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Stabilitatea mişcării neperturbate guvernate de sistemul
diferenţial ternar de tip Lyapunov-Darboux cu nelinearităţi
de gradul patru

Rezumat. Pentru sistemul difereţial ternar de tip Lyapunov-Darboux cu nelinearităţi de
gradul patru, utilizând algebra Lie admisă de acest sistem, s-a obţinut integrala primă
analitică, determinată funcţia Lyapunov şi condiţiile de stabilitate a mişcării neperturbate.
Cuvinte-cheie: sistem diferenţial, stabilitatea mişcării neperturbate, comitant şi invariant
centroafin, algebră Lie, integrală primă, funcţie Lyapunov.

1. Notion of comitant and invariant for ternary differential system

We examine the differential system of the unperturbed motion [1, 2] with nonlinearities
of degree four 𝑠3(1, 4), written in the tensorial form [3, 4]

𝑑𝑥 𝑗

𝑑𝑡
= 𝑎

𝑗
𝛼𝑥

𝛼 + 𝑎
𝑗

𝛼𝛽𝛾𝛿
𝑥𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 ( 𝑗 , 𝛼, 𝛽, 𝛾, 𝛿 = 1, 2, 3) (1)

where 𝑎
𝑗

𝛼𝛽𝛾𝛿
is a symmetric tensor in lower indices in which the total convolution is

done. The centro-affine group 𝐺𝐿 (3,R) is given by transformations 𝑞:

𝑥 𝑗 = 𝑞
𝑗
𝛼𝑥

𝛼 (Δ = 𝑑𝑒𝑡 (𝑞 𝑗
𝛼) ≠ 0) ( 𝑗 , 𝛼 = 1, 2, 3). (2)

In the theory of invariants [5] the vector 𝑥 = (𝑥1, 𝑥2, 𝑥3), which is changed by formulas
(2), is usually called contravariant. The vector 𝑢 = (𝑢1, 𝑢2, 𝑢3), which is changed by

57

https://orcid.org/0000-0003-3944-3688
https://orcid.org/0000-0003-2721-1185
https://orcid.org/0000-0003-2649-729X


STABILITY OF UNPERTURBED MOTION GOVERNED BY THE TERNARY
DIFFERENTIAL SYSTEM OF LYAPUNOV-DARBOUX TYPE

formulas �̄�𝑟 = 𝑝
𝑗
𝑟𝑢 𝑗 (𝑟, 𝑗 = 1, 2, 3), where 𝑝𝑟

𝑗
𝑞
𝑗
𝑠 = 𝛿𝑟𝑠 is the Kroniker’s symbol, is

call covariant. Any other vector 𝑦 = (𝑦1, 𝑦2, 𝑦3), different from 𝑥, which is changed
by formulas (2) �̄� 𝑗 = 𝑞

𝑗
𝛼𝑦

𝛼 ( 𝑗 , 𝛼 = 1, 2, 3), is call cogradient with the vector 𝑥. The
coefficients of the system (1) and the coordinates of the vectors 𝑥, 𝑢, 𝑦 take values from
the field of real numbers R.

Observe that the transformation (2) preserves the form of the system (1)

𝑑𝑥 𝑗

𝑑𝑡
= �̄�

𝑗
𝛼𝑥

𝛼 + �̄�
𝑗

𝛼𝛽𝛾𝛿
𝑥𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 ( 𝑗 , 𝛼, 𝛽, 𝛾, 𝛿 = 1, 2, 3), (3)

where the coordinates of the vector 𝑥 = (𝑥1, 𝑥2, 𝑥3) are determined by the relations (2).
The coefficients �̄� 𝑗

𝛼 şi �̄� 𝑗

𝛼𝛽𝛾𝛿
from the right–hand sides of (3) are some linear functions

in the coefficients of system (1) and rational in the parameters 𝑞 𝑗
𝛼 of transformations (2).

We will denote the set of coefficients (1) by 𝑎 and of the system (3) by �̄�.

Definition 1.1. According to [3, 4, 5], we say that the polynomial 𝜘(𝑥, 𝑦, 𝑢, 𝑎) of the
coefficients of system (1) and of the coordinates of vectors 𝑥, 𝑦 and 𝑢 is called center-
affine mixt comitant of the system (1) with respect to 𝐺𝐿 (3,R) group, if the following
identity holds

𝜘(𝑥, �̄�, �̄�, �̄�) = Δ−𝑔𝜘(𝑥, 𝑦, 𝑢, 𝑎) (4)

for all 𝑞 from 𝐺𝐿 (3,R) and for every coordinates of vectors 𝑥, 𝑦 and 𝑢, as well as all the
coefficients of the system (1).

Size 𝑔 is an integer number called the weight of comitant.
If the mixt comitant 𝜘 does not depend of the coordinates of the vector 𝑢, then according

to [3, 4, 5], we call it simply comitant; but if 𝜘 does not depend of the coordinates of the
vectors 𝑥 and 𝑦, we call it contravariant according to [5]. If 𝜘 does not depend of the
coordinates of the vectors 𝑥, 𝑦 and 𝑢, then we will call it invariant of the system (1) with
respect to 𝐺𝐿 (3,R) group.

