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Center conditions for a cubic system with two homogeneous
invariant straight lines and exponential factors
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Abstract. In this paper for a cubic differential system with a singular point O(0, 0) of a
center or a focus type, having two homogeneous invariant straight lines and exponential
factors, we determine conditions under which the singular point is a center.
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Conditii de existenta a centrului pentru un sistem cubic cu doua
drepte invariante omogene si factori exponentiali

Rezumat. in aceasti lucrare pentru un sistem diferential cubic cu punctul singular O (0, 0)
de tip centru sau focar, care are doud drepte invariante omogene si factori exponentiali,
sunt determinate conditiile Incat punctul singular si fie centru.

Cuvinte-cheie: sistem diferential cubic, problema centrului si focarului, curba algebrica

invariantd, factor exponential.

1. INTRODUCTION
We consider the cubic differential system of the form

¥ =y+ax?+cexy+ fy? +kxd +mx?y + pxy* +ry’ = P(x,y), W
y=—(x+ g)c2 +dxy + by2 +5x° + qxzy + nxy2 + ly3) = Q0(x,y),

in which P(x, y) and Q(x, y) are real and coprime polynomials in the variables x and y.
The origin O(0, 0) is a singular point of a center or a focus type for (1). The problem
arises of distinguishing between a center and a focus, i.e. of finding the coefficient
conditions under which O (0, 0) is, for example, a center. These conditions are called the
center conditions and the problem - the problem of the center. When the cubic system (1)
contains both quadratic and cubic nonlinearities, the problem of finding a finite number
of necessary and sufficient conditions for the center is still open.

It is well known that O(0,0) is a center for system (1) if and only if the Lyapunov
quanities Ly, Ly, ..., Ly, ... vanish [5], [18].
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The problem of finding the center conditions for system (1) has a long history and a
variety of methods have been developed. An approach to the problem of the center is to
study the local integrability of the system (1) in some neighborhood of the singular point
0(0,0). It is known that a singular point O (0, 0) is a center for system (1) if and only if it
has a holomorphic first integral of the form F(x, y) = C in some neighborhood of O (0, 0)
[17]. Also, O(0,0) is a center if and only if the system (1) has a holomorphic integrating
factor of the form p = 1 + ) ;(x, y) in some neighborhood of O(0, 0) [1].

The problem of the center was solved for some families of cubic differential systems
having invariant algebraic curves (invariant straight lines, invariant conics, invariant
cubics) in [5], [7], [9], [10], [12], [13], [16], [19], [20], [21]. Center conditions were
determined for some cubic systems having integrating factors in [8], [11], [14], for some
reversible cubic systems in [2] and for a few families of the complex cubic system in [15].

In this paper we determine the center conditions for cubic differential system (1)
assuming that the system has invariant straight lines and exponential factors. The paper
is organized as follows. In Section 2 we present the results concerning the existence of
invariant straight lines and exponential factors. In Section 3 we find conditions under
which the cubic system has exponential factors. In Section 4 we obtain center conditions

for system (1) with two homogeneous invariant straight lines and one exponential factor.

2. INVARIANT STRAIGHT LINES AND EXPONENTIAL FACTORS

We study the problem of the center for cubic differential system (1) assuming that the

system has invariant algebraic curves and exponential factors.

Definition 2.1. An algebraic curve ®(x, y) = 0 in C? with ® € C|[x, y] is said to be an

invariant algebraic curve of system (1) if

0o

od
a—P(x, y)+ —0(x,y) = O(x, y)K(x,y), 2
X ay

for some polynomial K(x,y) € C[x,y], called the cofactor of the invariant algebraic

curve ®(x,y) =0.
By the above definition, a straight line
C+Ax+By=0, A,B,CeC, (AB)+(0,0), 3)

is an invariant straight line for system (1) if and only if there exists a polynomial K (x, y)
such that the following identity holds

A-P(x,y)+B-Q(x,y) =(C+Ax+ By) - K(x,y). @)
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If the cubic system (1) has complex invariant straight lines then obviously they occur

in complex conjugated pairs [5]
C+Ax+By=0 and C+Ax+By=0.

