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Boolean asynchronous systems vs. Daizhan Cheng’s theory
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Abstract. The theory of Daizhan Cheng [1] replaces B = {0, 1}with D = {
(

1
0

)
,

(
0
1

)
},

and Boolean functions with logical matrices. Interesting and very important algebraical
opportunities result, which can be used in systems theory. Our purpose is to give a hint
on the theory of Cheng and its application to asynchronicity.
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Sisteme booleene asincrone din perspectiva teoriei lui
Daizhan Cheng

Rezumat. Teoria lui Daizhan Cheng [1] înlocuieşte B = {0, 1} cu D = {
(

1
0

)
,

(
0
1

)
},

şi funcţiile booleene cu matrici logice. Rezultă de aici oportunităţi algebrice importante,
care pot fi folosite în teoria sistemelor. Scopul nostru este acela de a schiţa teoria lui
Cheng şi aplicaţiile sale în asincronism.
Cuvinte cheie: funcţie booleană, sistem asincron boolean, matrice de structură, produs
semi-tensorial, teoria lui Daizhan Cheng.

1. Preliminaries

Notation 1.1. We denote with B = {0, 1} the binary Boolean algebra.

Definition 1.1. The _−iterate of Φ : B𝑛 → B𝑛, _ ∈ B𝑛 is the function Φ_ : B𝑛 → B𝑛

defined like this: ∀` ∈ B𝑛,∀𝑖 ∈ {1, ..., 𝑛},

(Φ_)𝑖 (`) =
{

Φ𝑖 (`), 𝑖 𝑓 _𝑖 = 1,
`𝑖 , 𝑖 𝑓 _𝑖 = 0.

Dedicated to the memory of Academician Mitrofan Cioban, who was the core of the intellectual and
spiritual life of the Moldovan mathematicians for so many years, and also a steady bridge connecting the
mathematicians from Moldova and Romania. We shall keep in our hearts his common sense and support.
May he rest in peace!
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Definition 1.2. GivenΦ, the function Φ̃ : B𝑛×B𝑛 → B𝑛 is defined by∀` ∈ B𝑛,∀_ ∈ B𝑛,

Φ̃(`, _) = Φ_(`). (1)

Definition 1.3. The function 𝛼 : N → B𝑛, N 3 𝑘 ↦→ 𝛼𝑘 ∈ B𝑛, with

∀𝑖 ∈ {1, ..., 𝑛}, the set {𝑘 |𝑘 ∈ N, 𝛼𝑘
𝑖 = 1} is infinite

is called progressive computation function, and we denote with Π𝑛 the set of these
functions.

Remark 1.1. Two ways of making the discrete time iterations of the functionΦ : B𝑛 → B𝑛

exist: synchronously 1B𝑛 ,Φ,Φ ◦Φ, ... when Φ1, ...,Φ𝑛 are computed always, all of them,
and asynchronously, when the coordinates of Φ are computed sometimes, independently
on each other. The functions 𝛼 ∈ Π𝑛 indicate howΦ is computed: ∀𝑘 ∈ N,∀𝑖 ∈ {1, ..., 𝑛},{

𝛼𝑘
𝑖
= 1, at time instant 𝑘, Φ𝑖 is computed,

𝛼𝑘
𝑖
= 0, at time instant 𝑘, Φ𝑖 is not computed.

Synchronicity is that special case of asynchronicity when ∀𝑘 ∈ N, 𝛼𝑘 = (1, ..., 1).

Definition 1.4. The unbounded delay model of computation of Φ consists in the equation

𝑥(𝑘 + 1) = Φ𝛼𝑘 (𝑥(𝑘)), (2)

where Φ : B𝑛 → B𝑛, 𝑥 : N → B𝑛, 𝛼 ∈ Π𝑛 and 𝑘 ∈ N. In (2) the function 𝑥, called state,
is unknown, and 𝑥(0), together with 𝛼, are parameters.