For simplicity, in some cases, we will omit the words “center-affine” or “with respect
to 𝐺𝐿 (3,R) group” for comitants (invariants).

From [5] it is known that the alternation operation, in the case of ternary tensors, is
performed by means of the unit trivector Y𝑝𝑞𝑟 (Y𝛼𝛽𝛾) with coordinates Y123 = −Y132 =

Y312 = −Y321 = Y231 = −Y213 = 1 (Y123 = −Y132 = Y312 = −Y321 = Y231 = −Y213 = 1)
and Y𝑝𝑞𝑟 = 0 (Y𝛼𝛽𝛾 = 0) (𝑝, 𝑞, 𝑟 = 1, 2, 3) ((𝛼, 𝛽, 𝛾 = 1, 2, 3)) in the other cases.

From [3, 4, 5] results the following assertion

Theorem 1.1. The expressions obtained by the product of the coefficients of the tensors 𝑎 𝑗
𝛼

and 𝑎
𝑗

𝛼𝛽𝛾𝛿
, of system (1), as well as the coordinates 𝑥𝑖 , 𝑦 𝑗 , 𝑢𝑟 of the vectors 𝑥, 𝑦, 𝑢, using
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the alternation operation followed by the total convolution, form the basis of the comitants
(mixed), contravariants and invariants of the system (1) with respect to 𝐺𝐿 (3,R) group.

Using Theorem 1.1 it is easy to see that the expressions

𝜘1 = 𝑥𝛼𝑢𝛼, 𝜘2 = 𝑎𝛼
𝛽 𝑥

𝛽𝑢𝛼, 𝜘3 = 𝑎𝛼
𝛾 𝑎

𝛽
𝛼𝑥

𝛾𝑢𝛽 (5)

form the mixed comitants, and

𝛿1 = 𝑎𝛼
𝛾 𝑎

𝛽
𝑝𝑎

𝛾
𝑞𝑢𝛼𝑢𝛽𝑢𝑟Y

𝑝𝑞𝑟 (6)

is a contravariant of the system (1) with respect to 𝐺𝐿 (3,R) group.
Likewise the expressions

𝜎1 = 𝑎𝛼
`𝑎

𝛽

𝛿
𝑎
𝛾
𝛼𝑥

𝛿𝑥`𝑥aY𝛽𝛾a ,

[1 = 𝑎𝛼
𝛽𝛾𝛿`𝑥

𝛽𝑥𝛾𝑥 𝛿𝑥`𝑥a𝑦\Y𝛼a\ ,
(7)

are comitants of the system (1) with respect to 𝐺𝐿 (3,R) group.
Some of the invariants of the system (1), with respect to 𝐺𝐿 (3,R) group, are the

expressions
\1 = 𝑎𝛼

𝛼, \2 = 𝑎𝛼
𝛽 𝑎

𝛽
𝛼, \3 = 𝑎𝛼

𝛾 𝑎
𝛽
𝛼𝑎

𝛾

𝛽
. (8)

We will mention that the expressions 𝜘𝑖 (𝑖 = 1, 2, 3), 𝛿1, 𝜎1 and \𝑖 (𝑖 = 1, 2, 3) are
known from [6, 7].

If we examine the differential system of the first approximation [1, 2] for system (1),
written in the expanded form

𝑑𝑥1

𝑑𝑡
= 𝑎1

1𝑥
1 + 𝑎1

2𝑥
2 + 𝑎1

3𝑥
3,

𝑑𝑥2

𝑑𝑡
= 𝑎2

1𝑥
1 + 𝑎2

2𝑥
2 + 𝑎2

3𝑥
3,

𝑑𝑥3

𝑑𝑡
= 𝑎3

1𝑥
1 + 𝑎3

2𝑥
2 + 𝑎3

3𝑥
3,

(9)
then it can be easily verified the following assertion

Lemma 1.1. The expression 𝜎1 = 0 forms a 𝐺𝐿 (3,R) particular invariant integral for
system (9).

The proof follows directly from the equality

(𝑎1
1𝑥

1 + 𝑎1
2𝑥

2 + 𝑎1
3𝑥

3) 𝜕𝜎1

𝜕𝑥1 + (𝑎2
1𝑥

1 + 𝑎2
2𝑥

2 + 𝑎2
3𝑥

3) 𝜕𝜎1

𝜕𝑥2 + (𝑎3
1𝑥

1 + 𝑎3
2𝑥

2 + 𝑎3
3𝑥

3) 𝜕𝜎1

𝜕𝑥3 = \1𝜎1.