According to [6] the cubic system (1) cannot have more than four nonhomogeneous

invariant straight lines, i.e. invariant straight lines of the form
1+Ax+By=0, (A,B)#(0,0). (5)
As homogeneous invariant straight lines Ax + By = 0, the system (1) can have only the
lines x Fiy = 0,i*> = —1.
Lemma 2.1. The cubic system (1) has the invariant straight lines x ¥ iy = 0 if and only
if the following set of conditions holds
d=f—-a, c=g-b, k-l=p—-q, r+s=m+n. (6)
Proof. By Definition 2.1, the straight lines x ¥ iy = 0 are invariant for (1) if and only if
P(x,y) FiQ(x,y) = (x Fiy)(coo + C10X + Co1y + C20x> + c11xy + co2Y?). (7)
Identifying the coefficients of the monomials x/y” in (7), we find that
coo =%, cljo=azxig, co=p—-k—qgxilm+n-ys),
cor=c—g=xila+d), coo=kxis, cpi=m—-s=xi(k+q)
and
f—-a-d+i(b+c—-g)=0, r+s—-m—-n+xi(l-k+p—-q)=0.

The last identities yield the set of conditions (6). m]

The cofactors of the invariant straight lines x ¥ iy = 0 are

Ki(x,y)=i+(a+i(b+c))x+(=b+i(a+d)y+ (k+is)x>+
+(m-s+ilk+qg)xy+(p—k—g+i(m+n—s))y>, (8)
KZ(X,y) = Kl(x’ y)

Denote k =u+1l, p=u+gq, s =v—r, n =v—m, where u, v are some real parameters.

Assume that the conditions (6) are fulfilled, then system (1) can be written as follows

x:y+ax2+(g—b)xy+fy2+(u+l)x3+mx2y+
+(u+q)xy* +ry’ = P(x,y),
)

y’:—(x+gx2+(f—a)xy+by2+(v—r)x3+qx2y+
+(v—m)xy? +1y?) = Q(x, y).
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The problem of the center was solved for system (9) with: one invariant straight line
1+ Ax + By = 0 in [20], two invariant straight lines of the form (5) in [5], one invariant
conic axx* +a; Xy + a02y2 +ajpx+agpy+1=0in[7]. By using the method of Darboux

integrability and rational reversibility, the center conditions were found for (9) in [8].

In this Section, we investigate the problem of the existence of exponential factors for

cubic differential system (9).

Definition 2.2. Let i, g € C[x, y] be relatively prime in the ring C[x, y]. The function
® = exp(g/h) is called an exponential factor of a system (1) if for some polynomial
K € C[x, y] of degree at most two it satisfies the equation

TP )+ 20(y) = OK (), (10)
As before, we say that K is the cofactor of the exponential factor exp(g/h).

This means that if we have a cubic differential system (1) with an exponential factor
of the form exp(g/h), then there is a 1-parameter perturbation of system (1), given by a
small &, with two invariant algebraic curves, namely # = 0 and % + g = 0. Hence, when
& = 0, these two curves coalesce giving the exponential factor exp(g/h) for the system
with & = 0 (the invariant algebraic curve & = 0 has geometric multiplicity larger than
one), as well as the invariant algebraic curve 7 = 0 which does not disappear [3].

Since the exponential factor cannot vanish, it does not define invariant curves of the
cubic system (1). The next theorem, proved in [3], gives the relationship between the

notion of invariant algebraic curve and exponential factor.

Theorem 2.1. Ifexp(g/h) is an exponential factor with cofactor K for a cubic system (1)
and if h is not a constant, then h = 0 is an invariant algebraic curve with cofactor Ky,

and g satisfies the equation X(g) = gKp + hK.

Eventually @ = exp(g) can be an exponential factor coming from the multiplicity of

the infinite invariant straight line.

