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Abstract. This paper studies some properties of 𝐶𝑀-groupoids with multiple identities
and medial topological left loops. The conditions for a 𝐶𝑀-groupoid to become a
𝐶𝑀-quasigroup were found. A new method of constructing non-associative medial
topological quasigroups with left identy is given. Various examples of quasigroups with
multiple identities have been constructed.
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Despre 𝑪𝑴-grupoizi cu unităt, i multiple s, i bucle de stânga
mediale topologice

Rezumat. În această lucrare sunt examinate proprietăţi ale 𝐶𝑀-groupoizilor cu unităţi
multiple şi a buclelor de stânga topologice mediale. Au fost determinate condiţiile
pentru care un 𝐶𝑀-groupoid devine 𝐶𝑀-quasigroup. Este propusă o metodă nouă de
construcţie a quasigrupurilor mediale topologice cu unitate de stânga. Sunt construite
diverse exemple de quasigrupuri cu unităţi multiple.
Cuvinte cheie: 𝐶𝑀-grupoid, qasigrupuri mediale topologice, unităt,i multiple, (𝑛, 𝑚)-
izotop omogen.

1. Introduction

Our main results can be summarized as follows. In Section 3 we prove some prop-
erties of the 𝐶𝑀-groupoid and 𝐶𝑀-quasigroup, using the concept of (𝑛, 𝑚)-identities
introduced by M.M. Choban and L.L. Chiriac in [1, 2]. Thus, we prove that if (𝐺, ·) is a
𝐶𝑀-multiplicative groupoid, 𝑒 ∈ 𝐺 and the following conditions hold: 𝑒𝑥 = 𝑥 for every
𝑥 ∈ 𝐺; 𝑥2 = 𝑥 · 𝑥 = 𝑒 for every 𝑥 ∈ 𝐺; if 𝑥𝑎 = 𝑦𝑎 then 𝑥 = 𝑦 for all 𝑥, 𝑦, 𝑎 ∈ 𝐺, then (𝐺, ·)
is a𝐶𝑀-quasigroup with an (1, 2)-identity 𝑒. In order to facilitate the study of topological
quasigroups with (𝑛, 𝑚)-identities, we expand on the notions of multiple identities and
(𝑛, 𝑚)-homogeneous isotopies. Section 4 presents some results and constructions which
can be used to produce examples of medial quasigroups with left identity that are not
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associative. Finally, in Section 5, using the concept of the (𝑛, 𝑚)-identities, we show some
examples of the quasigroups with multiple identities and examples of the locally compact
medial or paramedial quasigroup 𝐺, where exists a unique invariant Haar measure on 𝐺.

We dedicate this paper to the memory of Professor Mitrofan Choban who made many
important contributions to modern mathematics.

2. Basic notions

In this section we recall some fundamental definitions and notations.
A non-empty set 𝐺 is said to be a groupoid with respect to a binary operation denoted

by {·}, if for every ordered pair (𝑎, 𝑏) of elements of 𝐺, there is a unique element 𝑎𝑏 ∈ 𝐺.
If the groupoid 𝐺 is a topological space and the multiplication operation (𝑎, 𝑏) → 𝑎 · 𝑏

is continuous, then 𝐺 is called a topological groupoid.
A groupoid 𝐺 is called a primitive groupoid with divisions if there exist two binary

operations 𝑙 : 𝐺 × 𝐺 → 𝐺, 𝑟 : 𝐺 × 𝐺 → 𝐺 such that 𝑙 (𝑎, 𝑏) · 𝑎 = 𝑏, 𝑎 · 𝑟 (𝑎, 𝑏) = 𝑏 for
all 𝑎, 𝑏 ∈ 𝐺. Thus, a primitive groupoid with divisions is a universal algebra with three
binary operations.

A primitive groupoid 𝐺 with divisions is called a quasigroup if the equations 𝑎𝑥 = 𝑏

and 𝑦𝑎 = 𝑏 have unique solutions. In a quasigroup 𝐺 the divisions 𝑙, 𝑟 are unique. If the
multiplication operation in a quasigroup (𝐺, ·) with a topology is continuous, then 𝐺 is
called a semitopoligical quasigroup. If in a semitopological quasigroup 𝐺 the divisions 𝑙
and 𝑟 are continuous, then 𝐺 is called a topological quasigroup.

An element 𝑒 ∈ 𝐺 is called an identity if 𝑒𝑥 = 𝑥𝑒 = 𝑥 every 𝑥 ∈ 𝑋 .
A quasigroup with an identity is called a loop. A groupoid 𝐺 is called medial if it

satisfies the law 𝑥𝑦 · 𝑧𝑡 = 𝑥𝑧 · 𝑦𝑡 for all 𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝐺. A groupoid 𝐺 is called paramedial
if it satisfies the law 𝑥𝑦 · 𝑧𝑡 = 𝑡𝑦 · 𝑧𝑥 for all 𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝐺. A groupoid 𝐺 is called
bicommutative if it satisfies the law 𝑥𝑦 · 𝑧𝑡 = 𝑡𝑧 · 𝑦𝑥 for all 𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝐺.

