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Extension of linear operators with applications

Vasile Neagu and Diana Bı̂clea

Abstract. The article presents a method for solving characteristic singular integral
equations perturbed with compact operators. The method consists in reducing the solution
of these equations to the solution of the systems of singular (unperturbed) equations, which
are solved by factoring the coefficients of the obtained systems. The method presented
concerns some results of Gohberg and Krupnik and can be used in solving other classes
of functional equations with composite operators that fit into the scheme described by
Theorem 1.1.
2010 Mathematics Subject Classification: Primary 45E05.
Keywords: singular integral equation, compact operator, factorization.

Extensii ale operatorilor liniari cu aplicaţii
Rezumat. În lucrare este prezentată o metodă de rezolvare a unor ecuaţii integrale
singulare caracteristice perturbate cu operatori compacţi. Metoda constă ı̂n reducerea
soluţionării acestor ecuaţii la soluţionarea unor sisteme de ecuaţii singulare (nepertur-
bate), care se rezolvă prin factorizarea coeficienţilor sistemelor obţinute. Metoda pre-
zentată are tangenţă cu unele rezultate ale lui Gohberg şi Krupnik şi ar putea fi folosită la
rezolvarea altor clase de ecuaţii funcţionale cu operatori compuşi, care se ı̂ncadrează ı̂n
schema descrisă de Teorema 1.1.
Cuvinte-cheie: ecuaţii integrale singulare, operator compact, factorizare.

Introduction

In the monographs of Muskhelishvili [1] and Gakhov [2] and in other works it is
indicated that the solution of singular integral equations can be found in rare cases. Even
in these cases finding the exact solution requires complicated calculations of singular
integrals accompanied with combersome theoretical and computational difficulties. The
content of this article, as well as the studies of other authors [3], [4], [5], [6], [7], [8], [9]
once again confirms the statement of academicians Muskhelishvili and Gakhov.

In this paper we study the problem of solving singular integral equations containing
compact terms

𝐴𝜑 ≡ 𝑎 (𝑡) 𝜑 (𝑡) + 𝑏(𝑡)
𝜋𝑖

∫
Γ

𝜑 (𝜏)
𝜏 − 𝑡 𝑑𝜏 +

∫
Γ

𝑘 (𝑡, 𝜏) 𝜑 (𝜏) = 𝑓 (𝑡) , (1)
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where function 𝑘 (𝑡, 𝜏) is continuous or with weak singularities. To each operator 𝐴,
defined by the left hand side of (1), according to the rule described in Theorem 1.1, we
associate a matrix operator 𝐴

𝐴𝜓 = 𝐶 (𝑡) 𝜓 (𝑡) + 𝐷 (𝑡)
𝜋𝑖

∫
Γ

𝜓 (𝜏)
𝜏 − 𝑡 𝑑𝜏, (2)

which has the property that both operators 𝐴 and 𝐴 are or are not invertible in the
respective spaces. Thus, the solution of the considered equation is reduced to a similar
problem for a system of equations, which turns out to be a system of ”ordinary” singular
integral equations, without compact terms. The obtained system of singular integral
equations is solved by the method of factoring the coefficients, a method developed in the
monograph [3] etc. An explicit expression of the solution of the considered equation is
obtained through the solution of the system of equations. The method presented in this
paper is based on the results of the works of Gohberg and Krupnik [10], and can be used
for solving other classes of functional equations with composite operators that fit into the
scheme described by Theorem 1.1.

To invert operators of the form (2), where 𝐶 (𝑡) and 𝐷 (𝑡) are matrices of continuous
functions satisfying the conditions det(𝐶 (𝑡) ∓ 𝐷 (𝑡)) ≠ 0, it is necessary (see [3]) to
factorize the matrix

𝐺 (𝑡) = (𝐶 (𝑡) − 𝐷 (𝑡))−1(𝐶 (𝑡) + 𝐷 (𝑡)).

This means that the matrix 𝐺 (𝑡) must be represented in the form

𝐺 (𝑡) = 𝐺− (𝑡) · 𝑑𝑖𝑎𝑔
(
𝑡𝑘1 , 𝑡𝑘2 , . . . , 𝑡𝑘𝑛

)
· 𝐺+ (𝑡) ,

where 𝐺+(𝑧) (𝐺− (𝑧)) are matrices of functions with analytic elements in the domains
𝐹+ = {𝑧 | |𝑧 | < 1} (𝐹− = {𝑧 | |𝑧 | > 1}), and 𝑘1, 𝑘2, . . . , 𝑘𝑛 are integers called partial
indices of the operator 𝐴. Depending on the numbers 𝑘1, 𝑘2, . . . , 𝑘𝑛, the operator 𝐴 can
be invertible, left invertible or right invertible. In particular, if all numbers 𝑘1, 𝑘2, . . . , 𝑘𝑛

are positive, then the operator 𝐴 is left invertible, if all are negative, then 𝐴 is right
invertible, and finally, if all numbers are equal to zero, then 𝐴 is invertible. We will apply
these results to the inversion of the operator 𝐴.

