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Dynamics of a cubic differential advertising model
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Abstract. In this paper a cubic differential advertising model with a singular point
𝑂 (0, 0) is studied. The dynamics of the system is investigated and the global phase
portraits are obtained. A small amplitude limit cycle is emitted by the Hopf supercritical
bifurcation.
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Dinamica unui model diferenţial cubic de publicitate
Rezumat. În lucrare este studiat un model diferenţial cubic de publicitate cu un punct
singular 𝑂 (0, 0). Se studiază dinamica sistemului şi se obţin portretele globale de fază.
Un ciclu limită de amplitudine mică este obţinut la bifurcaţia Hopf supercritică.
Cuvinte cheie: sistem diferenţial cubic, model de publicitate, bifurcaţie Hopf, portret de
fază.

1. Introduction

Numerous mathematical models have been developed in recent decades to analyse
ecological, physical, chemical and economical phenomena and processes. Some of
these are optimization models, static or dynamic; others describe the evolution of these
phenomena. Evolution models, in which time-dependent variables verify a system of
autonomous differential equations, are considered in this work. This system depends
on several parameters and changing the values of a parameter causes a change in the
behaviour of the system and can produce bifurcations.

The famous Lotka-Volterra equations play a fundamental role in the mathematical
modelling of various ecological, physical and chemical systems. The dynamics of this
model described by quadratic differential systems was investigated in works [1], [2], [3],
[4]. The dynamics of Lotka-Volterra models (Kolmogorov systems) described by cubic
differential systems was studied in works [5], [6]. A new modification of these equations
was suggested in [7] to model the structure of marine phage populations, which are the
most abundant biological entities in the biosphere.
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Evolution models used in the practice of economic-mathematical modelling are im-
portant tools for studying economic cyclicity, equilibriums as well as imbalance in the
economy. Of the many mathematical models of the dynamics of various economic vari-
ables, models of economic growth, models of the dynamics of the business cycle or
models of inflation, unemployment and advertising are of particular interest [8], [9]. We
will consider an advertising model inspired by the mathematical theory of epidemics,
advertising being seen as a spreading virus. Potential buyers "get infected" with these
viruses through advertising and get in touch with users of a product [10], [11], [12]. The
model is described by a system of two differential equations, whose variables represent
the number of potential buyers and the number of users of a product. Advertising has
become an essential marketing activity in the modern era of large scale production and
serve as competition in the market.

In this paper we study the dynamics of a cubic differential advertising model. We show
that this model can be brought to the Kukles cubic system with a small amplitude limit
cycle bifurcating from a weak focus.

2. Advertising model description

We will consider an advertising model described by a system of two differential equa-
tions [10], [12] {

¤𝑥 = 𝑘 − 𝛾𝑥𝑦 + 𝛽𝑦,
¤𝑦 = 𝛾𝑥𝑦 − 𝛿𝑦,

(1)

where 𝑥(𝑡) represents the number of potential buyers at time 𝑡 and 𝑦(𝑡) is the number of
users of the brand at time 𝑡. System (1) contains several parameters: 𝑘 - the rate at which
new potential buyers enter the market; 𝛾 - the advertising contact rate at time 𝑡; 𝛽 - the
migration rate to the rival brand and 𝛿 = 𝛽 + Y, where Y is the rate of migration or death
of potential buyers.

In our study we’ll assume that 𝛾 is not constant, but varies in time:

𝛾(𝑡) = 𝛼𝑦(𝑡). (2)

In this case, system (1) becomes a cubic differential system of the form{
¤𝑥 = 𝑘 − 𝛾𝑥𝑦 + 𝛽𝑦,
¤𝑦 = 𝛼𝑥𝑦2 − 𝛿𝑦.

(3)

This system has a cubic term, four non-zero real coefficients and the singular point

𝑀

(
𝛿Y

𝛼𝑘
,
𝑘

Y

)
. Via the linear transformation 𝑢 =

𝛼𝑘

𝛿Y
𝑥 − 1, 𝑣 =

Y

𝑘
𝑦 − 1, we can bring this
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singular point to the origin of coordinates and the system changes to the form{
¤𝑢 = − 𝛼𝑘2

𝛿Y2

(
𝛿𝑢 + (𝛿 + Y) 𝑣 + 2𝛿𝑢𝑣 + 𝛿𝑣2 + 𝛿𝑢𝑣2) ,

¤𝑣 = 𝛿
(
𝑢 + 𝑣 + 2𝑢𝑣 + 𝑣2 + 𝑢𝑣2) . (4)

