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Multiple partial integrals of polynomial Hamiltonian systems

Andrei Pranevich, Alexander Grin, and Eduard Musafirov

Abstract. We consider an autonomous real polynomial Hamiltonian ordinary diffe-
rential system. Sufficient conditions for the construction of additional first integrals
on polynomial partial integrals and multiple polynomial partial integrals are obtained.
Classes of autonomous polynomial Hamiltonian ordinary differential systems with first
integrals which analytically expressed by multiple polynomial partial integrals are iden-
tified. Also we present examples that illustrate the theoretical results.
2010 Mathematics Subject Classification: 37J35, 37K10.
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Integrale particulare multiple ale sistemelor Hamiltoniene
polinomiale

Rezumat. Se consideră sistemele autonome, reale, polinomiale s, i Hamiltoniane de
ecuaţii diferenţiale ordinare. Sunt obţinute unele condiţii suficiente de construire a
integralelor prime pe baza integralelor particulare polinomiale simple şi multiple şi sunt
identificate sistemele diferenţiale ce au astfel de integrale prime. Rezultatele teoretice
sunt ilustrate prin exemple.
Cuvinte cheie: sistem Hamiltonian, integrabilitate Darboux, integrală particulară,
multiplicitate.

1. Introduction

Consider a canonical Hamiltonian ordinary differential system
𝑑𝑞

𝑖

𝑑𝑡
= 𝜕

𝑝
𝑖
𝐻 (𝑞, 𝑝),

𝑑𝑝
𝑖

𝑑𝑡
= − 𝜕

𝑞
𝑖
𝐻 (𝑞, 𝑝), 𝑖 = 1, . . . , 𝑛, (1)

with 𝑛 degrees of freedom, where 𝑞 = (𝑞1, . . . , 𝑞𝑛) ∈ R
𝑛 and 𝑝 = (𝑝1, . . . , 𝑝𝑛) ∈ R

𝑛 are
the generalized coordinates and momenta, respectively, the independent variable 𝑡 ∈ R,
and the Hamiltonian function 𝐻 : R2𝑛 → R is a polynomial of degree ℎ > 2.

The fundamental problem for differential systems is to solve whether a given differential
system is integrable. Integrability in this context usually means the existence of as
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many functionally independent first integrals as the dimension of the phase space. Many
different methods have been used for studying the existence of first integrals for differential
systems. Some of these methods based on (see, for example, the monographs [1, 2, 3, 4,
5, 6, 7]): Noether symmetries, the Darboux theory of integrability, the Lie symmetries,
the Painlevé analysis, the use of Lax pairs, the direct method, the linear compatibility
analysis method, the Carleman embedding procedure, etc.

In this paper, using the Darboux theory of integrability, we study the existence of
additional first integrals of the Hamiltonian system (1) in the space R2𝑛. Notice that
according to our knowledge, A.J. Maciejewski and M. Przybylska were the first researchers
who applied [8] the Darboux theory of integrability to the study of integrability of
polynomial Hamiltonian systems. More precisely, they considered natural polynomial
Hamiltonian systems, i.e., the differential systems (1) with the polynomial Hamiltonian

𝐻 (𝑞, 𝑝) = 1
2

𝑛∑︁
𝑖=1

𝜇𝑖 𝑝
2
𝑖 +𝑉 (𝑞), 𝜇𝑖 ∈ C, 𝑉 ∈ C[𝑞], deg V > 2.

To avoid ambiguity, we stipulate the following notation and definitions.
The Poisson bracket of functions 𝑢, 𝑣 ∈ 𝐶1(𝐺), 𝐺 ⊂ R2𝑛, is the function[
𝑢(𝑞, 𝑝), 𝑣(𝑞, 𝑝)

]
=

𝑛∑︁
𝑖=1

(
𝜕
𝑞
𝑖
𝑢(𝑞, 𝑝) 𝜕

𝑝
𝑖
𝑣(𝑞, 𝑝)−𝜕

𝑝
𝑖
𝑢(𝑞, 𝑝) 𝜕

𝑞
𝑖
𝑣(𝑞, 𝑝)

)
for all (𝑞, 𝑝) ∈ 𝐺.