Lemma 1.2. Let 𝛿1 ≡ 0 in (6). Then we obtain the following relations between the
coefficients of the system (9):

𝑎) 𝑎2
1 = 𝑎3

1 = 0; 𝑎3
2 ≠ 0; 𝑎1

3 =
𝑎1

2(𝑎
3
3 − 𝑎1

1)
𝑎3

2
; 𝑎2

3 =
(𝑎1

1 − 𝑎2
2) (𝑎

1
1 − 𝑎3

3)
𝑎3

2
;
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𝑏) 𝑎3
1 = 𝑎3

2 = 0; 𝑎2
1 ≠ 0; 𝑎1

2 =
(𝑎1

1 − 𝑎3
3) (𝑎

2
2 − 𝑎3

3)
𝑎2

1
; 𝑎1

3 =
𝑎2

3(𝑎
1
1 − 𝑎3

3)
𝑎2

1
;

𝑐) 𝑎2
1 = 𝑎3

1 = 𝑎3
2 = 0; 𝑎1

2 ≠ 0; 𝑎1
1 = 𝑎3

3; ; 𝑎2
3 =

𝑎1
3(𝑎

2
2 − 𝑎3

3)
𝑎1

2

𝑑) 𝑎2
1 = 𝑎2

3 = 𝑎3
1 = 𝑎3

2 = 0; 𝑎1
2 ≠ 0; 𝑎2

2 = 𝑎3
3;

𝑒) 𝑎1
2 = 𝑎2

1 = 𝑎3
1 = 𝑎3

2 = 0; 𝑎1
3 ≠ 0; 𝑎1

1 = 𝑎2
2;

𝑓 ) 𝑎1
2 = 𝑎2

1 = 𝑎2
3 = 𝑎3

1 = 𝑎3
2 = 0; 𝑎1

3 ≠ 0; 𝑎2
2 = 𝑎3

3;

𝑔) 𝑎1
2 = 𝑎1

3 = 𝑎2
1 = 𝑎3

1 = 𝑎3
2 = 0; 𝑎2

3 ≠ 0; 𝑎1
1 = 𝑎2

2;

ℎ) 𝑎1
2 = 𝑎1

3 = 𝑎2
1 = 𝑎3

1 = 𝑎3
2 = 0; 𝑎2

3 ≠ 0; 𝑎1
1 = 𝑎3

3;

𝑖) 𝑎1
2 = 𝑎1

3 = 𝑎2
1 = 𝑎2

3 = 𝑎3
1 = 𝑎3

2 = 0; 𝑎1
1 = 𝑎2

2;

𝑗) 𝑎1
2 = 𝑎1

3 = 𝑎2
1 = 𝑎2

3 = 𝑎3
1 = 𝑎3

2 = 0; 𝑎1
1 = 𝑎3

3;

𝑘) 𝑎1
2 = 𝑎1

3 = 𝑎2
1 = 𝑎2

3 = 𝑎3
1 = 𝑎3

2 = 0; 𝑎2
2 = 𝑎3

3. (10)

Proof. From 𝛿1 ≡ 0 we get the equalities:

(𝑎1
2)

2𝑎2
3 − 𝑎1

2𝑎
1
3𝑎

2
2 + 𝑎1

2𝑎
1
3𝑎

3
3 − (𝑎1

3)
2𝑎3

2 = 0,

−2𝑎1
1𝑎

1
2𝑎

2
3 + 𝑎1

1𝑎
1
3𝑎

2
2 − 𝑎1

1𝑎
1
3𝑎

3
3 + 𝑎1

2𝑎
1
3𝑎

2
1 + 𝑎1

2𝑎
2
2𝑎

2
3 + 𝑎1

2𝑎
2
3𝑎

3
3 + (𝑎1

3)
2𝑎3

1 − 𝑎1
3(𝑎

2
2)

2+

+𝑎1
3𝑎

2
2𝑎

3
3 − 2𝑎1

3𝑎
2
3𝑎

3
2 = 0,

(𝑎1
1)

2𝑎2
3 − 𝑎1

1𝑎
1
3𝑎

2
1 − 𝑎1

1𝑎
2
2𝑎

2
3 − 𝑎1

1𝑎
2
3𝑎

3
3 − 𝑎1

2𝑎
2
1𝑎

2
3 + 2𝑎1

3𝑎
2
1𝑎

2
2 − 𝑎1

3𝑎
2
1𝑎

3
3 + 2𝑎1

3𝑎
2
3𝑎

3
1+

+𝑎2
2𝑎

2
3𝑎

3
3 − (𝑎2

3)
2𝑎3

2 = 0,

𝑎1
1𝑎

1
2𝑎

2
2 − 𝑎1

1𝑎
1
2𝑎

3
3 + 2𝑎1

1𝑎
1
3𝑎

3
2 − (𝑎1

2)
2𝑎2

1 − 𝑎1
2𝑎

1
3𝑎

3
1 − 𝑎1

2𝑎
2
2𝑎

3
3 + 2𝑎1

2𝑎
2
3𝑎

3
2 + 𝑎1

2(𝑎
3
3)

2−

−𝑎1
3𝑎

2
2𝑎

3
2 − 𝑎1

3𝑎
3
2𝑎

3
3 = 0,

−(𝑎1
1)

2𝑎2
2 + (𝑎1

1)
2𝑎3

3 + 𝑎1
1𝑎

1
2𝑎

2
1 − 𝑎1

1𝑎
1
3𝑎

3
1 + 𝑎1

1(𝑎
2
2)

2 − 𝑎1
1(𝑎

3
3)