Example 1.1. We consider the function Φ : B2 → B2,∀` ∈ B2,Φ(`1, `2) = (`2, `1),
with the following state portrait

In the drawing, the underlined coordinates `𝑖 , 𝑖 ∈ {1, 2} show that Φ𝑖 (`) ≠ `𝑖 and,
by their computation, the system moves to a distinct state, while the arrows indicate the
evolution of the system. The equation (2) is ∀𝑘 ∈ N,{

𝑥1(𝑘 + 1) = 𝑥2(𝑘)𝛼𝑘
1 ∪ 𝑥1(𝑘)𝛼𝑘

1 ,

𝑥2(𝑘 + 1) = 𝑥1(𝑘)𝛼𝑘
2 ∪ 𝑥2(𝑘)𝛼𝑘

2 ,
(3)

where 𝑥 : N → B2 fulfils 𝑥(0) = (0, 0) and 𝛼 ∈ Π2 is defined as

𝛼 = (1, 0), (0, 1), (1, 1), (0, 1), (1, 0), ...
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We get
𝑥(1) = Φ𝛼0 (𝑥(0)) = Φ(1,0) (0, 0) = (0, 0), (4)

𝑥(2) = Φ𝛼1 (𝑥(1)) = Φ(0,1) (0, 0) = (0, 1), (5)

𝑥(3) = Φ𝛼2 (𝑥(2)) = Φ(1,1) (0, 1) = (1, 1), (6)

𝑥(4) = Φ𝛼3 (𝑥(3)) = Φ(0,1) (1, 1) = (1, 0), (7)

𝑥(5) = Φ𝛼4 (𝑥(4)) = Φ(1,0) (1, 0) = (0, 0), (8)

...

2. Semi-tensor product

Notation 2.1. We use the notation 𝑀𝑚×𝑛 for the set of the matrices with binary entries
that have 𝑚 rows and 𝑛 columns.

Remark 2.1. In the following Definitions 2.1 and 2.2, the operations with matrices are
induced by the field structure of B relative to ⊕, ·.

Definition 2.1. The Kronecker product ⊗ of the matrices 𝐴 ∈ 𝑀𝑚×𝑛 and 𝐵 ∈ 𝑀𝑝×𝑞 is

𝐴 ⊗ 𝐵 =
©«

𝑎11𝐵 ... 𝑎1𝑛𝐵

...

𝑎𝑚1𝐵 ... 𝑎𝑚𝑛𝐵

ª®®¬ ∈ 𝑀𝑚𝑝×𝑛𝑞 .

Definition 2.2. The semi-tensor product n of 𝐴 ∈ 𝑀𝑚×𝑛 and 𝐵 ∈ 𝑀𝑝×𝑞 is by definition

𝐴 n 𝐵 = (𝐴 ⊗ 𝐼 𝑐
𝑛
) (𝐵 ⊗ 𝐼 𝑐

𝑝
) ∈ 𝑀𝑚𝑐

𝑛
× 𝑞𝑐

𝑝
,

where 𝐼𝑘 is the 𝑘 × 𝑘 identity matrix and 𝑐 is the least common multiple of 𝑛 and 𝑝.

Remark 2.2. At Definition 2.2, 𝐴 ⊗ 𝐼 𝑐
𝑛

has 𝑛 𝑐
𝑛

columns and 𝐵 ⊗ 𝐼 𝑐
𝑝

has 𝑝 𝑐
𝑝

rows, thus
the product of the matrices 𝐴 ⊗ 𝐼 𝑐

𝑛
, 𝐵 ⊗ 𝐼 𝑐

𝑝
makes sense.

Remark 2.3. If 𝑛 = 𝑝, the semi-tensor product coincides with the usual product of the
matrices. This happens because we get 𝑐 = 𝑛 = 𝑝, 𝐴 ⊗ 𝐼1 = 𝐴, and 𝐵 ⊗ 𝐼1 = 𝐵.