The following rules hold for any functions 𝑢, 𝑣, 𝑤, 𝑤1, . . . , 𝑤𝑠 ∈ 𝐶1(𝐺) and 𝛼, 𝛽 ∈ R :
1) anticommutativity [𝑢, 𝑣] = − [𝑣, 𝑢];
2) bilinearity [𝑢, 𝛼𝑣 + 𝛽𝑤] = 𝛼[𝑢, 𝑣] + 𝛽[𝑢, 𝑤] and [𝛼𝑢 + 𝛽𝑣, 𝑤] = 𝛼[𝑢, 𝑤] + 𝛽[𝑣, 𝑤];
3) Leibniz’s rule (product identity) [𝑢, 𝑣𝑤] = 𝑤 [𝑢, 𝑣] + 𝑣 [𝑢, 𝑤];
4) the Poisson bracket of composite function[

𝑢(𝑞, 𝑝), 𝑣(𝑤1(𝑞, 𝑝), . . . , 𝑤𝑠 (𝑞, 𝑝))
]
=

=

𝑠∑︁
𝑘=1

𝜕𝑤
𝑘
𝑣(𝑤1, . . . , 𝑤𝑠)|𝑤=𝑤 (𝑞,𝑝)

[
𝑢(𝑞, 𝑝), 𝑤𝑘 (𝑞, 𝑝)

]
for all (𝑞, 𝑝) ∈ 𝐺.

The functions 𝑢 and 𝑣 are in involution on the domain 𝐺 if the Poisson bracket[
𝑢(𝑞, 𝑝), 𝑣(𝑞, 𝑝)

]
= 0 for all (𝑞, 𝑝) ∈ 𝐺.

A function 𝐹 ∈ 𝐶1(𝐺) is called a first integral on the domain 𝐺 of the Hamiltonian
system (1) if the functions 𝐹 and 𝐻 are in involution, i.e.,[

𝐹 (𝑞, 𝑝), 𝐻 (𝑞, 𝑝)
]
= 0 for all (𝑞, 𝑝) ∈ 𝐺 ⊂ R2𝑛. (2)
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The Hamiltonian system (1) is completely integrable (in the Liouville sense) if it
has 𝑛 functionally independent first integrals which are in involution. Notice that the
Hamiltonian 𝐻 is a first integral of the Hamiltonian differential system (1).

A set of functionally independent on a domain 𝐺 ⊂ R2𝑛 first integrals 𝐹
𝑙
∈ 𝐶1(𝐺),

𝑙 = 1, . . . , 𝑘, of the Hamiltonian system (1) is called a basis of first integrals (or integral
basis) on the domain 𝐺 of system (1) if any first integral 𝐹 ∈ 𝐶1(𝐺) of system (1) can be
represented on the domain 𝐺 in the form

𝐹 (𝑞, 𝑝) = Φ
(
𝐹1(𝑞, 𝑝), . . . , 𝐹𝑘 (𝑞, 𝑝)

)
for all (𝑞, 𝑝) ∈ 𝐺,

where Φ is some continuously differentiable function. The number 𝑘 is said to be the
dimension of basis of first integrals on the domain 𝐺 for the Hamiltonian system (1).

The autonomous Hamiltonian system (1) on a domain without equilibrium points has
an integral basis (autonomous) of dimension 2𝑛 − 1 [9, pp. 167 – 169].

2. Darboux method of integrability

The Darboux theory of integrability (or the theory of partial integrals) was established
by the French mathematician Jean-Gaston Darboux [10] in 1878, which provided a
link between the existence of first integrals and invariant algebraic curves (or partial
integrals, or Darboux polynomials) for polynomial autonomous differential systems. For
the polynomial differential systems, the Darboux theory of integrability is one of the best
theories for studying the existence of first integrals (see, for example, some recent works
in this field [11, 12, 1, 13, 14, 15, 7, 16, 17, 18, 19] and the references therein).

Recall some facts from the Darboux theory of integrability, described in [5, 1, 16], and
applied it to polynomial Hamiltonian differential systems.

Definition 2.1. A real polynomial

𝑤 : (𝑞, 𝑝) → 𝑤(𝑞, 𝑝) for all (𝑞, 𝑝) ∈ R2𝑛 (3)

is a partial integral of the polynomial Hamiltonian system (1) if the Poisson bracket[
𝑤(𝑞, 𝑝), 𝐻 (𝑞, 𝑝)

]
= 𝑤(𝑞, 𝑝)𝑀 (𝑞, 𝑝) for all (𝑞, 𝑝) ∈ R2𝑛,

where the polynomial 𝑀 such that deg𝑀 6 ℎ − 2. Moreover, the polynomial 𝑀 is called
the cofactor of the partial integral (3) of the Hamiltonian system (1).

