°)

f= —(g2k5 - 3agk4s + ks +2a%k3s* — gzkzps2 —2k3s3 + 3agkps3
—k%ps —2a’ps*) | (2ks® (—gk + as)), n = ps/k;

in Case (61):
b=c=f=k=l=m=n=p=q=r=0,s=a(d-a), a(d—-a) #0; (65)
f=k=l=m=n=p=r=0,a=cs/q, c=b,g=s(bdg — q* - b*s)/(bq?);
(66)

in Case (62):

a=d=g=k=l=m=n=p=q=5=0,r=b(c->b), b(c-b) #0; (67)

g=k=l=m=n=qg=s=0,b=ar/p,d=a, f =r(acp — p> —a’r)/(ap?). (68)
In this way we proved the following Lemma.

Lemma 2.4. The line at infinity of system {(1), (2)} has multiplicity at least four if and
only if one of the series of conditions (56)—(58), (63)—(68) holds.

Remark 2.1. The substitution {x <& y,t > —t,a & b,c o d, f o g, ko, m o
n, p < ¢, r < s} reduces system {(1),(57)} (respectively, {(1),(67)}, {(1),(68)}) to
system {(1),(56)} (respectively, {(1),(65)}, {(1),(66)}).
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3. CENTER CONDITIONS FOR CUBIC SYSTEM {(1),(2)} WITH THE LINE AT INFINITY

OF MULTIPLICITY AT LEAST FOUR

Lemma 3.1. The following twelve sets of conditions are sufficient for the origin (0,0) to

be a center for system (1):
a=b=c=f=k=l=m=n=p=r=s5=0,qg=dg, dg #0; (69)

b=+f,c==x(a+f),d=a+f,g = +a,

k=-l=+m=-n=-p=qg=%r==+s==x(a’- f?)/2;

b=(fs)/k,c=(k((k* +s)*=2(a* - f))s))/((a+ f)s*(k* — 57)),
d=((k* +5%)? = 2(a* - fH)s))/((a + f)s(k* = 5%)), g = (as)/k,| = -k,
m= (2k> = s2)/s,n = (k* =252 /s, p = (k(k? = 2s2))/s2,

qg=Qk* =5k, r=—-k*/s, k*>(k* +s%) — (a + f)s(ak?® — fs?) = 0;

(70)

(71)

k=s=0,a=(cd-p)/(2c), b=c/2, f=c*(cd-3p)/(2(cd - p)?),
g=(cd-p)?*/(2c®),1=p/2, m=p(cd-p)/(2c*), n=p(cd - p)/c*,  (72)
g =p(cd - p)?*/(2ch), r=c*p/(2(cd - p));

b = (—agk* + k> + a*k3s — 2k3s* + agkps® — k*ps* — a’ps’) | (2k>s-
(gk —as)), I = (k> + ps?)/(25%), m = (3k> + ps?)/ (2ks),

c = —(28%k> — Sagk*s — ks + 3a’k3s> + 2k3s® — agkps® + kK ps’
+a’ps*) [ (2k*s*(gk — as)), q = (3k> + ps?) [ (2k?),

d = (—g2k* +3agk3s + k*s — 2a*k?s* + g%k ps® — 2k*s — agps®
—kps®)/(2k*s(gk — as)), r = k(ps* — k) /(2s?),

f= —(g2k5 - 3agk4s + ks +2a%k3s? - gzkzps2 —2k3s3 + 3agkps3
—k?ps® = 2a’ps*) | (2ks> (—gk + as)), n = ps/k,

(k3 = 2ks? — ps?) (s(3k> — ps?)(—agk + k* + a*s) + 2k (k> + s%) (g*k?
—2agks — kZs + a%s?)) + 4k252(gk —as)?(k? +s?) = 0;

(73)

f=k=l=m=n=p=r=0,a=bs/q, c=0b,
d=b(2s*~q%)/(gs), g = (b*s* = b*q* = ¢*5) [ (bq?);

b = k(k*+a*s +s* —agk)/(s(as — gk)),

c = k(g%k? — 4agks + ks + 3a’s> + s%) [ (s*(as — gk)),
d = (k*s + a*s> + s° — g2k?)/(s(as — gk)),

f=k*>(g%k* = 3agks + k*s + 2a%s* + s°) /(s (as — gk)),
p=31=3k3s* m=n=3k*/s, g =3k, r=k*/s,
g2k® = 3agk?s + kK3s + 2a’ks* — g%ks® + ags® + ks® = 0;