Example 2.1. We have the following examples of Kronecker product(
1
0

)
⊗

(
1 1

)
=

©«
1
(

1 1
)

0
(

1 1
) ª®¬ =

(
1 1
0 0

)
,

and semi-tensor product(
1
0

)
n

(
1 1 1
0 0 0

)
=

((
1
0

)
⊗ 𝐼2

) ((
1 1 1
0 0 0

)
⊗ 𝐼1

)
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=

©«
1 0
0 1
0 0
0 0

ª®®®®®¬
(

1 1 1
0 0 0

)
=

©«
1 1 1
0 0 0
0 0 0
0 0 0

ª®®®®®¬
.

Remark 2.4. The semi-tensor product is associative, and for this reason we shall omit
writing brackets when it is used repeatedly.

3. Replacement of B with D

Notation 3.1. We denote with 𝛿𝑖𝑛 ∈ 𝑀𝑛×1 the columns of the identity matrix of dimension
𝑛:

𝛿𝑖𝑛 =

©«

0
...

1
...

0

ª®®®®®®®¬
− 𝑖,

where 𝑛 ≥ 1 and 𝑖 ∈ {1, ..., 𝑛}.

Notation 3.2. We use also the notations

D = {𝛿1
2, 𝛿

2
2},

D(𝑛) = {𝛿1
2𝑛 , ..., 𝛿

2𝑛
2𝑛 }.

Remark 3.1. D and D(𝑛) do not have a name and an algebraical structure of their own,
but they will act as B and B𝑛 in the following. Obviously, 𝑐𝑎𝑟𝑑 (B) = 𝑐𝑎𝑟𝑑 (D) = 2 and
𝑐𝑎𝑟𝑑 (B𝑛) = 𝑐𝑎𝑟𝑑 (D(𝑛) ) = 2𝑛.

Notation 3.3. We use the notations Z : B → D, Z𝑛 : B𝑛 → D(𝑛) for the following
functions: ∀` ∈ B,∀_ ∈ B𝑛,

Z (`) =
(
`

`

)
,

Z𝑛 (_) =

©«

_1..._𝑛−1_𝑛

_1..._𝑛−1_𝑛

_1..._𝑛−1_𝑛

...

_1..._𝑛−1 _𝑛

ª®®®®®®®¬
.

We denote in general `= Z (`) and _=Z𝑛 (_).
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Remark 3.2. We notice that for any ` ∈ B, respectively _ ∈ B𝑛, exactly one of `, ` is
1, respectively exactly one of _1..._𝑛−1_𝑛, _1..._𝑛−1_𝑛, _1..._𝑛−1_𝑛, ..., _1..._𝑛−1 _𝑛 is 1,
meaning that `∈ D, respectively that _∈ D(𝑛) indeed.

Theorem 3.4. (a) Z and Z𝑛 are bijections;
(b) ∀_ ∈ B𝑛,

_ = _1 n ... n _𝑛.

Proof. (a) When _ ∈ B𝑛 takes the distinct 2𝑛 values (1, ..., 1, 1), (1, ..., 1, 0), (1, ..., 0, 1),
..., (0, ..., 0, 0), _ takes the distinct 2𝑛 values 𝛿1

2𝑛 , 𝛿
2
2𝑛 , 𝛿

3
2𝑛 , ..., 𝛿

2𝑛
2𝑛 .

(b) For 𝑛 = 2 and arbitrary _ ∈ B2, we obtain

_1 n _2 =

(
_1

_1

)
n

(
_2

_2

)
= (

(
_1

_1

)
⊗

(
1 0
0 1

)
) (

(
_2

_2

)
⊗ 1)

=

©«
_1 0
0 _1

_1 0
0 _1

ª®®®®®¬
(
_2

_2

)
=

©«
_1_2

_1_2

_1_2

_1 _2

ª®®®®®¬
= _.

The property is supposed to be true for 𝑛 and the proof is made for 𝑛 + 1. �

4. Structure matrix

Notation 4.1. The notation of the 𝑖− 𝑡ℎ column of an arbitrary binary matrix 𝐴 is col𝑖 (𝐴).