Suppose (3) be a partial integral of the Hamiltonian system (1). Then the algebraic
hypersurface {(𝑞, 𝑝) : 𝑤(𝑞, 𝑝) = 0} is invariant by the flow of the Hamiltonian system (1)
and if the cofactor 𝑀 of the partial integral (3) is zero, then it is a polynomial first integral.
We say that (3) is a proper partial integral if its cofactor 𝑀 is not zero.
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The classical Darboux method of construction first integrals for the polynomial Hamil-
tonian differential system (1) can be formulated as the following statement.

Theorem 2.1 (The Darboux theorem). Suppose the Hamiltonian system (1) has partial
integrals

𝑤𝑙 : (𝑞, 𝑝) → 𝑤𝑙 (𝑞, 𝑝) for all (𝑞, 𝑝) ∈ R2𝑛, 𝑙 = 1, . . . , 𝑠, (4)

such that the following identities hold[
𝑤𝑙 (𝑞, 𝑝), 𝐻 (𝑞, 𝑝)

]
= 𝑤𝑙 (𝑞, 𝑝)𝑀𝑙 (𝑞, 𝑝) for all (𝑞, 𝑝) ∈ R2𝑛, 𝑙 = 1, . . . , 𝑠. (5)

Then the scalar function

𝐹 : (𝑞, 𝑝) →
𝑠∏
𝑙=1

𝑤
𝛾
𝑙

𝑙 (𝑞, 𝑝) for all (𝑞, 𝑝) ∈ 𝐺 ⊂ R2𝑛, 𝛾𝑙 ∈ R,
𝑠∑︁
𝑙=1

|𝛾𝑙 | ≠ 0,

is a first integral on the domain𝐺 of the Hamiltonian system (1) if and only if the cofactors
𝑀

𝑙
of the partial integrals 𝑤

𝑙
such that

𝑠∑
𝑙=1
𝛾
𝑙
𝑀

𝑙
(𝑞, 𝑝) = 0 for all (𝑞, 𝑝) ∈ R2𝑛.

For instance, the polynomial Hamiltonian system given by

𝐻 (𝑞, 𝑝) = 1
2

𝑛∑︁
𝑖=1

𝜇𝑖 𝑝
2
𝑖 − 𝑓 (𝑝)

𝑛∑︁
𝑖=1

𝛼𝑖 𝑝𝑖𝑞𝑖 for all (𝑞, 𝑝) ∈ R2𝑛, 𝜇𝑖 , 𝛼𝑖 ∈ R, (6)

where 𝑓 (𝑝) is an arbitrary polynomial. Using the partial integrals 𝑤
𝑙
: (𝑞, 𝑝) → 𝑝

𝑙
for

all (𝑞, 𝑝) ∈ R2𝑛 with cofactors 𝑀
𝑙
: (𝑞, 𝑝) → 𝛼

𝑙
𝑓 (𝑝) for all (𝑞, 𝑝) ∈ R2𝑛, 𝑙 = 1, . . . , 𝑛,

we can build the first integrals of the Hamiltonian differential system (6)

𝐹1𝜉 : (𝑞, 𝑝) → 𝑝
𝛾1𝜉
1 𝑝

𝛾
𝜉

𝜉 for all (𝑞, 𝑝) ∈ R𝑛 × 𝐺 𝜉 , 𝐺 𝜉 ⊂ R𝑛, 𝜉 = 2, . . . , 𝑛,

where the real numbers 𝛾1𝜉 and 𝛾
𝜉

are solutions to the linear homogeneous equations
𝛼1 𝛾1𝜉 + 𝛼

𝜉
𝛾
𝜉
= 0 under the conditions |𝛾1𝜉 | + |𝛾

𝜉
| ≠ 0, 𝜉 = 2, . . . , 𝑛.

The functionally independent first integrals 𝐻 and 𝐹1𝜉 , 𝜉 = 2, . . . , 𝑛, are in involu-
tion. Therefore, the polynomial Hamiltonian system (6) is completely integrable (in the
Liouville sense) [2, p. 83] on a domain R𝑛 × 𝐺, 𝐺 ⊂ 𝐺

𝜉
, 𝜉 = 2, . . . , 𝑛.