1. Extension of linear operators

Let 𝑉 be some Banach algebra of linear bounded operators acting in a Banach space
𝐵, and 𝑉 (𝑚) be a Banach algebra of elements of the form

𝐴 𝑗𝑘

𝑚
𝑗,𝑘=1 , where 𝐴 𝑗𝑘 ∈ 𝑉 .

If 𝐵 (𝑚) is a Banach space of vectors 𝑋 = ⌊𝑥1, . . . , 𝑥𝑚⌋ with elements 𝑥 𝑗 ∈ 𝐵 and with
the norm ∥𝑋 ∥ = max𝑘 ∥𝑥𝑘 ∥ , then 𝑉 (𝑚) is a Banach algebra of linear bounded operators
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in the space 𝐵 (𝑚) . Denote by 𝐼 and 𝐼𝑚 the unit operators acting in the spaces 𝑉 and,
respectively, 𝑉 (𝑚) . Suppose also that 𝐼 ∈ 𝑉 and 𝐼𝑚 ∈ 𝑉 (𝑚) . Assume that

𝐴 =

𝑟∑︁
𝑗=1

𝐴 𝑗1𝐴 𝑗2 · · · 𝐴 𝑗𝑠, (3)

where 𝐴 𝑗𝑘 ∈ 𝑉 . The operator 𝐴 ∈ 𝑉 (𝑚) is called a linear extension of the operator 𝐴 (of
order 𝑚) if:

1) the elements of the matrix 𝐴 are linear combinations of the elements 𝐴 𝑗𝑘 and the
unit operator;

2) there exist invertible operators 𝑋 and 𝑍 from the algebra 𝑉 (𝑚) such that

𝐴 = 𝑌 ·
(
𝐼𝑚−1 0

0 𝐴

)
· 𝑍. (4)

It is easy to see that the operator 𝐴 =
∑𝑟

𝑗=1 𝐴 𝑗1𝐴 𝑗2 · · · 𝐴 𝑗𝑠 and its linear extension 𝐴
(if it exists) are Noetherian (or are not Noetherian) simultaneously in the spaces 𝐵 and
𝐵 (𝑚) , respectively, and

𝑑𝑖𝑚𝑘𝑒𝑟𝐴 = 𝑑𝑖𝑚𝑘𝑒𝑟𝐴 and 𝑑𝑖𝑚𝑐𝑜𝑘𝑒𝑟𝐴 = 𝑑𝑖𝑚𝑐𝑜𝑘𝑒𝑟𝐴.

The following Theorem holds

Theorem 1.1. Each element 𝐴 from the algebra 𝑉 of the form 𝐴 =
∑𝑟

𝑗=1 𝐴 𝑗1𝐴 𝑗2 · · · 𝐴 𝑗𝑠

(𝐴 𝑗𝑘 ∈ 𝑉) admits the linear expansion (of order 𝑚 ≤ 𝑟 (𝑠 + 1) + 1).

Proof. Let us compose the following matrix of order 𝑟 (𝑠 + 1)

𝑀 =

©«

𝐼𝑟 𝐵1 0 · · · 0
0 𝐼𝑟 𝐵2 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 𝐵𝑠

0 0 0 · · · 𝐼𝑟

ª®®®®®®®¬
,

where

𝐵𝑘 =

©«
𝐴1𝑘 0 · · · 0
0 𝐴2𝑘 · · · 0
· · · · · · · · · · · ·
0 0 · · · 𝐴𝑘𝑘

ª®®®®®¬
.

Denote by 𝐹 a column of the length 𝑟 (𝑠+1), whose top 𝑟𝑠 elements are equal to zero and
the bottom 𝑟 elements are equal to the identity operator. Let also𝐺 = ∥ 𝐼, . . . , 𝐼︸  ︷︷  ︸

𝑟

, 0, · · · , 0︸   ︷︷   ︸
𝑟𝑠

∥.
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It is easy to verify the validity of the expansion(
𝑀 𝐹

𝐺 0

)
=

(
𝐼𝑚−1 0
𝐻 𝐼

)
·
(
𝐼𝑚−1 0

0 𝐴

)
·
(
𝐼𝑚−1 𝐹

0 𝐼

)
, (5)

with 𝑚 = 𝑟 (𝑠 + 1) + 1, 𝐻 = ∥𝑀0, 𝑀1, . . . , 𝑀𝑠 ∥, where 𝑀0 = ∥ 𝐼, . . . , 𝐼︸  ︷︷  ︸
𝑟

∥ and

𝑀𝑘 = ∥𝐴11𝐴12 . . . 𝐴1 𝑗 , 𝐴21𝐴22 . . . 𝐴2 𝑗 , . . . , 𝐴𝑘1𝐴𝑘2 . . . 𝐴𝑟𝑘 ∥ (𝑘 = 1, 2, . . . , 𝑠).
Note that the operators

𝑌 =

(
𝐼𝑚−1 0
𝐻 𝐼

)
, 𝑍 =

(
𝐼𝑚−1 𝐹

0 𝐼

)
are invertible in the space 𝐵 (𝑚) and their inverse operators are of the form

𝑌−1 =

(
𝐼𝑚−1 0
−𝐻 𝐼

)
, 𝑍−1 =

(
𝐼𝑚−1 −𝐹

0 𝐼

)
,

respectively. Therefore, the operator

𝐴 =

(
𝑀 𝐹

𝐺 0

)
is a linear extension of the operator 𝐴. Theorem 1.1 is proved. □

Note that the extreme factors on the right hand side of equality (5) are triangular
matrices with unity on the main diagonal, therefore, they are invertible. This implies
that the operator 𝐴 is normally solvable. It is Noetherian or invertible if and only if the
operator 𝐴 is of such type.

