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Abstract. The article attempts to present the results obtained by the author in recent years
(in a number of cases with some additions) on the theory of singular integral equations
and Riemann boundary value problems in the case of a piecewise Lyapunov contour. It
has a survey character of problems and results related to the influence of corner points of
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author of this work.
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Operatori integrali singulari. Cazul conturului de tip
Lyapunov pe porţiuni

Rezumat. În lucrarea de faţă se încearcă o expunere a rezultatelor obţinute de către autor
în ultimii ani (în mai multe cazuri, cu unele completări) în teoria ecuaţiilor integrale
singulare şi a problemelor la frontieră de tip Riemann în cazul conturului Lyapunov pe
porţiunii. Lucrarea are un caracter de sinteză a problemelor şi rezultatelor ce ţin de
influenţa punctelor unghiulare ale conturului de integrare asupra diferitor proprietăţi ale
operatorilor singulari. Totodată, o atenţie deosebită este acordată cercetărilor altor autori
legate de interesele ştiinţifice ale autorului acestei lucrări.
Cuvinte cheie: operatori integrali singulari, operatori noetherieni, contur Lyapunov pe
porţiuni.

1. Introduction

The classical theory of singular integral operators of the form

𝐴 = aP + bQ, (1)

where 𝑃 = (𝐼 +𝑆)/2,𝑄 = 𝐼 −𝑃 and 𝑆 is a singular operator with Cauchy kernel, is closely
connected with boundary problems of the theory of analytic functions, mainly with the
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problem of linear conjugation,

Φ+ (𝑡) = 𝐺 (𝑡)Φ− (𝑡) + 𝑔 (𝑡) . (2)

For the first time this connection was discovered by Carleman, and he outlined the idea
how to construct the explicit solution of problem (2) with the help of integrals of Cauchy
type and Sohotsky-Plemely formulas. Investigations by Carleman played an important role
because, as it was found out afterwards, his works contained ideas which had far-reaching
generalizations and received fast and complete developments. This scientific direction
was summarized by well-known monographs of N. Muskhelishvili [1], F. Gakhov [2], I.
Vekua [3], F. Gakhov and Iu. Chersky [4], containing also large list of literature.

Under the assumption that the coefficients 𝑎, 𝑏 are piesewise Holder and nondegen-
erated in book [1] a complete investigation of operators (1) in Muskhelishvili classes is
given. In this case the equation is A𝜙 = 𝑓 and the corresponding boundary problem
of linear conjugation (2) permits an effective solution in explicit form, which allows to
obtain a full picture of the solvability of the equation in 𝐻`. These results were extended
by I. Vekua to the matrix case under the assumption that at each node of a curve not more
than two are met. Here also the case is considered where the operator

𝐵 = 𝑃𝑎𝐼 +𝑄𝑏𝐼

is taken as the operator 𝐴.
Retaining the condition that the coefficients 𝑎, 𝑏 are piecewise Holder, the above men-

tioned theory of operators along Lyapunov curves has been transferred by B. Khvedelidze
[5] to the case of space 𝐿𝑝 with weight

𝜌 (𝑡) =
𝑛∏

𝑘=1
|𝑡 − 𝑡𝑘 |𝛽𝑘 (−1 < 𝛽𝑘 < 𝑝 − 1, 𝑡𝑘∈Γ) .

The case, where the coefficients 𝑎, 𝑏 are only piecewise continuous required, a special
approach, because the application of methods of the theory of functions encountered
serious difficulties. First results in this direction belong to S. Mikhlin [6], I. Gohberg [7]
etc. These methods are based, on one hand, on the idea of the factorization of elements
of Banach algebra, originating in M. Krein work [8] about Wiener-Hopf equations on
a semi-axis, on the other hand, on the use of so-called local principle. This principle
was introduced by I. Simonenko [9]. I. Gohberg and N. Krupnik [10] obtained criteria of
Noetherian property and a formula for the index of elements of minimal algebra generated
by operators (1) in the space 𝐿𝑝 (Γ, 𝜌). Using the same method the analogous results were
obtained by R. Duduchava [11] for the space 𝐻` with weight. Under various assumptions

83



SINGULAR INTEGRAL OPERATORS IN THE CASE OF A PIECEWISE
LYAPUNOV CONTOUR

problem (2) was studied by F. Gahov, D. Kveselava, I. Vekua, G. Mandjavidze and
B. Khvedelidze, I. Simonenko, L. Chibrikova (see [2], [5] and references below).

The first works, where the study of equation (1) and problem (2) with measurable
bounded coefficients along piecewise Lyapunov curves and curves with self-intersection
curves have begun, seem to be [12]–[18]. Note that we have found rather large classes of
coefficients which ensure the Noetherian property of operator (1). These classes are given
in Section 3 of the present work. In a series of works by V. Paatashvili and V. Kokilashvili
the equation of admissible curves for which the Noether theory remains applicable were
also considered. Vast literature is devoted to the equations of boundedness of operator
(1) in various spaces (see [5], [11], [20]–[22]).

There is a large number of works (see [23]–[26]) and references that devoted to the
investigation of normal solvability and to the evaluation of index of different classes of
equations of contraction type, singular integral and others – containing terms with a
reflection or a shift, with complex conjugation etc. For singular integral equations, in
the case when some iteration of shifts is the identity transformation, the general theory
was constructed by G. Litvinchuk and V. Kravchenko [23]. It is based on the idea of
the elimination of terms with shift by means of transition to a system of equations. The
equations which has been investigated has the form(

𝐴0 +𝑉𝐴1 + ··· +𝑉𝑛−1𝐴𝑛−1

)
𝜙 = 𝑓 , (3)

where 𝑉 is a generalized involuntary operator and operators 𝐴 𝑗 belong to certain class
of operators, theory of which is already well known. Some classes of such equations
were investigated in works by Z. Khalilov, Yu. Chersky, S. Samko, N. Karapetiants and
S. Samko [23]. However, in these works the investigation is, in fact, restricted to the
frameworks of the theory of singular equations without shift, embracing only the cases
where the coefficients 𝐴 𝑗 in (3) are “invariant” with respect to 𝑉 :

𝐴 𝑗𝑉 = 𝑉𝐴 𝑗 + 𝑇𝑗 ,

where 𝑇𝑗 are completely continuous. But in the case of equations with shift and a
piecewise Lyapunov contour it is, in general, not true [19]. As was shown in [20]–
[22], in the case of a piecewise Lyapunov contour the corresponding singular operator
and operator with shift (3) are not simultaneously Noetherian. Namely, the Noetherian
property of corresponding operator implies the Noetherian property of initial operator,
but the converse is already not true. The violation of simultaneous Noetherian property
of the given and corresponding operator is a result of discontinuity of the derivative of
shift function 𝛼 (𝑡) at corner points of the contour.
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The further stage in development of the theory was the study of operators AP + BQ in
the case, when 𝐴 and 𝐵 are generated by shifts of non-Carlemanian type or by any finite
group of shifts. Corresponding results were obtained independently by Yu. Karlovich, V.
Kravchenko, A. Myasnikov, L. azonov, A. Antonevich, A. Nechaev, A. Soldatov (see [23]
and bibliography there). In connection with the mentioned above works we note that in
some of them the problem of construction of the Noether theory is studied in a very general
statement, but then the infinite smoothness of contour and coefficients are assumed, and
the index of operator is expressed via characteristics, the practical calculation of which is
rather difficult.

A large number of works are devoted to the theory of singular integral equations with
discontinuous coefficients. We shall dwell mainly on the monographs [1]–[5], [10], [11],
[13], [19], [22], [26] which contain history of the question and detailed bibliography. As
to operators (1) that do not satisfy the condition of Hausdorff normal solvability, see the
book by Z. Presdorf [20].

