On regular operators on Banach Lattices

OMER GOK[®]

Abstract. Let E and F be Banach lattices and X and Y be Banach spaces. A linear operator $T : E \to F$ is called regular if it is the difference of two positive operators. $L_r(E, F)$ denotes the vector space of all regular operators from E into F. A continuous linear operator $T : E \to X$ is called M-weakly compact operator if for every disjoint bounded sequence (x_n) in E, we have $\lim_{n\to\infty} ||Tx_n|| = 0$. $W_M^r(E, F)$ denotes the regular M -weakly compact operators from E into F . This paper is devoted to the study of regular operators and M -weakly compact operators on Banach lattices. We show that F has a b-property if and only if $L_r(E, F)$ has b-property. Also, $W_M^r(E, F)$ is a KB-space if and only if F is a KB -space.

2010 Mathematics Subject Classification: 46B25, 46B42, 47B60, 47B65.

Keywords: Banach lattice, regular operators, M-weakly compact operators, order continuous norm.

Operatori regulari pe latice Banach

Rezumat. Fie E și F latice Banach, iar X și Y spații Banach. Operatorul linear $T : E \to F$ se numeste regular dacă reprezintă diferența a doi operatori pozitivi. $L_r(E, F)$ este spatiul vectorial al operatorilor regulari din E în F . Operatorul linear și continuu $T : E \to X$ se numește operator M-slab compact dacă pentru orice șiruri mărginite și disjuncte (x_n) din E, urmează că $\lim_{n\to\infty} ||Tx_n|| = 0$. $W_M^r(E, F)$ reprezintă operatorii regulari M-slab compacți din E în F . Lucrarea este dedicată studiului operatorilor regulari și operatorilor M -slab compacti pe latice Banach. Se demonstrează că F posedă b-proprietate dacă și numai dacă $L_r(E, F)$ are b-proprietate. La fel, $W_M^r(E, F)$ este KB -spațiu dacă și numai dacă F este KB -spațiu.

Cuvinte-cheie: latice Banach, operatori regulari, operatori M-slab compacți, norma continue de ordine.

1. Introduction

Let X be a Banach space and E be a Banach lattice. E^+ denotes the positive cone of E. That is, $E^+ = \{x : 0 \le x\}$. We denote E^{\sim} by the set of all order bounded linear functionals on E, and E^{\sim} by the set of all second order dual of E, [\[7\]](#page-3-0). By X' we denote the set of all continuous linear functionals on X . Since E is a Banach lattice, order dual and continuous dual coincide [\[1,](#page-3-1) [5\]](#page-3-2).

A set $[x, y] = \{z \in E : x \le z \le y\}$ in a Banach lattice E is called an order interval. Let A be a subset of E. The set A is called order bounded if $A \subseteq [x, y]$ for some $x, y \in E$. A is called a b-order bounded if A is an order bounded in the second order dual E'' of E.

A Banach lattice is said to have b-property if every b-order bounded set is an order bounded set in E [\[2,](#page-3-3) [3\]](#page-3-4). Order dual of a Banach lattice has b-property. The space $C(K)$ of all continuous real valued functions defined on a compact Hausdorff space K has b-property.

A Banach lattice E is called a KB -space if every positive increasing norm bounded sequence in E converges. A Banach lattice E is a KB space if and only if it has an order continuous norm and with property (b) [\[2\]](#page-3-3). Reflexive Banach lattice, AL spaces are examples of KB spaces. There are a lot of KB spaces in Banach lattices[\[1,](#page-3-1) [5\]](#page-3-2).

A Banach lattice E is said to have an order continuous norm if $x_n \downarrow 0$ in E implies $|| x_n || \rightarrow 0$ as $n \rightarrow \infty$. For example, Banach space c_0 of all sequences converging to zero has an order continuous norm. Let E be a Banach lattice. E' is a KB space if and only if E has an order continuous norm.

A Banach lattice E is called Dedekind complete if every non empty subset of E , which is bounded from above, has a supremum. Alternatively, every non empty subset of E , which is bounded from below, has an infimum.

2. KB space of M-weakly compact operators

Definition 2.1. $[1, 5]$ Let X be a Banach space and E be a Banach lattice. A continuous linear operator $T : X \to E$ is called *L*-weakly compact if $T(ball(X))$ is an *L*-weakly compact set. A subset A of E is called L-weakly compact if $|| x_n || \rightarrow 0$ as $n \rightarrow \infty$ for every disjoint sequence (x_n) in the solid hull of A, where $ball(X)$ denotes the clesed unit ball of X .

By $W_L(E, F)$ we denote the set of all L-weakly compact operators.

Definition 2.2. ([\[1,](#page-3-1) [5\]](#page-3-2)) A continuous linear operator $T : E \rightarrow X$ is called M-weakly compact if $\lim_{n\to\infty}$ || Tx_n ||= 0 for every disjoint sequence (x_n) in the closed unit ball of E .

By $W_M(E, F)$ we denote the set of all M-weakly compact operators from a Banach lattice E into a Banach lattice F . If F is a Dedekind complete Banach lattice, then it is a Banach lattice. We denote the linear span of the positive operators in $W_M(E, F)$ by $W_M^r(E, F)$. If F is a Dedekind complete Banach lattice, then $W_M^r(E, F)$ is a Dedekind complete Banach lattice under the regular norm.

Adjoint of an M-weakly compact operator is an L-weakly compact and adjoint of an L-weakly compact operator is an M-weakly compact. Every L-weakly compact and M-weakly compact operators are weakly compact.

