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Abstract. We prolong research of Schröder quasigroups and Schröder T-quasigroups
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Schröder T-cvasigrupuri de asociativitate generalizată
Rezumat. Se extinde cercetarea quasigrupurilor de tip Schröder şi a T-quasigrupurilor
de tip Schröder [14].
Cuvinte-cheie: quasigrup, buclă, grupoid, quasigrupuri de tip Schröder, identitatea
Schröder.

1. Introduction

Necessary definitions can be found in [1, 3, 2, 7, 10, 15].

Definition 1.1. Binary groupoid (𝑄, ◦) is called a left quasigroup if for any ordered pair
(𝑎, 𝑏) ∈ 𝑄2 there exist the unique solution 𝑥 ∈ 𝑄 to the equation 𝑎 ◦ 𝑥 = 𝑏 [1].

Definition 1.2. Binary groupoid (𝑄, ◦) is called a right quasigroup if for any ordered pair
(𝑎, 𝑏) ∈ 𝑄2 there exist the unique solution 𝑦 ∈ 𝑄 to the equation 𝑦 ◦ 𝑎 = 𝑏 [1].

Definition 1.3. A quasigroup (𝑄, ·) with an element 1 ∈ 𝑄, such that 1 · 𝑥 = 𝑥 · 1 = 𝑥 for
all 𝑥 ∈ 𝑄, is called a loop.

Definition 1.4. Binary groupoid (𝑄, ·) is called medial if this groupoid satisfies the
following medial identity:

𝑥𝑦 · 𝑢𝑣 = 𝑥𝑢 · 𝑦𝑣 (1)

for all 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑄 [1].

We recall

Definition 1.5. Quasigroup (𝑄, ·) is a T-quasigroup if and only if there exists an abelian
group (𝑄, +), its automorphisms 𝜑 and 𝜓, and a fixed element 𝑎 ∈ 𝑄 such that 𝑥 · 𝑦 =

𝜑𝑥 + 𝜓𝑦 + 𝑎 for all 𝑥, 𝑦 ∈ 𝑄 [8].

47

https://orcid.org/0000-0002-5319-5951
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A T-quasigroup with the additional condition 𝜑𝜓 = 𝜓𝜑 is medial.

Definition 1.6. Garrett Birkhoff [2] has defined an equational quasigroup as an algebra
with three binary operations (𝑄, ·, /, \) that satisfies the following six identities:

𝑥 · (𝑥\𝑦) = 𝑦, (2)

(𝑦/𝑥) · 𝑥 = 𝑦, (3)

𝑥\(𝑥 · 𝑦) = 𝑦, (4)

(𝑦 · 𝑥)/𝑥 = 𝑦, (5)

𝑥/(𝑦\𝑥) = 𝑦, (6)

(𝑥/𝑦)\𝑥 = 𝑦. (7)

Ernst Schröder (a German mathematician mainly known for his work on algebraic
logic) introduced and studied the following identity of generalized associativity [13]:

(𝑦 · 𝑧)\𝑥 = 𝑧(𝑥 · 𝑦). (8)

In the quasigroup case the identity (8) is equivalent to the following identity [11]:

(𝑦 · 𝑧) · (𝑧 · (𝑥 · 𝑦)) = 𝑥 (9)

If in the idempotent quasigroup (𝑄; ·), the identity (9), we put 𝑥 = 𝑦, then we obtain
the following standard Schröder’s identity:

(𝑥 · 𝑦) · (𝑦 · 𝑥) = 𝑥. (10)

Definition 1.7. Any quasigroup with the identity (10) is called a Schröder quasigroup.