2. On the essential norm of singular operators

Let Γ be a piecewise Lyapunov contour with a finite number of self-intersection points.
In 1927 M. Riesz proved the boundedness of the operator

(𝑆Γ𝜙) (𝑡) =
1
𝜋𝑖

∫
Γ

𝜙 (𝜏)
𝜏 − 𝑡 𝑑𝜏 (𝑡 ∈ Γ) (4)

in the space 𝐿𝑝 (Γ0) (Γ0 = {𝑧 ∈ 𝐶 : |𝑧 | = 1}). Then G. Hardy and J. Littlewood and
K. Babanko transferred this result to the spaces 𝐿𝑝 (R, 𝜌) with weight 𝜌 (𝑥) = |𝑥 |𝛼

(1 < 𝑝 < ∞, −1 < 𝛼 < 𝑝 − 1). In work [5] B. Khvedelidze proved the boundedness of
operator 𝑆 in the space 𝐿𝑝 (Γ, 𝜌) for an arbitrary Lyapunov contour Γ and the weight

𝜌 (𝑡) =
𝑛∏

𝑘=1
|𝑡 − 𝑡𝑘 |𝛽𝑘 (𝑡𝑘 ∈ Γ, 1 < 𝑝 < ∞,−1 < 𝛽𝑘 < 𝑝 − 1) . (5)

E. Gordadze [27] transferred this result to an arbitrary piecewise Lyapunov contour
without cusps. Using this result one can prove the boundedness of the operator 𝑆 in the
case of a composite contour with a finite number of self-intersection points in the space
𝐿𝑝 with weight (5). The condition −1 < 𝛽𝑘 < 𝑝 − 1 is necessary for the boundedness of
the operator 𝑆 in the space 𝐿𝑝 (Γ, 𝜌) . It is confirmed by the following

Lemma 2.1. Let 𝑆 be bounded in 𝐿𝑝 (Γ, 𝜌), then 𝜌1/𝑝 ∈ 𝐿𝑝 (Γ) and 𝜌−1/𝑝 ∈ 𝐿𝑞 (Γ)(
𝑝−1 + 𝑞−1 = 1

)
.
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Proof. The boundedness of the operator 𝑆 in the space 𝐿𝑝 (Γ, 𝜌) implies the boundedness
in 𝐿𝑝 (Γ) of the operator 𝑅 = 𝜋𝑖𝜌1/𝑝 (RS − SR) 𝜌−1/𝑝 𝐼, where (R𝜙) (𝑡) = 1

𝑡−𝑧0
𝜙 (𝑡) . And

𝑧0 ∉ Γ. But

(R𝜙) (𝑡) = 𝜌
1
𝑝 (𝑡) 1

𝑡 − 𝑧0

∫
Γ

𝜌
−1
𝑝 (𝜏) 𝜙 (𝜏)
𝜏 − 𝑧0

d𝜏.

Therefore 𝜌
1
𝑝 ∈ 𝐿𝑝 (Γ) and 𝜌

−1
𝑝 ∈ 𝐿𝑞 (Γ) . �

Corollary 2.1. If the operator 𝑆 is bounded in the space 𝐿𝑝 (Γ, 𝜌) , (𝜌 (𝑡) =
∏𝑛

𝑘=1 |𝑡 − 𝑡𝑘 |
𝛽𝑘 ),

then from the above relation 𝜌1/𝑝 ∈ 𝐿𝑝 (Γ) , and 𝜌−1/𝑝 ∈ 𝐿𝑞 (Γ) , it follows that the num-
bers 𝛽𝑘 verify the inequalities

−1 < 𝛽𝑘 < 𝑝 − 1, 𝑘 = 1, 2, . . . , 𝑛.

Remark 2.1. If the contour of integration Γ is unbounded, then operator 𝑆 is continuous
at 𝐿𝑝 (Γ, 𝜌) if and only if −1 < 𝛽𝑘 < 𝑝 − 1 and −1 <

∑𝑛
𝑘=1 𝛽𝑘 < 𝑝 − 1.

In [10] it was shown that the norm ‖𝑆0‖ 𝑝 in the space 𝐿𝑝 (Γ0) (Γ0 = {𝑡 : |𝑡 | = 1}) for
𝑝 = 2𝑛 and 𝑝 = 2𝑛 (2𝑛 − 1)−1 is equal to a(𝑝), where

a(𝑝) =
{

ctg𝜋/2𝑝 if 2 ≤ 𝑝 ≤ ∞,
tg𝜋/2𝑝 if 1 < 𝑝 ≤ 2.

After this result had been obtained, a series of works appeared where the norms of singular
operators in various spaces were evaluated and calculated. In [28] the norm of the operator

(C𝜙) (𝑡) = 1
2𝜋

∫ 2𝜋

0
𝜙(𝑦)ctg

𝑦 − 𝑡
2

dy.

was calculated. It turned out that ‖𝐶‖ 𝑝 = a(𝑝) (in the space 𝐿𝑝 (0, 2𝜋). This permitted
to prove that ‖𝑆0‖ 𝑝 = a(𝑝) for any 𝑝 ∈ (1,∞).

In monograph [10] the estimation of the essential norm |𝑆Γ |𝑃,𝜌 = inf
𝑇 ∈𝐼

‖𝑆Γ + 𝑇 ‖𝐿𝑝 (Γ,𝜌)

in the space 𝐿𝑝 (Γ, 𝜌) in the case of a Lyapunov contour was obtained. In the book of
F. Zigmund it is proved that ‖𝑆R‖ 𝑝 ≤ ‖𝐶‖ 𝑝, therefore, ‖𝑆R‖ 𝑝 = a(𝑝). Taking also in con-
sideration the equality ‖𝑆R‖ 𝑝 = ‖𝑆0‖ 𝑝, |𝑡−𝑡0 |𝑝−2 (see [29]–[31]) and M. Riesz interpolation
theorem, we obtain that if min(0, 𝑝−2) ≤ 𝛽 ≤ max(0, 𝑝−2), then ‖𝑆0‖ 𝑝, |𝑡−𝑡0 |𝛽 = ‖𝑆0‖ 𝑝 .

Further it was found out that the norms of operator 𝑆 in the spaces 𝐿𝑝 (Γ) and 𝐿𝑝 (Γ, 𝜌)
play an important role in different problems (see, for example, [10], [30]–[32]).

In works [13], [30] exact constants for the factor-norms of singular operators 𝑆𝛼, 𝑃𝛼

are established. Suppose that Γ𝛼 has one corner point with angle 𝜋𝛼 (0 < 𝛼 ≤ 1), then
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|𝑆𝛼 |2 = ctg\ (𝛼)/2, |𝑃𝛼 |2 = |𝑄𝛼 |2 = (sin \ (𝛼))−1, where 𝑆𝛼 = 𝑆Γ𝛼
and

ctg\ (𝛼) = 1
2

max
−1≤𝑥≤1

�����(1 + 𝑥)
(
1 − 𝑥
1 + 𝑥

)𝛼/2
− (1 − 𝑥)

(
1 + 𝑥
1 − 𝑥

)𝛼/2����� . (6)

In particular,
��𝑆1/3

��
2 = 1+

√
5

2 and
��𝑆1/2

��
2 =

√
2.

Theorem 2.1. Let Γ be a piecewise Lyapunov contour with corner points 𝑡1, . . . , 𝑡𝑛 and
𝜌(𝑡) = ∏𝑛

𝑘=1 |𝑡 − 𝑡𝑘 |
𝛽𝑘 (−1 < 𝛽𝑘 < 1), then |𝑆Γ |𝐿2 (Γ,𝜌) = max

1≤𝑘≤𝑛

��𝑆𝛼𝑘

��
𝐿2 (Γ𝛼𝑘

, |𝑡 |𝛽𝑘 ) .

Let min
1≤𝑘≤𝑛

(𝛼1, . . . , 𝛼𝑛) = 𝛼𝑘0 . If 𝛼𝑘0 = 1, then |𝑆Γ |𝐿2 (Γ,𝜌) = max
1≤𝑘≤𝑛

ctg𝜋 1−|𝛽𝑘 |
4 .

If 𝜌(𝑡) ≡ 1, then |𝑆Γ |𝐿2 (Γ) = ctg \ (𝛼𝑘0 )
2 . For the operators 𝑃Γ and 𝑄Γ the equalities

|𝑃Γ | = |𝑄Γ | = ( |𝑆Γ |2 + 1)/2 |𝑆Γ | .

hold. In the space 𝐿𝑝 (Γ) the estimates

|𝑆Γ |𝑝 6


ctg

\
(
𝛼𝑘0

)
𝑝

, if 𝑝 = 2𝑛,

ctg𝑡
\
(
𝛼𝑘0

)
2𝑛

· ctg1−𝑡 \
(
𝛼𝑘0

)
2𝑛+1 , if 2𝑛 < 𝑝 < 2𝑛+1,

where 𝑡 = (2𝑛+1 − 𝑝)/𝑝 are valid.

Remark 2.2. Equality |𝑃Γ | = |𝑄Γ | = ( |𝑆Γ |2+1)/2 |𝑆Γ | confirms the following hypothesis
of the mathematician S. Marcus: let 𝐵 be some Banach space and 𝐿1, 𝐿2 subspaces from
𝐵 such that 𝐿1 ∩ 𝐿2 = ∅ and 𝐵 = 𝐿1 + 𝐿2, then equality

|𝑃 | = |𝑄 | = |𝑆 |2 + 1
2 |𝑆 |

takes place, where 𝑃 and 𝑄 are projectors projecting the space 𝐵 onto 𝐿1, respectively,
on 𝐿2 and 𝑆 = 𝑃 −𝑄.