Definition 2.2. A partial integral 𝑤 with cofactor 𝑀 of the Hamiltonian system (1) is
said to be multiple with multiplicity 𝜘 = 1 +

𝜀∑
𝜉=1

𝑟
𝜉

if there exist natural numbers 𝑓
𝜉

and

polynomials 𝑄
𝑓
𝜉
𝑔
𝜉

: R2𝑛 → R, 𝑔
𝜉
= 1, . . . , 𝑟

𝜉
, 𝜉 = 1, . . . , 𝜀, such that on the domain
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𝐺 ⊂ {(𝑞, 𝑝) : 𝑤(𝑞, 𝑝) ≠ 0} the identities hold[ 𝑄
𝑓
𝜉
𝑔
𝜉

(𝑞, 𝑝)

𝑤
𝑓
𝜉 (𝑞, 𝑝)

, 𝐻 (𝑞, 𝑝)
]
= 𝑅

𝑓
𝜉
𝑔
𝜉

(𝑞, 𝑝), 𝑔𝜉 =1, . . . , 𝑟 𝜉 , 𝜉=1, . . . , 𝜀,

where the polynomials 𝑅
𝑓
𝜉
𝑔
𝜉

: R2𝑛 → R have degrees at most ℎ − 2.

Note that a similar point of view on multiplicity of partial integral for polynomial
differential systems was presented by J. Llibre and X. Zhang in [13].

For example, the polynomial Hamiltonian differential system given by

𝐻 (𝑞, 𝑝) = −𝑞2
1 + 6𝑞1𝑞2 + (2𝑝1+ 𝑝2)𝑞1+ 2𝑞2𝑝2 + 3𝑝2

2 for all (𝑞, 𝑝) ∈ R4 (7)

has the multiple (multiplicity not less than two) partial integral

𝑤 : (𝑞, 𝑝) → 3𝑞1 + 2𝑝2 for all (𝑞, 𝑝) ∈ R4

with the cofactor 𝑀 (𝑞, 𝑝) = − 2 and the polynomials

𝑄11(𝑞, 𝑝) =
1
32

(17𝑞1 + 12𝑞2 + 8𝑝1), 𝑅11(𝑞, 𝑝) = 1,

such that deg𝑀 = deg 𝑅11 = 0 6 ℎ − 2 = 0. Indeed, the Poisson brackets[
𝑤(𝑞, 𝑝), 𝐻 (𝑞, 𝑝)

]
=

[
3𝑞1 + 2𝑝2, 𝐻 (𝑞, 𝑝)

]
= 3

[
𝑞1, 𝐻 (𝑞, 𝑝)

]
+ 2

[
𝑝2, 𝐻 (𝑞, 𝑝)

]
=

= 3𝜕𝑝1
𝐻 (𝑞, 𝑝) − 2𝜕𝑞2

𝐻 (𝑞, 𝑝) = 6𝑞1 − 2(6𝑞1 + 2𝑝2) = −2𝑤(𝑞, 𝑝) for all (𝑞, 𝑝) ∈R4,[ 𝑄11(𝑞, 𝑝)
𝑤(𝑞, 𝑝) , 𝐻 (𝑞, 𝑝)

]
=

1
𝑤(𝑞, 𝑝)

( [
𝑄11(𝑞, 𝑝), 𝐻 (𝑞, 𝑝)

]
+ 2𝑄11(𝑞, 𝑝)

)
=

=
1

32𝑤(𝑞, 𝑝)

(
(62𝑞1 − 24𝑞2 − 16𝑝1 + 64𝑝2) + 2(17𝑞1 + 12𝑞2 + 8𝑝1)

)
= 1

for all (𝑞, 𝑝) ∈ 𝐺 ⊂ {(𝑞, 𝑝) ∈ R4 : 3𝑞1 + 2𝑝2 ≠ 0}.

Property 2.1. Suppose the real polynomial partial integral (3) of the Hamiltonian diffe-
rential system (1) such that the following identity holds[

𝑤(𝑞, 𝑝), 𝐻 (𝑞, 𝑝)
]
= 𝑤

𝑚+1 (𝑞, 𝑝) 𝑃(𝑞, 𝑝) for all (𝑞, 𝑝) ∈ R2𝑛, (8)

where 𝑚 is some natural number and 𝑃 : R2𝑛 → R is some polynomial. Then the partial
integral (3) of the Hamiltonian system (1) is multiple (multiplicity at least two).

Proof. Let the function 𝐾
𝑚1(𝑞, 𝑝) =

𝜆

𝑤𝑚(𝑞, 𝑝) for all (𝑞, 𝑝) ∈ 𝐺, 𝜆 ∈ R \ {0}, 𝑚 ∈ N.
Then on a domain 𝐺 ⊂ {(𝑞, 𝑝) : 𝑤(𝑞, 𝑝) ≠ 0} the Poisson bracket
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𝐾
𝑚1(𝑞, 𝑝), 𝐻 (𝑞, 𝑝)

]
= − 𝑚𝜆𝑤−𝑚−1 (𝑞, 𝑝)

[
𝑤(𝑞, 𝑝), 𝐻 (𝑞, 𝑝)

]
= − 𝑚𝜆𝑃(𝑞, 𝑝).