(74)

(75)
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b =—-as/k, c = (2ak?s — gk’ —as®)/(ks?), d = (ak — gs)/k,
f=(gk—-2as)/s, | =k, m=2k*>-s*)/s, n=(k?-2s%)/s,
p=k(k*=2s2)/s q=Qk*> =5k, r = —k*/s,

g2k> = 3agk®s + k3s + 2a’ks® — g%ks® + ags® + ks® = 0;

(76)

b=c=f=g=k=l=m=n=p=q=r=0,s=a(d-a),a(d-a)+#0; (7)
b=c=f=k=l=m=n=p=q=r=0,d=2a,s=a’, a+0; (78)
a=f=g=k=Il=m=n=p=r=5=0,c=b,d=q/b, q #0. (79)

Proof. When one of the series of conditions (69)—(74) holds, system (1) has an affine
invariant straight line /; and a Darboux integrating factor of the form u(x, y) = 1/1;.

In Case (69): [} =dy +1;

inCase (70): 1 =(a—- f)(xFy) £ 1;

in Case (71): 1} = (k* + s%)(kx — sy) + (a + f)s%;

in Case (72): [} = py +c;

in Case (73): 1} = 2k3s(k® —2ks?> — ps?®) + (gk —as)(3k3 — ps?) (2k*sx —k3y + ps?y);

in Case (74): 1} = b(sx + qy) — s.

Under the conditions (75) the equalities CF — DG = AD?® — BC? = AF? - BG? =
A*L? - B*K3 = A’N? - B*M? = A’R® - BS® = C*L - D*K = C’N - D’M =
C’R-D>S=F*K-G*'L=F>M -G*N=F?>S-—G?R=KN?>-LM?=KR>- LS’ =
MR - NS = P - Q =0 hold. Therefore, system {(1),(2)} has an axis of symmetry and
the origin is a center ([8]).

In Case (76), system (1) has the integrating factor of the Darboux form:

(1/211231(1/4

p(x,y) = LRI,
where
I = ks + (gk —as)(sx + ky), I3 = Exp[2s(gk — as)x + k(sx + ky)?],
ly = Exp[sx + ky], I3 = Exp[(sx + ky)(s(ags + ks — g°k)x + (g>k*> — 3agks + k’s
+2a%s%)y +2(as — gk)(sx + ky)?) /3], a1 = (k? + s2)2(g*k> — ag’k?s — 58%k3s
+g*ks? + 4agk?s? +2k3s? — ag’s® — g%ks®) | (8k3(as — gk)*),
@ = (g°k — ags — ks)(k* + 572/ (2k*(gk - as)?),
a3 = (k? + %) (gk? = 2aks — gs*)/ (2k*s>(gk — as)),
ay = k(k? + 522/ (2k%s3 (gk — as)?).
In Case (77), Ox is an axis of symmetry for (1).
In Case (78), system (1) has a polynomial first integral F(x,y) = 6(x + y?) + 4gx> +
12ax?y + 3a’x*.
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In Case (79), system (1) has an integrating factor u(x,y) = (1 + bx)Exp[-q(3gx* +
2bgx> + 6by + 6b%xy)/(6b3)]. o

Remark 3.1. The line at infinity for system {(1),(2),(78)} has multiplicity five.

Theorem 3.1. Cubic system {(1), (2)} with the line at infinity of multiplicity four has at

the origin a center if and only if the first three Lyapunov quantities vanish.

Proof. To prove Theorem 3.1 we compute the first three Lyapunov quantities (see [2],
[9]) Ly, Ly, L3 for each set of conditions (56), (58), (63)—(66) (see Remark 2.1). In the
expressions for L; we will neglect the non-zero factors.

In Case (56) the first Lyapunov quantity is L; = bd + dg — g while Ly = 0 gives
g =d(b+g). Then {L, = b(3b +5g) = 0, L3y = b(2064b> + 183bd> + 4982b%g +
305d%g + 2660bg> +230g%) =0} = {b = 0} = Lemma 3.1, (69).