Consider the case when Γ has selfintersection points. To formulate one result we
introduce some notations, which will be also used further. Let Γ be a composite contour
consisting of 𝑚 simple piecewise Lyapunov closed curves 𝛾1, . . . , 𝛾𝑚, which have a point
𝑡0 in common,

ℎ𝑘 = 𝑝(1 + 𝛽𝑘)−1 (𝑘 = 1, 2, . . ., 𝑛) , ℎ𝑛+1 = 𝑝,

ℎ𝑘 = max(ℎ𝑘 , ℎ𝑘 (ℎ𝑘 − 1)−1) (𝑘 = 1, 2, . . ., 𝑛 + 1) and ℎ = max(ℎ1, ℎ2, ..., ℎ𝑛+1).

Theorem 2.2. For the essential norm of operators 𝑃Γ, 𝑄Γ and 𝑆Γ in the space 𝐿𝑝 (Γ, 𝜌)
the following estimates are true:

|𝑃Γ |p𝜌, |𝑄Γ |p𝜌 ≥ max((sin 𝜋/ℎ)−1, (sin 𝜋/𝑚ℎ0)−1),
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|𝑆Γ |p𝜌 ≥ max(ctg𝜋/2ℎ, ctg𝜋/2𝑚ℎ0). (7)

These estimates are in concordance with the corresponding results from [26], [35]–[38]
and embrace all the cases of boundedness of operator 𝑆Γ in 𝐿𝑝 (Γ, 𝜌). Remark that for one
class of contours the above estimates are exact. So, if the tangents to Γ at selfintersection
points are perpendicular and 𝜌 (𝑡) ≡1, then (7) becomes an equality.

Let Γ be a simple closed piecewise Lyapunov contour which bounds a domain 𝐺+
Γ
, 𝜔

be Riemann function mapping 𝐺+
Γ

into 𝐺+
Γ
= {𝑧 : |𝑧 | < 1} and 𝑡1, . . . , 𝑡𝑛 be all the corner

points of contour Γ with angles 𝛼𝑘𝜋 (0 < 𝛼𝑘≤1).

Theorem 2.3. Operator

(𝐾𝜙) (𝑡) = 1
𝜋𝑖

∫
Γ

(
𝜔′ (𝜏)

𝜔 (𝜏) − 𝜔 (𝑡) −
1

𝜏 − 𝑡

)
𝜙 (𝜏) 𝑑𝜏

is compact (see [30]) in the space 𝐿𝑝 (Γ, 𝜌), if and only if
∑𝑙

𝑘=1 𝛼𝑘 = 𝑙.

Theorem 2.4. The operator 𝑆∗
Γ

acting in the space 𝐿𝑞
(
Γ, 𝜌1−𝑞 ) has the form (see [10])

𝑆∗Γ = −VhSVhI,

where (V𝜙) (𝑡) = 𝜙 (𝑡) and ℎ is a piecewise Hölder function on Γ.

Theorem 2.5. The operator 𝑆∗
Γ
− 𝑆Γ is compact in the space 𝐿2 (Γ) if and only if (see

[30])
𝑙∑︁

𝑘=1
𝛼𝑘 = 𝑙.

3. Factorization. Noether theorem

In the theory of singular integral equations with measurable bounded coefficients an
important role is played by the assertion that if a function 𝑔 can be represented in the
form 𝑔 = ha, where ℎ± ∈ 𝐿∞ (Γ), and the range of function 𝑎 lies inside an angle with
vertex zero and value less than 𝜋

2𝑟 (2 ≤ 𝑟 ≤ ∞), then [8] the singular operator gP +𝑄 is
inevasible in the spaces 𝐿𝑝 (Γ) for all 𝑝 ∈

[
𝑟 (𝑟 − 1)−1 , 𝑟

]
. This assertion was generalized

in different directions, and each such application found application in the Noether theory
of singular equations. However, the question remains to be open, whether it is possible
to transfer these results to the case of a piecewise Lyapunov contour and what additional
conditions one has to impose on the function 𝑎 in order that the operator gP + 𝑄 be
inevasible in spaces with weight. These questions were considered in the author’s works
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[13], [15], [16], [32]–[34]. To expound some results of these works we shall introduce
several notations.

Let Γ be a closed composite piecewise Lyapunov contour which bounds a domain 𝐺+
Γ
.

By 𝐺−
Γ

we denote the domain which complements 𝐺+
Γ
∪ Γ to the full plane. Assume that

0 ∈ 𝐺+
Γ

and ∞ ∈ 𝐺−
Γ
. Let B𝑚𝑥𝑚 be the set of square matrices of order 𝑚 with elements

from B; 𝑃Γ =

 𝛿𝑖 𝑗 (𝐼+𝑆Γ)
2

𝑚
𝑖, 𝑗=1

, 𝑄Γ = 𝐼 − 𝑃Γ; +𝐿𝑚𝑝 (Γ, 𝜌) = 𝑃Γ𝐿𝑚𝑝 (Γ, 𝜌) ; −𝐿𝑚𝑝 (Γ, 𝜌) =
𝑄Γ𝐿

𝑚
𝑝 (Γ, 𝜌) + C (C is the set of complex numbers).

10. Class Fac𝑡𝑚p𝜌 (Γ). The generalized factorization of a matrix 𝑎
(
∈ 𝐺𝐿mxm

∞ (Γ)
)

with respect to contour Γ in the space 𝐿𝑚𝑝 (Γ, 𝜌) is defined (see [10], [34], [35]). Its
representation has the form

𝑎 = 𝑎−𝐷𝑎+, (8)

where 𝐷 =
𝛿 𝑗𝑘 (𝑡 − 𝑧0)^ 𝑗𝑚1 , 𝑗 , 𝑖 ≤ 1, 𝑧0 ∈ 𝐺+

Γ
; ^ 𝑗 are integers, (^1 ≥ ^2 ≥ . . . ≥ ^𝑚),

and the factors 𝑎± satisfy the following conditions:
(i) 𝑎− ∈ −𝐿𝑚𝑝 (Γ, 𝜌) ; 𝑎+ ∈ +𝐿𝑚𝑝

(
Γ, 𝜌1−𝑞 ) ; 𝑎−1

− ∈ −𝐿𝑚𝑝
(
Γ, 𝜌1−𝑞 ) and 𝑎−1

+ ∈ +𝐿𝑚𝑝 (Γ, 𝜌);(
𝑝−1 + 𝑞−1 = 1

)
;

(ii) the operator 𝑎−1
+ 𝑃Γ𝑎+𝐼 is bounded in the space 𝐿𝑚𝑝 (Γ, 𝜌).

The set of all matrix–functions 𝑎
(
∈ 𝐺𝐿mxm

∞ (Γ)
)

admitting generalized factorization
with respect to contour Γ in the space 𝐿𝑚𝑝 (Γ, 𝜌) will be denoted by Fac𝑡𝑚p𝜌 (Γ).

20. Class 𝑁𝑡𝑚p𝜌 (Γ). We regard measurable essentially bounded matrix-functions 𝑎 (𝑡)
as belonging to the Noether class (denoted by 𝑁𝑡𝑚𝑝𝜌 (Γ)), if the operator 𝐴 = 𝑎𝑃Γ +𝑄Γ is
Noetherian.

Theorem 3.1. 𝑁𝑡𝑚𝑝𝜌 (Γ) = 𝐹𝑎𝑐𝑡𝑚𝑝𝜌 (Γ) (see [34]).

30. The connection between Fac𝑡𝑚p𝜌 (Γ) and Fac𝑡𝑚𝑝 (Γ) .
Let ℎ be a function from Fac𝑡𝑚𝑝 (Γ) such that

ℎ = ℎ−·ℎ+.

Denote B1 = 𝐿
𝑚
𝑝 (Γ) and B2 = 𝐿

𝑚
𝑝 (Γ, 𝜌 |ℎ+ |−𝑝) , (1 < 𝑝 < ∞).

Theorem 3.2. There exist inversible operators 𝐵 : B2 → B1 and 𝐶 : B1 → B2 such that
for any pair of matrix-functions 𝑎, 𝑏 ∈ 𝐿mxm

∞ (Γ) the equality

𝐵 (𝑎𝑃Γ + 𝑏𝑄Γ) 𝐶 = ha𝑃Γ + 𝑏𝑄Γ (9)

holds

The proof is contained in [12].
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Corollary 3.1. The operator 𝐴 = 𝑎𝑃Γ + 𝑄Γ (𝑎∈𝐿mxm
∞ (Γ)) is Noetherian in the space

𝐿𝑚𝑝 (Γ, |ℎ+ |−𝑝) if and only if the operator 𝐴ℎ = haP + 𝑏𝑄Γ possesses the same property
in the space 𝐿𝑚𝑝 (Γ). Then

dimker𝐴|𝐿𝑚
𝑝 (Γ, |ℎ+ |−𝑝) = dimker𝐴ℎ |𝐿𝑚

𝑝 (Γ) ,

dimker𝐴∗ |
𝐿𝑚
𝑝 (Γ, |ℎ+ |−𝑝 (1−𝑞) ) = dimker𝐴∗

ℎ |𝐿𝑚
𝑞 (Γ) .