3. CUBIC DIFFERENTIAL SYSTEMS WITH EXPONENTIAL FACTORS

In this Section, we consider the cubic differential system (9) with two homogeneous
invariant straight lines x ¥ iy = 0. We determine the conditions under which the system

(9) has exponential factors of the form

(1D

@ =exp (g(x,))), ¢=wpf@dﬂ,

x2 +y?

where g(x, y) is a real polynomial with degree(g) < 2.
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Lemma 3.1. The cubic differential system (9) has an exponential factor of the form

@ = exp (ajox + aog1y) if and only if one the following two sets of conditions holds:

(i) m=r, g=1,1=(raw)/ao, v = (ra}, + uagiao +rai,)/al,;
i) m=r=0,qg=1, u=-IL.

Proof. By Definition 2.2, the function ® = exp (a;ox + ag1y) is an exponential factor for

system (9) if there exists numbers cg, co1, €20, €11, o2 such that
2 2
aoP(x,y) +ao1Q(x,y) = c1ox + cory + c20x” + c11xy + co2y”. (12)

Substituting P(x,y), Q(x,y) in (12) and identifying the coefficients of the monomials
xtyl i+ j =1,2,3, we find that co; = ajo, ci0 = —ao1, c20 = aay — gaol, c11 =
(a— f)aor + (g —b)aio, coa = faio— bap; and a9, ag; satisfy the system of equations:

Uso = (I +u)aio + (r —v)aor =0,
Uz
U2
Uy =rayg —lag; =0.

mayo — qagr =0,

1
(q + M)Cllo + (m — V)aOl = O’ ( 3)

Assume that ag; # 0. Then the equations of (13) yield
m=r, q= [, [ = (ralo)/am, V= (raél +uaopiaio +ra%o)/a%].

We obtain the set of conditions (1) of Lemma 3.1. The system (9) has the exponential
factor ® = exp (ajox + ao1y) with cofactor K(x, y) = (aaio — gao))x* + (aag; — faor —
bayo + gaio)xy + (faio — bao1)y* — apix + aioy.

Assume that ag; = 0, then ajg # 0. In this case the equations of (13) imply m =r =
0, g =1, u = —1. We obtain the set of conditions (i) of Lemma 3.1. The system (9) has
the exponential factor ® = exp (x) with cofactor K (x, y) = ax®> —bxy+gxy+ fy>+y. O

Lemma 3.2. The cubic system (9) has an exponential factor of the form
@ = exp (axx* +ayxy + agpy* + ajox + a1y + ago) (14)
if and only if one the following three sets of conditions holds:

(1)) c=d=0,f=a,g=b,k=p=qg=Lr=m,s=n;

()c=d=0,f=a,g=b,k=p,p=I1l+u,r=m,m= (al)/b, s = n,
n=({+u)b)la,q=1,

(@3) c=g-b,d=f-a,k=l=p=gq=0,m=n=s=r.
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Proof. By Definition 2.2, the function (14) is an exponential factor for cubic system (9)
if there exist numbers ¢, 11, co2, €10, o1 such that

(2a20x + arry + a10)P(x,y) + (2agzy + anx +ap)Q(x,y) =

) 5 (15)
= CooX~ +C11XY +CopyY” + C1oX + Co1) -

Substituting P(x, y) and Q(x, y) in (15) and identifying the coefficients of the mono-
mials x’y/, we reduce this identity to a system of fourteen equations

{Ul-]-:0, i+j=1, 2, 3, 4} (16)

for the unknowns a;, ¢;; and the coefficient of system (9).
When i + j = 1,2, from the equations of (16) we get
o1 = @0, €10 = —do1, o2 = a1 — bag + faio,
c20 = aayg — gaor — ar, c11 = (a — faor +2az — 2amn + (g — b)ajo.

1. Assume thataj; # 0. In this case the equations Usg = 0, U2 = 0 and Ups = 0 of (16)
yieldv = (rai +2lay +2uaz)/an, r = (2lany)/an, m = ((I+q)an + (I - q)ax)/an.
The resultant of the polynomials Us; and Uy3 with respect to g is Res(Usi, Uy3, q) =
2ufi fo, where fi = 4agaz — a2, f» = (ap — ax)* +a?, # 0.