If a medial guasigroup 𝐺 contains an element 𝑒 such that 𝑒 · 𝑥 = 𝑥(𝑥 · 𝑒 = 𝑥) for all
𝑥 in 𝐺, then 𝑒 is called a left (right) identity element of 𝐺 and 𝐺 is called a left (right)
medial loop.

A groupoid 𝐺 is called a groupoid Abel-Grassmann or 𝐴𝐺-groupoid if it satisfies the
left invertive law (𝑎 · 𝑏) · 𝑐 = (𝑐 · 𝑏) · 𝑎 for all 𝑎, 𝑏, 𝑐 ∈ 𝐺.

A groupoid 𝐺 is called 𝐺𝐴-groupoid if it satisfies the law 𝑥𝑦 · 𝑧 = 𝑧 · 𝑦𝑥 for all
𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝐺.

A groupoid 𝐺 is called 𝐴𝐷-groupoid if it satisfies the law 𝑥 · 𝑦𝑧 = 𝑧 · 𝑦𝑥 for all
𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝐺.
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A groupoid 𝐺 is called 𝑀𝐶-groupoid if it satisfies the law 𝑥𝑦 · 𝑧 = 𝑦 · 𝑧𝑥 for all
𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝐺.

A quasigroup 𝐺 is called 𝑊𝑎𝑟𝑑 quasigroup if there is an element 𝑒 such that 𝑥 · 𝑥 = 𝑒

for all 𝑥 ∈ 𝑄, satisfying the identity (𝑥 · 𝑦) · 𝑧 = 𝑥 · (𝑧 · (𝑒 · 𝑦)) for all 𝑥, 𝑦, 𝑧 ∈ 𝐺. Or a
quasigroup 𝐺 is called 𝑊𝑎𝑟𝑑 quasigroup if it satisfies the law (𝑥 · 𝑧) · (𝑦 · 𝑧) = 𝑥 · 𝑦 for
all 𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝐺.

Let N = {1, 2, ...} and Z = {...,−3,−2,−1, 0, 1, 2, 3, ...}. We shall use the notations
and terminology from [1, 2, 3, 4, 5].

3. Concept of the (𝑛, 𝑚)-identities

In this section, using the concept of the (𝑛, 𝑚)-identities, we prove that if (𝐺, ·) is a
locally compact paramedial quasigroup, then there exists a unique invariant Haar measure
on 𝐺.

We recall some important definitions and notations.
Consider a groupoid (𝐺, +). For every two elements 𝑎, 𝑏 from (𝐺, +) we denote:

1(𝑎, 𝑏, +) = (𝑎, 𝑏, +)1 = 𝑎 + 𝑏, and 𝑛(𝑎, 𝑏, +) = 𝑎 + (𝑛 − 1) (𝑎, 𝑏, +),
(𝑎, 𝑏, +)𝑛 = (𝑎, 𝑏, +)(𝑛 − 1) + 𝑏

for all 𝑛 ≥ 2.
If a binary operation (+) is given on a set 𝐺, then we shall use the symbols 𝑛(𝑎, 𝑏) and

(𝑎, 𝑏)𝑛 instead of 𝑛(𝑎, 𝑏, +) and (𝑎, 𝑏, +)𝑛.

Definition 3.1. Let (𝐺, +) be a groupoid and let 𝑛, 𝑚 ≥ 1. The element 𝑒 of the groupoid
(𝐺, +) is called:

- an (𝑛, 𝑚)-zero of 𝐺 if 𝑒 + 𝑒 = 𝑒 and 𝑛(𝑒, 𝑥) = (𝑥, 𝑒)𝑚 = 𝑥 for every 𝑥 ∈ 𝐺;
- an (𝑛,∝)-zero if 𝑒 + 𝑒 = 𝑒 and 𝑛(𝑒, 𝑥) = 𝑥 for every 𝑥 ∈ 𝐺;
- an (∝, 𝑚)-zero if 𝑒 + 𝑒 = 𝑒 and (𝑥, 𝑒)𝑚 = 𝑥 for every 𝑥 ∈ 𝐺.

Clearly, if 𝑒 ∈ 𝐺 is both an (𝑛,∝)-zero and an (∝, 𝑚)-zero, then it is also an (𝑛, 𝑚)-zero.
If (𝐺, ·) is a multiplicative groupoid, then the element 𝑒 is called an (𝑛, 𝑚)-identity.

Example 3.1. Let (𝐺, ·) be a paramedial groupoid, 𝑒 ∈ 𝐺 and 𝑒𝑥 = 𝑥 for every 𝑥 ∈ 𝐺.

Then (𝐺, ·) is a paramedial groupoid with (1, 2)-identity 𝑒 in 𝐺. Indeed, if 𝑥 ∈ 𝐺, then
𝑥𝑒 · 𝑒 = 𝑥𝑒 · 𝑒𝑒 = 𝑒𝑒 · 𝑒𝑥 = 𝑒 · 𝑥 = 𝑥.