From the identity (8), we have deg 𝑃 < ℎ − 2. By Definition 2.2, the real polynomial
partial integral (3) of the Hamiltonian system (1) is multiple. �

3. Main Results

By the Definitions 2.1 and 2.2, the partial integrals (4) of the Hamiltonian system (1)

are multiple with multiplicities 𝜘
𝑙
= 1 +

𝜀
𝑙∑

𝜉
𝑙
=1
𝑟
𝜉
𝑙

, 𝑙 = 1, . . . , 𝑠, if and only if there exist

polynomials 𝑄
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

: R2𝑛 → R and 𝑅
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

: R2𝑛 → R such that the following identities

on domains 𝐺0𝑙 ⊂ {(𝑞, 𝑝) : 𝑤
𝑙
(𝑞, 𝑝) ≠ 0} hold[

𝐾
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

(𝑞, 𝑝), 𝐻 (𝑞, 𝑝)
]
= 𝑅

𝑙 𝑓
𝜉
𝑙
𝑔
𝜉
𝑙

(𝑞, 𝑝) for all (𝑞, 𝑝) ∈ 𝐺0𝑙,

𝑓
𝜉
𝑙
∈ N, 𝑔

𝜉
𝑙
= 1, . . . , 𝑟

𝜉
𝑙
, 𝜉𝑙 = 1, . . . , 𝜀𝑙, 𝑙 = 1, . . . , 𝑠, (9)

where the scalar functions

𝐾
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

(𝑞, 𝑝) =
𝑄

𝑙 𝑓
𝜉
𝑙
𝑔
𝜉
𝑙

(𝑞, 𝑝)

𝑤
𝑓
𝜉
𝑙

𝑙
(𝑞, 𝑝)

for all (𝑞, 𝑝) ∈ 𝐺0𝑙

and deg 𝑅
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

6 ℎ − 2, 𝑓
𝜉
𝑙
∈ N, 𝑔

𝜉
𝑙
= 1, . . . , 𝑟

𝜉
𝑙
, 𝜉

𝑙
= 1, . . . , 𝜀

𝑙
, 𝑙 = 1, . . . , 𝑠.

Theorem 3.1. Suppose the polynomial Hamiltonian system (1) has the partial integrals (4)

with multiplicities 𝜘
𝑙
= 1 +

𝜀
𝑙∑

𝜉
𝑙
=1
𝑟
𝜉
𝑙

, 𝑙 = 1, . . . , 𝑠, such that the identities (5) and (9) hold.

Then the function

𝐹 : (𝑞, 𝑝) →
𝑠∏
𝑙=1

𝑤
𝛾
𝑙

𝑙 (𝑞, 𝑝) exp
𝑠∑︁
𝑙=1

𝜀
𝑙∑︁

𝜉
𝑙
=1

�̃�
𝜉
𝑙∑︁

𝑔
𝜉
𝑙
=1
𝛼
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

𝐾
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

(𝑞, 𝑝) (10)

is an additional first integral of the Hamiltonian system (1) if and only if

𝑠∑︁
𝑙=1

𝛾𝑙𝑀𝑙 (𝑞, 𝑝) +
𝑠∑︁
𝑙=1

𝜀
𝑙∑︁

𝜉
𝑙
=1

�̃�
𝜉
𝑙∑︁

𝑔
𝜉
𝑙
=1
𝛼
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

𝑅
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

(𝑞, 𝑝) = 0, (11)

where numbers 𝛾
𝑙
and 𝛼

𝑙 𝑓
𝜉
𝑙
𝑔
𝜉
𝑙

such that
𝑠∑
𝑙=1

|𝛾
𝑙
| +

𝑠∑
𝑙=1

𝜀
𝑙∑

𝜉
𝑙
=1

�̃�
𝜉
𝑙∑

𝑔
𝜉
𝑙
=1

���𝛼
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

���≠0.
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Proof. Taking into account the identities (5) and (9), we calculate the Poisson bracket of
the function (10) and the Hamiltonian 𝐻 :

[
𝐹 (𝑞, 𝑝), 𝐻 (𝑞, 𝑝)

]
=

[ 𝑠∏
𝑙=1

𝑤
𝛾
𝑙

𝑙 (𝑞, 𝑝) exp
( 𝑠∑︁
𝑙=1

𝜀
𝑙∑︁

𝜉
𝑙
=1

�̃�
𝜉
𝑙∑︁

𝑔
𝜉
𝑙
=1
𝛼
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

𝐾
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

(𝑞, 𝑝)
)
, 𝐻 (𝑞, 𝑝)