Letu = 0. ThenU3; = 0and U3 = Oimply ¢ = /. From the equations Uzg = 0, Upz = 0
of (16) we express f, g and calculate the resultant of the polynomials U and Uj, with
respect to b. We obtain that Res(Us1, Uya, b) = —4a11818283, where g1 = aayy — laoi,
g2 = 4amax — aj,, g3 = (ag — axn)* +aj, # 0.

If gy =0, then ag; = (aai;)/l and ajo = (bai1)/l. In this case we obtain the set of
conditions (i1) of Lemma 3.2. The exponential factor is

® = exp(2bx + 2ay + 2lxy + nx® + my?)
having the cofactor K (x, y) = 2(—ax + by — Ix> + [y> — mxy + nxy).

If g # Oand g, = 0, then ayy = a%l/(4aoz), aio = [(lagy —aai1+2bayy)ar1]/(2lagy).
This case is contained in Lemma 3.2, (i) (n = [*/m).

Assume that u # 0 and let f; = 0. Then Us; = 0 and U;3 = 0 yield ¢ = [. From the
equations Usp = 0, Upz = 0 we express a, f and calculate the resultant of the polynomials
U, and Uj, with respect to b. We obtain that Res(Uzy, Ui, b) = ajjuhihy, where
hy = apra1 — 2amaig, hy = 4a%2 +a%1 #0,au #0.

Let hy = 0. Then ajo = (aoi1ai1)/(2agz) and g = b. In this case we get the set of
conditions (i) of Lemma 3.2. The exponential factor is

O =exp((bx + ay)(2bag + baj1x + aay1y)/(2ab))
having the cofactor K (x, y) = (by — ax)(bag; + ba1x + aay;y)/(ab).

2. Assume that a1; = 0 and let ag; = 0. This case is contained in Lemma 3.2, (i})
(Il=n=0).
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3. Assume that a7 = 0 and let agp # 0. In this case [ = 0 and Uy = uary = 0.

If u = 0, then axy = agz, v = m +r. The equations U;; = 0,i + j = 3 of (16) yield
m=r,q=0,a9 = (2aag)/r, aio = 2bagy)/r. We obtain the set of conditions (i3) of
Lemma 3.2. The exponential factor is

® = exp(2bx + 2ay + rx* +ry?)
with cofactor K(x,y) = 2(ax — by)(ay + bx — fy —gx —1).

If ayo =0and u # 0, then g = 0,m = v = r. The equations U;; = 0,i + j = 3 of (16)

yield ajo =0,b =g =0, f = a. In this case P(x,y) = —x is not a cubic polynomial. O

Lemma 3.3. The cubic system (9) has an exponential factor of the form

@ = exp((arox + aory + ago)/(x* +*)) A7)
if and only if the following set of conditions holds

I=ba+f),m=2a*>+2af-2b*>-2bg+r,q=-3ab—2ag-bf,u=ag-bf,
v=m+r—a®>—af +b*+bg.

Proof. By Definition 2.2, the function (17) is an exponential factor for cubic system (9)
if there exist numbers cjg, co; such that

2

(=a10x? + a10y? = 2ag1xy — 2a¢ox) P(x, y)+

(18)
+ (ap1x* — ag1y” — 2a10xy — 2a00y)Q(x, y) = (x* + y*)*(c10x + co1y).
Substituting P(x, y), Q(x, y) in (18) and identifying the coefficients of the monomials

x'y/, we reduce this identity to a system of nine equations
{Uij =0, i+j=1,2,3} (19)

for the unknowns a9, ao1, dgo, €10, co1 and the coefficient of system (9).

From the equations U3y = 0, Upz = 0 of (19), we find that

co1 = lag) +rayo, c1o = (r = v)aor — (I +u)ao.