Let conditions (58) hold. Then L = (a+ f) (s> —k?)s?c+k((k2+s5%)>=2(a*> - f?)s%).
If s = +k,then {L; =0,L, =0,L3 =0} & {k=+(a*- f?)/2, c=+(a+ f)} =
Lemma 3.1, (70). If s> —k? # 0, then L; = 0 = ¢ = k((k*+52)2=2(a® - f>)s*))/((a +
F(k* = s?)s*) = L, = fifo, L3 = fi f5, where

fi = K2 (k* +5%) = (a + f)s(ak® - fs?),

fr=2k*+k>s2s+ (a+ f)Ba+5f)) - (a+ f)(5a+3f)s>,

fs = (a+ k>(9a> +39a>f + 55a £ +25f3 + 40as + 56 fs) — s> (15a* + 64a> f
+98a% £ + 64a f3 + 15f* — 28k* + 40a%s + 64afs + 24 25 + 4s?).

If fi = 0, then Lemma 3.1, (71). Assume that (a + f)(k*> — s?)sf; # 0, then system
{f> =0, f3 = 0} is incompatible.

Under conditions (63) the first Lyapunov quantity is L; = g1g», where g = ¢%n —
cdp + p? and g> = n(n* — p*) = 2p(cn — dp)(dn® + 2cnp — dp?).

If g, =0, then Lemma 3.1, (72). Let g; # 0. The second Lyapunov quantity reduced
by g» has the form

Ly = (2cd + d*> — ¢*)(¢? +2¢cd — d*)(2d? + n) p® + 2¢d (24c*d? — 80c?d* + 15¢*n
—62¢%d’n +7d*n — 2¢*n? + 2d°n?) p° + (32c8d? — 112¢%d* + 16¢3n — 208¢°d*n
+600c*d*n — 8cOn? + 112¢*d*n® — 52c2d*n? + 4dn® + c*n® — 6¢2d*n® + d*n?) p*+
(—4cdn(24¢® — 88c0d? — 32¢%n + 194c*d?n — 40c%d*n + 12¢*n?* — 20c%d?*n® + 6d*n?
-2 + d*n?)p? + 4c2n?(16¢® — 76¢0d? + 28c*d* — 4cdn + 112¢*d?n — 70cd*n+
2c*n? = 15¢2d%n? + 15d*n®) p? + 8¢ dn® (8c*~16c2d*—16¢*n+21d°n) p + 16¢3d%n?.

It is easy to show that system {g> = 0, L, = 0,np(cn — dp)g; # 0} has no solutions.
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In Case (64) the first Lyapunov quantity has the form L; = ¢o¢; and the second
quantity reduced by ¢; looks as L, = (3k> — ps?) (k3 — 2ks? — ps?) o2, where

@0 = (k3 = 2ks? — ps?)(s(3k> — ps®)(—agk + k* + a*s) + 2k (k* + %) (g°k>
—2agks — k%s + a’s?)) + 4k>s*(gk — as)*(k? + 5%),

o1 = g2k> = 3agk®s + ks + 2a%ks* — g%ks® + ags® + ks>,

02 = (k> + 528 (kg — as) + (k? + s2) g3 (8ak?s® — ksg(9k? + 5%))
+6k352g2(3k? + 5%) — 12agk*s® — 4k>s>.

If o = O (respectively, {3k — ps? =0, 1 = 0}; {k? — 2ks?> — ps®> =0, ¢; = 0}), then
Lemma 3.1, (73) (respectively, Lemma 3.1, (75); Lemma 3.1, (76)).

System {¢| = 0, ¢, = 0} is incompatible because Resultant|[¢y, 2, a] = 32k'1s® #
0.

Under conditions (65) L = g(2a — d). If g = 0, then Lemma 3.1, (77), and if d = 2a,
then Lemma 3.1, (78).

Finally, when conditions (65) hold the first Lyapunov quantity is L = (bg® + dgs —
2bs?)(q*+b*s—bdq). If bg*+dgs—2bs* = 0, then Lemma 3.1, (74), and if g>+b%s—bdq =
0, bg®> + dgs — 2bs*> # 0, then d = (¢*> + bs)/(bq) = L, = b%¢*s =0 = s =0 =
Lemma 3.1, (79). m|

Theorem 3.2. With exactness of a centro-affine transformation of coordinates, the cubic
system {(1), (2)} with the line at infinity of multiplicity four has at the origin a center if
and only if one of the series of conditions (69)—(79) holds.

REFERENCES

[1] CHRISTOPHER, C., LLIBRE, J. AND PEREIRA, J.V. Multiplicity of invariant algebraic curves in polynomial
vector fields. Pacific Journal of Mathematics, 2007, vol. 329, no. 1, 63-117.