]
=

= exp
( 𝑠∑︁

𝑙=1

𝜀
𝑙∑︁

𝜉
𝑙
=1

�̃�
𝜉
𝑙∑︁

𝑔
𝜉
𝑙
=1
𝛼
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

𝐾
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

(𝑞, 𝑝)
)
·
[ 𝑠∏

𝑙=1
𝑤

𝛾
𝑙

𝑙 (𝑞, 𝑝), 𝐻 (𝑞, 𝑝)
]
+

+ 𝐹 (𝑞, 𝑝) ·
[ 𝑠∑︁

𝑙=1

𝜀
𝑙∑︁

𝜉
𝑙
=1

�̃�
𝜉
𝑙∑︁

𝑔
𝜉
𝑙
=1
𝛼
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

𝐾
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

(𝑞, 𝑝), 𝐻 (𝑞, 𝑝)
]
=

= exp
( 𝑠∑︁

𝑙=1

𝜀
𝑙∑︁

𝜉
𝑙
=1

�̃�
𝜉
𝑙∑︁

𝑔
𝜉
𝑙
=1
𝛼
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

𝐾
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

(𝑞, 𝑝)
) 𝑠∑︁

𝑙=1
𝛾𝑙𝑤

𝛾
𝑙
−1

𝑙 (𝑞, 𝑝)
𝑠∏

𝑘=1,
𝑘≠𝑙

𝑤
𝛾
𝑘

𝑘 (𝑞, 𝑝)·

·
[
𝑤𝑙 (𝑞, 𝑝), 𝐻 (𝑞, 𝑝)

]
+ 𝐹 (𝑞, 𝑝) ·

( 𝑠∑︁
𝑙=1

𝜀
𝑙∑︁

𝜉
𝑙
=1

�̃�
𝜉
𝑙∑︁

𝑔
𝜉
𝑙
=1
𝛼
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

·
[
𝐾
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

(𝑞, 𝑝), 𝐻 (𝑞, 𝑝)
] )

=

= 𝐹 (𝑞, 𝑝)
(

𝑠∑︁
𝑙=1
𝛾𝑙𝑀𝑙 (𝑞, 𝑝) +

𝑠∑︁
𝑙=1

𝜀
𝑙∑︁

𝜉
𝑙
=1

�̃�
𝜉
𝑙∑︁

𝑔
𝜉
𝑙
=1
𝛼
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

𝑅
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

(𝑞, 𝑝)
)
.

By the definition of first integral for the polynomial Hamiltonian system (1), the
identity (2) is true if and only if the identity (11) is true. �

Theorem 3.2. Suppose the polynomial Hamiltonian system (1) has the partial integrals (4)

with multiplicities 𝜘
𝑙
= 1 +

𝜀
𝑙∑

𝜉
𝑙
=1
𝑟
𝜉
𝑙

, 𝑙 = 1, . . . , 𝑠, such that the identities (5) and (9) are

true with the polynomials

𝑀𝑙 (𝑞, 𝑝) = 𝜆𝑙𝑀 (𝑞, 𝑝) for all (𝑞, 𝑝) ∈ R2𝑛, 𝜆𝑙 ∈ R, 𝑙 = 1, . . . , 𝑠, (12)

𝑅
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

(𝑞, 𝑝) = 𝜆
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

𝑀 (𝑞, 𝑝), 𝜆
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

∈ R, 𝑓
𝜉
𝑙
∈ N, 𝑔

𝜉
𝑙
= 1, . . . , �̃�

𝜉
𝑙
,

�̃�
𝜉
𝑙
6 𝑟

𝜉
𝑙
, 𝜉

𝑙
= 1, . . . , �̃�

𝑙
, �̃�

𝑙
6 𝜀

𝑙
, 𝑙 = 1, . . . , 𝑠,

(13)

where 𝑀 : R2𝑛 → R is some polynomial. Then the function (10) is an additional first
integral of the Hamiltonian differential system (1) if real numbers 𝛾

𝑙
and 𝛼

𝑙 𝑓
𝜉
𝑙
𝑔
𝜉
𝑙

are an
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nontrivial solution to the linear homogeneous equation