When i + j = 1, we obtain that a9 = —2bago and ag; = —2aago. Then the equations

Uy =0,U;1 =0,Upy =0 of (19) yield
l=bla+f),u=ag-bf,v=m+r—a*>—af +b*+bg.
The equations Uy = 0, U, = 0 of (19) imply
m=2a*>+2af —2b*>-2bg +r,q=-3ab—2ag - bf.
In this case we determine the exponential factor
® = exp((1 = 2bx = 2ay)/(x* +y?))

with cofactor K3(x, y) = 2(a® + af +r)(ax — by). |
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Lemma 3.4. The cubic system (9) has an exponential factor of the form
@ = exp((azx” + a1 xy + any” +awx +aory + agp)/ (x> + y%)) (20)
if and only if one of the following two sets of conditions holds:
) Il=bf,m=r+af-bg,q=-ag,v=2r,u=ag—->bf;
(@) f=-a,g=-b,gq=—-1,v=2r,u=0.

Proof. By Definition 2.2, the function (20) is an exponential factor for cubic differential

system (9) if there exist numbers ¢, c11, Co2, €10, Co1 Such that

(Zazoxy2 - 2a02xy2 - a11x2y + c111y3 - a10x2 —2ap1xy +

+aoy? — 2apox) P(x,y) + (a11x> + 2apnx?y — 2axx*y — ajxy? +
2 — ap1y* = 2aioxy — 2a00y)Q(x,y) =

= (x% + ) (c20x® + c11xy + cony* + C10X + Co1Y).

21
+ap1x

Substituting the polynomials P(x,y), Q(x,y) from (9) in (21) and identifying the

coefficients of the monomials x’y/, we reduce (21) to a system of fourteen equations
{Uij=0, i+j=1,2,3,4} (22)

for the unknowns asg, a11, ag2, @10, @o1, @00, €20, C11, Co2, C10, Co1 and the coefficient of
system (9). From the equations Ugs = 0, U3 = 0, Uso = 0 of (22), we obtain that
co2 =ray, cip =2r(ax —ap) + (I +q+u)ayy, co=(r-v)an
and from the equations Uys = 0, Usg = 0, we get that
co1 = lagy +rao+ fan, cio=(r —v)ao — (I +u)ao — ga.
The equations U9 = 0, Up; = 0 and Uy = 0 yield
apr = —2aapg, ajp = —2bagy, ai = 2a00(ab +ag — [ — u)
and the equations Uy = 0, U;; = 0 imply
u=ag—bf, ap=(a’>+af —b>—bg —m—r+v)ay + ay.
Then the system of equations (22) becomes
Uy =0,U1p=0,U31 =0,Upp =0. (23)
The resultant of the polynomials Uy, Us; with respect tom is Res(Uz, Uz, m) = fi f>,
where fi =ab+bf -1, fr=(ag-bf +1+q)*+ (2r —v)>.
1. Assume that fj =0, then! = b(a + f) and U3, = g1g> = 0, where
gi=a’+af —-b*—bg—m—r+v,g =2r—v.
When g; = 0 we obtain that U3; = 0, Uy, = 0. The resultant of the polynomials

U»1, Uy with respect to g is Res(Uay, U1z, g) = hihy, where
h =2a2+2af—2b2—2bg—m+r, hy = a? + b2.
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If h; = 0, then we have the exponential factor ® = exp((1 — 2bx — 2ay)/(x? + y?))
obtained in Lemma 3.3. If #; # 0 and a = b = 0, then the right hand sides of (9) have a
common factor rx> +ry> + gxy + gx + fy + 1.

Assume that g; # 0 and let go = 0. Then v = 2r, U3; = 0 and the equation Uy = 0

yields ¢ = —a(b + g). The resultant of the polynomials U, U, with respect to m is
Res(Usy, Uip,m) = =2ab((a + f)> + (b +g)?).

If f = —a and g = —b, then we obtain the set of conditions (i2) (/ = 0), Lemma 3.4.

Suppose that (a+ f)>+(b+g)*> #0. Ifa = 0, then Uy; = 0,U; = Oimply m = r — bg
and we get set of conditions (i;) (a = 0). If a # 0 and b = 0, then we have the set of
conditions (i) (b = f =0).

2. Assume that fi # O and let f, = 0. Theng = bf - —ag and v = 2r. In this
case Uy = 0, Uz = 0 and the resultant of the polynomials U, U, with respect to m is
Res(Usi,Uja,m) = ejes, where ey =1 —bf, er = (a+ f)>+ (b +g)°.