Corollary 3.2. 𝑎∈Fac𝑡𝑚p𝜌 |ℎ+ |−𝑝 (Γ) ⇔ ah ∈ Fac𝑡𝑚p𝜌 (Γ) .

Show (see [32]–[34]), that Theorem 3.2 permits to reduce the investigation of the
operator 𝐴 = 𝑎𝑃Γ + bQΓ in the space 𝜌 (𝑡) =

𝑛

Π
𝑘=1

|𝑡 − 𝑡𝑘 |𝛽𝑘 to the investigation of some
singular operator in the space 𝐿𝑚𝑝 (Γ) (without weight). For simplicity we assume that Γ
consists of a closed curves Γ1, ..., Γa having a point 𝑡0 in common and

𝜌 (𝑡) =
𝑛∏

𝑘=0
|𝑡 − 𝑡𝑘 |𝛽𝑘 (𝑡𝑘 ∈ Γ, 1 < 𝑝 < ∞,−1 < 𝛽𝑘 < 𝑝 − 1) . (10)

Denote by Γ𝑖𝑘 (1 ≤ 𝑖𝑘 ≤ a) the curve containing point 𝑡𝑘 and set

ℎ𝑘 (𝑡) =

(𝑡 − 𝑧𝑘)−

𝛽𝑘
𝑝 for 𝑡 ∈ Γ𝑖𝑘 ,

1 for 𝑡 ∈ Γ\Γ𝑖𝑘 ,

where 𝑧𝑘 is a point of the domain 𝐺+
𝑖𝑘

, bounded by the curve Γ𝑖𝑘 , and (𝑡 − 𝑧𝑘)
−𝛽𝑘
𝑝 is a

branch if this function continuous at any point 𝑡 ∈ Γ𝑖𝑘 different from 𝑡𝑘 .
Let 𝜔1, . . . , 𝜔a be some points belonging, respectively, to the domains 𝐺+

1 , . . . , 𝐺
+
a;

𝜎1, ..., 𝜎a be some real numbers and ℎ̃𝑘 (𝑧) be a fixed branch of the function (𝑧 − 𝜔𝑘)𝜎𝑘

defined on the complex planeCwith a cut which joins 𝑧𝑘 and∞, and intersects the contour
Γ in one point 𝑡0. The functions ℎ̃𝑘 (𝑡) (𝑘 = 1, ..., a) are continuous at any point 𝑡 ∈ Γ,
perhaps, except the point 𝑡0: ℎ̃𝑘 (𝑡0 ± 0) ≠ 0 and

ℎ̃𝑘 (𝑡0 − 0) /ℎ̃𝑘 (𝑡0 + 0) = exp (2𝜋i𝜎𝑘) , (11)

where the numbers ℎ̃𝑘 (𝑡0 − 0) and ℎ̃𝑘 (𝑡0 + 0) are determined by equalities 3.1 of Chapter
10 of work [10] . By ℎ (𝑡) we denote the product

ℎ (𝑡) = ℎ1 (𝑡) ·...·ℎ𝑛 (𝑡) ℎ̃1 (𝑡) ·...·ℎ̃a (𝑡) . (12)

Theorem 3.3. (see [29]) Let
∑a

𝑘=1 𝜎𝑘 =
−𝛽0
𝑝

. Then

𝑎 ∈ Fac𝑡𝑚p𝜌 (Γ) ⇔ ah ∈ Fac𝑡𝑚𝑝 (Γ) .

Corollary 3.3. Let 𝐴 = 𝑎𝑃Γ + 𝑏𝑄Γ, ℎ be a function determined by equality (12) and
𝐴ℎ = ah𝑃Γ + 𝑏𝑄Γ. Then 𝐴 ∈ 𝑁𝑡𝑚p𝜌 (Γ) ⇔ 𝐴ℎ ∈ 𝑁𝑡𝑚𝑝 (Γ). Moreover IndA = Ind𝐴ℎ.
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40. Class 𝑀𝜌 (Γ) (see [17]). In this and next items we assume that Γ consists of two
curves Γ1 and Γ2, having one common point 𝑡0, and besides the tangents to Γ at this
point are pependicular and 𝜌 (𝑡) is the function determined by the equality (10).

Let 𝜏0 be a point on Γ different from 𝑡0. Denote by Λ (𝜏0) the closed halfplane which
does not contain the origin. By Λ (𝜏0) we denote the angle with vertex at the origin
and value of 𝜋

2 . To the class 𝑀𝜌 (Γ) we refer essentially bounded measurable functions
𝑎 (𝑡) satisfying the conditions:

(i) essinf |𝑎 (𝑡) | > 0; 𝑡 ∈ Γ;
(ii) for any point 𝜏 ∈ Γ \ {𝑡0} there exist a neighborhood 𝑢 (𝜏) (⊂Γ \ {𝑡0}) of the point

𝜏 and a pair of functions 𝑔±𝜏 (𝑡) such that
(
𝑔+𝜏 (𝑡)

)±1 ∈ 𝐿+∞ (Γ) ,
(
𝑔−𝜏 (𝑡)

)±1 ∈ 𝐿−∞ (Γ) and
the range of the function 𝑔+𝜏 (𝑡) ℎ (𝑡) 𝑎 (𝑡) 𝑔−𝜏 (𝑡) at 𝑡 ∈ 𝑢 (𝜏) is contained inside Λ (𝜏);

(iii) for the point 𝑡0 either there exist a neighborhood 𝑢 (𝑡0) and functions 𝑔±0 (𝑡) such
that

(
𝑔±0 (𝑡)

)±1 ∈ 𝐿±∞ (Γ) and the range of the function 𝑔+0 (𝑡) ℎ (𝑡) 𝑎 (𝑡) 𝑔−0 (𝑡) at 𝑡 ∈ 𝑢 (𝑡0)
is contained inside Λ (𝑡0), or there exist finite limits 𝑎 (𝑡0 ± 0) and

ℎ𝑡0 (𝑡0 − 0) 𝑎 (𝑡0 − 0) /ℎ𝑡0 (𝑡0 + 0) 𝑎 (𝑡0 + 0) ∉ (−∞, 0) .

Theorem 3.4. 𝑀𝜌 (Γ) ⊂Fac𝑡2𝜌 (Γ).

Corollary 3.4. Let 𝑎 ∈ 𝑀𝜌 (Γ). Then the operator 𝐴 = 𝑎𝑃+𝑄 is Noetherian in the space
𝐿2 (Γ, 𝜌).

Corollary 3.5. 𝑀𝜌 (Γ) ∩ PC (Γ) = Fac𝑡𝜌 (Γ) ∩ PC (Γ), where PC (Γ) is a set of all
piecewise continuous functions on Γ.

Note that if Γ is a simple closed Lyapunov contour and 𝜌 (𝑡) ≡1, then the class 𝑀1 (Γ)
coincides with the class 𝐴 (2, Γ) introduced by I.B. Simonenko (see [32]). In this case,
as it is known (see [32]), aP + bQ is Noetherian if and only if 𝑎 ∈ 𝐴 (2, Γ) (= 𝑀1 (Γ)).
From this and Theorem 3.4 it follows

Theorem 3.5. 𝑀𝜌 (Γ) = 𝑁𝑡2𝜌 (Γ).

50. Class 𝑀𝑚
𝜌 (Γ) (see [17]). To class 𝑀𝑚

𝜌 (Γ) we refer matrix-functions 𝑎(𝑡) =𝑎jk (𝑡)
𝑚
𝑗,𝑘

(𝑡∈Γ) of order 𝑚 with elements 𝑎jk ∈ 𝐿∞(Γ) satisfying the conditions:
(i) essinf |deta(𝑡) | > 0 (𝑡 ∈ Γ);
(ii) for any point 𝜏 ∈ Γ except, perhaps, a finite number of points 𝑡0, 𝜏𝑘 (𝑘 = 1, ..., 𝑙),

there exists a neighborhood 𝑢(𝜏) (⊂ Γ) of the point 𝜏 and a pair of matrix-functions 𝑔±𝜏
such that

(
𝑔+𝜏 (𝑡)

)±1 ∈ +𝐿𝑚×𝑚
∞ (Γ),

(
𝑔−𝜏 (𝑡)

)±1 ∈ −𝐿𝑚×𝑚
∞ (Γ) and for any 𝑡 ∈ 𝑢(𝜏)