Let us denote 𝑎 =
𝛼𝑘2

𝛿Y2 , 𝑏 = 2 − 𝛽

𝛿
, 𝑢 = 𝑥, 𝑣 = 𝑦. Then, changing the time 𝜏 = 𝛿𝑡, system

(4) takes the form {
¤𝑥 = −𝑎

(
𝑥 + 𝑏𝑦 + 2𝑥𝑦 + 𝑦2 + 𝑥𝑦2) ,

¤𝑦 = 𝑥 + 𝑦 + 2𝑥𝑦 + 𝑦2 + 𝑥𝑦2,
(5)

where 𝑎 and 𝑏 are real parameters. Since 𝛿 > 𝛽, it follows that 𝑏 > 1. We are interested
to use this system to model an advertising campaign, therefore we set 𝑎 > 0. System (5)
has only one singular point 𝑂 (0, 0) in the finite part of the phase plane. A straight line
𝑦 + 1 = 0 is an invariant straight line for system (5) with the cofactor 𝐾 (𝑥, 𝑦) = 𝑥 + 𝑦 + 𝑥𝑦.

Figure 1. Bifurcation sectors in the space of coefficients.

3. Singular points and Hopf bifurcation

To study the singular point 𝑂 (0, 0), we linearize system (5):{
¤𝑥 = −𝑎 (𝑥 + 𝑏𝑦) ,
¤𝑦 = 𝑥 + 𝑦.

(6)

65



DYNAMICS OF A CUBIC DIFFERENTIAL ADVERTISING MODEL

Denote

𝐴 =

(
−𝑎 −𝑎𝑏
1 1

)
, Δ = det 𝐴 = 𝑎(𝑏 − 1), 𝜎 = tr 𝐴 = 1 − 𝑎.

Then the characteristic equation of 𝐴 is _2 −𝜎_ +Δ = 0. Since 𝑎 > 0 and 𝑏 > 1, we have
that Δ > 0 and the discriminant of the characteristic equation is 𝐷 = (𝑎 + 1)2 − 4𝑎𝑏.

The curve defined by equation 𝐷 = 0 and the straight line 𝜎 = 0 divide the plane of
coefficients (𝑎, 𝑏) in 5 sectors (Figure 1). Depending on the values of parameters 𝑎 and
𝑏, the singular point 𝑂 (0, 0) of (6) belongs to one of the five types given in Table 1.

Table 1. The type of singular point 𝑂 (0, 0).

Conditions 𝜎 > 0, 𝐷 > 0 𝜎 > 0, 𝐷 < 0 𝜎 < 0, 𝐷 < 0 𝜎 < 0, 𝐷 > 0 𝜎 = 0

_1,2 _1,2 > 0
_1,2 = 𝛼 ± 𝑖𝛽 _1,2 = 𝛼 ± 𝑖𝛽

_1,2 > 0 _1,2 = ±𝑖
√
𝑏 − 1

𝛼 > 0, 𝛽 ≠ 0 𝛼 < 0, 𝛽 ≠ 0
Type of

Unstable Node Unstable Focus Stable Focus Stable Node Weak Focus
Singularity

On the half line 𝜎 = 0, i.e. in the set 𝐻 = { (𝑎, 𝑏) | 𝑎 = 1, 𝑏 > 1}, the Hopf bifurcation
conditions can be fulfilled. A Hopf bifurcation is a local bifurcation in which the singular
point of a dynamic system looses its stability as the eigenvalues of its linearized system
around the fixed point traverse the imaginary axis of the complex plane. In this type of
bifurcation, a small amplitude limit cycle will appear from the singular point.

Let 𝐷 < 0, then the singular point 𝑂 (0, 0) is:

• an unstable focus, if 𝑎 < 1;
• a weak focus, if 𝑎 = 1;
• a stable focus, if 𝑎 < 1.

Consider the set 𝐻 = { (𝑎, 𝑏) | 𝑎 = 1, 𝑏 > 1}. By change of variables 𝑋 = 𝑥 + 𝑦,
𝑌 =

√
𝑏 − 1𝑦, 𝑑𝑇 = −

√
𝑏 − 1𝑑𝜏, system (5) can be brought to the Kukles differential

system { ¤𝑋 = 𝑌,

¤𝑌 = −𝑋 − 2
√
𝑏−1

𝑏−1 𝑋𝑌 + 1
𝑏−1𝑌

2 − 1
𝑏−1𝑋𝑌

2 +
√
𝑏−1

(𝑏−1)2𝑌
3,

(7)

with a weak focus at 𝑂 (0, 0). Necessary and sufficient conditions for the Kukles system
to have a center at a weak focus 𝑂 (0, 0) were obtained in [13], [14]. The first Lyapunov
quantity calculated for system (7) is

𝐿1 = −
√
𝑏 − 1

(𝑏 − 1)2 < 0
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and this means that a non-degenerate supercritical Hopf bifurcation can occur [15].
The limit cycle is attractive and it exists for parameter values close to the bifurcation

value for 𝑎 < 1, i.e. in the region where the singular point is an unstable focus [15]. In
Figure 2 it is represented a limit cycle for 𝑎 = 0.891 and 𝑏 = 2.