So we have different objects that have name Schröder. Namely,
(i) the following identity of generalized associativity on groupoids [13]:
(𝑦 · 𝑧)\𝑥 = 𝑧(𝑥 · 𝑦) (8);
(ii) the Schröder’s identity of generalized associativity in quasigroups (9);
(iii) the Schröder’s identity (Schröder’s 2-nd identity [12]) (𝑥 · 𝑦) · (𝑦 · 𝑥) = 𝑥 (10);
(iv) identity

(𝑥 · 𝑦) · (𝑦 · 𝑥) = 𝑦 (11)

is named by Albert Sade [12] as Stein’s 3-rd identity.
Many information about these identities is given in articles [4, 5]. We tried do not

repeat information from these articles here.
Each of these identities deserves a separate study in the class of groupoids, left (right)

quasigroups; in the classes of quasigroups and of T-quasigroups.
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1.1. Schröder’s identity of generalized associativity in quasigroups

It is convenient to call this identity the Schröder’s identity of generalized associativity.
Often various variants of associative identity, which are true in a quasigroup, guarantee

that this quasigroup is a loop.
It is not so in the case with the identity. We give an example of quasigroup which is

not a loop with the identity (9) [11]. See also [15]. A quasigroup from this example does
not have left and right identity element.

Quasigroups with Schröder’s identity of generalized associativity are not necessary
idempotent and associative. See the following example [11].

· 0 1 2 3 4 5 6 7
0 1 4 7 0 6 5 2 3
1 5 2 3 6 0 1 4 7
2 0 7 4 1 5 6 3 2
3 6 3 2 5 1 0 7 4
4 4 1 0 7 3 2 5 6
5 3 6 5 2 4 7 0 1
6 7 0 1 4 2 3 6 5
7 2 5 6 3 7 4 1 0

The left cancellation (left division) groupoid with the identity (9) and with the identity
(𝑥/𝑥 = 𝑦/𝑦) (in a quasigroup this identity guarantees existence of the left identity element)
is a commutative group of exponent two [11].

The similar results are true for the right case [11]. In this case we use the identity

(𝑥\𝑥 = 𝑦\𝑦).

It is clear that this result is true for any quasigroup with the left or right identity element.
Notice, any 2-group (𝐺, +) (in such group 𝑥 + 𝑥 = 0 for any 𝑥 ∈ 𝐺) satisfies Schröder’s

identity of generalized associativity.

2. Schröder’s identity of generalized associativity in T-quasigroups

Theorem 2.1. In T-quasigroup (𝑄, ·) of the form 𝑥 · 𝑦 = 𝜑𝑥 + 𝜓𝑦 Schröder’s identity of
generalized associativity is true if and only if 𝜑𝑥 = 𝜓−2𝑥, 𝜀 = 𝜑7, 𝜀 = 𝜓14, 𝜑𝜓𝑧+𝜓𝜑𝑧 = 0.

Proof. We rewrite identity (9) in the following form:

𝜑2𝑦 + 𝜓3𝑦 + 𝜑𝜓𝑧 + 𝜓𝜑𝑧 + 𝜓2𝜑𝑥 = 𝑥. (12)
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If we substitute in equality (12) 𝑦 = 𝑧 = 0, then we have

𝜑𝑥 = 𝜓−2𝑥. (13)

If we substitute in equality (12) 𝑥 = 𝑧 = 0, then we have

𝜑2𝑦 + 𝜓3𝑦 = 0. (14)

Taking into consideration equality (13), we can re-write equality (14) in the form

𝜓−4𝑦 + 𝜓3𝑦 = 0, (15)

or in the form

𝜓3 = 𝐼𝜓−4, (16)

where 𝐼𝑥 = −𝑥 for all 𝑥 ∈ 𝑄. Notice, the permutation 𝐼 is an automorphism of the group
(𝑄, +) here. Therefore, we can rewrite previous equalities in the form

𝜀 = 𝐼𝜓−7, 𝐼 = 𝜓−7, 𝜀 = 𝜓−14, 𝜀 = 𝜓14, 𝜀 = 𝜑7. (17)

If we substitute in equality (12) 𝑥 = 𝑦 = 0 then we have

𝜑𝜓𝑧 + 𝜓𝜑𝑧 = 0. (18)

Converse. If we substitute in identity (9) the expression 𝑥 · 𝑦 = 𝜑𝑥 +𝜓𝑦, then we obtain
equality (12), which is true taking into consideration the equalities (13), (14), (18). Then
we obtain, that identity (9) is true in this case. □

Corollary 2.1. In medial quasigroup (𝑄, ·) of the form 𝑥 · 𝑦 = 𝜑𝑥+𝜓𝑦 Schröder’s identity
of generalized associativity is true if and only if the group (𝑄, +) is an abelian 2-group
(i.e. 𝑥 + 𝑥 = 0 for any 𝑥 ∈ 𝑄), 𝜑𝑥 = 𝜓−2𝑥, 𝜀 = 𝜑7, 𝜀 = 𝜓14.