Definition 3.2. Let (𝐺, +) be a topological groupoid. A groupoid (𝐺, ·) is called a
homogeneous isotope of the topological groupoid (𝐺, +) if there exist two topological
automorphisms 𝜑, 𝜓 : (𝐺, +) → (𝐺, +) such that 𝑥 · 𝑦 = 𝜑(𝑥) + 𝜓(𝑦) for all 𝑥, 𝑦 ∈ 𝐺.
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For every mapping 𝑓 : 𝑋 → 𝑋 we denote 𝑓 1(𝑥) = 𝑓 (𝑥) and 𝑓 𝑛+1(𝑥) = 𝑓 ( 𝑓 𝑛 (𝑥)) for
any 𝑛 ≥ 1.

Definition 3.3. Let 𝑛, 𝑚 ≤ ∞. A groupoid (𝐺, ·) is called an (𝑛, 𝑚)-homogeneous
isotope of a topological groupoid (𝐺, +) if there exist two topological automorphisms
𝜑, 𝜓 : (𝐺, +) → (𝐺, +) such that:

1. 𝑥 · 𝑦 = 𝜑(𝑥) + 𝜓(𝑦) for all 𝑥, 𝑦 ∈ 𝐺;
2. 𝜑𝜑 = 𝜓𝜓;
3. If 𝑛 < ∞, then 𝜑𝑛 (𝑥) = 𝑥 for all 𝑥 ∈ 𝐺;
4. If 𝑚 < ∞, then 𝜓𝑚(𝑥) = 𝑥 for all 𝑥 ∈ 𝐺.

Definition 3.4. A groupoid (𝐺, ·) is called an isotope of a topological groupoid (𝐺, +)
if there exist two homeomorphisms 𝜑, 𝜓 : (𝐺, +) → (𝐺, +) such that 𝑥 · 𝑦 = 𝜑(𝑥) +
𝜓(𝑦) for all 𝑥, 𝑦 ∈ 𝐺.

Under the conditions of Definition 3.4 we shall say that the isotope (𝐺, ·) is generated
by the homeomorphisms 𝜑, 𝜓 of the topological groupoids (𝐺, +) and write (𝐺, ·) =

𝑔(𝐺, +, 𝜑, 𝜓).

Example 3.2. Denote by Z𝑝 = Z/𝑝Z = {0, 1, ..., 𝑝 − 1} the cyclic group of order 𝑝. Let
(𝐺, +) = (Z7, +), 𝜑(𝑥) = 𝑥, 𝜓(𝑥) = 6𝑥 and 𝑥 · 𝑦 = 𝑥 + 6𝑦. Then (𝐺, ·) = 𝑔(𝐺, +, 𝜑, 𝜓)
is a medial, paramedial, bicommutative and 𝐴𝐺-quasigroup and the zero of (𝐺, +) is a
(2, 1)-identity in (𝐺, ·).

Example 3.3. Denote by Z𝑝 = Z/𝑝Z = {0, 1, ..., 𝑝 − 1} the cyclic group of order 𝑝. Let
(𝐺, +) = (Z13, +), 𝜑(𝑥) = 𝑥, 𝜓(𝑥) = 12𝑥 and 𝑥 · 𝑦 = 𝑥 + 12𝑦. Then (𝐺, ·) = 𝑔(𝐺, +, 𝜑, 𝜓)
is a medial, paramedial, bicommutative and 𝐴𝐷-quasigroup and the zero of (𝐺, +) is a
(2, 1)-identity in (𝐺, ·).

Example 3.4. Denote by Z𝑝 = Z/𝑝Z = {0, 1, ..., 𝑝 − 1} the cyclic group of order 𝑝. Let
(𝐺, +) = (Z13, +), 𝜑(𝑥) = 12𝑥, 𝜓(𝑥) = 𝑥 and 𝑥 · 𝑦 = 12𝑥 + 𝑦. Then (𝐺, ·) = 𝑔(𝐺, +, 𝜑, 𝜓)
is a medial, paramedial, bicommutative and 𝐴𝐺-quasigroup and the zero of (𝐺, +) is a
(1, 2)-identity in (𝐺, ·).

Example 3.5. Let (𝐺, +) = (Z11, +), 𝜑(𝑥) = 2𝑥, 𝜓(𝑥) = 9𝑥 and 𝑥 · 𝑦 = 2𝑥 + 9𝑦. Then
(𝐺, ·) = 𝑔(𝐺, +, 𝜑, 𝜓) is a medial, paramedial and bicommutative quasigroup and the
zero of (𝐺, +) is a (5, 10)-identity in (𝐺, ·).

Some algebraic and topological properties of groupoids and quasigroups with multiple
identities have been studied in [6, 7, 8, 9].

Below we will prove some algebraic properties for𝐶𝑀-groupoids and𝐶𝑀-quasigroups.