Corollary 1.1. The operator 𝐴 is invertible in the space 𝐵 if and only if the operator

𝐴 =

(
𝑀 𝐹

𝐺 0

)
is invertible in the space 𝐵𝑛(𝑁+1)+1.

Corollary 1.2. Let 𝐴0, 𝐶𝑘 , 𝐷𝑘 ∈ 𝐿 (𝐵) (𝑘 = 1, 2, . . . , 𝑛) and 𝐴 be an operator defined
by the equality

𝐴 =

©«

𝐼 0 . . . 0 𝐷1

0 𝐼 . . . 0 𝐷2

. . . . . . . . . . . . . . .

0 0 . . . 𝐼 𝐷𝑛

𝐶1 𝐶2 . . . 𝐶𝑛 𝐴0

ª®®®®®®®¬
. (6)
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In this case, the following statements are true:

𝐴 ∈ 𝐺𝐿
(
𝐵𝑛+1

)
⇔ 𝐴 = 𝐴0 −

𝑛∑︁
𝑘=1

𝐶𝑘𝐷𝑘 ∈ 𝐺𝐿 (𝐵) .

Indeed, we note that

𝐴0 −
𝑛∑︁

𝑘=1
𝐵𝑘𝐶𝑘 = 𝑑𝑒𝑡𝐴

and the validity of the following equality is directly verified

©«

𝐼 0 . . . 0 𝐷1

0 𝐼 . . . 0 𝐷2

. . . . . . . . . . . . . . .

0 0 . . . 𝐼 𝐷𝑛

𝐶1 𝐶2 . . . 𝐶𝑛 𝐴0

ª®®®®®®®¬
=

©«

𝐼 0 . . . 0 0
0 𝐼 . . . 0 0
. . . . . . . . . . . . . . .

0 0 . . . 𝐼 0
𝐶1 𝐶2 . . . 𝐶𝑛 𝐼

ª®®®®®®®¬
×

×

©«

𝐼 0 . . . 0 𝐷1

0 𝐼 . . . 0 𝐷2

. . . . . . . . . . . . . . .

0 0 . . . 𝐼 𝐷𝑛

0 0 . . . 0 𝐴0 − Δ

ª®®®®®®®¬
×

©«

𝐼 0 . . . 0 𝐷1

0 𝐼 . . . 0 𝐷2

. . . . . . . . . . . . . . .

0 0 . . . 𝐼 𝐷𝑛

0 0 . . . 0 𝐼

ª®®®®®®®¬
, (7)

where Δ =
∑𝑛

𝑘=1𝐶𝑘𝐷𝑘 . Since the left and right factors of equality (7) are invertible
operators in the space 𝐵𝑛+1, then 𝐴 ∈ 𝐺𝐿

(
𝐵𝑛+1) ⇔ 𝐴0 −

∑𝑛
𝑘=1𝐶𝑘𝐷𝑘 .

Corollary 1.3. If the vector 𝜑 = (𝜑1, . . . , 𝜑𝑛+1) ∈ 𝐵𝑛+1 is a solution of the equation
𝐴𝜑 = 𝜓 with the right hand side 𝜓 = (0, 0, . . . , 𝜓) , then the equality 𝐴𝜑𝑛+1 = 𝜓 holds.
That is, the coordinate standing on 𝑛+1 place of the solution of the equation 𝐴𝜑 = 𝜓 with
the right hand side 𝜓 = (0, 0, . . . , 𝜓) is the solution of the equation 𝐴 𝑓 = 𝜓. Solutions of
this type exhaust all solutions of the equation 𝐴 𝑓 = 𝜓.

Indeed, from equality (6) it follows that the equation 𝐴𝜑 = 𝜓 is equivalent to the system
of equations: 

𝜑1 + 𝐷1𝜑𝑛+1 = 0,
𝜑2 + 𝐷2𝜑𝑛+1 = 0,

. . .

𝜑𝑛 + 𝐷𝑛𝜑𝑛+1 = 0,
𝐴𝜑𝑛+1 = 𝜓.

This implies the assertion of Corollary 1.3.
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Remark 1.1. It is clear that Theorem 1.1 and Corollary 1.3 can be effectively applied
only in the cases when the solvability criteria for the operators of the form (4) are known.
This is done in the cases when the operator 𝐴 is a singular integral operator.