Ife; =0,thenm =r +af — bg. We get the condition (i;). The exponential factor is

® = exp((b%x? — a’x* + 2abxy — 2bx — 2ay + 1)/ (x> + y?))
and have the cofactor K3(x,y) = 2r(by — ax)(ay + bx — 1).
Ife; # 0and e; = 0, then f = —a, g = —b. We obtain the set of conditions (i),

Lemma 3.4. The exponential factor is
® = exp((mx? — rx? = 2lxy — 2bx — 2ay + 1)/ (x* + y?))

and have the cofactor K3(x, y) = 2r(ax — by + Ix* — Iy> + mxy — rxy). O

4. THE PROBLEM OF THE CENTER

We are interested in the algebraic integrability of a cubic differential system (1) with
two homogeneous invariant straight lines x ¥ iy = 0 and an exponential factor of the
form (11), called the Darboux integrability [4], [22]. It consists in constructing of a first
integral or an integrating factor of the Darboux form

[ LR em, (24)

where a; € C, fi =x —iy, f, =x +iy and ® is of the form (11).
By [18, pag. 141], if for the cubic system (1) we can construct an integrating factor (a
first integral) of the form (24), then O (0, 0) is a center.

Definition 4.1. An integrating factor for system (1) on some open set U of R? is a C'
function u defined on U, not identically zero on U such that
o°P 0
op 09
ox Oy )

0 o
P(x,y>a—§‘ +0(x, y)ﬁ +u ( 0. (25)
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Lemma 4.1. The following three sets of conditions are sufficient conditions for the origin

to be a center for system (1):

i) c=g-b,d=l=m=q=r=0,f=a,k=p=al(g->b),s=n;

(i) c=g-b,d=f-a,g=(abf-bf>+ fl—al+br)/(a’>—af +71),s =n,
n=ph/r,k=p=1[r(ab-—bf+D]/(a*>—af+r),q=1,m=r;

i)c=g-b,d=f-a,k=m=p=r=0,qg=1,1l=>bf—-ag, s =n,
(ag =bf)(b-g)+(a—-fn=0.

Proof. Let the conditions (i{) and (i) of Lemma 3.1 be fulfilled. By Definition 4.1, the
cubic system (1) has an integrating factor of the form (24) if and only if the identity (25)
holds. Identifying the coefficients of the monomials x’y/ in (25), we obtain that ;; = a»

and a», a3 are the solutions of the system
{Fij=0, i+j=12}. (26)

In Case (i1), from the equations Fjgp = 0 and F; = 0 of (26) we express a3 and u.
Then we reduce the equations Fpg = 0, F;; = 0 by g from Fy; = 0. If r = a(f — a),
then f = a and we get the condition (i) of Lemma 4.1. We obtain the exponential factor

® =exp ((aby —agy —nx)/(a(b — g))) and the system (1) has the integrating factor

2) (4bg-3b*—g>-2n)/(2(b*-bg+n))

p= (P 4y (b—g)(nx—abngy))'

P ( b2 -bg+n
Ifr # a(f-a),thenay = (4af-3a’>~f>-2r)/[(a*~af+r)]. Inthis case we determine
the condition (ii) of Lemma 4.1. We have the exponential factor ® = exp ((Ix +ry)/r)

and the system (1) has the integrating factor

H= (x2 + yz)(4af_3a2_f2_zr)/(Z(az—afw)) exp (a—f)lx+ry)
a’-af+r )
In Case (i), the equations Fp9 = 0, Fopp = 0, Fo; = 0 of (26) yield a3 = [/a,
@ = (f —3a)/(2a), 1 = f(b — a). In this case we get the condition (iii) of Lemma 4.1.

The system (1) has the exponential factor @ = exp (x) and the functon

s = (22 4 Y230/ Ca) ey ((bf - ag)x)'
a

is an integrating factor for system (1). m|

Lemma 4.2. The following four sets of conditions are sufficient condition for the origin

to be a center for system (1).