2 − 𝑎1
2𝑎

2
1𝑎

2
2 − 3𝑎1

2𝑎
2
3𝑎

3
1 + 3𝑎1

3𝑎
2
1𝑎

2
2+

+𝑎1
3𝑎

3
1𝑎

3
3 − (𝑎2

2)
2𝑎3

3 + 𝑎2
2𝑎

2
3𝑎

3
2 + 𝑎2

2(𝑎
3
3)

2 − 𝑎2
3𝑎

3
2𝑎

3
3 = 0,

−(𝑎1
1)

2𝑎3
2 + 𝑎1

1𝑎
1
2𝑎

3
1 + 𝑎1

1𝑎
2
2𝑎

3
2 + 𝑎1

1𝑎
3
2𝑎

3
3 − 2𝑎1

2𝑎
2
1𝑎

3
2 + 𝑎1

2𝑎
2
2𝑎

3
1 − 2𝑎1

2𝑎
3
1𝑎

3
3 + 𝑎1

3𝑎
3
1𝑎

3
2−

−𝑎2
2𝑎

3
2𝑎

3
3 + 𝑎2

3(𝑎
3
2)

2 = 0,

𝑎1
1𝑎

2
1𝑎

2
3 − 𝑎1

3(𝑎
2
1)

2 − 𝑎2
1𝑎

2
3𝑎

3
3 + (𝑎2

3)
2𝑎3

1 = 0,

−𝑎1
1𝑎

2
1𝑎

2
2 + 𝑎1

1𝑎
2
1𝑎

3
3 + 𝑎1

1𝑎
2
3𝑎

3
1 + 𝑎1

2(𝑎
2
1)

2 − 2𝑎1
3𝑎

2
1𝑎

3
1 + 𝑎2

1𝑎
2
2𝑎

3
3 + 𝑎2

1𝑎
2
3𝑎

3
2 − 𝑎2

1(𝑎
3
3)

2−

−2𝑎2
2𝑎

2
3𝑎

3
1 + 𝑎2

3𝑎
3
1𝑎

3
3 = 0,

−𝑎1
1𝑎

2
1𝑎

3
2 − 𝑎1

1𝑎
2
2𝑎

3
1 + 𝑎1

1𝑎
3
1𝑎

3
3 + 2𝑎1

2𝑎
2
1𝑎

3
1 − 𝑎1

3(𝑎
3
1)

2 − 𝑎2
1𝑎

2
2𝑎

3
2 + 2𝑎2

1𝑎
3
2𝑎

3
3 + (𝑎2

2)
2𝑎3

1−

−𝑎2
2𝑎

3
1𝑎

3
3 − 𝑎2

3𝑎
3
1𝑎

3
2 = 0,

−𝑎1
1𝑎

3
1𝑎

3
2 + 𝑎1

2(𝑎
3
1)

2 − 𝑎2
1(𝑎

3
2)

2 + 𝑎2
2𝑎

3
1𝑎

3
2 = 0. (11)
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Without loss of generality we can assume that

𝑎3
1 = 0, (12)

because, otherwise, we can obtain this equality by transformation

𝑥1 = 𝑥2, 𝑥2 = 𝑥1 +
𝑎3

2

𝑎3
1
𝑥2, 𝑥3 = 𝑥3. (13)

Substituting 𝑎3
1 = 0 in (11), from the last equality, we get 𝑎2

1𝑎
3
2 = 0. This implies the

following cases: 1) 𝑎3
1 = 𝑎2

1 = 0, 𝑎3
2 ≠ 0; 2) 𝑎3

1 = 𝑎3
2 = 0, 𝑎2

1 ≠ 0; 3) 𝑎3
1 = 𝑎2

1 = 𝑎3
2 = 0.

Calculating the other coefficients by means of the equalities (11) from 1), we obtain the
case 𝑎) from (10). From 3) we get the cases 𝑐) − 𝑘), from (10).

Lemma 1.2 is proved. □

Lemma 1.3. Assume that 𝜎1 ≡ 0 in (7). Then we get the relation (10).

The proof of Lemma 1.3 is analogous to the proof of Lemma 1.2.
Using Lemmas 1.2 and 1.3, it is obtained

Theorem 1.2.
𝜎1(𝑥) ≡ 0 ⇔ 𝛿1(𝑢) ≡ 0 (14)

and conversely
𝜎1(𝑥) ≠ 0 ⇔ 𝛿1(𝑢) ≠ 0. (15)

2. Notions of stability of unperturbed motion and the Lyapunov
function

Let the differential system of the perturbed motion [2] be given in the form (1). Then,
according to [2], the zero values of the variables 𝑥 𝑗 ( 𝑗 = 1, 2, 3) correspond to the
unperturbed motion.

Definition of stability by Lyapunov [2]. Let for any small number Y, there exists a
positive number 𝛿 such that for any perturbation 𝑥 𝑗 (𝑡0) is satisfied the condition

3∑︁
𝑗=1

(𝑥 𝑗 (𝑡0))2 ≤ 𝛿, (16)

and for any 𝑡 ≥ 𝑡0 is satisfied the condition
3∑︁
𝑗=1

(𝑥 𝑗 (𝑡))2 < Y.