2. Application to the solution of singular equations

We apply Theorem 1.1 and Corollary 1.3 to solve singular integral equations perturbed
by compact operators. Such equations are also called complete singular integral equations
(see [3]). We noted above that singular integral equations are solved in rather rare cases.
This problem becomes more complicated (see [1]) in the case of systems of singular
equations being related to the problem of the factorization of functional matrices and the
solution of the corresponding Riemann problem.Taking into account these difficulties, we
will study equations that can be reduced to systems of equations whose coefficients can
be effectively factorized.

Before we pass to solving the proposed equations, we pay our attention to an unexpected
result that is obtained by means of Theorem 1.1. It is known that the theory of singular
integral equations

𝑎 (𝑡) 𝜑 (𝑡) + 𝑏 (𝑡)
𝜋𝑖

∫
Γ

𝜑 (𝜏)
𝜏 − 𝑡 𝑑𝜏 = 𝑓 (𝑡) (8)

is well developed and presented in monographs [1]-[3] and others. Usually, the contour
of integration Γ is assumed to be of Lyapunov type, and in the case of a contour with
angular points, certain difficulties appear. Let Γ be a contour having an angular point of
size 𝜋

2 and consider the equation (8). After certain integral (equivalent) transformations,
the operator

𝑉𝜑 ≡ 𝑎 (𝑡) 𝜑 (𝑡) + 𝑏 (𝑡)
𝜋𝑖

∫
Γ

𝜑 (𝜏)
𝜏 − 𝑡 𝑑𝜏,

determined by the left hand side of equation (8), turns into the operator

𝑊𝜓 = �̃� (𝑡) 𝜓 (𝑡) + �̃� (𝑡)
𝜋𝑖

∫
Γ̃

𝜓 (𝜏)
𝜏 − 𝑡 𝑑𝜏 +

�̃� (𝑡)
2𝜋𝑖

[∫
Γ̃

( √
𝑡 + 1

(𝜏 − 𝑡)
√
𝜏 + 1

− 1
𝜏 − 𝑡

)
𝜓 (𝜏) 𝑑𝜏

]
,

where �̃�(𝑡) = 𝑎
√
𝑡 + 1, �̃�(𝑡) = 𝑏

√
𝑡 + 1 and Γ̃ is already a Lyapunov contour! The operator

𝑊 satisfies the conditions of Theorem 1.1 and Corollary 1.3 by means of which (we do not
dwell on the details) we have that the operator𝑉 is Noetherian if and only if the following
operator is Noetherian

𝑊0𝜓 = �̃� (𝑡) 𝜓 (𝑡) + �̃� (𝑡)
𝜋𝑖

∫
Γ̃

𝜓 (𝜏)
𝜏 − 𝑡 𝑑𝜏.

Thus, the study of a singular operator, in the case of the contour with an angular point,
is reduced to the study of a similar operator on a Lyapunov type contour. From these
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results it follows that the Noetherian conditions of the operator 𝑊0 do not change being
perturbed by the operators of the form

𝐻𝜓 =
�̃� (𝑡)
2𝜋𝑖

[∫
Γ̃

( √
𝑡 + 1

(𝜏 − 𝑡)
√
𝜏 + 1

− 1
𝜏 − 𝑡

)]
𝜓 (𝜏) 𝑑𝜏,

which is not compact!
Let Γ = {𝑡 ∈ C : |𝑡 | = 1} . In space 𝐵 = 𝐿𝑝 (Γ) (𝑝 > 1), we consider the equation

1
𝜋𝑖

∫
Γ

𝜏3 − 𝑡3

(𝜏 − 𝑡)2 𝜑(𝜏)𝑑𝜏 = 𝜓 (𝑡) . (9)

The left hand side of equation (9) corresponds to the operator, which can be written in
the following form

(𝐴𝜑) (𝑡) = 3𝑡2

𝜋𝑖

∫
Γ

𝜑(𝜏)
𝜏 − 𝑡 𝑑𝜏 + (𝑇𝜑) (𝑡) ,

where

(𝑇𝜑) (𝑡) = 1
𝜋𝑖

∫
Γ

(𝜏 + 2𝑡)𝜑(𝜏)𝑑𝜏.

The operator 𝑇 , being an integral operator with a continuous kernel, is compact in
𝐿𝑝 (Γ) . In the case of studying the Noetherian properties and the index of the operator
𝐴, the operator 𝑇 can be neglected, i.e. the operator 𝑇 does not affect the Noetherian
properties of the operator 𝐴. However, this does not happen if the operator 𝐴 is inverted
or in the case of solving the equation 𝐴𝜑 = 𝜓.

