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Produsul de stânga, produsul de dreapta şi teorii de
torsiune relative

Rezumat. Se demonstrează că orice teorie de torsiuni relative este descrisă de produsele
de stânga şi de dreapta.
Cuvinte-cheie: subcategorii reflexive şi coreflexive, produsul de dreapta şi de stânga a
două subcategorii, teorii de torsiune relative.

1. Introduction

The paper is a continuation (with notations and terminology) of the article [6] (see also
[4]). Note by C2V the category of topological vector locally convex Hausdorff spaces
(see [9]), where you can also find all the notions referred totopologies. We will use the
following notation.

Factorization structures (see [4]):
B the class of factorization structures;
(E𝑝𝑖,M 𝑓 ) - (the class of epimorphisms, the class of kernels) = (the class of morphisms

with dense image, the class of topological inclusions with closed images);
(E𝑢,M𝑝)=(the class of universal epimorphisms, the class of exact monomorphisms)=(the

class of surjective morphisms, the class of topological inclusions);
(E𝑝,M𝑢)=(the class of exact epimorphisms, the class of universal monomorphisms);
(E 𝑓 ,M𝑜𝑛𝑜)=(the class of cokernels, the class of monomorphisms)=(the class of fac-

torial morphisms, the class of injective morphisms);
The properties of factorization structures (E 𝑓 ,M𝑜𝑛𝑜) and (E𝑝𝑖,M 𝑓 ) characterize

the category C2V as a semiabelian category. The factorization structures (E𝑢,M𝑝)
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and (E𝑝,M𝑢) play an important role in the study of the reflective and coreflective
subcategories. We need some notions and results from [3], [4] and [6].

We use the following notations for some subcategories of the category C2V.
R - the class of non-zero reflective subcategories;
K - the class of nonzero coreflective subcategories;
Π - the subcategory of complete spaces with a weak topology and with respective

functor 𝜋 : C2V → Π;
S - the subcategory of spaces endowed with a weak topology, 𝑠 : C2V → S;
Γ0 - the subcategory of complete spaces, 𝑔𝑜 : C2V → Γ𝑜;
Σ - the coreflective subcategory of spaces with the strongest locally convex topology,

𝜎 : C2V → Σ;
M̃ - the subcategory of spaces endowed with the Mackey topology, 𝑚 : C2V → M̃.
Let A and B be two classes of morphisms of the category C2V. We will use the

notations:
1. A ◦ B = {𝑎 · 𝑏 | 𝑎 ∈ A, 𝑏 ∈ B and there is the composition 𝑎 · 𝑏}.
2. The class A is called B-hereditary if from the fact that 𝑓 · 𝑔 ∈ A and 𝑓 ∈ B, it

follows that 𝑔 ∈ A. The class E𝑝𝑖 is M𝑢-hereditary ([4], Lemma 2.6);
2∗. The class A is called B-cohereditary if from the fact that 𝑓 · 𝑔 ∈ A and 𝑔 ∈ B, it

follows that 𝑓 ∈ A.
If R ∈ R, then (P′′(R),I′′(R)) = ((YR) ◦ E𝑝, (YR)⊥ ∩M𝑢).
If K ∈ K, then (P′(K),I′(K)) = ((`K)⊤ ∩ E𝑢,M𝑝 ◦ (`K)) (see [5]).
We will show the application of left and right products to the description of relative

torsion theories.

2. The right and left product of two subcategories

Definition 2.1 ([1]). Let K be a coreflective subcategory, and R a reflective subcategory
of category C. The pair (K,R) is called relative torsion theory (TTR), that is, relative to
the subcategory K ∩ R, if the functors 𝑘 : C → K and 𝑟 : C → R verify the following
two relations:

1. The functors 𝑘 and 𝑟 commute: 𝑘 · 𝑟 = 𝑟 · 𝑘;
2. For any object 𝑋 of category C the square

𝑟𝑋 · 𝑘𝑋 = 𝑘𝑟𝑋 · 𝑟𝑘𝑋 (1)

is puschout and pullback.
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Remark 2.1. In abelian categories a theory of torsion (T , F ) is a TTR relative to
intersections T ∩ F = 0 [2].

Theorem 2.1. ([3], Theorem 2.1). Let K be a non-zero coreflective subcategories, and
R be a non-zero reflective subcategories of category C2V and R ∈ R(M𝑝). The pair
(K,R) forms a TTR if and only if the coreflector functor 𝑘 : C2V −→ K and reflector
𝑟 : C2V −→ R commute: 𝑘 · 𝑟 = 𝑟 · 𝑘 .

In the work [3] this theorem is without proof, therefore, for completeness, the proof
will be included here.