𝑠∑︁
𝑙=1

𝜆𝑙𝛾𝑙 +
𝑠∑︁
𝑙=1

𝜀
𝑙∑︁

𝜉
𝑙
=1

�̃�
𝜉
𝑙∑︁

𝑔
𝜉
𝑙
=1
𝜆
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

𝛼
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

= 0. (14)

Proof. If the polynomial Hamiltonian system (1) has the partial integrals (4) with mul-

tiplicities 𝜘
𝑙
= 1 +

𝜀
𝑙∑

𝜉
𝑙
=1
𝑟
𝜉
𝑙

, 𝑙 = 1, . . . , 𝑠, such that the identities (5) and (9) under the

conditions (12) and (13) are true, then the Poisson bracket of the function (10) and the
Hamiltonian 𝐻 is the function

[
𝐹 (𝑞, 𝑝), 𝐻 (𝑞, 𝑝)

]
=

(
𝑠∑︁
𝑙=1

𝛾𝑙𝑀𝑙 (𝑞, 𝑝) +
𝑠∑︁
𝑙=1

𝜀
𝑙∑︁

𝜉
𝑙
=1

�̃�
𝜉
𝑙∑︁

𝑔
𝜉
𝑙
=1
𝛼
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

𝑅
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

(𝑞, 𝑝)
)
𝐹 (𝑞, 𝑝) =

=

(
𝑠∑︁
𝑙=1

𝜆𝑙𝛾𝑙 +
𝑠∑︁
𝑙=1

𝜀
𝑙∑︁

𝜉
𝑙
=1

�̃�
𝜉
𝑙∑︁

𝑔
𝜉
𝑙
=1
𝜆
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

𝛼
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

)
𝑀 (𝑞, 𝑝) 𝐹 (𝑞, 𝑝).

This yields that if numbers 𝛾
𝑙

and 𝛼
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

are a solution to the equation (14), then the

scalar function (10) is a first integral of the polynomial Hamiltonian system (1). �

Corollary 3.1. Under the conditions of Theorem 3.2, we have

𝐹
𝜁 𝑙

: (𝑞, 𝑝) → 𝑤
𝛾
𝜁

𝜁
(𝑞, 𝑝) exp

(
𝛼
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

𝐾
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

(𝑞, 𝑝)
)
, 𝜁 = 1, . . . , 𝑠, 𝑙 = 1, . . . , 𝑠,

are first integrals of the polynomial Hamiltonian system (1), where fixed numbers 𝑓
𝜉
𝑙
∈ N,

𝑔
𝜉
𝑙
∈

{
1, . . . , �̃�

𝜉
𝑙

}
, 𝜉

𝑙
∈

{
1, . . . , �̃�

𝑙

}
, 𝑙 = 1, . . . , 𝑠, the numbers 𝛾

𝜁
and 𝛼

𝑙 𝑓
𝜉
𝑙
𝑔
𝜉
𝑙

are

solutions to the linear homogeneous equations

𝜆𝜁 𝛾𝜁 + 𝜆
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

𝛼
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

= 0 under |𝛾𝜁 | +
���𝛼

𝑙 𝑓
𝜉
𝑙
𝑔
𝜉
𝑙

��� ≠ 0, 𝜁 , 𝑙 = 1, . . . , 𝑠.

Theorem 3.3. Suppose the Hamiltonian system (1) has the Darboux polynomials (4) with

multiplicities 𝜘
𝑙
= 1 +

𝜀
𝑙∑

𝜉
𝑙
=1
𝑟
𝜉
𝑙

, 𝑙 = 1, . . . , 𝑠, such that the identities (9) hold and there

exist numbers 𝜉
𝑙
∈ {1, . . . , 𝜀

𝑙
}, 𝑔

𝜉
𝑙
∈ {1, . . . , 𝑟

𝜉
𝑙
}, 𝑙 = 1, . . . , 𝑠, such that the polynomials

𝑅
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

(𝑞, 𝑝) = 𝜆
𝑙
𝑀 (𝑞, 𝑝), 𝜆𝑙 ∈ R, 𝑙 = 1, . . . , 𝑠. (15)

Then an additional first integral of the Hamiltonian system (1) is the function

𝐹 : (𝑞, 𝑝) →
𝑠∑︁
𝑙=1

𝛼
𝑙
𝐾
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

(𝑞, 𝑝) for all (𝑞, 𝑝) ∈ 𝐺, (16)
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where the numbers 𝛼
𝑙
, 𝑙 = 1, . . . , 𝑠, are a solution to the linear homogeneous equation

𝑠∑
𝑙=1
𝜆
𝑙
𝛼
𝑙
= 0 under the condition

𝑠∑
𝑙=1
𝛼2
𝑙
≠ 0, and 𝑀 : R2𝑛 → R is some polynomial.