Let

(𝑆𝜑) (𝑡) = 1
𝜋𝑖

∫
Γ

(𝜏 − 𝑡)−1𝜑(𝜏)𝑑𝜏, (𝐵𝜑) (𝑡) = 𝑡𝜑(𝑡), (10)

then the operator 𝐴 can be written as follows

𝐴 = 𝑆𝐵2 + 𝐵𝑆𝐵 + 𝐵2𝑆,

and the corresponding operator 𝐴, defined by equality (6), of the operator 𝐴 has the form

𝐴 =
©«
𝐼 0 𝐵2

0 𝐼 𝐵

−𝑆 −𝐵𝑆 𝐵2𝑆

ª®®¬ .
By virtue of Corollary 1.3, any solution of equation (9) can be obtained as the last

coordinate 𝜑3 of the solution of equation 𝐴𝜑 = 𝜓 (𝜑 = (𝜑1, 𝜑2, 𝜑3) , 𝜓 = (0, 0, 𝜓)).
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The operator 𝐴 represents the characteristic singular operator with matrix coefficients:

𝐴 =
©«

1 0 𝑡2

0 1 𝑡

−1 −𝑡 𝑡2

ª®®¬ 𝑃 +
©«

1 0 𝑡2

0 1 𝑡

1 𝑡 −𝑡2

ª®®¬𝑄 =

=
©«

1 0 𝑡2

0 1 𝑡

1 𝑡 −𝑡2

ª®®¬

1
3

©«
1 −2𝑡 2𝑡2

−2𝑡−1 1 2𝑡
2𝑡−2 2𝑡−1 1

ª®®¬ 𝑃 +𝑄
 ,

where 𝑃 = 1
2𝑑𝑖𝑎𝑔(𝐼 + 𝑆) and 𝑄 = 1

2𝑑𝑖𝑎𝑔 (𝐼 − 𝑆) .
The matrix that is the coefficient of the operator 𝑃 can be factorized:

1
3

©«
1 −2𝑡 2𝑡2

−2𝑡−1 1 2𝑡
2𝑡−2 2𝑡−1 1

ª®®¬ =
©«

1 0 0
−2𝑡−1 1 0
2𝑡−2 2𝑡−1 1

ª®®¬
©«

1/3 −2𝑡/3 2𝑡2/3
0 −1 2𝑡
0 0 3

ª®®¬= 𝑐− · 𝑐+.

Since the partial indices under this factorization are equal to zero, the operator 𝐴 is
invertible in 𝐵3 [1] and its inverse operator is defined by the following equality:

𝐴−1 =


©«

1/3 −2𝑡/3 2𝑡−2/3
0 −1 2𝑡
0 0 3

ª®®¬
−1

𝑃 +
©«

1 0 0
−2𝑡−1 1 0
2𝑡−2 −2𝑡−1 1

ª®®¬𝑄
 ×

×
©«

1 0 0
−2𝑡−1 1 0
2𝑡−2 −2𝑡−1 1

ª®®¬
−1 ©«

1 0 𝑡2

0 1 𝑡

1 𝑡 𝑡2

ª®®¬ =

=


©«

3 −2𝑡 2𝑡2/3
0 −1 2𝑡/3
0 0 1/3

ª®®¬ 𝑃 +
©«

1 0 0
−2𝑡−1 1 0
2𝑡−2 −2𝑡−1 1

ª®®¬𝑄
 ·

©«
2/3 −𝑡/3 1/3
𝑡−1 0 𝑡−1

𝑡−2 𝑡−1 𝑡−2

ª®®¬ .
According to the scheme of inversion of the singular operator 𝐴, given in Corollary

1.3, we find

𝐴−1 ©«
0
0
𝜓

ª®®¬ =
©«

3𝑃 +𝑄 −2𝑡𝑃 2𝑡2/3𝑃
−2/𝑡𝑄 −𝑃 +𝑄 2𝑡/3𝑃
2/𝑡2𝑄 −2/𝑡𝑄 1/3𝑃 +𝑄

ª®®¬
©«

1/3𝜓
1/𝑡𝜓
1/𝑡2𝜓

ª®®¬ .
Hence

𝐴−1𝜓 =

(
2
𝑡2
𝑄

−2
𝑡
𝑄

1
3
𝑃 +𝑄

) ©«
1/3𝜓
1/𝑡𝜓
1/𝑡2𝜓

ª®®¬ =
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=

(
−1

3
𝑆𝐵−2 + 𝐵−1𝑆𝐵−1 − 2

3
𝐵−2𝑆

)
𝜓.

Thus, equation (9) is uniquely solvable and its solution is found by the formula

𝜑 (𝑡) = 1
3𝜋𝑖

∫
Γ

3𝜏𝑡 − 2𝜏2 − 𝑡2
𝜏2𝑡2 (𝜏 − 𝑡)

𝜓 (𝜏) 𝑑𝜏. (11)

Consider two more equations

𝑡2 + 1
𝑡

𝜑 (𝑡) + 1
𝜋𝑖

∫
Γ

𝜏𝑡 − 1
𝜏 (𝜏 − 𝑡) 𝜑 (𝜏) 𝑑𝜏 = 𝜓(𝑡) (12)

and
𝑡2 + 1
𝑡

𝑓 (𝑡) + 1
𝜋𝑖

∫
Γ

1 − 𝜏𝑡
𝜏 (𝜏 − 𝑡) 𝑓 (𝜏) 𝑑𝜏 = 𝜓(𝑡). (13)

Let 𝐴 and 𝐶 be operators defined by the left hand sides of equalities (12) and (13),
respectively. It is directly verified that in this case the operators 𝐴 and 𝐶 differ from
the characteristic singular operators by compact terms, i.e., equations (12) and (13) are
complete singular equations. With the notation (10), the operators 𝐴 and 𝐵 can be written
in the following form

𝐴 = 𝐵 + 𝐵−1 + 𝐵𝑆 − 𝑆𝐵−1.