Then the unperturbed motion 𝑥 𝑗 = 0 ( 𝑗 = 1, 2, 3) is called stable, otherwise unstable.
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If the unperturbed motion is stable and the value 𝛿 can be found however small such
that for any perturbed motions satisfying (16) the condition

lim
𝑡→+∞

3∑︁
𝑗=1

(𝑥 𝑗 (𝑡))2 = 0

is valid, then the unperturbed motion is called asymptotically stable.
We will examine the system (9). The characteristic equation of this system is

𝜚3 + 𝐿1𝜚
2 + 𝐿2𝜚 + 𝐿3 = 0, (17)

where the coefficients of this equation are expressed by center-affine invariants (8), and
have the form

𝐿1 = −\1, 𝐿2 =
1
2
(\2 − \2

1), 𝐿3 = −1
6
(\3

1 − 3\1\2 + 2\3). (18)

Using the Lyapunov’s theorems on stability of unperturbed and perturbed motion in the
first approximation [2], and the Hurwitz’s theorem [2], we obtain the following theorems:

Theorem 2.1. Assume that the center-affine invariants (18) of the system (1) satisfy the
inequalities

𝐿1 > 0, 𝐿2 > 0, 𝐿3 > 0, 𝐿1𝐿2 − 𝐿3 > 0,

then the unperturbed motion 𝑥1 = 𝑥2 = 𝑥3 = 0 of the system (1) is asymptotically stable.

Theorem 2.2. If at least one of the center-affine invariant expressions (18) of system (1)
has the sign less than zero, then the unperturbed motion 𝑥1 = 𝑥2 = 𝑥3 = 0, of the system
(1), is unstable.

Following [2], we consider the real function 𝑉 (𝑥) = 𝑉 (𝑥1, 𝑥2, 𝑥3), which is defined in
the domain

3∑︁
𝑗=1

(𝑥 𝑗)2 ≤ `, (19)

where ` is a positive numerical constant.
In this domain, the function 𝑉 (𝑥) is unique and continuous and is vanishing for

𝑥1 = 𝑥2 = 𝑥3 = 0, i.e.
𝑉 (0) = 0. (20)

If in the domain (19) this function takes values of the same sign, then it is called of
constant sign (respectively positive or negative). If the function of constant sign vanishes
only when 𝑥1, 𝑥2, 𝑥3 are zero, then 𝑉 is called of determined sign. The introduction of
such functions𝑉 , in the research of the stability of motion, are called Lyapunov functions.

Later on, we will use the following Lyapunov Theorem:
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Theorem 2.3. [1, 2] Let for equations of the perturbed motion can be found a function
𝑉 (𝑥) = 𝑉 (𝑥1, 𝑥2, 𝑥3) of the determined sign such that its derivative ¤𝑉 , by virtue of the
system (45) from [1], with 𝑠 = 1, would be of constant sign, opposite to the sign of the
function 𝑉 or identically zero. Then the unperturbed motion is stable.

3. Invariant conditions for obtaining the Lyapunov form of
differential system (1)

Lemma 3.1. Suppose that 𝜎1 . 0 in (7). Then system (1), by means of a centro-affine
transformation, can be brought to the form

𝑑𝑥1

𝑑𝑡
= 𝑥2 + 𝑎1

𝛼𝛽𝛾𝛿𝑥
𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 ,

𝑑𝑥2

𝑑𝑡
= 𝑥3 + 𝑎2

𝛼𝛽𝛾𝛿𝑥
𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 ,

𝑑𝑥3

𝑑𝑡
= −𝐿3𝑥

1 − 𝐿2𝑥
2 − 𝐿1𝑥

3 + 𝑎3
𝛼𝛽𝛾𝛿𝑥

𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 ,

(21)

where 𝐿𝑖 (𝑖 = 1, 2, 3) are from (18).

Proof. Consider the substitution

𝑥1 = 𝜘1, 𝑥2 = 𝜘2, 𝑥3 = 𝜘3, (22)

where 𝜘𝑖 (𝑖 = 1, 2, 3) are given in (5). From (22), by means of expressions 𝜘𝑖 , it is
obtained (in 𝜘2 the index 𝛼 is renotated by 𝛼1)

Δ ≡ 𝑑𝑒𝑡 (𝜘1, 𝜘2, 𝜘3) =

�������
𝑢1 𝑢2 𝑢3

𝑎
𝛼1
1 𝑢𝛼1 𝑎

𝛼1
2 𝑢𝛼1 𝑎

𝛼1
3 𝑢𝛼1

𝑎𝛼
1 𝑎

𝛽
𝛼𝑢𝛽 𝑎𝛼

2 𝑎
𝛽
𝛼𝑢𝛽 𝑎𝛼

3 𝑎
𝛽
𝛼𝑢𝛽

������� = 𝛿1, (23)