123



ON 𝑪𝑴-GROUPOIDS WITH MULTIPLE IDENTITIES AND MEDIAL
TOPOLOGICAL LEFT LOOPS

Theorem 3.1. If (𝐺, ·) is a multiplicative groupoid, 𝑒 ∈ 𝐺 and the following conditions
hold:

1. 𝑒𝑥 = 𝑥 for every 𝑥 ∈ 𝐺,
2. 𝑥2 = 𝑥 · 𝑥 = 𝑒 for every 𝑥 ∈ 𝐺,
3. 𝑥𝑦 · 𝑧 = 𝑦 · 𝑧𝑥 for all 𝑥, 𝑦, 𝑧 ∈ 𝐺,
4. for every 𝑎, 𝑏 ∈ 𝐺 there exists a unique point 𝑦 ∈ 𝐺 such that 𝑎𝑦 = 𝑏, then 𝑒 is an

(1, 2)-identity in 𝐺 and the following algebraic properties are fulfilled:
(i) 𝑎𝑏 · 𝑒 = 𝑏𝑎 for every 𝑎, 𝑏 ∈ 𝐺,
(ii) 𝑐 · 𝑒 = 𝑎𝑐 · 𝑎 for every 𝑎, 𝑐 ∈ 𝐺,
(iii) 𝑎𝑏 · 𝑐 = 𝑎𝑐 · 𝑏 for every 𝑎, 𝑏, 𝑐 ∈ 𝐺,
(iv) 𝑎 · 𝑎𝑏 = 𝑏 for every 𝑎, 𝑏 ∈ 𝐺.

Proof. Fix 𝑥 ∈ 𝐺. Pick 𝑦 ∈ 𝐺 such that 𝑥𝑒 · 𝑦 = 𝑥. By conditions 2 of Theorem 3.1 we
have

(𝑥𝑒 · 𝑦) · 𝑥 = 𝑥 · 𝑥 = 𝑒. (1)

By condition 3 of Theorem 3.1 we get

(𝑥𝑒 · 𝑦) · 𝑥 = 𝑦 · (𝑥 · 𝑥𝑒). (2)

From (1) and (2) we obtain

𝑦 · (𝑥 · 𝑥𝑒) = 𝑒. (3)

It is clear that

(𝑥 · 𝑥𝑒) · (𝑥 · 𝑥𝑒) = 𝑒. (4)

Thus, from (3) and (4) and condition 3 of Theorem 3.1 we find that

𝑦 = 𝑥 · 𝑥𝑒 = 𝑒𝑥 · 𝑥 = 𝑥𝑥 = 𝑒.

Hence 𝑦 = 𝑒. Therefore 𝑥𝑒 · 𝑦 = 𝑥𝑒 · 𝑒 = 𝑥 and 𝑒 is an (1, 2)− identity in 𝐺.
We will prove algebraic properties (i) - (iv).
According to condition 3 of Theorem 3.1 we obtain 𝑎𝑏 · 𝑐 = 𝑏 · 𝑐𝑎. Let 𝑐 = 𝑒. Hence,

we have property (i), 𝑎𝑏 · 𝑒 = 𝑏 · 𝑒𝑎 = 𝑏𝑎.
By conditions 2 and 3 we get property (ii), 𝑐 · 𝑒 = 𝑐 · (𝑎𝑎) = 𝑎𝑐 · 𝑎.
We will show property 𝑎𝑏 · 𝑐 = 𝑎𝑐 · 𝑏. Indeed, by conditions 1 and 3 of Theorem 3.1

and property (i) we obtain property (iii)

𝑎𝑏 · 𝑐 = 𝑏 · 𝑐𝑎 = 𝑒(𝑏 · 𝑐𝑎) = (𝑐𝑎 · 𝑒) · 𝑏 = 𝑎𝑐 · 𝑏. (5)
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We will prove property (iv). Indeed, by properties (i) and (iii) we obtain

𝑎 · 𝑎𝑏 = 𝑎 · (𝑏𝑎 · 𝑒) = 𝑎 · (𝑏𝑒 · 𝑎) = (𝑎𝑎) · (𝑏𝑒) = 𝑒 · 𝑏𝑒 = (𝑒𝑒) · 𝑏 = 𝑏. (6)

The proof is complete. �

Theorem 3.2. If (𝐺, ·) is a 𝐶𝑀-multiplicative groupoid, 𝑒 ∈ 𝐺 and the following condi-
tions hold:

1. 𝑒𝑥 = 𝑥 for every 𝑥 ∈ 𝐺,
2. 𝑥2 = 𝑥 · 𝑥 = 𝑒 for every 𝑥 ∈ 𝐺,
3. if 𝑥𝑎 = 𝑦𝑎, then 𝑥 = 𝑦 for all 𝑥, 𝑦, 𝑎 ∈ 𝐺,

then (𝐺, ·) is a 𝐶𝑀-quasigroup with an (1, 2)-identity 𝑒.

Proof. By Theorem 3.1 𝑒 is an (1, 2)-identity.
Consider the equation 𝑎𝑥 = 𝑏. Then 𝑎𝑥 · 𝑎 = 𝑏 · 𝑎 or 𝑥 · 𝑎𝑎 = 𝑏𝑎. Thus 𝑥 · 𝑒 = 𝑏𝑎 and
𝑥𝑒 · 𝑒 = 𝑏𝑎 · 𝑒. Therefore 𝑥 = 𝑏𝑎 · 𝑒 = 𝑎𝑏 is a solution of the equation.