Figure 2. Hopf bifurcation.

4. Global phase portraits

In order to obtain the global phase portraits of system (5) we study the system at infinity.
The polynomial 𝑦𝑃3(𝑥, 𝑦) −𝑥𝑄3(𝑥, 𝑦) shows that there are 3 pairs of equilibrium points at

infinity 𝐼1,4 (±1, 0, 0), 𝐼2,5
(
± 𝑎
√
𝑎2 + 1

,∓ 𝑎
√
𝑎2 + 1

, 0
)
, and 𝐼3,6 (0, 1, 0). Via first Poincaré

transformation 𝑥 =
1
𝑧
, 𝑦 =

𝑢

𝑧
we can study the singular points 𝐼1,4 and 𝐼2,5. Applying this

transformation to system (5), we obtain the following system:
¤𝑧 = 𝑎𝑧

(
𝑢2 + 2𝑧𝑢 + 𝑧𝑢2 + 𝑧2 + 𝑏𝑧2𝑢

)
,

¤𝑢 = 𝑧2 + 2𝑧𝑢 + 𝑢2 + 𝑎𝑢3 + (𝑎 + 1)𝑧2𝑢 + (2𝑎 + 1)𝑧𝑢2 + 𝑎𝑧𝑢3 + 𝑎𝑏𝑧2𝑢2.
(8)

The singular point 𝑂1(0, 0) of system (8) corresponds to the singular point 𝐼1,4 at infinity
of system (5). Both eigenvalues are null, therefore 𝑂1 is a multiple singular point. Using

the blow-up method, we decompose this point into 4 points: 𝑀1 (0, 0), 𝑀2

(
0,

3𝜋
4

)
,

𝑀3(0, 𝜋), and 𝑀4

(
0,

7𝜋
4

)
, where 𝑀1, 𝑀3 are of saddle type and 𝑀2, 𝑀4 are multiple.
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Bringing 𝑀2 to the origin of coordinates and applying the blow-up method once more,
we obtain the following system:

¤𝑥 = 𝑥
(√

2𝑎𝑥 cos4 𝑦 −
√

2𝑎𝑏𝑥𝑐𝑜𝑠4𝑦 + . . .
)
/4,

¤𝑦 = − cos 𝑦 sin 𝑦
(
2 cos 𝑦 + 4

√
2 sin 𝑦 +

√
2𝑎𝑥 cos2 𝑦 + . . .

)
/4.

Solving the equation 𝑄∗(0, 𝑦) = 0, i.e.

cos 𝑦 sin 𝑦
(
cos 𝑦 + 2

√
2 sin 𝑦

)
= 0,

we obtain that the point 𝑀2 decomposes into the following 6 points: 𝑁1(0, 0), 𝑁2

(
0,
𝜋

2

)
,

𝑁3

(
0, 𝜋 − arctg

1
2
√

2

)
, 𝑁4 (0, 𝜋), 𝑁5

(
0,

3𝜋
2

)
, 𝑁6

(
0,−arctg

1
2
√

2

)
. All these points are

hyperbolic, their eigenvalues and types are brought in Table 2:

Table 2. Decomposition of the singular point 𝑀2

(
0, 3𝜋

4

)
.

Point 𝑁1 𝑁2 𝑁3 𝑁4 𝑁5 𝑁6

_1, _2 0,−1
2 ±

√
2 0,−

√
2

3 0, 1
2 ±

√
2 0,

√
2

3

Type 𝑆 − 𝑁𝑠 Saddle 𝑆 − 𝑁𝑠 𝑁𝑢 − 𝑆 Saddle 𝑁𝑢 − 𝑆

We denoted by 𝑆 − 𝑁𝑠 a singular point of saddle-node type with stable nodal sectors,
and by 𝑁𝑢 − 𝑆 - a singular point of saddle-node type with unstable nodal sectors. We will
distinguish the notations 𝑆 − 𝑁 and 𝑁 − 𝑆. In the first case, only nodal sectors matter in
the qualitative portrait of a singular point 𝑀2, and in the latter case - only saddle sectors
(see Figure 3.a)).

Compressing the circle to the origin of coordinates, we obtain the qualitative behaviour
of the trajectories in the neighbourhood of the singular point 𝑀2 (see Figure 3.b)).

Analogous, by performing the same analysis on the singular point 𝑀4

(
0,

7𝜋
4

)
, we

obtain its local phase portrait (see Figure 4). Sketching the behaviour of the trajectories in
the neighbourhood of singular points 𝑀1, 𝑀2, 𝑀3 and 𝑀4 on the unit circle, we get Figure
5.a) and compressing this circle to the origin, we obtain the behaviour of the trajectories
near the singular points 𝐼1,4 situated at infinity.