where 𝛿1 is from (6) and

𝑥1 =
1
𝛿1

[(𝑎𝛼1
2 𝑎𝛼

3 𝑎
𝛽
𝛼𝑢𝛼1𝑢𝛽 − 𝑎

𝛼1
3 𝑎𝛼

2 𝑎
𝛽
𝛼𝑢𝛼1)𝑥1 + (𝑎𝛼

2 𝑎
𝛽
𝛼𝑢𝛼𝑢𝛽 − 𝑎𝛼

3 𝑎
𝛽
𝛼𝑢𝛽𝑢2)𝑥2+

+(𝑎𝛼1
3 𝑢𝛼1𝑢2 − 𝑎

𝛼1
2 𝑢𝛼1𝑢3)𝑥3],

𝑥2 =
1
𝛿1

[(𝑎𝛼1
3 𝑎𝛼

1 𝑎
𝛽
𝛼𝑢𝛼1𝑢𝛽 − 𝑎

𝛼1
1 𝑎𝛼

3 𝑎
𝛽
𝛼𝑢𝛼1𝑢𝛽)𝑥1 + (𝑎𝛼

3 𝑎
𝛽
𝛼𝑢𝛽𝑢1 − 𝑎𝛼

1 𝑎
𝛽
𝛼𝑢𝛽𝑢3)𝑥2+

+(𝑎𝛼1
1 𝑢𝛼1𝑢3 − 𝑎

𝛼1
3 𝑢𝛼1𝑢1)𝑥3],

𝑥3 =
1
𝛿1

[(𝑎𝛼1
1 𝑎𝛼

2 𝑎
𝛽
𝛼𝑢𝛼1𝑢𝛽 − 𝑎

𝛼1
2 𝑎𝛼

1 𝑎
𝛽
𝛼𝑢𝛼1𝑢𝛽)𝑥1 + (𝑎𝛼

1 𝑎
𝛽
𝛼𝑢𝛽𝑢2 − 𝑎𝛼

2 𝑎
𝛽
𝛼𝑢𝛽𝑢1)𝑥2+

+(𝑎𝛼1
2 𝑢𝛼1𝑢1 − 𝑎

𝛼1
1 𝑢𝛼1𝑢2)𝑥3] .

(24)
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Considering (5) and substitutions (22)-(24), then from the system (1) we obtain the
system (21) with 𝛿1 . 0, which according to Theorem 1.2 is equivalent to 𝜎1 . 0. Lemma
3.1 is proved. □

Using Lemma 1.3, it can easily be verified that the following assertion is proved:

Remark 3.1. If for ystem (9) of the first approximation, the condition 𝜎1 ≡ 0 holds from
(7), then the characteristic equation (17) has only real roots.

Taking into consideration Remark 3.1, it can easily be verified that the following
assertion is proved:

Lemma 3.2. The characteristic equation of system (21), with 𝜎1 . 0, has purely imagi-
nary eigenvalues if and only if the system has the form

𝑑𝑥1

𝑑𝑡
= 𝑥2 + 𝑎1

𝛼𝛽𝛾𝛿𝑥
𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 ,

𝑑𝑥2

𝑑𝑡
= 𝑥3 + 𝑎2

𝛼𝛽𝛾𝛿𝑥
𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 ,

𝑑𝑥3

𝑑𝑡
= −𝐿1𝐿2𝑥

1 − 𝐿2𝑥
2 − 𝐿1𝑥

3 + 𝑎3
𝛼𝛽𝛾𝛿𝑥

𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 , (𝐿1, 𝐿2 > 0),

(25)

where 𝐿𝑖 (𝑖 = 1, 2) are of the form (18).

Theorem 3.1. Let 𝜎1 . 0 in (7). Then, by a centro-affine transformation, the system (21)
can be brought to the form

𝑑𝑥1

𝑑𝑡
= −_𝑥2 + 𝑎1

𝛼𝛽𝛾𝛿𝑥
𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 ,

𝑑𝑥2

𝑑𝑡
= _𝑥1 + 𝑎2

𝛼𝛽𝛾𝛿𝑥
𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 ,

𝑑𝑥3

𝑑𝑡
= 𝑥2 − 𝐿1𝑥

3 + 𝑎3
𝛼𝛽𝛾𝛿𝑥

𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 ,

(26)

with the linear parts of the first two equations in the Lyapunov form, where 𝐿1, 𝐿3 are
from (18) and _2 = 𝐿3 (𝐿1, 𝐿3 > 0).

Proof. We will examine the system (21). According to Lyapunov system (45) from [1],
the linear part of this system must have the form

𝑑𝑋1

𝑑𝑡
= −_𝑋2 + ...,

𝑑𝑋2

𝑑𝑡
= _𝑋1 + ...,

𝑑𝑋3

𝑑𝑡
= 𝑎𝑋1 + 𝑏𝑋2 + 𝑐𝑋3 + ..., (27)

where by dots we mean the homogeneities of the fourth order with respect to 𝑋1, 𝑋2, 𝑋3.
The coefficients _, 𝑎, 𝑏, 𝑐 are expressions in 𝐿𝑖 (𝑖 = 1, 2, 3) and the new variables
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𝑋1, 𝑋2, 𝑋3 have the form