Definition 2.3. A Banach lattice E is called an AL space if the norm

$$
\parallel x + y \parallel = \parallel x \parallel + \parallel y \parallel
$$

holds for every $x, y \in E$.

A linear operator T from a E Banach lattice to a Banach lattice F is called regular if it is the difference of two positive operators from E into F. By $L_r(E, F)$ we denote the vector space of all regular operators from E into F , [\[6\]](#page-3-5). Every positive linear operator from a Banach lattice E into a Banach lattice F is continuous. By $L(E, F)$ we denote the vector space of all linear continuous operators from E into F .

A linear operator T from a Banach lattice E into a Banach lattice F is called order bounded if it sends an order bounded set in E to an order bounded set in F. $L_b(E, F)$ denotes the vector space of all order bounded linear operators from E into F . The following inclusions hold: $L_r(E, F) \subseteq L_b(E, F) \subseteq L(E, F)$.

Let $T \in L_r(E, F)$. The regular operator norm of T is given by

$$
||T|| = inf{||S|| : |T| \le S \text{ for } 0 \le S \in L_r(E, F)}.
$$

Theorem 2.1. *(*[\[2,](#page-3-3) [3\]](#page-3-4)*)* Let E, F be Banach lattices with F Dedekind complete. Then, $L_r(E, F)$ has b-property if and only if F has b-property.

Proof. Take a sequence (x_n) in F with the property $x_n \uparrow y$ in F''. Let us choose $0 \neq f \in E'$. We define the map $\psi : F \to L_r(E, F)$, $\psi(y) = f \otimes y$, which is given by $(f \otimes y)(x) = f(x)y$ for all $x \in E$. $\psi(x_n)$ is b-order bounded in $L_r(E, F)$. So, there is a $T \in L_r(E, F)$ such that $0 \le f \otimes x_n \le T$. There is an $x \in E$ such that $0 \le x_n \le T(x)$ in F . It means F has b-property.

Suppose that F has b-property. Assume that (T_n) in $L_r(E, F)$ such that $0 \leq T_n \uparrow T$ in $L_r(E, F)''$. Let us choose $0 \neq x \in E^+$. We define a map $\varphi : F' \to L_r(E, F)'$ which is defined by $\varphi(f)T = f(Tx)$ for $T \in L_r(E, F)$. This mapping is one-one and positive. From here, for every $x \in E^+$, we have that $T_n(x)$ is b-order bounded in F. That is, $T_n(x)$ is order bounded in F. By Kantorovich lemma, we extend the mapping defined by $T(x) = sup\{T_n(x) : n = 1, 2, 3, ...\}$. Therefore, $L_r(E, F)$ has b-property.

Let E be a Banach lattice. By E^a , we denote the maximal ideal space on which the norm is order continuous. Equivalently,

 $E^a = \{x : any \text{ monotone sequence } (x_n) \text{ in } [0, |x|] \text{ converges} \}.$

Theorem 2.2. ([\[4\]](#page-3-6)) Let E, F be Banach lattices with $(E')^a \neq \{0\}$. Then, $W_M^r(E, F)$ has *order continuous norm if and only if has an order continuous norm.*

Let X and Y be Banach spaces and $T : X \rightarrow Y$ be a continuous linear operator. The adjoint operator T' of T is defined from Y' into X' by $T'(f)(x) = f(Tx)$ for every $f \in Y'$ and for every $x \in X$.

Theorem 2.3. Let E, F be Banach lattices. Then, $W_M^r(E, F)$ has b-property if and only *if has b-property.*

Proof. Proof is similar to the proof of Theorem 2.4. So, it is omitted.

Theorem 2.4. Let E, F be Banach lattices. Then, $W_M^r(E, F)$ is a KB space if and only if *is a KB space.*

Proof. It is proved this result by using the fact that a Banach lattice is a KB space if and only if it has an order continuous norm and it has b-property [\[2\]](#page-3-3).

 $W_L^r(E, F)$ denotes the vector space of all regular L-weakly compact operators. It is a Banach lattice.

Theorem 2.5. Let E, F be Banach lattices and $(E')^a \neq \{0\}$ and $F^a \neq \{0\}$. Then, the *following claims are equivalent:*

 (i) $W_L^r(E, F)$ has order continuous norm.

- *(ii)* ′ *has order continuous norm.*
- (*iii*) $W_M^r(F', E')$ is a KB space.

Proof. Proof is done by using [\[4\]](#page-3-6).

REFERENCES

- [1] Aliprantis, C.D., Burkinshaw, O. *Positive Operators*, Academic Press, New York, 1985.
- [2] Alpay, S., Altin, B., Tonyali, C. On property (b) of vector lattices, *Positivity*, 2003, vol. 7, 135–139.
- [3] Alpay, S., Altin, B. On Riesz spaces with b-property and strong order bounded operators, *Rend. Circ. Mat. Palermo*, 2011, vol. 60, 1–12.
- [4] Bayram, E., Wickstead, A.W. Banach lattices of L-weakly and M-weakly compact operators, *Arch. Math.*, 2017, vol. 108, 293–299.
- [5] Meyer-Nieberg, P. *Banach Lattices*, Springer, Berlin, 1991.
- [6] Wickstead, A.W. Regular Operators between Banach lattices, *Positivity*, 2007, 255–279.
- [7] Zaanen, A.C. *Riesz Spaces II*, North Holland, Amsterdam, 1983.

Received: July 20, 2022 Accepted: December 10, 2022

(Omer Gok) Yildiz Technical University, Istanbul, Turkey *E-mail address*: gok@yildiz.edu.tr