Proof. Let the respective functors commute: 𝑘 · 𝑟 = 𝑟 · 𝑘 and we will prove that for any
object 𝑋 of the category C2V the square

𝑟𝑋 · 𝑘𝑋 = 𝑘𝑟𝑋 · 𝑟𝑘𝑋 (2)

is puschout and pullback. Indeed, either

𝑢𝑋 · 𝑘𝑋 = 𝑣𝑋 · 𝑟𝑘𝑋 (3)

the puschout built on the morphisms 𝑘𝑋 and 𝑟𝑘𝑋. Then

𝑟𝑋 = 𝑡𝑋 · 𝑢𝑋, (4)

𝑘𝑟𝑋 = 𝑡𝑋 · 𝑣𝑋 (5)

for a morphism 𝑡𝑋. Since 𝑟𝑘𝑋 is an epi, according to construction, we deduce that 𝑢𝑋 is
also an epi. Moreover, 𝑟𝑋 ∈ M𝑝, 𝑢𝑋 ∈ E𝑝𝑖 and the class M𝑝 is E𝑝𝑖-cohereditary. So
from equality (5) it turns out that 𝑡𝑋 ∈ M𝑝. Also 𝑘𝑟𝑋 ∈ E𝑢. Thus from equality (5) we
deduce as 𝑡𝑋 ∈ E𝑢. Finally 𝑣𝑋 ∈ E𝑢 ∩M𝑝 = I𝑠𝑜.

This is how we proved that the square (2) is puschout. The class A is called B-
hereditary if from the fact that 𝑓 · 𝑔 ∈ A and 𝑓 ∈ B, it follows that 𝑔 ∈ A. Let’s prove
that it is also pullback. Let

𝑟𝑋 · 𝑙𝑋 = 𝑘𝑟𝑋 · 𝑚𝑋 (6)

the pullback built on morphisms 𝑟𝑋 and 𝑘𝑟𝑋. Then

𝑘𝑋 = 𝑙𝑋 · 𝑝𝑋, (7)
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𝑟𝑘𝑋 = 𝑚𝑋 · 𝑝𝑋 (8)
for un morphism 𝑝𝑋. Since 𝑘𝑟𝑋 ∈ E𝑢 ∩M𝑜𝑛𝑜, it turns out that 𝑙𝑋 ∈ E𝑢 ∩M𝑜𝑛𝑜.

Thus in equality (7) the morphisms 𝑘𝑋 and 𝑙𝑋 belong to the class E𝑢 ∩M𝑜𝑛𝑜. So also
𝑝𝑋 belongs to this class. From equality (8) it follows that 𝑝𝑋 ∈ M𝑝, because 𝑟𝑘𝑋 ∈ M𝑝.
So 𝑝𝑋 ∈ E𝑢 ∩M𝑝 = I𝑠𝑜.

Remark 2.2. Regarding examples of TTR (see [1-3]).

Since K-coreplica for any object of the category C2V is a bijective application, we get:

Lemma 2.1. Let R ∈ R𝑠 (`K). Then for any object (𝐸, 𝑢) of it and any locally convex
topology 𝑣 with the property 𝑢 ≤ 𝑣 ≤ 𝑘 (𝑢), where (𝐸, 𝑘 (𝑢)) is K-core replica of the
object (𝐸, 𝑢), the object (𝐸, 𝑣) also belongs to the subcategory R.

Lemma 2.2. For the subcategoriesK andR of the category C2V the following statements
are equivalent:

1. K ∗𝑠 R = K.
2. K ∈ K 𝑓 (YR).
If the subcategory K contains the subcategory M̃ of spaces with Mackey topology,

then the previous conditions are equivalent to the condition:
3. The subcategory K is I′′(R)-coreflective.

Proof. 1 ⇒ 2. Let 𝐴 ∈ |K| and

𝑟𝐴 = 𝑓 · 𝑔 (9)

be a decomposition of the morphism 𝑟𝐴 with 𝑔 as an epi. We will prove that 𝑋 ∈ |K|.
Since 𝑔 is an epi, we deduce that 𝑓 is the R-replica of object 𝑋 . Let 𝑘𝑋 be the K-coreplica
of the object 𝑋 . We have 𝐴 ∈ |K|, so

𝑔 = 𝑘𝑋 · ℎ (10)

for a morphism ℎ. We examine the left product diagram for the object 𝑋 .
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Thus we have equality
𝑟𝑋 · 𝑘𝑋 = 𝑟 (𝑘𝑋) · 𝑟𝑘𝑋 (11)

For the morphism 𝑟𝑘𝑋 · ℎ there is a morphism 𝑤 as follows

𝑤 · 𝑟𝐴 = 𝑟𝑘𝑋 · ℎ (12)

We have

𝑟 (𝑘𝑋) · 𝑤 · 𝑟𝐴 = (𝑑𝑖𝑛(14)) = 𝑟 (𝑘𝑋) · 𝑟𝑘𝑋 · ℎ = (𝑑𝑖𝑛(13)) = 𝑟𝑋 · 𝑘𝑋 · ℎ =

= (𝑑𝑖𝑛(12)) = 𝑟𝑋 · 𝑔 = 𝑟𝐴

i.e.
𝑟 (𝑘𝑋) · 𝑤 · 𝑟𝐴 = 𝑟𝐴 (13)

Since 𝑟𝐴 is an epi, it follows that

𝑟 (𝑘𝑋) · 𝑤 = 1 (14)

According to the first hypothesis, the square (10) is pullback, and the morphism 𝑟 (𝑘𝑋) is
a retraction, it turns out that 𝑘𝑋 is the same. But 𝑘𝑋 is also a mono. Thus we proved that
𝑋 ∈ |K|.