Definition 4.1. A matrix 𝐴 with 𝑛 rows and 𝑚 columns is called logical if ∀ 𝑗 ∈
{1, ..., 𝑚}, col 𝑗 (𝐴) ∈ {𝛿1

𝑛, ..., 𝛿
𝑛
𝑛}. The set of the logical matrices with 𝑛 rows and 𝑚

columns is denoted with 𝐿𝑛×𝑚.

Definition 4.2. Let 𝑓 : B𝑛 → B, Φ : B𝑛 → B𝑛 and Φ̃ : B𝑛 ×B𝑛 → B𝑛, as defined at (1).
We denote with 𝑀 𝑓 ∈ 𝐿2×2𝑛 the matrix

𝑀 𝑓 =

(
𝑓 (1, ..., 1, 1),
𝑓 (1, ..., 1, 1),

𝑓 (1, ..., 1, 0),
𝑓 (1, ..., 1, 0),

𝑓 (1, ..., 0, 1),
𝑓 (1, ..., 0, 1),

...

...

𝑓 (0, ..., 0, 0)
𝑓 (0, ..., 0, 0)

)
,

with 𝑀Φ ∈ 𝐿2𝑛×2𝑛 the matrix whose columns are

col1(𝑀Φ) =

©«

Φ1(1, ..., 1, 1)...Φ𝑛−1(1, ..., 1, 1)Φ𝑛 (1, ..., 1, 1)
Φ1(1, ..., 1, 1)...Φ𝑛−1(1, ..., 1, 1)Φ𝑛 (1, ..., 1, 1)
Φ1(1, ..., 1, 1)...Φ𝑛−1(1, ..., 1, 1)Φ𝑛 (1, ..., 1, 1)

...

Φ1(1, ..., 1, 1)...Φ𝑛−1(1, ..., 1, 1) Φ𝑛 (1, ..., 1, 1)

ª®®®®®®®¬
,
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col2(𝑀Φ) =

©«

Φ1(1, ..., 1, 0)...Φ𝑛−1(1, ..., 1, 0)Φ𝑛 (1, ..., 1, 0)
Φ1(1, ..., 1, 0)...Φ𝑛−1(1, ..., 1, 0)Φ𝑛 (1, ..., 1, 0)
Φ1(1, ..., 1, 0)...Φ𝑛−1(1, ..., 1, 0)Φ𝑛 (1, ..., 1, 0)

...

Φ1(1, ..., 1, 0)...Φ𝑛−1(1, ..., 1, 0) Φ𝑛 (1, ..., 1, 0)

ª®®®®®®®¬
,

...

col2𝑛 (𝑀Φ) =

©«

Φ1(0, ..., 0, 0)...Φ𝑛−1(0, ..., 0, 0)Φ𝑛 (0, ..., 0, 0)
Φ1(0, ..., 0, 0)...Φ𝑛−1(0, ..., 0, 0)Φ𝑛 (0, ..., 0, 0)
Φ1(0, ..., 0, 0)...Φ𝑛−1(0, ..., 0, 0)Φ𝑛 (0, ..., 0, 0)

...

Φ1(0, ..., 0, 0)...Φ𝑛−1(0, ..., 0, 0) Φ𝑛 (0, ..., 0, 0)

ª®®®®®®®¬
and with 𝑀

Φ̃
∈ 𝐿2𝑛×22𝑛 the matrix

col1(𝑀Φ̃
) =

©«

Φ
(1,...,1,1)
1 (1, ..., 1)...Φ(1,...,1,1)

𝑛−1 (1, ..., 1)Φ(1,...,1,1)
𝑛 (1, ..., 1)

Φ
(1,...,1,1)
1 (1, ..., 1)...Φ(1,...,1,1)

𝑛−1 (1, ..., 1)Φ(1,...,1,1)
𝑛 (1, ..., 1)

Φ
(1,...,1,1)
1 (1, ..., 1)...Φ(1,...,1,1)

𝑛−1 (1, ..., 1)Φ(1,...,1,1)
𝑛 (1, ..., 1)

...