Re (𝑔+𝜏 (𝑡)ℎ𝜏 (𝑡)𝑎(𝑡)𝑔−𝜏 (𝑡)) ≥ 𝜎(𝜏) > 𝑐(𝜏) cos \ (𝜏),
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where Re 𝐵 = (𝐵 + 𝐵∗)/2, 𝐵∗ is the matrix conjugate to 𝐵, \ (𝜏) is the function from
Theorem 2.1 and 𝑐(𝜏) is the norm of operator ℎ𝜏aI in the space 𝐿𝑚2 (𝑢(𝜏)). Note that
𝑐(𝜏) coincides with sup

𝑡 ∈𝑢 (𝜏)
𝑠1 (ℎ𝜏 (𝑡) 𝑎 (𝑡)), where 𝑠1(ℎ𝜏𝑎) is the greatest eigenvalue of

the matrix (ℎ𝜏𝑎, 𝑎∗ℎ∗𝜏)1/2;
(iii) there exist finite limits 𝑎2 𝑗 (𝑎2 𝑗−1) of matrix-function 𝑎 (𝑡) as 𝑡 tends to 𝑡0

along arc Γ 𝑗 ( 𝑗 = 1, 2) directed to point 𝑡0 (from point 𝑡0 and the spectrum of ma-
trix 𝑒−𝜋i𝛽0𝑎4𝑎

−1
3 𝑎2𝑎

−1
1 does not intersect the negative semi-axis R−;

(iv) at points 𝜏𝑘 there exist finite limits on the left and on the right 𝑎(𝜏𝑘 − 0) and
𝑎(𝜏𝑘 + 0) of matrix 𝑎 (𝑡) and the spectrum of matrix 𝑒−𝜋i𝛽 (𝜏𝑘 )𝑎−1(𝜏𝑘 + 0)𝑎(𝜏𝑘 − 0) does
not intersect the negative semi-axis R−.

It is easy to see that if all the points 𝜏𝑘 (𝑘 = 1, ..., 𝑙) at which there exist limits 𝑎(𝜏𝑘 ±0)
are ordinary (see [1], p.16), then the conditions (iv) are equivalent to conditions (ii). This
can be also deduced from Lemma 3.1 of work [17].

Theorem 3.6. Let the matrix-function 𝑎 belong to the set 𝑀𝑚
𝜌 (Γ), then the operator

𝐴 = aP +𝑄 is Noetherian in the space 𝐿𝑚2 (Γ, 𝜌).

Remark that, for Γ being a closed Lyapunov contour and 𝜌 (𝑡) ≡1, this theorem was
proved by I.B. Simonenko (see [34], Theorem 8), and the set 𝑀𝑚

1 (Γ) coincides with class
𝐴𝑚(2, Γ) introduced in [34]. For Γ, being a simple Lyapunov contour, Theorem 3.6 is
contained in the work of N.Ia. Krupnik [38]. Note also that from Theorem 3.6 it follows
that if 𝑎, 𝑏 ∈ 𝐿𝑚×𝑚

∞ (Γ), essinf |𝑑𝑒𝑡𝑏(𝑡) | ≠ 0 (𝑡 ∈ Γ) and 𝑏−1𝑎 ∈ 𝑀𝑚
𝜌 (Γ), then the operator

aP + bQ is Noetherian in the space 𝐿𝑚2 (Γ, 𝜌).

Corollary 3.6. 𝑀𝑚
𝜌 (Γ) ⊂ Fak 𝑡𝑚2𝜌 (Γ).

Theorems 3.5 and 3.6 are transferred, with corresponding changes, to the case of an
unclosed contour.

60. Class 𝐺 𝛿𝜌 (Γ). Let Γ be a closed piecewise Lyapunov contour with corners
𝑡1, ..., 𝑡𝑛 and 𝜌 (𝑡) be the weight determined by the equality (10). By 𝐺 𝛿𝜌 (Γ) denote the
set of all matrices 𝑎 of 𝐿𝑚×𝑚

∞ (Γ) satisfying the following conditions:
(i) essinf |det𝑎(𝑡) | > 0 ( 𝑡 ∈ Γ);
(ii) for each point 𝜏 ∈ Γ \ {𝑡1, ..., 𝑡𝑠} (𝑠 ≥ 𝑛), there exist a neighborhood 𝑢(𝜏) (⊂ Γ) of

point 𝜏 and a pair of matrix-functions 𝑔±𝜏 such that
(
𝑔+𝜏 (𝑡)

)±1 ∈ +𝐿𝑚×𝑚
∞ (Γ),

(
𝑔−𝜏 (𝑡)

)±1 ∈
−𝐿𝑚×𝑚

∞ (Γ), and for any 𝑡 ∈ 𝑢(𝜏), the matrix 𝑔±𝜏𝑎𝑔−𝜏 is unitary and 𝜎
(
𝑔−𝜏𝑎𝑔

+
𝜏

)
⊂ Λ𝜏 (𝛿),

where Λ𝜏 (𝛿) (0 < 𝛿 < 2𝜋) denoted angle with vertex of the point 𝑧 = 0 and value less
than 𝛿;
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(iii) for the points 𝑡𝑘 (𝑘 = 1, ..., 𝑛) there exist finite limits 𝑎 (𝑡𝑘 ± 0) and

det ( 𝑓𝑘 (`) 𝑎 (𝑡𝑘 + 0) + (1 − 𝑓𝑘 (`)) 𝑎 (𝑡𝑘 − 0)) ≠ 0 (0 ≤ ` ≤ 1) , where

𝑓𝑘 (`) =
{ sin \𝑘` exp(𝑖 \𝑘`)

sin \𝑘 exp(𝑖 \𝑘 ) , \𝑘 = 𝜋 − 2𝜋 (1 + 𝛽𝑘) /𝑝, if \𝑘 ≠ 0,
`, if \𝑘 = 0;

(iv) there exist a neighborhood 𝑢 (𝑡𝑘) (𝑘 = 𝑛 + 1, ..., 𝑠) and a pair of matrix-functions
𝑔+
𝑘
, 𝑔−

𝑘
such that

(
𝑔+𝜏 (𝑡)

)±1 ∈ +𝐿𝑚×𝑚
∞ (Γ),

(
𝑔−𝜏 (𝑡)

)±1 ∈ −𝐿𝑚×𝑚
∞ (Γ) for any 𝑡 ∈ 𝑢(𝑡𝑘); the

matrix 𝑔+
𝑘
𝑎𝑔−

𝑘
is unitary and

𝜎
(
𝑔−𝑘𝑎𝑔

+
𝑘

)
⊂ Λ𝑘 (𝛿)

(
𝑡∈𝑢+ (𝑡𝑘)

)
, 𝜎

(
𝑔−𝑘𝑎𝑔

+
𝑘𝑒

−2𝜋i𝛽𝑘
𝑝

)
⊂ Λ𝑘 (𝛿) (𝑡 ∈ 𝑢− (𝑡𝑘)) ,

where

𝑢+ (𝑡𝑘) = {𝑡 ∈ 𝑢 (𝑡𝑘) , 𝑡 � 𝑡𝑘 } and 𝑢− (𝑡𝑘) = {𝑡∈𝑢 (𝑡𝑘) , 𝑡 ≺ 𝑡𝑘 } .

Theorem 3.7. (see [13]). Let 𝑎∈𝐺 𝛿𝜌 (Γ), where

tg𝛿/2 = min
(
𝑚

2−𝑝
2𝑝 tg

𝜋

2𝑝
, 𝑚

𝑝−2
2𝑝 ctg

𝜋

2𝑝

)
,

then the operator aP +𝑄 is Noetherian in the space 𝐿𝑚𝑝 (Γ, 𝜌) .

Corollary 3.7. 𝐺p𝜌 (Γ) ⊂ Fac𝑡𝑚p𝜌 (Γ).

4. The dependence of noetherian property of singular integral
operators with shift and conjugation on the existence of corner points

on contour

10. Singular operators with shift. Let Γ be a closed piecewise Lyapunov contour,
a : Γ → Γ, (V𝜙) (𝑡) = 𝜙 (a (𝑡)). In the space 𝐿𝑝 (Γ) consider a singular integral operator
with shift a (𝑡) of the form

𝐴 = 𝑎 (𝑡) 𝐼 + 𝑏 (𝑡) 𝑆 + (𝑐 (𝑡) 𝐼 + 𝑑 (𝑡) 𝑆)𝑉, (13)

where 𝑎 (𝑡) , 𝑏 (𝑡) , 𝑐 (𝑡) and 𝑑 (𝑡) are bounded measurable functions on Γ. Assume that
the mapping a satisfies the following conditions:

(i) a (a (𝑡)) ≡ 1;
(ii) the derivative a′ (𝑡) has on Γ a finite numbers of discontinuity points of the first

kind and on arcs 𝑙𝑘 , joining discontinuity points, it satisfies the Hölder conditions;
(iii) a (𝑡 ± 0) ≠ 0 (𝑡 ∈ Γ).
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Together with the operator 𝐴 of the form (13) consider also the operator �̃� determined
in the space 𝐿2

𝑝 (Γ) = 𝐿𝑝 (Γ) × 𝐿𝑝 (Γ) by the equality

�̃� =

 𝑎𝐼 + 𝑏𝑆 𝑐𝐼 + 𝑑𝑆
𝑐𝐼 + Y𝑑𝑆 �̃�𝐼 + Y�̃�𝑆

 +
 0 0
𝑑 (𝑉𝑠𝑉 − Y𝑆) �̃� (𝑉𝑠𝑉 − Y𝑆)

 = �̃�0 + 𝑅, (14)

where 𝑓 (𝑡) = 𝑓 (a (𝑡)) and Y = 1 (Y = −1), if the mapping a preserves orientation on
Γ. As it is known [21], if 𝑎, 𝑏, 𝑐 and 𝑑 are continuous functions and a′ (𝑡) ∈𝐻 (Γ), then
the operator 𝑅 is compact in 𝐿2

𝑝 (Γ) and the following theorem is true.