Proof. If the identities (9) under (15) hold, then the Poisson bracket[
𝐹 (𝑞, 𝑝), 𝐻 (𝑞, 𝑝)

]
=

𝑠∑︁
𝑙=1

𝛼
𝑙

[
𝐾
𝑙 𝑓

𝜉
𝑙
𝑔
𝜉
𝑙

(𝑞, 𝑝), 𝐻 (𝑞, 𝑝)
]
=

𝑠∑︁
𝑙=1

𝜆
𝑙
𝛼
𝑙
𝑀 (𝑞, 𝑝).

If numbers 𝛼
𝑙
, 𝑙 = 1, . . . , 𝑠, are a solution of the equation

𝑠∑
𝑙=1
𝜆
𝑙
𝛼
𝑙
= 0 under

𝑠∑
𝑙=1
𝛼2
𝑙
≠ 0,

then the function (16) is a first integral of the Hamiltonian system (1). �

Corollary 3.2. Under the conditions of Theorem 3.3, we see that

𝐹𝜁 𝜚 : (𝑞, 𝑝) → 𝛼
𝜁
𝐾
𝜁 𝑓

𝜉
𝜁
𝑔
𝜉
𝜁

(𝑞, 𝑝) + 𝛼
𝜚
𝐾

𝜚 𝑓
𝜉𝜚

𝑔
𝜉𝜚

(𝑞, 𝑝), 𝜁 , 𝜚 = 1, . . . , 𝑠, 𝜁 ≠ 𝜚,

are additional first integrals of the polynomial Hamiltonian system (1), where the numbers
𝛼
𝜁

and 𝛼𝜚 are solutions to the linear homogeneous equations

𝜆
𝜁
𝛼
𝜁
+ 𝜆 𝜚𝛼𝜚 = 0 under 𝛼2

𝜁
+ 𝛼2

𝜚
≠ 0, 𝜁 = 1, . . . , 𝑠, 𝜚 = 1, . . . , 𝑠, 𝜁 ≠ 𝜚.

As an example, the Hamiltonian differential system (7) has the multiple partial integral
(multiplicity of at least two) 𝑤1 : (𝑞, 𝑝) → 3𝑞1 + 2𝑝2 for all (𝑞, 𝑝) ∈ R4 with

𝑀1(𝑞, 𝑝) = − 2, 𝐾1,11(𝑞, 𝑝) =
17𝑞1 + 12𝑞2 + 8𝑝1

32(3𝑞1 + 2𝑝2)
, 𝑅1,11(𝑞, 𝑝) = 1,

and the multiple partial integral 𝑤2 : (𝑞, 𝑝) → 𝑞1 for all (𝑞, 𝑝) ∈ R4 with

𝑀2(𝑞, 𝑝) = 2, 𝐾2,11(𝑞, 𝑝) =
2𝑞2 + 3𝑝2

16𝑞1
, 𝑅2,11(𝑞, 𝑝) = − 1.

Using Theorem 3.2 (or Corollary 3.1) and Theorem 3.3 (or Corollary 3.2), we can
construct the additional first integrals of the Hamiltonian differential system (7)

𝐹1 : (𝑞, 𝑝) → (3𝑞1 + 2𝑝2) exp
(17𝑞1 + 12𝑞2 + 8𝑝1

16(3𝑞1 + 2𝑝2)

)
for all (𝑞, 𝑝) ∈ 𝐺1,

𝐹2 : (𝑞, 𝑝) → 𝑞1 exp
(2𝑞2 + 3𝑝2

8𝑞1

)
for all (𝑞, 𝑝) ∈ 𝐺2 ⊂ {(𝑞, 𝑝) : 𝑞1 ≠ 0},

𝐹3 : (𝑞, 𝑝) →
17𝑞1 + 12𝑞2 + 8𝑝1

32(3𝑞1 + 2𝑝2)
+

2𝑞2 + 3𝑝2
16𝑞1

for all (𝑞, 𝑝) ∈ 𝐺 ⊂ 𝐺1 ∩ 𝐺2,

where a domain 𝐺1 ⊂ {(𝑞, 𝑝) : 3𝑞1 + 2𝑝2 ≠ 0}. The functionally independent first
integrals 𝐹1, 𝐹2 and 𝐹3 of the Hamiltonian differential system (7) are an autonomous
integral basis of the Hamiltonian differential system (7) on any domain 𝐺 ⊂ 𝐺1 ∩ 𝐺2.
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