Φ
(1,...,1,1)
1 (1, ..., 1)...Φ(1,...,1,1)

𝑛−1 (1, ..., 1) Φ(1,...,1,1)
𝑛 (1, ..., 1)

ª®®®®®®®®®¬
,

col2(𝑀Φ̃
) =

©«

Φ
(1,...,1,0)
1 (1, ..., 1)...Φ(1,...,1,0)

𝑛−1 (1, ..., 1)Φ(1,...,1,0)
𝑛 (1, ..., 1)

Φ
(1,...,1,0)
1 (1, ..., 1)...Φ(1,...,1,0)

𝑛−1 (1, ..., 1)Φ(1,...,1,0)
𝑛 (1, ..., 1)

Φ
(1,...,1,0)
1 (1, ..., 1)...Φ(1,...,1,0)

𝑛−1 (1, ..., 1)Φ(1,...,1,0)
𝑛 (1, ..., 1)

...

Φ
(1,...,1,0)
1 (1, ..., 1)...Φ(1,...,1,0)

𝑛−1 (1, ..., 1) Φ(1,...,1,0)
𝑛 (1, ..., 1)

ª®®®®®®®®®¬
,

...

col2𝑛 (𝑀Φ̃
) =

©«

Φ
(0,...,0,0)
1 (1, ..., 1)...Φ(0,...,0,0)

𝑛−1 (1, ..., 1)Φ(0,...,0,0)
𝑛 (1, ..., 1)

Φ
(0,...,0,0)
1 (1, ..., 1)...Φ(0,...,0,0)

𝑛−1 (1, ..., 1)Φ(0,...,0,0)
𝑛 (1, ..., 1)

Φ
(0,...,0,0)
1 (1, ..., 1)...Φ(0,...,0,0)

𝑛−1 (1, ..., 1)Φ(0,...,0,0)
𝑛 (1, ..., 1)

...

Φ
(0,...,0,0)
1 (1, ..., 1)...Φ(0,...,0,0)

𝑛−1 (1, ..., 1) Φ(0,...,0,0)
𝑛 (1, ..., 1)

ª®®®®®®®®®¬
,

...

col22𝑛 (𝑀Φ̃
) =

©«

Φ
(0,...,0,0)
1 (0, ..., 0)...Φ(0,...,0,0)

𝑛−1 (0, ..., 0)Φ(0,...,0,0)
𝑛 (0, ..., 0)

Φ
(0,...,0,0)
1 (0, ..., 0)...Φ(0,...,0,0)

𝑛−1 (0, ..., 0)Φ(0,...,0,0)
𝑛 (0, ..., 0)

Φ
(0,...,0,0)
1 (0, ..., 0)...Φ(0,...,0,0)

𝑛−1 (0, ..., 0)Φ(0,...,0,0)
𝑛 (0, ..., 0)

...

Φ
(0,...,0,0)
1 (0, ..., 0)...Φ(0,...,0,0)

𝑛−1 (0, ..., 0) Φ(0,...,0,0)
𝑛 (0, ..., 0)

ª®®®®®®®®®¬
.
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𝑀 𝑓 , 𝑀Φ, 𝑀Φ̃
are called the structure matrices of 𝑓 ,Φ, Φ̃.

Theorem 4.2. We consider 𝑓 : B𝑛 → B, Φ : B𝑛 → B𝑛 and Φ̃ : B𝑛 × B𝑛 → B𝑛 like
previously. The assignments

` ↦→ 𝑀 𝑓 n `,

` ↦→ 𝑀Φ n `,

(`, _) ↦→ 𝑀
Φ̃
n ` n _,

with ` ∈ B𝑛, _ ∈ B𝑛, define the functions 𝑀 ( 𝑓 ) : D(𝑛) → D, 𝑀 (Φ) : D(𝑛) → D(𝑛) ,

𝑀 (Φ̃) : D(𝑛) × D(𝑛) → D(𝑛) in the following way: ∀` ∈ D(𝑛) ,∀_ ∈ D(𝑛) ,

𝑀 ( 𝑓 ) (`) = 𝑀 𝑓 n `, (9)