Theorem 4.1. 𝐴 ∈ 𝑁𝑡𝑝 (Γ) ⇔ �̃�0 ∈ 𝑁𝑡2𝑝 (Γ) by this IndA = 1
2 Ind �̃�0.

Show (see [24]) that the assertion ceases to be true if Γ has corner points. In such
case, usually, the derivative a′ (𝑡) has on Γ discontinuity point, and it turns out that if the
operator 𝐴 is Noetherian, then the operator �̃�0 is also Noetherian but the converse does
not hold true.

Theorem 4.2. If operator 𝐴 (𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐶 (Γ)) is Noetherian in the space 𝐿𝑝 (Γ) , then
the operator �̃�0 is also Noetherian in the space 𝐿2

𝑝 (Γ).
Indeed, the operator �̃�0 is Noetherian if and only if

Δ1 (𝑡) = (𝑎 (𝑡) + 𝑏 (𝑡))
(
�̃� (𝑡) + Y�̃� (𝑡)

)
− (𝑐 (𝑡) + 𝑑 (𝑡))

(
𝑐 (𝑡) + Y𝑑 (𝑡) (𝑡)

)
≠ 0

and

Δ2 (𝑡) = (𝑎 (𝑡) − 𝑏 (𝑡))
(
�̃� (𝑡) − Y�̃� (𝑡)

)
− (𝑐 (𝑡) − 𝑑 (𝑡))

(
𝑐 (𝑡) − Y𝑑 (𝑡) (𝑡)

)
≠ 0

for any 𝑡∈Γ.

Proof. Let the operator 𝐴 be Noetherian, then the determinant of its symbol (see [26]) is
not equal to zero: det𝐴 (𝑡1, b) ≠ 0. One can check directly that

det𝐴 (𝑡,−∞) ·det𝐴 (𝑡, +∞) = Δ1 (𝑡) ·Δ2 (𝑡) .

Therefore, the operator �̃�0 is Noetherian in 𝐿2
𝑝 (Γ) . �

The following example shows that the converse of Theorem 4.2 is not true. Let a reverse
orientation on Γ and the corner point 𝑡0 (∈ Γ) with the angle \ (0 < \ < 𝜋) be a fixed
point of the mapping a : a (𝑡0) = 𝑡0. In this case it is easy to see that the derivative a′ (𝑡)
is discontinuous at the point 𝑡0, and a′ (𝑡0 + 0) = exp (i\ + 𝜎) , a′ (𝑡0 + 0) = exp (i\ − 𝜎),
where 𝜎 is real number. Consider the operator

𝐴 = 𝐼 + 𝛿SV ,
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where 𝛿 is a complex number. The operator �̃� has the form

�̃� =

 𝐼 𝛿𝑆

−𝛿𝑆 𝐼

 +
 0 0
𝛿 (𝑉𝑆𝑉 + 𝑆) 0

 = �̃�0 + 𝑅.

If 𝛿 ≠ ±𝑖, then the operator �̃�0 is Noetherian. Let 𝐴 (𝑡, b) be symbol of operator 𝐴 at the
point 𝑡0. One can check directly that

det𝐴 (𝑡0, b) = 𝛿2 + 2 (𝛼 + 𝛽) 𝛿 + 1,

where

𝛼 =
exp

[
(2𝜋 − \ − i𝜎)

(
b + 𝑖

𝜋

) ]
exp

(
b + 𝑖

𝜋

)
− 1

and 𝛽 =
exp

[
(\ + i𝜎)

(
b + 𝑖

𝜋

) ]
exp

(
b + 𝑖

𝜋

)
− 1

.

From this, due to Theorem 1.1 from [24], it follows that for any 𝛿 = − (𝛼 + 𝛽) ±√︃
(𝛼 + 𝛽)2 − 1 the operator 𝐴 is not Noetherian in the space 𝐿𝑝 (Γ) . Thus, the con-

ditions for operator 𝐴 being Noetherian depend on angle \.

Corollary 4.1. Let a′ (𝑡) ∉ 𝐻 (Γ), then the operator 𝑉𝑆𝑉 − Y𝑆 is not compact in 𝐿𝑝 (Γ) .

Corollary 4.2. If the operator 𝐴, determined by the equality (13) is Noetherian, then the
operators �̃� and �̃�0 determined by equality (14) are also Noetherian and 𝐼𝑛𝑑𝐴 = 𝐼𝑛𝑑 �̃�0

Corollary 4.3. If the operator �̃� is Noetherian, then �̃�0 is also Noetherian. The converse
is not true, in general.

Note that the corresponding example of non-Noetherian operator 𝐴 for which the
operator �̃�0 is Noetherian can be given also in the case when a preserves the orientation
of contour Γ.

2 0. Singular operators with conjugation. Singular integral operators with conjugation
have the form

𝐴 = aP + bQ + (cP + sQ)𝑉,
where 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑃𝐶 (Γ), 𝑃 = (𝐼 + 𝑆)/2, 𝑄 = 𝐼 − 𝑃, (𝑉𝜙) (𝑡) = 𝜙(𝑡) and Γ is a closed
piecewise Lyapunov contour.

By constructing Nether’s theory of operator 𝐴 in monograph [23] an essential role was
played by the fact that if at each point of contour Γ the Lyapunov condition is satisfied,
then the operator 𝑉𝑆𝑉 + 𝑆 is compact in the space 𝐿𝑝 (Γ, 𝜌). In this case the operator 𝐴
is (see [23]) Noetherian if and only if the operator

𝐴𝑉 =

𝑎 𝑐

𝑑 𝑏

 𝑃 +
𝑏 𝑑

𝑐 𝑎

𝑄
possesses the same property in the space 𝐿2

𝑝 (Γ, 𝜌) = 𝐿𝑝 (Γ, 𝜌) × 𝐿𝑝 (Γ, 𝜌).
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It is quite different if the contour Γ has corner points. It turns out that in this case the
operator 𝑉𝑆𝑉 + 𝑆 is not compact in 𝐿𝑝 (Γ, 𝜌) and if 𝐴 is Noetherian, then 𝐴𝑉 is also
Noetherian, but the converse ceases to be true (see [39]–[40]). These are the facts which
constitute significant difference between a piecewise Lyapunov contour and a Lyapunov
contour.

Theorem 4.3. The operator

(𝑉𝑆𝑉 + 𝑆)𝜙 = − 1
𝜋i

∫
Γ

𝜙(𝜏)d𝜏
𝜏 − 𝑡

+ 1
𝜋i

∫
Γ

𝜙(𝜏)d𝜏
𝜏 − 𝑡

is compact in the space 𝐿𝑝 (Γ, 𝜌) if and only if Γ is a Lyapunov contour.

The sufficient part of this assertion has been proved in [23]. Let us prove the necessity.
Assume that 𝑉𝑆𝑉 + 𝑆 is compact, then the operator 𝐴_ = 𝑉𝑆𝑉 + 𝑆 − _𝐼 is Noetherian for
all _ ∈ 𝐶 \ {0}. Therefore, due to Theorem 1 from work [18], det𝐴_ (𝑡𝑘 , b) ≠ 0 for all
𝑘 + 1, ..., 𝑠 and −∞ < b < ∞, where 𝑡𝑘 (𝑘 = 1, ..., 𝑠) are all corner points of contour 𝛤.
From this we obtain that

𝑧
2𝜋−\𝑘
𝑘

− 𝑧\𝑘
𝑘

𝑧2𝜋
𝑘

− 1
≡ 0

(
𝑧𝑘 = exp

(
b + 𝑖1 + 𝛽𝑘

𝑝

))
.