𝑋1 = 𝛼1𝑥
1 + 𝛼2𝑥

2 + 𝛼3𝑥
3, 𝑋2 = 𝛽1𝑥

1 + 𝛽2𝑥
2 + 𝛽3𝑥

3, 𝑋3 = 𝛾1𝑥
1 + 𝛾2𝑥

2 + 𝛾3𝑥
3, (28)

where

Δ =

�������
𝛼1 𝛼2 𝛼3

𝛽1 𝛽2 𝛽3

𝛾1 𝛾2 𝛾3

������� ≠ 0. (29)

Unde the conditions (29), we observe that the substitution (28) forms a centro-affine
transformation. Substituting (28) in the linear part of the system (27) and comparing
with the system (25), we obtain a system of nine algebraic equation in 12 unknowns
𝑎, 𝑏, 𝑐, 𝛼𝑖 , 𝛽 𝑗 , 𝛾𝑘 (𝑖, 𝑗 , 𝑘 = 1, 2, 3). Solving this system, we have

𝑋1 = −𝐿2
1_𝑥

1 + _𝑥3, 𝑋2 = 𝐿1𝐿2𝑥
1 + (𝐿2

1 + 𝐿2)𝑥2 + 𝐿1𝑥
3, 𝑋3 = 2𝐿2𝑥

1 + 𝐿1𝑥
2 + 𝑥3,

where _2 = 𝐿2, and the determinant of this transformation is

Δ = −2𝐿2_(𝐿2
1 + 𝐿2) ≠ 0 (𝐿2 > 0).

This transformation brings the system (25) to a system with the linear part in the
Lyapunov form (26) for which the initial notations of the phase variables are preserved.
The form of the fourth-degree homogeneity does not change, apart from the coefficients
and the phase variables. Theorem 3.1 is proved. □

4. Lyapunov-Darboux form of system (1) and stability conditions of
unperturbed motion

Remark 4.1. For [1 ≡ 0, from (7), the system (1) will get the following Darboux form

𝑑𝑥 𝑗

𝑑𝑡
= 𝑎

𝑗
𝛼𝑥

𝛼 + 4𝑥 𝑗𝑅(𝑥) ( 𝑗 = 1, 2, 3), (30)

where 𝑅(𝑥) is a homogeneous polynomial of the third degree with respect to the vector
coordinates 𝑥 = (𝑥1, 𝑥2, 𝑥3).

Remark 4.2. The system (30) has as 𝐺𝐿 (3,R)-invariant integral the expression 𝜎1 . 0.

This affirmation results from the identity

[𝑎1
𝛼𝑥

𝛼+4𝑥1𝑅(𝑥)] 𝜕𝜎1

𝜕𝑥1 +[𝑎
2
𝛼𝑥

𝛼+4𝑥2𝑅(𝑥)] 𝜕𝜎1

𝜕𝑥2 +[𝑎
3
𝛼𝑥

𝛼+4𝑥3𝑅(𝑥)] 𝜕𝜎1

𝜕𝑥3 = [\1+12𝑅(𝑥)]𝜎1,

where \1 is from (8).
Taking into consideration that the system (26) was obtained using the invariant condi-

tion 𝜎1 . 0 by means of the centro-affine transformations (22), and the Darboux system
(30) is governed by the invariant condition [1 ≡ 0, we obtain
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Lemma 4.1. Let 𝜎1 . 0, [1 ≡ 0 in (7) and 𝐿1, 𝐿2 > 0 in (18). Then system (1), by the
centro-affine transformations, can be brought to the following Lyapunov-Darboux form

𝑑𝑥

𝑑𝑡
= −_𝑦 + 4𝑥𝑅(𝑥, 𝑦, 𝑧),

𝑑𝑦

𝑑𝑡
= _𝑥 + 4𝑦𝑅(𝑥, 𝑦, 𝑧),

𝑑𝑧

𝑑𝑡
= 𝑦 − 𝐿1𝑧 + 4𝑧𝑅(𝑥, 𝑦, 𝑧),

(31)

where 𝑥 = 𝑥1, 𝑦 = 𝑥2, 𝑧 = 𝑥3, and

𝑅(𝑥, 𝑦, 𝑧) = 𝑎1𝑥
3 + 𝑎2𝑦

3 + 𝑎3𝑧
3 + 3𝑎4𝑥

2𝑦 + 3𝑎5𝑥
2𝑧 + 3𝑎6𝑥𝑦

2 + 3𝑎7𝑥𝑧
2+

+3𝑎8𝑥𝑦𝑧 + 3𝑎9𝑦
2𝑧 + 3𝑎10𝑦𝑧

2.
(32)

By means of the determining equations, from [7], we construct the Lie algebra admitted
by the system (31)-(32). Using Lie algebra for the mentioned system, we obtain the
analytic first integral of the form