𝑀 (Φ) (`) = 𝑀Φ n `, (10)

𝑀 (Φ̃) (`, _) = 𝑀
Φ̃
n ` n _. (11)

We have

𝑀 𝑓 n ` = 𝑀 𝑓 · `, (12)

𝑀Φ n ` = 𝑀Φ · `, (13)

𝑀
Φ̃
n ` n _ = 𝑀

Φ̃
· (` n _), (14)

where ′·′ is the product of the matrices.

Proof. We note first that

D = 𝐿2×1,

D(𝑛) = 𝐿2𝑛×1

are true. As far as `∈ 𝐿2𝑛×1 and 𝑀 𝑓 ∈ 𝐿2×2𝑛 , we infer from Remark 2.3 that (12) holds.
On the other hand, `∈ 𝐿2𝑛×1 makes 𝑀 𝑓 ·` coincide with one of col1(𝑀 𝑓 ), ..., col2𝑛 (𝑀 𝑓 )
and we know that col1(𝑀 𝑓 ), ..., col2𝑛 (𝑀 𝑓 ) ∈ 𝐿2×1, thus we can define 𝑀 ( 𝑓 ) as

D(𝑛) 3 ` ↦→ 𝑀 ( 𝑓 ) (`) = 𝑀 𝑓 n ` ∈ D.

The other statements are proved similarly. �

Notation 4.3. We denote 𝐹𝑛,𝑚 = {ℎ|ℎ : B𝑛 → B𝑚}.

Theorem 4.4. (a) The following diagrams
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commute.
(b) The assignments 𝐹𝑛,1 3 𝑓 ↦−→ 𝑀 𝑓 ∈ 𝐿2×2𝑛 , 𝐹𝑛,𝑛 3 Φ ↦−→ 𝑀Φ ∈ 𝐿2𝑛×2𝑛 ,

𝐹2𝑛,𝑛 3 Φ̃ ↦−→ 𝑀
Φ̃
∈ 𝐿2𝑛×22𝑛 are bijective.

Proof. We fix ` ∈ B𝑛 and _ ∈ B𝑛 arbitrary.
(a) In order to prove the commutativity of the first diagram, we use the fact that

𝑓 (`) = 𝑓 (1, ..., 1, 1)`1...`𝑛−1`𝑛 ⊕ 𝑓 (1, ..., 1, 0)`1...`𝑛−1`𝑛

⊕ 𝑓 (1, ..., 0, 1)`1...`𝑛−1`𝑛 ⊕ ... ⊕ 𝑓 (0, ..., 0, 0)`1...`𝑛−1 `𝑛,

𝑓 (`) = 𝑓 (1, ..., 1, 1)`1...`𝑛−1`𝑛 ⊕ 𝑓 (1, ..., 1, 0)`1...`𝑛−1`𝑛

⊕ 𝑓 (1, ..., 0, 1)`1...`𝑛−1`𝑛 ⊕ ... ⊕ 𝑓 (0, ..., 0, 0)`1...`𝑛−1 `𝑛,

wherefrom

𝑓 (`) =
(

𝑓 (`)
𝑓 (`)

)
= 𝑀 𝑓 · `. (15)

We conclude that

(𝑀 ( 𝑓 ) ◦ Z𝑛) (`) = 𝑀 ( 𝑓 ) (Z𝑛 (`)) = 𝑀 ( 𝑓 ) (`) (9)
= 𝑀 𝑓 n `

(12)
= 𝑀 𝑓 · ` (15)

= 𝑓 (`) = Z ( 𝑓 (`)) = (Z ◦ 𝑓 ) (`),

i.e. the first diagram is commutative.
As far as the second diagram is concerned, we can prove that