2 ⇒ 1. Let 𝑋 be an arbitrary object of the category C2V. We construct the left product
diagram for it.

We examine the equality
𝑟𝑘𝑋 = 𝑓 𝑋 · 𝑡𝑋 . (15)

Because the class E𝑝𝑖 is M𝑢-hereditary ([4], Lemma 2.6), the morphism 𝑡𝑋 is an epi.
Thus according to hypothesis (2) 𝑙𝑋 is an object of the subcategory K. Therefore, 𝑡𝑋 is
an iso, and K ∗𝑠 R = K.
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3 ⇐⇒ 1. For an arbitrary object of the category C2V we examine the commutative
square:

𝑟𝑋 · 𝑘𝑋 = 𝑟 (𝑘𝑋) · 𝑟𝑘𝑋 (16)

Since M̃ ⊂ K, it follows that K is a M𝑢-coreflective subcategory. Thus 𝑘𝑋 ∈ M𝑢.
According to Theorem 2.12 [4] the square (16) is pullback if and only if 𝑘𝑋 ∈ I′′(R).

We formulate the dual statement.

Lemma 2.3. For the subcategoriesK andR of the category C2V the following statements
are equivalent:

1. K ∗𝑑 R = R.
2. R ∈ R𝑠 (`K).
If the subcategory R contains the subcategory S of spaces with weak topology, then

the previous conditions are equivalent to the condition:
3. The subcategory R is E′(K)-reflective.

The proven Lemmas allow us to formulate the following result. From Theorem 2.1
and Lemmas 2.2, 2.3 we obtain:

Theorem 2.2. Let K ∈ K(M𝑢), i.e. K is a M𝑢- coreflective subcategory of the category
C2V (M̃ ⊂ K), and R ∈ R(M𝑝), i.e. R is a M𝑝-reflective subcategory (Γ0 ⊂ R). Then:

1. The subcategory K is closed in relation to (E𝑝𝑖 ∩ M𝑝)-factorobjects. In other
words, the subcategory K is closed in relation to the extensions.

2. R ∈ R𝑠 (`K).

Remark 2.3. For some subcategories K of the class K(M𝑢), in particular, for the
subcategory M̃, it is well known that they are closed in relation to extensions ([9],
Assertion IV.3.5.)

2. Any fully convex local space (𝐸, 𝑡) remains complete in any topology 𝑢 finer than 𝑡

and compatible with the same duality:

𝑡 ≤ 𝑢 ≤ 𝑚(𝑡),

910], VI, Proposition 5). This result was generalized for any M𝑝-reflective subcategory
by D. Botnaru and O. Cerbu [6], Theorem 1.12.
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3. The theories of relative torsion

Theorem 3.1. Let K be a coreflective subcategory, and R - a nonzero reflective subcate-
gory of the category C2V. The following statements are equivalent:

1. The pair (K,R) forms a TTR.
2. a) The coreflector function 𝑘 : C2V −→ K and reflector 𝑟 : C2V −→ R commute

𝑘 · 𝑟 = 𝑟 · 𝑘; b) K ∗𝑠 R = K; c) K ∗𝑑 R = R.
3. a) The functors 𝑘 and 𝑟 commute 𝑘 ·𝑟 = 𝑟 · 𝑘; b) K ∈ K 𝑓 (YR); c) R ∈ R𝑠 (`K).
If M̃ ⊂ K and S ⊂ R then the preceding conditions are equivalent to the following:
4. a) The functors 𝑘 and 𝑟 commute 𝑘 · 𝑟 = 𝑟 · 𝑘; b) The subcategory K is

I′′(R)-coreflective; c) The subcategory R is E′(K)-reflective.

Remark 3.1. In the previous Theorem p.2 and p.3 condition a) is not a consequence of
conditions b) and c).
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[5] Botnaru, D. Noyaux des sous-catégories semi-réflexives. ROMAI Journal, 2018, vol. 14, no. 2, 1–32.
[6] Botnaru, D., Cerbu, O. Semireflexif product of two subcategories. In: Proc. Sixth Congress of

Romanian Math., 2007, no. 1, Bucharest, 5–19.
[7] Botnaru, D. Couples des sous-catégories bisemiréflectives et les théories de torsion relative. ROMAI
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