𝐹 (𝑥, 𝑦, 𝑧) ≡
ℎ3

1
(𝐽 + ℎ2)2 = 0 (33)

governed by the condition
𝐽 (𝐽 + ℎ2) ≠ 0, (34)

where
ℎ1 = 𝑥2 + 𝑦2, 𝐽 = −𝐿1_

2(4𝐿2
1 + _2) (𝐿2

1 + 4_2),

ℎ2 = _[4(8𝑎3𝐿
2
1 + 24𝑎10𝐿

3
1 + 12𝑎5𝐿

4
1 + 24𝑎9𝐿

4
1 + 8𝑎2𝐿

5
1 + 12𝑎4𝐿

5
1 − 24𝑎7𝐿

2
1_ + 22𝑎3_

2−

−12𝑎8𝐿
3
1_ + 66𝑎10𝐿1_

2 + 75𝑎5𝐿
2
1_

2 + 78𝑎9𝐿
2
1_

2 + 34𝑎2𝐿
3
1_

2 + 51𝑎4𝐿
3
1_

2 − 36𝑎7_
3−

−3𝑎8𝐿1_
3 + 18𝑎5_

4 + 18𝑎9_
4 + 8𝑎2𝐿1_

4 + 12𝑎4𝐿1_
4)𝑥3 − 4𝐿1(12𝑎7𝐿

2
1 + 12𝑎8𝐿

3
1+

+8𝑎1𝐿
4
1 + 12𝑎6𝐿

4
1 + 10𝑎3_ + 30𝑎10𝐿1_ − 24𝑎5𝐿

2
1_ + 24𝑎9𝐿

2
1_ − 12𝑎7_

2+

+3𝑎8𝐿1_
2 + 34𝑎1𝐿

2
1_

2 + 51𝑎6𝐿
2
1_

2 − 6𝑎5_
3 + 6𝑎9_

3 + 8𝑎1_
4 + 12𝑎6_

4)𝑦3+

+4𝑎3_(4𝐿2
1 + _2) (𝐿2

1 + 4_2)𝑧3 − 12𝑎1𝐿1(4𝐿2
1 + _2) (𝐿2

1 + 4_2)𝑥2𝑦+

+12_(12𝑎5𝐿
4
1 + 12𝑎7𝐿

2
1_ + 12𝑎8𝐿

3
1_ + 10𝑎3_

2 + 30𝑎10𝐿1_
2 + 27𝑎5𝐿

2
1_

2+

+24𝑎9𝐿
2
1_

2 − 12𝑎7_
3 + 3𝑎8𝐿1_

3 + 6𝑎5_
4 + 6𝑎9_

4)𝑥2𝑧 + 12(4𝑎3𝐿
2
1 + 12𝑎10𝐿

3
1+

+12𝑎9𝐿
4
1 + 4𝑎2𝐿

5
1 − 18𝑎7𝐿

2
1_ − 12𝑎8𝐿

3
1_ + 6𝑎3_

2 + 18𝑎10𝐿1_
2 + 24𝑎5𝐿

2
1_

2+

+27𝑎9𝐿
2
1_

2 + 17𝑎2𝐿
3
1_

2 − 12𝑎7_
3 − 3𝑎8𝐿1_

3 + 6𝑎5_
4 + 6𝑎9_

4 + 4𝑎2𝐿1_
4)𝑥𝑦2+

+12_(6𝑎7𝐿
2
1 + 𝑎3_ + 3𝑎10𝐿1_) (𝐿2

1 + 4_2)𝑥𝑧2 + 12𝐿1_(12𝑎7𝐿
2
1 + 12𝑎8𝐿

3
1+

+10𝑎3_ + 30𝑎10𝐿1_ − 24𝑎5𝐿
2
1_ + 24𝑎9𝐿

2
1_ − 12𝑎7_

2 + 3𝑎8𝐿1_
2 − 6𝑎5_

3 + 6𝑎9_
3)𝑥𝑦𝑧+

66



Neagu N., Popa M., and Orlov V.

+12_(4𝑎3𝐿
2
1 + 12𝑎10𝐿

3
1 + 12𝑎9𝐿

4
1 − 18𝑎7𝐿

2
1_ − 12𝑎8𝐿

3
1_ + 6𝑎3_

2 + 18𝑎10𝐿1_
2+

+24𝑎5𝐿
2
1_

2 + 27𝑎9𝐿
2
1_

2 − 12𝑎7_
3 − 3𝑎8𝐿1_

3 + 6𝑎5_
4 + 6𝑎9_

4)𝑦2𝑧+

+12𝐿1_(2𝑎3 + 6𝑎10𝐿1 − 3𝑎7_) (𝐿2
1 + 4_2)𝑦𝑧2] .

Analyzing the first integral (33), we notice that if the inequality (34) holds, then the
function 𝐹 (𝑥, 𝑦, 𝑧) forms the Lyapunov function. According to Theorem 2.3, we have

Theorem 4.1. Let for system of the Lyapunov-Darboux type (31)-(32) the inequality (34)
holds. Then the unperturbed motion 𝑥 = 𝑦 = 𝑧 = 0, governed by this system, is stable.

Remark 4.3. For the first time, a problem analogous to that examined in this paper was
investigated for ternary system with quadratic nonlinearities in [8]. Here, the invariant
centro-affine conditions of stability or instability of unperturbed motion were obtained.
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