Since 𝑆∗ = 𝑆 and𝐶∗ = 𝐶−1, then𝐶 = 𝐴∗.As operators 𝐴 and𝐶, appearing in Corollary
1.2, we can take

𝐴 =

(
𝐼 𝐵−1

𝑆 𝐵 + 𝐵−1 + 𝐵𝑆

)
, �̃� =

(
𝐼 𝐵−1

−𝑆 𝐵 + 𝐵−1 − 𝐵𝑆

)
.

The operators 𝐴 and𝐶 (as in the previous example) are characteristic singular operators
with matrix coefficients:

𝐴 =

(
1 𝑡−1

−1 𝑡−1

) [(
0 −𝑡
𝑡 1 + 𝑡2

)
𝑃 +𝑄

]
,

𝐶 =

(
1 𝑡−1

1 2𝑡 + 𝑡−1

) [(
1 + 𝑡−2 𝑡−1

−𝑡−1 0

)
𝑃 +𝑄

]
.

However, unlike the previous example, the matrices-coefficients of 𝑃 have non-zero
partial indices. In the case of the operator 𝐴 this index is equal to 2, and in the case of 𝐶
it is equal to −2. This results from the factorization of the coefficients of the operator 𝑃 :(

0 −𝑡
𝑡 1 + 𝑡2

)
=

(
1 0

−𝑡−1 1

) (
𝑡 0
0 𝑡

) (
0 −1
1 𝑡

)
,(

1 + 𝑡−2 𝑡−1

−𝑡−1 0

)
=

(
𝑡−1 1
−1 0

) (
𝑡−1 0
0 𝑡−1

) (
1 0
𝑡 1

)
.
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By virtue of well-known results from the theory of singular equations with matrix
coefficients, the operator 𝐴 is left invertible, while the operator 𝐶 is left invertible. This
implies the operator 𝐴 to be left invertible and the operator 𝐶 to be right invertible. The
general solution of the equation 𝐶𝜑 = 0 is of the form (see [1]):(

𝜑1

𝜑2

)
=

(
𝛼

(
1 − 𝑡−1 − 𝑡−2)
𝛽(1 − 𝑡 + 𝑡−1)

)
and the particular solution of the equation 𝐶𝜑 = 𝜓 has de form(

𝜑1

𝜑2

)
=

(
0

(𝑡2𝑃 +𝑄)𝑡−1𝜓(𝑡)

)
.

Thus, equation (13) is solvable for any right hand side and its general solution is of the
form

𝑓 (𝑡) = 𝛽
(
1 − 𝑡 + 𝑡−1

)
+ 𝑡

2 + 1
4

𝜓 (𝑡) + 𝑡
2 − 1
4𝜋𝑖

∫
Γ

𝜓(𝜏)
𝜏(𝜏 − 𝑡) 𝑑𝜏,

where 𝛽 ∈ C. Equation (12) is not solvable for any right hand side. Since the operator 𝐴
is left invertible, it is normally solvable. For its solvability it is necessary and sufficient
that the right hand side of 𝜓 be orthogonal to each solution of the equation 𝐶𝜑 = 0, i.e.
to fulfill the condition ∫

Γ

(1 − 𝑡 + 𝑡−1)𝜓(𝑡) |𝑑𝑡 | = 0.

If this condition is satisfied, then equation (12) has a unique solution, which can be
found by formula

𝜑 (𝑡) = 𝑡 + 1
4𝑡

𝜓 (𝑡) + 1
4𝜋𝑖

∫
Γ

𝜏 + 𝑡 + 𝜏𝑡 − 𝜏2𝑡

𝜏2𝑡 (𝜏 − 𝑡)
𝜓 (𝜏) 𝑑𝜏.

This solution is obtained according to the scheme proposed in Corollaries 1.2 and 1.3.

3. Solution of integral equations by the regularization method

Let 𝐴 be some Noetherian operator. If the regularizing operator 𝑀 for 𝐴 is known,
then the solution of the equation

𝐴𝜑 = 𝑓 (14)

can be reduced to solving the equation

𝑀𝐴𝜑 = 𝑀 𝑓 , (15)

in which the operator 𝑀𝐴− 𝐼 is completely continuous. To equation (15) may be applied
many methods developed for inverting operators of the form 𝐼−𝑇,where𝑇 is a completely
continuous operator.
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A special interest is represented by the case when equations (14) and (15) are equivalent
for any vector 𝑓 , i.e., equations (14) and (15) are simultaneously solvable or unsolvable,
and in the case of solvability, they have the same solutions. This happens to be if and only
if 𝐾𝑒𝑟𝑀 = 0. Indeed, if 𝑀𝐴𝜑 = 0, then 𝐴𝜑 = ℎ, where ℎ ∈ 𝐾𝑒𝑟𝑀.