Proof. From the identity of mediality it follows that 𝜑𝜓𝑧 + 𝜓𝜑𝑧 = 2 · 𝜑𝜓𝑧 = 0 for all
𝑧 ∈ 𝑄, i.e., the group (𝑄, +) is an abelian 2-group. □
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Example 2.1. We present elements of the group (𝑍3
2 , +) in the following form: 1 =

(000), 2 = (001), 3 = (010), 4 = (011), 5 = (100), 6 = (101), 7 = (110), 8 = (111).

+ 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 1 4 3 6 5 8 7
3 3 4 1 2 7 8 5 6
4 4 3 1 1 8 7 6 5
5 5 6 7 8 1 2 3 4
6 6 5 8 7 2 1 4 3
7 7 8 5 6 3 4 1 2
8 8 7 6 5 4 3 2 1

We can see on the group 𝐴𝑢𝑡 (𝑍3
2 , +) as on the group 𝐺𝐿 (3, 2). This group is the group

of non-degenerate matrices of size 3 × 3 over the field of order 2 relatively to standard
multiplication of matrices [7].

The group 𝑃𝑆𝐿 (2, 7) is the group of non-degenerate matrices of size 2 × 2 over the
field of order 7. These groups are isomorphic, i.e., 𝐴𝑢𝑡 (𝑍3

2 , +) � 𝐺𝐿 (3, 2) � 𝑃𝑆𝐿 (2, 7).
Notice | (𝐺𝐿 (3, 2) | = 168 = 3 × 7 × 8 [7].

We have the following automorphisms of the group 𝐴𝑢𝑡 (𝑍3
2 , +) � 𝐺𝐿 (3, 2):

𝜑 =
©­­«
1 1 0
1 0 1
0 1 0

ª®®¬, 𝜓 =
©­­«
0 1 0
1 1 1
0 1 1

ª®®¬.

Notice that 𝜑7 = 𝜓7 = 𝜀, 𝜑 = 𝜓−2, 𝜑𝜓 = 𝜓𝜑. Therefore, Schröder’s medial quasigroup
(𝑄, ◦) of generalized associativity can have the form 𝑥 ◦ 𝑦 = 𝜑𝑥 + 𝜓𝑦:

◦ 1 2 3 4 5 6 7 8
1 1 4 8 5 3 2 6 7
2 3 2 6 7 1 4 8 5
3 6 7 3 2 8 5 1 4
4 8 5 1 4 6 7 3 2
5 7 6 2 3 5 8 4 1
6 5 8 4 1 7 6 2 3
7 4 1 5 8 2 3 7 6
8 2 3 7 6 4 1 5 8
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SCHRÖDER T-QUASIGROUPS OF GENERALIZED ASSOCIATIVITY

References

[1] Belousov, V.D. Foundations of the Theory of Quasigroups and Loops. Nauka, Moscow, 1967
(in Russian).

[2] Birkhoff, G. Lattice Theory. Nauka, Moscow, 1984 (in Russian).
[3] Bruck, R.H. A Survey of Binary Systems. Springer Verlag, New York, third printing edition, 1971.
[4] Bennett, F.E. Quasigroup identities and Mendelsohn designs. Canad. J. Math., 1989, vol. 41, no. 2,

341–368.
[5] Bennett, F.E. The spectra of a variety of quasigroups and related combinatorial designs. Discrete

Math., 1989, vol. 77, 29–50.
[6] Burris, S., Sankappanavar, H.P. A Course in Universal Algebra. Springer-Verlag, 1981.
[7] Kargapolov, M.I., Merzlyakov, M.Yu. Foundations of Group Theory. Nauka, Moscow, 1977

(in Russian).
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