1) c=d=0,f=a,g=b,k=p=g=I1L,r=m,s=n;
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) c=g-b,d=f-a,k=lL,g=p,n=2r—s,m=2s—r,p=-3,1=b(a+f),
s=a’+af —b>—bg+r,ag—bf =0,
(i) c=g-b,d=f-a,k=ag,l=bf,m=af —-bg+r,n=-m,p =-bf,

q=-ag,s=r;

(iv) c=-2b,d=-2a, f=-a,g=-b,k=l,n=2r-m,p=-l,g=-l,s=r.

Proof. Ineach of the cases (i) — (iv) the cubic differential system (1) has two homogeneous
invariant straight lines x ¥ iy = 0 and an exponential factor ®.

In Case (i), we find the exponential factor @ = exp(2bx + 2ay + 2lxy + nx* + my?*) and
the system (1) has the first integral

(x% +y?) exp(2bx + 2ay + 2lxy + nx* + my*) = C.

In Case (ii), we have @ = exp((1 — 2bx — 2ay)/(x*> + y*)). We can construct an

integrating factor of the form

_ (3b+g)(1 = 2bx —2ay)
p=(x>+y") exp > — |
2b(a* +af +r)(x?+y?)

In Case (iii), we determine ® = exp((b*x* — a’x* +2abxy —2bx —2ay +1)/(x* +y?)).
We can construct an integrating factor of the form

2)—3/2 g(b2x2 —a*ix? + 2abxy — 2bx — 2ay + 1))

exp ( 2br(x% +y?)

p=+y

In Case (iv), we have ® = exp((mx? — rx? — 2Ixy — 2bx — 2ay + 1)/ (x* + y%)). We
can construct the first integral

(2 + %) exp (mx2 —rx? = 2Ixy — 2bx — 2ay + 1) _C

x2 + y2

O

Theorem 4.1. The cubic system (1) with two invariant straight lines x ¥ iy = 0 and an
exponential factor of the form (14) has a center at the origin O(0, 0) if and only if the first

Lyapunov quantity vanishes.

Proof. We compute the first Lyapunov quantities L for cubic system (9) assuming that
the conditions of Lemma 3.2 hold.

In Case (i) the first Lyapunov quantity vanishes. We have Lemma 4.2, (i).

In Case (ip) we find that L; = u # 0. Therefore, the origin is a focus.

In Case (i3) the first Lyapunov quantity is L = ag — bf. If Ly = 0, then we have
Lemma 2.2.2, (iv) (I = 0,n = r) from [5] and the origin is a center. m]
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Theorem 4.2. The cubic system (1) with two invariant straight lines x ¥ iy = 0 and an
exponential factor ® = exp((1 —2bx —2ay) /(x> +y*)) has a center at the origin O(0,0)
if and only if the first two Lyapunov quantities vanish.

Proof. We compute the first two Lyapunov quantities L1, L, for cubic system (9) assuming
that the set of conditions of Lemma 3.3 is fulfilled. The vanishing of the first Lyapunov
quantity gives u = ag — bf. The second Lyapunov quantity looks
L, =48(a*>+af +r)(ag — bf).
Let r = —a® — af. Then the right hand sides of (1) have a common factor A(x,y) =
ay+bx+ fy+gx+1. Assume thatr # —a®> —af and letag — b f = 0. In this case L, = 0

and we have Lemma 4.2, (ii). O

Theorem 4.3. The cubic system (1) with two invariant straight lines x ¥ iy = 0 and an
exponential factor of the form (20) has a center at the origin O(0, 0) if and only if the first

two Lyapunov quantities vanish.

Proof. We compute the first two Lyapunov quantities L1, L, for cubic system (9) assuming
that the conditions of Lemma 3.4 hold.
In Case (i) we have L| = 0 and the second Lyapunov quanity is L, = 48r(ag — b f).
If r = 0, then the right hand sides of (1) have a common factor h(x,y) = gx + fy + 1.
Assume that r # 0 and letag — b f = 0. In this case L, = 0 and we have Lemma 4.2, (iii).
In Case (i») we find that L1 = L, = 0. Then Lemma 4.2, (iv). ]
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