Φ(`) = 𝑀Φ · `, (16)

which is analogue with (15), and we obtain

(𝑀 (Φ) ◦ Z𝑛) (`) = 𝑀 (Φ) (Z𝑛 (`)) = 𝑀 (Φ) (`) (10)
= 𝑀Φ n `

(13)
= 𝑀Φ · ` (16)

= Φ(`) = Z𝑛 (Φ(`)) = (Z𝑛 ◦Φ) (`).
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For the commutativity of the third diagram, we have

Φ̃(`, _) =

©«

Φ_
1 (`)...Φ

_
𝑛−1(`)Φ

_
𝑛 (`)

Φ_
1 (`)...Φ

_
𝑛−1(`)Φ

_
𝑛 (`)

Φ_
1 (`)...Φ

_
𝑛−1(`)Φ

_
𝑛 (`)

...

Φ_
1 (`)...Φ

_
𝑛−1(`) Φ

_
𝑛 (`)

ª®®®®®®®®¬
,

` n _ =

©«

`1...`𝑛_1..._𝑛−1_𝑛

`1...`𝑛_1..._𝑛−1_𝑛

`1...`𝑛_1..._𝑛−1_𝑛

...

`1...`𝑛 _1..._𝑛−1 _𝑛

ª®®®®®®®¬
and we note that

Φ̃(`, _) = 𝑀
Φ̃
· (` n _). (17)

For example, the second row in (17) is proved like this:

Φ_
1 (`)...Φ

_
𝑛−1(`)Φ_

𝑛 (`)

= Φ
(1,...,1,1)
1 (1, ..., 1)...Φ(1,...,1,1)

𝑛−1 (1, ..., 1)Φ(1,...,1,1)
𝑛 (1, ..., 1)`1...`𝑛_1..._𝑛−1_𝑛

⊕Φ(1,...,1,0)
1 (1, ..., 1)...Φ(1,...,1,0)

𝑛−1 (1, ..., 1)Φ(1,...,1,0)
𝑛 (1, ..., 1)`1...`𝑛_1..._𝑛−1_𝑛

...

⊕Φ(0,...,0,0)
1 (1, ..., 1)...Φ(0,...,0,0)

𝑛−1 (1, ..., 1)Φ(0,...,0,0)
𝑛 (1, ..., 1)`1...`𝑛_1..._𝑛−1 _𝑛

...

⊕Φ(0,...,0,0)
1 (0, ..., 0)...Φ(0,...,0,0)

𝑛−1 (0, ..., 0)Φ(0,...,0,0)
𝑛 (0, ..., 0)`1...`𝑛_1..._𝑛−1 _𝑛.

We infer

(𝑀 (Φ̃) ◦ (Z𝑛 × Z𝑛)) (`, _) = 𝑀 (Φ̃) (Z𝑛 (`), Z𝑛 (_)) = 𝑀 (Φ̃) (`, _) (11)
= 𝑀

Φ̃
n ` n _

(14)
= 𝑀

Φ̃
· (` n _) (17)

= Φ̃(`, _) = Z𝑛 (Φ̃(`, _)) = (Z𝑛 ◦ Φ̃) (`, _).

(b) For example we suppose against all reason that 𝑓 , 𝑓 ′ : B𝑛 → B exist, 𝑓 ≠ 𝑓 ′, with
the property that 𝑀 𝑓 = 𝑀 𝑓 ′ . The hypothesis states the existence of ` ∈ B𝑛 such that
𝑓 (`) ≠ 𝑓 ′(`) thus, from Theorem 3.4, 𝑓 (`)≠ 𝑓 ′(`). We have:

𝑓 (`) = Z ( 𝑓 (`)) = (Z ◦ 𝑓 ) (`) = (𝑀 ( 𝑓 ) ◦ Z𝑛) (`) = 𝑀 ( 𝑓 ) (Z𝑛 (`))

= 𝑀 ( 𝑓 ) (`) = 𝑀 𝑓 n ` = 𝑀 𝑓 ′ n ` = 𝑀 ( 𝑓 ′) (`) = 𝑀 ( 𝑓 ′) (Z𝑛 (`))