The singular points 𝐼2,5
(
± 𝑎
√
𝑎2 + 1

,∓ 𝑎
√
𝑎2 + 1

, 0
)

have equal eigenvalues _1 = _2 = 𝑎.

Since 𝑎 > 0, it follows that they are unstable nodes. It remains to study the singular point
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a) b)

Figure 3. Blow-up for the point 𝑀2

(
0, 3𝜋

4

)
.

a) b)

Figure 4. Blow-up for the point 𝑀4
(
0, 7𝜋

4
)
.

situated at the ends of the𝑂𝑦 axis. Via the second Poincaré transformation 𝑥 =
𝑢

𝑧
, 𝑦 =

1
𝑧
,

system (5) takes the following form:


¤𝑢 = −𝑎𝑢 − 𝑢2 − 𝑎𝑧 − 𝑢𝑧 − 2𝑎𝑢𝑧 − 2𝑢2𝑧 − 𝑎𝑏𝑧2 − 𝑢𝑧2 − 𝑎𝑢𝑧2 − 𝑢2𝑧2,

¤𝑧 = −𝑧(1 + 𝑧) (𝑢 + 𝑧 + 𝑢𝑧).
(9)
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a) b)

Figure 5. Blow-up for the point 𝐼1,4 (±1, 0, 0).

The singular point 𝑅(0, 0) corresponds to the points 𝐼3,5 with eigenvalues_1 = 0, _2 = −𝑎.
Using the transformation 𝑢 → 𝑦, 𝑧 → 𝑥 + 𝑦, system (9) takes the following form:


¤𝑥 = 𝑥(1 + 𝑥) (𝑥2 − 𝑦 − 𝑥𝑦),

¤𝑦 = 2𝑎𝑥2 − 𝑎𝑏𝑥2 + 𝑎𝑥3 − 𝑎𝑦 − 2𝑎𝑥𝑦 + 𝑥2𝑦 − 𝑎𝑥2𝑦 + 𝑥3𝑦 − 𝑦2 − 2𝑥𝑦2 − 𝑥2𝑦2.

(10)

System (10) has the form ¤𝑥 = 𝑃∗(𝑥, 𝑦), ¤𝑦 = 𝑏𝑦+𝑄∗(𝑥, 𝑦), where𝑃∗ and𝑄∗ are polynomials
of a degree greater than one. By solving the equation 𝑏𝑦 + 𝑄∗(𝑥, 𝑦) = 0 and writing its
solution as Taylor series near the point 𝑥 = 0, we get the function:

𝑦∗ = (2 − 𝑏)𝑥2 + (−3 + 2𝑏)𝑥3 + −2 + 4𝑎 + 3𝑏 − 3𝑎𝑏 − 𝑏2

𝑎
𝑥4 + ...

Now we can obtain the function 𝜓(𝑥) = 𝑃∗(𝑥, 𝑦∗) and express it in the Taylor series form:

𝜓(𝑥) = (𝑏 − 1)𝑥3 +
(
𝑏2 − 3𝑏 + 2

)
𝑥5

𝑎
+
𝑥6 (

4𝑎𝑏 − 5𝑎 + 2𝑏2 − 6𝑏 + 4
)

𝑎
+ . . .

Because the function 𝜓(𝑥) starts with a monomial of odd degree and −𝑎(𝑏 − 1) < 0, it
follows that the singular points 𝐼3,5 are topological saddles.

Using all this information, we obtain the phase portraits for system (5) when the values
of the parameter 𝑎 excludes the presence of limit cycles (Figure 6). Considering the limit
cycle that appears near 𝑎 = 1, we obtain Figure 7.
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𝑎 < 1 𝑎 > 1

Figure 6. The phase portraits of system (5) in the absence of limit cycles.

𝑎 = 0, 95 𝑎 = 1

Figure 7. The phase portraits of system (5) in the neighbourhood of 𝑎 = 1.

5. Conclusions

Depending on the variables 𝑥 = 𝑥(𝑡) and 𝑦 = 𝑦(𝑡), we will notice the sequence of four
behavior regimes over time [9], [12]:

(1) The number of potential buyers 𝑥 and the number of users 𝑦 of the product
increase. It is a time of prosperity when the product imposes itself and occupies
a place in the market.
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(2) The number of potential buyers 𝑥 decreases and the number of users 𝑦 of the
product increases. It is a period of saturation when the product is known and
the main question of the consumer is what product to buy (what product they are
buying).

(3) The number of potential buyers 𝑥 as well as the number of users 𝑦 of the product
decreases. It is a period of decline, in which the product has a degree of accep-
tance, its usefulness is known, but it maintains its place on the market by virtue
of its past reputation.

(4) The number of potential buyers 𝑥 increases and the number of users 𝑦 of the
product decreases. It is a period of return when the consumer is reminded that
the product exists, being relaunched by a new advertising company.
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