Assume that equations (14) and (15) are equivalent, then either 𝐾𝑒𝑟𝑀 = {0} , or
𝑑𝑖𝑚 𝐾𝑒𝑟𝑀 > 0 and 𝐾𝑒𝑟𝑀

⋂
𝐼𝑚𝐴 = {0}. The last assertion is impossible, since in this

case the equations 𝐴𝜑 = 𝑓 ( 𝑓 ∈ 𝐾𝑒𝑟𝑀) and 𝑀𝐴𝜑 = 𝑀 𝑓 = 0 are not equivalent.
Conversely, if 𝐾𝑒𝑟𝑀 = {0} , then it is obvious that equations (14) and (15) are equivalent.

We say that an operator 𝐴 admits equivalent regularization if it has a regularizing
operator 𝑀 for which equations (14) and (15) are equivalent for any vector 𝑓 . In this case,
the operator 𝑀 is called an equivalent regularizing operator for 𝐴.

It follows from the above that an operator 𝑀 is an equivalent regularizer for 𝐴 if it is a
regularizer for 𝐴 and also is left invertible.

Theorem 3.1. (see [11]) Operator 𝐴 admits an equivalent regularization if and only if

𝐼𝑛𝑑𝐴 ≥ 0. (16)

Indeed, if 𝑀 is an equivalent regularizer for 𝐴, then it is left invertible and, therefore,
𝐼𝑛𝑑𝑀 ≤ 0. Since 𝐼𝑛𝑑𝑀𝐴 = 𝐼𝑛𝑑𝑀 + 𝐼𝑛𝑑𝐴 = 0, then 𝐼𝑛𝑑𝐴 ≥ 0. Let condition (16) be
satisfied and 𝑀1 be a regularizer for 𝐴. Then 𝑀1 is Noetherian and 𝐼𝑛𝑑𝑀1 + 𝐼𝑛𝑑𝐴 = 0.
Hence, 𝐼𝑛𝑑𝑀1 ≤ 0. According to the results of [12], the operator 𝑀1 can be represented
as 𝑀1 = 𝑀 + 𝑇, where 𝑀 is left invertible. Obviously, 𝑀 is an equivalent regularizing
operator for 𝐴. Theorem 3.1 is proved.

We now consider the case when the Noetherian operator 𝐴 does not admit equivalent
regularization, that is, the following condition holds

𝐼𝑛𝑑𝐴 < 0. (17)

Let 𝑀1 be a regularizer for 𝐴. Since 𝐼𝑛𝑑𝑀1 > 0, then according to the results of work
[12] the operator 𝑀1 can be represented as 𝑀1 = 𝑀 +𝑇, where 𝑀 is right invertible. The
operator 𝑀 is also a regularizing operator for 𝐴 and all solutions of the equation

𝐴𝜑 = 𝑓 ( 𝑓 ∈ 𝐼𝑚𝐴)

can be obtained by formula 𝜑 = 𝑀𝜓, where 𝜓 runs through all solutions of the equation

𝐴𝑀𝜓 = 𝑓 .
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As an example, to illustrate the stated theory, let us regularize (see [2]) the following
singular integral equation

𝐴𝜑 ≡
(
𝑡 + 𝑡−1

)
𝜑 (𝑡) + 𝑡 − 𝑡

−1

𝜋𝑖

∫
Γ

𝜑 (𝜏)
𝜏 − 𝑡 𝑑𝜏 −

1
2𝜋𝑖

∫
Γ

(
𝑡 + 𝑡−1

) (
𝜏 + 𝜏−1

)
𝜑 (𝜏)𝑑𝜏 = 2𝑡2,

(18)
in various ways, where Γ is the unit circle.

The regular part of the kernel is degenerate. Therefore, in the same way that is used
in solving the Fredholm equations with the degenerate kernel, the equation (17) can be
reduced to a combination of the characteristic equation and a linear algebraic equation
and, it can be solved in the closed form. Thus, there is no necessity for regularization
here, but the equation under consideration is convenient for illustrating general methods
on it. Here all the calculations can be carried out to the end.

For further reasoning, we first solve this equation denoting
1

2𝜋𝑖

∫
Γ

(
𝜏 + 𝜏−1

)
𝜑 (𝜏)𝑑𝜏 = 𝐶, (19)

We write it in the characteristic form:(
𝑡 + 𝑡−1

)
𝜑 (𝑡) + 𝑡 − 𝑡

−1

𝜋𝑖

∫
Γ

𝜑 (𝜏)
𝜏 − 𝑡 𝑑𝜏 = 2𝑡2 + 𝐶

(
𝑡 + 𝑡−1

)
.

For the corresponding Riemann boundary value problem [2]

Φ+ (𝑡) = 𝑡−2Φ− (𝑡) + 𝑡 + 𝐶
2
(1 + 𝑡−2)

the index ^ = −2 and the solvability conditions will be satisfied only for 𝐶 = 0. In this
case

Φ+ (𝑧) = 𝑧, Φ− (𝑧) = 0.

From here we obtain the solution of equation (18):

𝜑 (𝑡) = Φ+ (𝑡) −Φ− (𝑡) = 𝑡.

Putting the last expression into the equality (19), we make sure that it is satisfied at
𝐶 = 0. Therefore, this equation is solvable and has a unique solution 𝜑 (𝑡) = 𝑡.