[2] Cozma, D. Integrability of cubic systems with invariant straight lines and invariant conics. 1.E.P. Stiinta,
Chisindu, 2013.

[3] Cozma, D. Darboux integrability of a cubic differential system with two parallel invariant straight lines.
Carpathian J. Math., 2022, vol. 1, 129-137.

[4] Cozma, D. aND SUBA, A. The solution of the problem of center for cubic differential systems with four
invariant straight lines. Analele Stiintifice ale Universitatii "All.Cuza", lasi, s.I.a, Matematica, 1998,
vol. 44, 517-530.

[5] Cozma, D. anp SuBA, A. Solution of the problem of the centre for a cubic differential system with
three invariant straight lines. Qualitative Theory of Dynamical Systems, 2001, vol. 2, no. 1, 129-143.

[6] LLiBRE, J. AND VuLPE, N. Planar cubic polynomial differential systems with the maximum number of
invariant straight lines. Rocky Mountain J. Math., 2006, vol. 36, no. 4, 1301-1373.

[7] RomaNovski, V.G. AND SHAFER, D.S. The center and cyclicity problems: a computational algebra

approach. Boston, Basel, Berlin : Birkhduser, 2009.

61



REAL CUBIC DIFFERENTIAL SYSTEMS WITH A LINEAR CENTER

[8] SiBirskyY, C.S. Algebraical invariants of differential equations and matrices. Kishinev: Shtiintsa, 1976
(in Russian).

[9] SuBA, A. On the Lyapunov quantities of two-dimensional autonomous systems of differential equations
with a critical point of centre or focus type. Bulletin of Baia Mare University (Romania). Mathematics
and Informatics, 1998, vol. 13, no. 1-2, 153-170.

[10] SuBA, A. The center conditions for a cubic system. Bul. Stiint. Univ. Baia Mare (Romania), Ser. B,
Matematica si Informaticd, 2002, vol. XVIII, no. 2, 355-360.

[11] SuBA, A. Center problem for cubic differential systems with the line at infinity of multiplicity four.
Carpathian J. Math., 2022, vol. 1, 217-222.

[12] SuBA, A. AND CozmA, D. Solution of the problem of the center for cubic differential system with three
invariant straight lines in generic position. Qualitative Theory of Dynamical Systems, 2005, vol. 6, no.1,
45-58.

[13] SuBA, A., Repesco, V. anp PutunticA, V. Cubic systems with invariant affine straight lines
of total parallel multiplicity seven. Electron. J. Diff. Equ., 2013, vol. 2013, no. 274, 1-22.
http://ejde.math.txstate.edu/

[14] SuBA, A. anDp TURUTA, S. Solution of the problem of the center for cubic differential systems with the
line at infinity and an affine real invariant straight line of total algebraic multiplicity five. Bulletin of
Academy of Sciences of the Republic of Moldova. Mathematics, 2019, vol. 90, no. 2, 13—40.

[15] SuBA, A. aND TURUTA, S. Solution of the center problem for cubic differential systems with one or two
affine invariant straight lines of total algebraic multiplicity four. ROMAI Journal, 2019, vol. 15, no. 2,
101-116.

[16] SuBX, A. AND Vacarasg, O. Cubic differential systems with an invariant straight line of maximal
multiplicity. Annals of the University of Craiova, Mathematics and Computer Science Series, 2015,
vol. 42, no. 2, 427-449.

[17] SuBA, A. AND Vacaras, O. Center problem for cubic differential systems with the line at infinity and
an affine real invariant straight line of total multiplicity four. Bukovinian Math. Journal, 2021, vol. 9,
no. 2, 35-52.

(Subéd Alexandru) INSTITUTE OF MATHEMATICS AND COMPUTER SCIENCES ~’V. ANDRUNACHIEVICT,
STR. AcAaDEMIEI 5, MD-2028, CHISINAU, REPUBLIC OF MOLDOVA;
TirAsPOL STATE UNIVERSITY, STR. GH. laBLOCIKIN 5, MD-2069, CHiSINAU, REPUBLIC OF MOLDOVA

E-mail address: suba@math.md

62



	Introduction
	Classification of cubic systems with multiple line at infinity
	Cubic systems with the line at infinity of multiplicity two.
	Cubic systems with the line at infinity of multiplicity three.
	Cubic systems with the line at infinity of multiplicity four.

	Center conditions for cubic system {(1),(2)} with the line at infinity of multiplicity at least four