Since 𝑎𝑥 = 𝑏 we can verify that 𝑎 · 𝑎𝑏 = 𝑏. By property 4 from Theorem 3.1 we get
𝑎 · 𝑎𝑏 = 𝑎 · (𝑏𝑎 · 𝑒) = 𝑏. In this case the element 𝑥 = 𝑎𝑏 is a unique solution of the
equation 𝑎𝑥 = 𝑏.

Now we consider the equation 𝑦𝑎 = 𝑏. Then 𝑦𝑎 · 𝑒 = 𝑏 · 𝑒 or by property 3 from
Theorem 3.1 we have 𝑎𝑦 = 𝑏𝑒. Thus, using the solution of the equation 𝑎𝑥 = 𝑏 in the last
identity, we get 𝑦 = 𝑎 · 𝑏𝑒. Hence, 𝑦 = 𝑎 · 𝑏𝑒 is a solution of the equation 𝑦𝑎 = 𝑏 and we
can verify that

(𝑎 · 𝑏𝑒) · 𝑎 = (𝑏𝑒) · (𝑎𝑎) = (𝑏𝑒) · 𝑒 = 𝑏.

In this case the element 𝑦 = 𝑎 · 𝑏𝑒 is a unique solution of the equation 𝑦𝑎 = 𝑏. Thus,
(𝐺, ·) is a 𝐶𝑀-quasigroup with an (1, 2)-identity 𝑒. The proof is now complete. �

Corollary 3.1. If (𝐺, ·) is a 𝐶𝑀-quasigroup with an (1, 2)-identity 𝑒 and 𝑥2 = 𝑒, then
solutions of the equations 𝑎𝑥 = 𝑏 and 𝑦𝑎 = 𝑏 are, respectively, 𝑥 = 𝑎𝑏 and 𝑦 = 𝑎 · 𝑏𝑒 for
all 𝑥, 𝑦, 𝑎, 𝑏 ∈ 𝐺.

4. On a method of construction medial topological left loops

In Section 4 we prove a new method of constructing non-associative medial topological
quasigroups with left identity.

Theorem 4.1. Let (𝐺, +, 𝜏) be a commutative topological group. For (𝑥1, 𝑦1) and (𝑥2, 𝑦2)
in 𝐺 × 𝐺 define

(𝑥1, 𝑦1) ◦ (𝑥2, 𝑦2) = (𝑥1 + 𝑦1 + 𝑥2 + 𝑦1, 𝑦1 + 𝑦2)
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Then (𝐺 × 𝐺, ◦, 𝜏𝐺), relative to the product topology 𝜏𝐺 , is a medial, non-paramedial
and non-associative topological quasigroup with left identity. Moreover, if (𝐺, 𝜏) is
𝑇𝑖 − 𝑠𝑝𝑎𝑐𝑒, then (𝐺 × 𝐺, 𝜏𝐺) is 𝑇𝑖 − 𝑠𝑝𝑎𝑐𝑒 too, where 𝑖 = 1, 2, 3, 3.5.

Proof. 1. We will prove that (𝐺×𝐺, ◦) is a quasigroup. To this end, we will show that the
equations 𝑦 ◦ 𝑎 = 𝑏 and 𝑥 ◦ 𝑎 = 𝑏 have unique solutions in (𝐺 × 𝐺, ◦). Let 𝑦 = (𝑦1, 𝑦2),
𝑥 = (𝑥1, 𝑥2), 𝑎 = (𝑎1, 𝑎2) and 𝑏 = (𝑏1, 𝑏2). Since 𝑦 ◦ 𝑎 = 𝑏 we have

(𝑦1, 𝑦2) ◦ (𝑎1, 𝑎1) = (𝑏1, 𝑏2). (7)

According to the conditions of the Theorem

(𝑦1, 𝑦2) ◦ (𝑎1, 𝑎2) = (𝑦1 + 𝑦2 + 𝑎1 + 𝑦2, 𝑎2 + 𝑦2). (8)

From (7) and (8) we get

𝑦1 + 𝑦2 + 𝑎1 + 𝑦2 = 𝑏1 (9)

and
𝑎2 + 𝑦2 = 𝑏2. (10)

From (10) and (9) we obtain

𝑦2 = 𝑏2 − 𝑎2. (11)

and
𝑦1 = 𝑏1 − 𝑎1 − 2(𝑏2 − 𝑎2). (12)

Hence, 𝑦1 = 𝑏1 − 𝑎1 − 2(𝑏2 − 𝑎2) and 𝑦2 = 𝑏2 − 𝑎2 are solutions of the equation
𝑦 ◦ 𝑎 = 𝑏. It is easy to show that any other solutions of that equation coincide with 𝑦1 and
𝑦2.