= (𝑀 ( 𝑓 ′) ◦ Z𝑛) (`) = (Z ◦ 𝑓 ′) (`) = Z ( 𝑓 ′(`)) = 𝑓 ′(`),
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contradiction, showing that the assignment 𝐹𝑛,1 3 𝑓 ↦−→ 𝑀 𝑓 ∈ 𝐿2×2𝑛 is injective. Due
to the fact that 𝑐𝑎𝑟𝑑 (𝐹𝑛,1) = 𝑐𝑎𝑟𝑑 (𝐿2×2𝑛) = 22𝑛 , injectivity and bijectivity coincide. �

5. Equations of evolution

Remark 5.1. Daizhan Cheng’s theory adapted to asynchornicity replaces the equation of
evolution (2) where Φ : B𝑛 → B𝑛, 𝑥 : N → B𝑛, 𝛼 ∈ Π𝑛, 𝑘 ∈ N, with the equation

𝑥(𝑘 + 1) = Φ𝛼𝑘 (𝑥(𝑘)) = Φ̃(𝑥(𝑘), 𝛼𝑘) (17)
= 𝑀

Φ̃
· (𝑥(𝑘) n 𝛼𝑘), (18)

which is easier to be studied. The price to pay is the increase of the dimension of the
system from 𝑛 to 2𝑛.

Example 5.1. We return to Example 1.1 now. Function

Φ̃(`1, `2, _1, _2) = (_1`1 ∪ _1`2, _2`2 ∪ _2`1)

defines the matrix

𝑀
Φ̃
=

©«
Φ̃1(1, 1, 1, 1)Φ̃2(1, 1, 1, 1)
Φ̃1(1, 1, 1, 1)Φ̃2(1, 1, 1, 1)
Φ̃1(1, 1, 1, 1)Φ̃2(1, 1, 1, 1)
Φ̃1(1, 1, 1, 1) Φ̃2(1, 1, 1, 1)

...

Φ̃1(0, 0, 0, 0)Φ̃2(0, 0, 0, 0)
Φ̃1(0, 0, 0, 0)Φ̃2(0, 0, 0, 0)
Φ̃1(0, 0, 0, 0)Φ̃2(0, 0, 0, 0)
Φ̃1(0, 0, 0, 0) Φ̃2(0, 0, 0, 0)

ª®®®®®®¬
=

©«
0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0
0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1

ª®®®®®¬
.

Equation (3) implies that ∀𝑘 ∈ N, (18) is true, with 𝑥,𝛼: N → D(2) . We can see that, via
(18), equation (4) becomes

𝑥(0) n 𝛼0 = (0, 0) n (1, 0) = 𝛿4
4 n 𝛿

2
4 = 𝛿14

16,

𝑥(1) = 𝑀
Φ̃
· 𝛿14

16 = 𝛿4
4 = (0, 0),

while (5) becomes

𝑥(1) n 𝛼1 = (0, 0) n (0, 1) = 𝛿4
4 n 𝛿

3
4 = 𝛿15

16,

𝑥(2) = 𝑀
Φ̃
· 𝛿15

16 = 𝛿3
4 = (0, 1),

(6) becomes
𝑥(2) n 𝛼2 = (0, 1) n (1, 1) = 𝛿3

4 n 𝛿
1
4 = 𝛿9

16,

𝑥(3) = 𝑀
Φ̃
· 𝛿9

16 = 𝛿1
4 = (1, 1),
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(7) becomes
𝑥(3) n 𝛼3 = (1, 1) n (0, 1) = 𝛿1

4 n 𝛿
3
4 = 𝛿3

16,

𝑥(4) = 𝑀
Φ̃
· 𝛿3

16 = 𝛿2
4 = (1, 0),

and (8) becomes
𝑥(4) n 𝛼4 = (1, 0) n (1, 0) = 𝛿2

4 n 𝛿
2
4 = 𝛿6

16,

𝑥(5) = 𝑀
Φ̃
· 𝛿6

16 = 𝛿4
4 = (0, 0),

...
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