The last is possible only for \𝑘 = 𝜋. Theorem is proved.
The condition for operator 𝐴 to be Noetherian, unlike singular operators not containing

the operator 𝑉 (i.e. 𝐴 = 𝑎𝑃 + 𝑏𝑄,) depends essentially on contour. For example, the
operator 𝐴 = (1 +

√
2)𝑃 + (1 −

√
2)𝑄 + 𝑉 is Noetherian in all spaces 𝐿𝑝 (Γ, 𝜌), if Γ is a

Lyapunov contour and is not Noetherian in 𝐿2 (Γ) , if Γ has one corner point with angle
𝜋/2.

30. Generalized Riemann problem. Consider the generalized Riemann boundary
value problem: find analytic functions Φ+(𝑧) and Φ−(𝑧) representable by the Cauchy
integral in 𝐹+

Γ
and 𝐹−

Γ
, whose limit values on Γ belong to the space 𝐿𝑝 (Γ, 𝜌) and satisfy

the conditions
Φ+(𝑡) = 𝑎(𝑡)Φ−(𝑡) + 𝑏(𝑡)Φ−(𝑡) + 𝑐(𝑡)

where 𝑎(𝑡), 𝑏(𝑡) are defined on Γ continuous functions and 𝑐(𝑡) ∈ 𝐿𝑝 (Γ, 𝜌).
Noether’s theory of this problem, in the case of a Lyapunov contour, has been con-

structed in work [23]. For the investigation of this problem in the case of Lyapunov
contour L. Mikhailov applied the method of I. Simonenko combining the solution of
the factorization problem with the principle compressed application. L. Mikhailov, in
particular, established that a necessary and sufficient condition for the problem to be
Noetherian is that the inequality |𝑎(𝑡) | > 0 should be satisfied for all 𝑡 ∈ Γ. In the case of
a piecewise Lyapunov contour the following theorem is true (see [21], [39]–[41]).
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Theorem 4.4. In order that the generalized boundary Riemann problem in 𝐿𝑝 (Γ, 𝜌) be
Noetherian it is necessary and sufficient that the following conditions be satisfied:

(i) |𝑎(𝑡) | > 0, (𝑡 ∈ Γ);
(ii) |𝑎 (𝑡𝑘) |2 − |𝑏 (𝑡𝑘) |2

(
𝑧𝑘

2𝜋−\𝑘−𝑧𝑘 \𝑘

𝑧𝑘
2𝜋−1

)
≠ 0 for all 𝑘 = 1, ...𝑛, where

𝑧𝑘 = exp
(
b + 𝑖1 + 𝛽𝑘

𝑝

)
, −∞ ≤ b ≤ ∞, \𝑘 = \ (𝑡𝑘) and 𝛽𝑘 = 𝛽(𝑡𝑘).

Thus, in the case of a piecewise Lyapunov contour the Noetherian property of Riemann
problem depends not only on the coefficient 𝑎(𝑡), as it was in the case of a Lyapunov
contour, but also on the coefficient 𝑏(𝑡).

The results of this section can be extended, without essential changes, to the case
when Γ consists of a finite number of closed piecewise Lyapunov curves without common
points.

5. Perturbatuon of singular integral operators

10. Formulating the problem. In the monographs of N.I. Muskhelishvili and F.D.
Gakhov, an operator is called complete singular integral operator if it has the form

(A𝜑) (𝑡) = 𝑎 (𝑡) + 1
𝜋i

∫
Γ

𝑘 (𝜏, 𝑡)𝜑(𝜏)
𝜏 − 𝑡 d𝜏, (15)

where 𝑎(𝑡) and 𝑘 (𝜏, 𝑡) are functions satisfying the Hölder condition on Γ and Γ × Γ,
respectively, and the integral is understood in the sense of the principal value. The
operator 𝐴, defined by equality (15), can be represented in the form 𝐴 = 𝑎𝐼 + 𝑏𝑆 + 𝑇 ,
where 𝑏(𝑡) = 𝑘 (𝑡, 𝑡), and 𝑇 is the integral operator with kernel

𝑘0(𝜏, 𝑡) = 𝜋i
𝑘 (𝜏, 𝑡) − 𝑘 (𝑡, 𝑡)

𝜏 − 𝑡 . (16)

In the case when 𝑘 (𝜏, 𝑡) satisfies the Hölder condition on Γ × Γ, the kernel (16) has a
weak singularity; therefore, the operator 𝑇 is completely continuous in the space 𝐿𝑝 (Γ).
Due to this, the operator 𝐴 is Noetherian in the space 𝐿𝑝 (Γ), if and only if the operator

𝐴0 = aI + bS

is Noetheiran. Operator 𝐴0 is called the characteristic part of the operator 𝐴. In this
connection, Noether’s theory of singular operators was developed mainly for characteristic
operators. Significant successes have been achieved in this direction: there are obtained
criteria to be Noetherian for such operators with piecewise continuous coefficients, with
coefficients having discontinuities of almost periodic type, and with arbitrary coefficients
from 𝐿∞(Γ). However, in many problems of mechanics, physics and other areas that
lead to singular equations, not characteristic operators appear, but complete ones. In this
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regard, it becomes necessary to study the complete singular operators (15) with functions
and 𝑘 (𝜏, 𝑡) not necessarily satisfying the Hölder condition. The main difficulty here is
that the operator 𝑇 with kernel (16) may turn out to be not completely continuous (not
compact) or (more importantly) ceases to be an Φ-admissible perturbation.

Let us show this on an example. Let Γ0 be the unit circle, 𝜒(𝑡) be the characteristic
function of the {Im 𝑡 > 0} ∩ Γ0; 𝑘 (𝜏, 𝑡) = 𝜒(𝑡) − 𝜒(𝜏), _ ∈ C,

(A𝜑) (𝑡) = _𝜑(t) + 1
𝜋i

∫
Γ0

𝑘 (𝜏, 𝑡)𝜑(𝜏)
𝜏 − 𝑡 d𝜏.

In this example, 𝑘 (𝜏, 𝑡) = 0. Therefore, the characteristic part of the operator 𝐴 is a scalar
operator (𝐴0𝜑) (𝑡) = _𝜑(𝑡). The operator 𝐴 in this example can be represented in the
form 𝐴 = _I + 𝜒S− S𝜒I, whence it follows that it belongs to the algebra 𝐴𝑝, generated by
singular integral operators with piecewise continuous coefficients. It was shown in (16)
that on the algebra 𝐴𝑝 one can introduce the symbol (𝛾𝑡 ,`) ((𝑡, `) ∈ Γ0 × [0, 1]), which
on the generators of 𝑆 and 𝑎𝐼 takes the form

𝛾𝑡 ,` (𝛼𝐼) =
𝑎(𝑡 + 0) 𝑓𝑝 (`) + 𝑎(𝑡 − 0) (1 − 𝑓𝑝 (`)) (𝑎(𝑡 + 0) − 𝑎(𝑡 − 0))ℎ𝑝 (`)

(𝑎(𝑡 + 0) − 𝑎(𝑡 − 0))ℎ𝑝 (`) 𝑎(𝑡 + 0) (1 − 𝑓𝑝 (`)) + 𝑎(𝑡 − 0) 𝑓𝑝 (`)

 ,
where

𝑓𝑝 (`) =


sin \`
sin \

𝑒𝑖 \ (`−1) ,

(
\ =

𝜋 (𝑝 − 2)
2

)
, for 𝑝 ≠ 2,

`, for 𝑝 = 2,
(17)

and ℎ𝑝 (`) is some fixed continuous branch of the function
√︁
𝑓𝑝 (`) (1 − 𝑓𝑝 (`)).

In particular, for the operator 𝐴 = _𝐼 + 𝜒𝑆 − 𝑆𝜒𝐼 with 𝑝 = 2 we have: det𝛾𝑡 ,` (𝐴) = _2

for 𝑡 ≠ ±1 and det𝛾𝑡 ,` (𝐴) = _2 + 4`(1 − `) for 𝑡 = ±1. An operator 𝐴 is Noetherian in
𝐿2(Γ) if and only if _2 + 4`(1 − `) ≠ 0 for all ` ∈ [0, 1]. This is equivalent to _ ≠ ti,
where 𝑡 ∈ [−1, 1] .

Thus, for _ = 𝜏𝑖, where 𝜏 ∈ [−1, 1] \ {0}, the operator 𝐴 is not Noetherian, but its
characteristic part 𝐴0 is Noetherian. This implies that the operator 𝑀 = 𝐴 − 𝐴0 is not a
Φ-admissible perturbation of the characteristic part of the operator 𝐴. This also implies
that 𝑀 is not compact.

For this operator, we managed to obtain criteria for Noetherian property due to the fact
that we embedded it in the algebra 𝐴𝑝 (see [26]). You can do the same with some other
complete operators. This work will describe one class of such operators.