In this case

𝑙 ((𝑎1, 𝑎2), (𝑏1, 𝑏2)) = (𝑏1 − 𝑎1 − 2(𝑏2 − 𝑎2), 𝑏2 − 𝑎2)

and 𝑙 ((𝑎1, 𝑎2), (𝑏1, 𝑏2)) ◦ (𝑎1, 𝑎2) = (𝑏1, 𝑏2).
Similarly it is shown that the equation 𝑎 ◦ 𝑥 = 𝑏 or

(𝑎1, 𝑎2) ◦ (𝑥1, 𝑥2) = (𝑏1, 𝑏2) (13)

has a unique solutions 𝑥1 = 𝑏1 − 𝑎1 − 2𝑎2 and 𝑥2 = 𝑏2 − 𝑎2. It is clear that

𝑟 ((𝑎1, 𝑎2), (𝑏1, 𝑏2)) = (𝑏1 − 𝑎1 − 2𝑎2, 𝑏2 − 𝑎2)

and (𝑎1, 𝑎2) ◦ 𝑟 ((𝑎1, 𝑎2), (𝑏1, 𝑏2)) = (𝑏1, 𝑏2).
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Any other solutions of the equation 𝑎◦𝑥 = 𝑏 coincides with 𝑥1 and 𝑥2. Thus (𝐺×𝐺, ◦)
is a quasigroup.

2. We will prove that associativity

((𝑥1, 𝑦1) ◦ (𝑥2, 𝑦2)) ◦ (𝑥3, 𝑦3) = (𝑥1, 𝑦1) ◦ ((𝑥2, 𝑦2) ◦ (𝑥3, 𝑦3)) (14)

does not hold in (𝐺 × 𝐺, ◦).
Indeed, for the first side of law (14) we obtain

((𝑥1, 𝑦1) ◦ (𝑥2, 𝑦2)) ◦ (𝑥3, 𝑦3) = (𝑥1 + 𝑦1 + 𝑥2 + 𝑦1, 𝑦1 + 𝑦2) ◦ (𝑥3, 𝑦3) =

= (𝑥1 + 𝑦1 + 𝑥2 + 𝑦1 + 𝑦1 + 𝑦2 + 𝑥3 + 𝑦1 + 𝑦2, 𝑦1 + 𝑦2 + 𝑦3) =

= (𝑥1 + 4𝑦1 + 𝑥2 + 2𝑦2 + 𝑥3, 𝑦3 + 𝑦1 + 𝑦2). (15)

Similarly, for the second side of law (14) we have

(𝑥1, 𝑦1) ◦ ((𝑥2, 𝑦2) ◦ (𝑥3, 𝑦3)) = (𝑥1, 𝑦1) ◦ (𝑥2 + 𝑦2 + 𝑥3 + 𝑦2, 𝑦3 + 𝑦2) =

= (𝑥1 + 𝑦1 + 𝑥2 + 𝑦2 + 𝑥3 + 𝑦2 + 𝑦1, 𝑦2 + 𝑦3 + 𝑦1 =

= (𝑥1 + 𝑥2 + 𝑥3 + 2𝑦1 + 2𝑦2, 𝑦2 + 𝑦3 + 𝑦1). (16)

From (15) and (16) it is clear that associativity does not hold in (𝐺 × 𝐺, ◦).

3. We will show that (𝐺 × 𝐺, ◦) is medial quasigroup that is, the property 𝑥𝑦 · 𝑧𝑡 =
= 𝑥𝑧 · 𝑦𝑡 holds.

Let 𝑥 = (𝑥1, 𝑦1), 𝑦 = (𝑥2, 𝑦2), 𝑧 = (𝑥3, 𝑦3), 𝑡 = (𝑥4, 𝑦4), then

((𝑥1, 𝑦1)◦(𝑥2, 𝑦2))◦((𝑥3, 𝑦3)◦(𝑥4, 𝑦4)) = ((𝑥1, 𝑦1)◦(𝑥3, 𝑦3))◦((𝑥2, 𝑦2)◦(𝑥4, 𝑦7)). (17)

According to the Theorem for the first side of law (17) we have

((𝑥1, 𝑦1) ◦ (𝑥2, 𝑦2)) ◦ ((𝑥3, 𝑦3) ◦ (𝑥4, 𝑦4)) =

= ((𝑥1 + 𝑦1 + 𝑥2 + 𝑦1, 𝑦2 + 𝑦1)) ◦ ((𝑥3 + 𝑦3 + 𝑥4 + 𝑦3, 𝑦4 + 𝑦3)) =

= (𝑥1 + 𝑥2 + 2𝑦1 + 𝑦1 + 𝑦2 + 𝑥3 + 2𝑦3 + 𝑥4 + 𝑦1 + 𝑦2, 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4) =

= (𝑥1 + 𝑥2 + 4𝑦1 + 2𝑦2 + 𝑥3 + 2𝑦3 + 𝑥4, 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4). (18)