Regularization on the left. Since the index of the equation is ^ = −2 < 0, then any of its
regularizing operators will have eigenfunctions (at least two). Therefore, regularization
on the left leads, generally speaking, to an equation that is not equivalent to the original
one (regularization is not equivalent).

Consider first the regularization on the left using the regularizer 𝑅:

(𝑅ℎ) (𝑡) ≡
(
𝑡 + 𝑡−1

)
ℎ (𝑡) − 𝑡 − 𝑡−1

𝜋𝑖

∫
Γ

ℎ (𝜏)
𝜏 − 𝑡 𝑑𝜏. (20)
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The corresponding Riemann boundary value problem

𝐻+ (𝑡) = 𝑡2𝐻− (𝑡)

has now the index ^ = 2. Finding the eigenfunctions of the operator 𝑅, we obtain that

_1 (𝑡) = 1 − 𝑡−2, _2 (𝑡) = 𝑡 − 𝑡−1.

Based on the general theory, the regular equation 𝑅𝐴𝜑 = 𝑅 𝑓 will be equivalent to the
singular equation

𝐴𝜑 = 𝑓 + 𝛼1_1 + 𝛼2_2, (21)

where 𝛼1, 𝛼2 are some constants, which can be either arbitrary or defined. Taking into
account (19), we write equation (21) in the characteristic form:(
𝑡 + 𝑡−1

)
𝜑 (𝑡) + 𝑡 − 𝑡

−1

𝜋𝑖

∫
Γ

𝜑 (𝜏)
𝜏 − 𝑡 𝑑𝜏 = 2𝑡2 + 𝐶

(
𝑡 + 𝑡−1

)
+ 𝛼1

(
1 − 𝑡−2

)
+ 𝛼2

(
𝑡 − 𝑡−1

)
.

The corresponding Riemann boundary value problem for this equation is

Φ+ (𝑡) = 𝑡−2Φ− (𝑡) + 𝑡 + 𝐶
2

(
1 + 𝑡−2

)
+ 𝛼1

2

(
𝑡−1 − 𝑡−3

)
+ 𝛼2

2

(
1 − 𝑡−2

)
.

Its solution can be presented in the form

Φ+ (𝑧) = 𝑧 + 1
2
𝐶 + 1

2
𝛼2, Φ− (𝑡) = 1

2
𝑧2 [

𝛼1𝑧
−3 + (𝛼2 − 𝐶) 𝑧−2 − 𝛼1𝑧

−1] .
The solvability condition will give 𝛼1 = 0, 𝛼2 = 𝐶. Then, the solution of equation (21)

is determined by formula 𝜑 (𝑡) = Φ+ (𝑡) −Φ− (𝑡) = 𝑡 + 𝐶.
Substituting the found value of 𝜑 into equality (19), we obtain the identity 𝐶 = 𝐶.

Therefore, the constant 𝛼2 = 𝐶 remains to be arbitrary and the regularized equation is not
equivalent to the original equation, but to the equation

𝐴𝜑 = 𝑓 + 𝛼2_2,

having the solution 𝜑 (𝑡) = 𝑡 + 𝐶, where 𝐶 is an arbitrary constant. The last solution
satisfies the original equation only at 𝐶 = 0.

Regularization on the right. As a regularizer on the right, we take the operator 𝑅,
defined by equality (20). Assuming that

𝜑 (𝑡) = (𝑅ℎ) (𝑡) ≡
(
𝑡 + 𝑡−1

)
ℎ (𝑡) − 𝑡 − 𝑡−1

𝜋𝑖

∫
Γ

ℎ (𝜏)
𝜏 − 𝑡 𝑑𝜏 (22)

we obtain the Fredholm equation for the function ℎ (𝑡):

(𝐴𝑅ℎ) (𝑡) ≡

ℎ (𝑡) − 1
4𝜋𝑖

∫
Γ

[
𝑡

(
𝜏2 − 1 + 𝜏−2)+2𝜏−1 + 𝑡−1 (

𝜏2 + 3 + 𝜏−2
)
− 2𝑡−2𝜏−1

)]
ℎ (𝜏) 𝑑𝜏 = 𝑡2

2
.
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Solving the last equation as a degenerate one, we have

ℎ (𝑡) = 𝑡2

2
+ 𝛼

(
𝑡 − 𝑡−1

)
+ 𝛽

(
1 − 𝑡−2

)
,

where 𝛼, 𝛽 are arbitrary constants.
Thus, the regularized equation has two linearly independent solutions with respect to

ℎ (𝑡) while the original equation (18) was solved uniquely. Substituting the found value
ℎ (𝑡) in formula (22), we obtain that

𝜑 (𝑡) = 𝑅
[
𝑡2

2
+ 𝛼

(
𝑡 − 𝑡−1

)
+ 𝛽

(
1 − 𝑡−2

)]
= 𝑡

is the solution of the original singular equation. The result agrees with the general theory,
since the regularization on the right is equivalent for a negative index.
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E-mail address: vasileneagu45@gmail.com

(Diana Bı̂clea) “Lucian Blaga” University of Sibiu, România
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