20. Perturbatuon of singular integral operators. In this section we will show that
the Noetherian property of operators 𝑎𝑃 + 𝑏𝑄 is stable under perturbation by some not
compact operators. Remark that analogous questions have also been studied in [41] and
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[42]. For simplicity assume that Γ = {𝑡 : |𝑡 | = 1} is a unit circle. Let 𝛼𝑘 (𝑘 = 1, ..., 𝑠) be
some complex numbers. Introduce the following notations:

Γ𝑘 = {b : b = 𝑡 − 𝛼𝑘 𝑡 ∈ Γ} and Γ̃𝑘 = {b : b = 𝑡 + 𝛼𝑘 , 𝑡 ∈ Γ}.
Assume that Γ 𝑗 ∩ Γ ∩ Γ̃𝑘 = ∅ ( 𝑗 , 𝑘 = 1, ..., 𝑠).

Theorem 5.1. Let 𝑎, 𝑏, 𝑐𝑘 ∈ 𝐿∞(Γ) (𝑘 = 1, 2, ..., 𝑠). In order that the operator

(A𝜙) (𝑡) = 𝑎(𝑡)𝜙(𝑡) + 𝑏(𝑡)
𝜋i

∫
Γ

𝜙(𝜏)
𝜏 − 𝑡 d𝜏 +

𝑠∑︁
𝑘=1

𝑐𝑘 (𝑡)
1
𝜋i

∫
Γ

𝜙(𝜏)
𝜏 − 𝑡 − 𝛼𝑘

d𝜏 (18)

be Noetherian in the space 𝐿𝑝 (Γ, 𝜌) it is necessary and sufficient that the operator

(𝐴0𝜙) (𝑡) = 𝑎(𝑡)𝜙(𝑡) +
𝑏(𝑡)
𝜋i

∫
Γ

𝜙(𝜏)
𝜏 − 𝑡 d𝜏 (19)

possess the same property. If the operator 𝐴0 is Noetherian, then 𝐼𝑛𝑑𝐴 = 𝐼𝑛𝑑𝐴0.

In particular, if 𝑎, 𝑏 ∈ 𝐶 (Γ), the condition 𝑎2(𝑡) − 𝑏2(𝑡) ≠ 0 (𝑡 ∈ Γ) is a necessary and
sufficient condition for the operator 𝐴 to be Noetherian and

Ind𝐴 = ind
𝑎(𝑡) + 𝑏(𝑡)
𝑎(𝑡) − 𝑏(𝑡) .

In the general case (𝑎, 𝑏 ∈ 𝐿∞(Γ)) one can apply the criteria from Section 2 to the
operator 𝐴. Note that the operator 𝐴0 is (see [1]) the characteristic part of the operator 𝐴.

It turns out that operators with kernels (𝜏− 𝑡−𝛼𝑘)−1 are not, in general, compact in the
space 𝐿𝑝 (Γ, 𝜌) (see [42]–[45]. Proof of Theorem 5.1 is based on a series of properties of
operators with kernels (𝜏− 𝑡−𝛼𝑘)−1 and their compositions with operator 𝑆 and operators
𝑎𝐼. The conditions Γ 𝑗 ∩ Γ ∩ Γ̃𝑘 = ∅ is essential. For example,

(A𝜙) (𝑡) = _𝜙(𝑡) + 1
𝜋i

∫
Γ

𝜙(𝜏)
𝜏 − 𝑡 − 1

d𝜏 + 1
𝜋i

∫
Γ

𝜙(𝜏)
𝜏 − 𝑡 + 1

d𝜏, (20)

_ ∈ 𝐶 is not Noetherian in 𝐿2(Γ) for _ = 2𝑖, while (𝐴0𝜙) (𝑡) = _𝜙(𝑡) is inversible for all
_ ≠ 0.

Definition 5.1. The subset (𝑡1, 𝑡2) , (𝑡2, 𝑡3) , ..., (𝑡𝑚, 𝑡1) of the set Γ×Γ is called [42]𝑚-link
if 𝑡 𝑗 ≠ 𝑡𝑘 for 𝑗 ≠ 𝑘 .

Definition 5.2. The set 𝑀 ⊂ Γ × Γ is called admissible if there exists a neighborhood of
this set which does not contain 𝑚-links for any 𝑚.

Definition 5.3. Let

(H𝜙) (𝑡) =
∫
Γ

ℎ (𝜏, 𝑡) 𝜙 (𝜏) d𝜏 (𝑡 ∈ Γ) . (21)
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We say that the essential singularity of the kernel ℎ(𝜏, 𝑡) is contained in the set 𝑀 if the
integral operators with the kernel

ℎ̃ (𝜏, 𝑡) =
{

0 in a neighborhood of the set 𝑀,
ℎ (𝜏, 𝑡) at other points of Γ × Γ,

is compact.

In [46] the following assertion is proved.

Theorem 5.2. Let the essential singularity of the kernel ℎ(𝜏, 𝑡) of the integral operator
(21) be contained in an admissible set 𝑀. If 𝐴0 = 𝑎𝐼 + 𝑏𝑆 ∈ 𝑁𝑡𝑝𝜌 (Γ), then 𝐴 =

𝑎𝐼 + 𝑏𝑆 + 𝐻 ∈ 𝑁𝑡p𝜌 (Γ) and Ind𝐴0 = Ind𝐴.

Denote by 𝑀 the set of pairs (𝜏, 𝑡) ∈ (Γ × Γ) for which 𝜏 − 𝑡 − 𝛼𝑘 = 0 (𝑘 = 1, ..., 𝑠) .
Assume that the numbers 𝛼𝑘 are such that 𝑀 ≠ 0. Then the set 𝑀 consists of a finite
number of points (𝜏1, 𝑡1) , ..., (𝜏𝑁 , 𝑡𝑁 ) and the operator

(K𝜙) (𝑡) =
𝑆∑︁

𝑘=1

𝑐𝑘 (𝑡)
𝜋i

∫
Γ

𝜙 (𝜏)
𝜏 − 𝑡 − 𝛼𝑘

d𝜏 (22)

is not compact in the space 𝐿𝑝 (Γ, 𝜌). From Theorem 5.2 one can deduce (see [45]) the
following proposition.

Theorem 5.3. Let the set 𝑀 do not contain 𝑚-links (𝑚 = 1, ..., 𝑁). In order that the
operator 𝐴 = 𝑎𝐼 + 𝑏𝑆 + 𝐾 (𝑎, 𝑏 ∈ 𝑃𝐶 (Γ)) to be Noetherian in the space 𝐿𝑝 (Γ, 𝜌), it is
necessary and sufficient that the operator 𝐴0 = 𝑎𝐼 + 𝑏𝑆 to possess the same property. If
the operator 𝐴0 is Noetherian, then 𝐼𝑛𝑑𝐴 = 𝐼𝑛𝑑𝐴0.

The above example proves that the restrictions on the set of singularities are, in some
sense, exact. In this connection the question of the necessity of conditions of Theorem
5.3 arises naturally. To be more exact, whether there exists an operator of the form (21)
satisfying the following conditions:

(1) the set 𝑀 contains an 𝑚-link;
(2) |𝑐𝑘 (𝑡) | ≥ 𝛿 > 0 (𝑘 = 1, ..., 𝑠) on the set 𝑀;
(3) the operator 𝐴 = aI + bS + 𝐾∈𝑁𝑡p𝜌 (Γ) ⇔ 𝐴0 = aI + bS + 𝐾∈𝑁𝑡p𝜌 (Γ).

Such operators exist (see [13]). As operator 𝐾 we take the operator acting by the rule

(К𝜙) (𝑡) = 1
𝜋i

∫
Γ

𝜙 (𝜏)
𝜏 − 𝑡 − 2

d𝜏 + 1
𝜋i

∫
Γ

𝜙 (𝜏)
𝜏 − 𝑡 + 2

d𝜏. (23)

Note that the operator 𝐾 is not (see [47-50]) compact in the space 𝐿𝑝 (Γ, 𝜌). The set 𝑀
corresponding to the operator 𝐾 consists of two points (−1, 1) and (1,−1), forming two
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links. Denote by N the set of all functions from PC (Γ) continuous in some neighbourhood
of the points 𝜏 = ±1.

Theorem 5.4. Let 𝑎, 𝑏 ∈ N. Then 𝐴 = aI +bS+𝐾 ∈ 𝑁𝑡p𝜌 (Γ) ⇔ 𝐴0 = aI +bS∈𝑁𝑡p𝜌 (Γ).
If 𝐴0 ∈ 𝑁𝑡p𝜌 (Γ), then Ind𝐴0 = Ind𝐴.

In conclusion, we remark that the results of this section can be transferred to case
where Γ is an arbitrary piecewise Lyapunov contour which has no straight line parts as
well as to operators of the form (18) with matrix coefficients.

Note that the case of an unbounded contour was considered in works [14], [47], [49].
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