Similarly, for the other side of law (17) we get

((𝑥1, 𝑦1) ◦ (𝑥3, 𝑦3)) ◦ ((𝑥2, 𝑦2) ◦ (𝑥4, 𝑦4)) =

= (𝑥1 + 𝑦1 + 𝑥3 + 𝑦1, 𝑦1 + 𝑦3) ◦ (𝑥2 + 𝑦2 + 𝑥4 + 𝑦2, 𝑦2 + 𝑦4) =

= (𝑥1 + 2𝑦1 + 𝑥3 + 𝑦1 + 𝑦3 + 𝑥2 + 2𝑦2 + 𝑥4 + 𝑦1 + 𝑦3, 𝑦1 + 𝑦3 + 𝑦2 + 𝑦4) =

= (𝑥1 + 4𝑦1 + 𝑥3 + 2𝑦3 + 𝑥2 + 2𝑦2 + 𝑥4, 𝑦1 + 𝑦3 + 𝑦2 + 𝑦4). (19)
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From (18) and (19) we obtain that both sides are equal and (𝐺 × 𝐺, ◦) is a medial
quasigroup. Similarly, it is shown that paramediality does not hold in (𝐺 × 𝐺, ◦).

4. We will show that there is a left identity 𝑒𝑥 = 𝑥.
Let 𝑥 = (𝑥1, 𝑥2) and 𝑒 = (𝑒, 𝑒), then (𝑒, 𝑒) ◦ (𝑥1, 𝑥2) = (𝑥1, 𝑥2).
Indeed, according to the Theorem

(𝑒, 𝑒) ◦ (𝑥1, 𝑥2) = (𝑒 + 𝑒 + 𝑥1 + 𝑒, 𝑒 + 𝑥2) =

= (𝑒 + 𝑥1 + 𝑒, 𝑒 + 𝑥2) = (𝑒 + 𝑥1, 𝑒 + 𝑥2) = (𝑥1, 𝑥2). (20)

Hence, (𝑒, 𝑒) is a left identity. Similarly, it is shown that the right identity does not
exist.

Therefore, the quasigroup (𝐺 × 𝐺, ◦) is medial with left identity. Multiplication (◦)
and divisions 𝑙 (𝑎, 𝑏) and 𝑟 (𝑎, 𝑏) are jointly continuous relative to the product topology.
Consequently, (𝐺 × 𝐺, ◦, 𝜏𝐺) is a topological medial quasigroup with left identity.

If (𝐺, 𝜏) is 𝑇𝑖-space, then according to Theorem 2.3.11 in [4], a product of 𝑇𝑖-spaces
is a 𝑇𝑖-spaces, where 𝑖 = 1, 2, 3, 3.5. The proof is complete. �

Theorem 4.2. Let (𝐺, +, 𝜏) be a commutative topological group. For (𝑥1, 𝑦1) and (𝑥2, 𝑦2)
in 𝐺 × 𝐺 define

(𝑥1, 𝑦1) ◦ (𝑥2, 𝑦2) = (𝑥1 − 𝑦1 + 𝑥2 − 𝑦2, 𝑦1 + 𝑦2).

Then (𝐺 ×𝐺, ◦, 𝜏𝐺), relative to the product topology 𝜏𝐺 , is a non-associative, medial,
paramedial, bicommutative and 𝐺𝐴-topological quasigroup. Moreover, if (𝐺, 𝜏) is 𝑇𝑖 −
𝑠𝑝𝑎𝑐𝑒, then (𝐺 × 𝐺, 𝜏𝐺) is 𝑇𝑖 − 𝑠𝑝𝑎𝑐𝑒 too, where 𝑖 = 1, 2, 3, 3.5.

Proof. The proof is analogous to that of Theorem 4.1. �

Example 4.1. Let 𝐺 = {0, 1, 2}. We define the binary operation ” + ”.

(+) 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Then (𝐺, +) is a commutative group. Define a binary operation (◦) on the set 𝐺 × 𝐺

by (𝑥1, 𝑦1) ◦ (𝑥2, 𝑦2) = (𝑥1 + 𝑦1 + 𝑥2 + 𝑦1, 𝑦1 + 𝑦2) for all 𝑥1, 𝑦1, 𝑥2, 𝑦2 ∈ 𝐺 × 𝐺. If we
label the elements as follows (0, 0) ↔ 0, (0, 1) ↔ 1, (0, 2) ↔ 2, (1, 0) ↔ 3, (1, 1) ↔ 4,
(1, 2) ↔ 5, (2, 0) ↔ 6, (2, 1) ↔ 7, (2, 2) ↔ 8, then we obtain:
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(+) 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 7 8 6 1 2 0 4 5 3
2 5 3 8 8 6 7 2 0 1
3 3 4 5 6 7 8 0 1 2
4 1 2 0 4 5 3 7 8 6
5 8 6 7 2 0 1 5 3 4
6 6 7 8 0 1 2 3 4 5
7 4 5 3 7 8 6 1 2 0
8 2 0 1 5 3 4 8 6 7

Then (𝐺 × 𝐺, ◦) is a medial quasigroup with left identity.

5. Some examples of quasigroups with multiple identities

Example 5.1. Denote by Z𝑝 = Z/𝑝Z = {0, 1, ..., 𝑝 − 1} the cyclic group of order 𝑝. Let
(𝐺, +) = (Z11, +), 𝜑(𝑥) = 5𝑥, 𝜓(𝑥) = 6𝑥 and 𝑥 · 𝑦 = 5𝑥 + 6𝑦. Then (𝐺, ·) = 𝑔(𝐺, +, 𝜑, 𝜓)
is a medial, paramedial, bicommutative and the zero of (𝐺, +) is a (10, 5)-identity in
(𝐺, ·).

Example 5.2. Denote by Z𝑝 = Z/𝑝Z = {0, 1, ..., 𝑝 − 1} the cyclic group of order 𝑝. Let
(𝐺, +) = (Z11, +), 𝜑(𝑥) = 6𝑥, 𝜓(𝑥) = 5𝑥 and 𝑥 · 𝑦 = 6𝑥 + 5𝑦. Then (𝐺, ·) = 𝑔(𝐺, +, 𝜑, 𝜓)
is a medial, paramedial, bicommutative and the zero of (𝐺, +) is a (5, 10)-identity in
(𝐺, ·).

Example 5.3. Denote by Z𝑝 = Z/𝑝Z = {0, 1, ..., 𝑝 − 1} the cyclic group of order 𝑝. Let
(𝐺, +) = (Z11, +), 𝜑(𝑥) = 10𝑥, 𝜓(𝑥) = 𝑥 and 𝑥 · 𝑦 = 10𝑥 + 𝑦. Then (𝐺, ·) = 𝑔(𝐺, +, 𝜑, 𝜓)
is a medial, paramedial, bicommutative and 𝐴𝐺-quasigroup and the zero of (𝐺, +) is an
(1, 2)-identity in (𝐺, ·).

Example 5.4. Let (𝐺, +) = (Z11, +), 𝜑(𝑥) = 9𝑥, 𝜓(𝑥) = 2𝑥 and 𝑥 · 𝑦 = 9𝑥 + 2𝑦. Then
(𝐺, ·) = 𝑔(𝐺, +, 𝜑, 𝜓) is a medial, paramedial and bicommutative quasigroup and the
zero of (𝐺, +) is a (10, 5)-identity in (𝐺, ·).

Example 5.5. Let (𝐺, +) = (Z11, +), 𝜑(𝑥) = 𝑥, 𝜓(𝑥) = 10𝑥 and 𝑥 · 𝑦 = 𝑥 + 10𝑦. The next
Cayley table describes the structure of a finite quasigroup (𝐺, ·) = 𝑔(𝐺, +, 𝜑, 𝜓):
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(·) 0 1 2 3 4 5 6 7 8 9 10
0 0 10 9 8 7 6 5 4 3 2 1
1 1 0 10 9 8 7 6 5 4 3 2
2 2 1 0 10 9 8 7 6 5 4 3
3 3 2 1 0 10 9 8 7 6 5 4
4 4 3 2 1 0 10 9 8 7 6 5
5 5 4 3 2 1 0 10 9 8 7 6
6 6 5 4 3 2 1 0 10 9 8 7
7 7 6 5 4 3 2 1 0 10 9 8
8 8 7 6 5 4 3 2 1 0 10 9
9 9 8 7 6 5 4 3 2 1 0 10
10 10 9 8 7 6 5 4 3 2 1 0

Then (𝐺, ·) = 𝑔(𝐺, +, 𝜑, 𝜓) is a medial, paramedial, bicommutative, 𝐴𝐷 and Ward
quasigroup and the zero of (𝐺, +) is a (2, 1)-identity in (𝐺, ·).

Example 5.6. Let (R, +) be the topological Abelian group of real numbers.
1. If 𝜑(𝑥) = 𝑥, 𝜓(𝑥) = 7𝑥 and 𝑥 ·𝑦 = 𝑥+7𝑦, then (R, ·) = 𝑔(R, +, 𝜑, 𝜓) is a commutative

locally compact medial quasigroup. By Theorem 7 from [1] there exists a left (but no
right) invariant Haar measure on (R, ·).

2. If 𝜑(𝑥) = 5𝑥, 𝜓(𝑥) = 5𝑥 and 𝑥 · 𝑦 = 5𝑥 + 5𝑦, then (R, ·) = 𝑔(R, +, 𝜑, 𝜓) is
a commutative locally compact paramedial quasigroup and on (R, ·). As above, by
Theorem 5.1 from [8], there does not exist any left or right invariant Haar measure.

Example 5.7. Consider the commutative group (𝐺, +) = (Z, +), 𝜑(𝑥) = 𝑥, 𝜓(𝑥) = −𝑥 + 1
and 𝑥 · 𝑦 = 𝑥 − 𝑦 + 1. Then (𝐺, ·) = 𝑔(𝐺, +, 𝜑, 𝜓, 0, 1) is a medial and paramedial
quasigroup and (𝐺, ·) does not contain (𝑛, 𝑚)-identities. There exists an invariant Haar
measure on (𝐺, ·) .
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