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Center conditions for a cubic system with two homogeneous
invariant straight lines and exponential factors

Dumitru Cozma

Abstract. In this paper for a cubic differential system with a singular point 𝑂 (0, 0) of a
center or a focus type, having two homogeneous invariant straight lines and exponential
factors, we determine conditions under which the singular point is a center.
2010 Mathematics Subject Classification: 34C05.
Keywords: cubic differential system, the problem of the center, invariant algebraic curve,
exponential factor.

Condiţii de existenţă a centrului pentru un sistem cubic cu două
drepte invariante omogene şi factori exponenţiali

Rezumat. În această lucrare pentru un sistem diferenţial cubic cu punctul singular𝑂 (0, 0)
de tip centru sau focar, care are două drepte invariante omogene şi factori exponenţiali,
sunt determinate condiţiile ı̂ncât punctul singular să fie centru.
Cuvinte-cheie: sistem diferenţial cubic, problema centrului şi focarului, curbă algebrică
invariantă, factor exponenţial.

1. Introduction

We consider the cubic differential system of the form{
¤𝑥 = 𝑦 + 𝑎𝑥2 + 𝑐𝑥𝑦 + 𝑓 𝑦2 + 𝑘𝑥3 + 𝑚𝑥2𝑦 + 𝑝𝑥𝑦2 + 𝑟𝑦3 ≡ 𝑃(𝑥, 𝑦),
¤𝑦 = −(𝑥 + 𝑔𝑥2 + 𝑑𝑥𝑦 + 𝑏𝑦2 + 𝑠𝑥3 + 𝑞𝑥2𝑦 + 𝑛𝑥𝑦2 + 𝑙𝑦3) ≡ 𝑄(𝑥, 𝑦),

(1)

in which 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) are real and coprime polynomials in the variables 𝑥 and 𝑦.
The origin 𝑂 (0, 0) is a singular point of a center or a focus type for (1). The problem
arises of distinguishing between a center and a focus, i.e. of finding the coefficient
conditions under which 𝑂 (0, 0) is, for example, a center. These conditions are called the
center conditions and the problem - the problem of the center. When the cubic system (1)
contains both quadratic and cubic nonlinearities, the problem of finding a finite number
of necessary and sufficient conditions for the center is still open.

It is well known that 𝑂 (0, 0) is a center for system (1) if and only if the Lyapunov
quanities 𝐿1, 𝐿2, . . . , 𝐿𝑘 , . . . vanish [5], [18].
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The problem of finding the center conditions for system (1) has a long history and a
variety of methods have been developed. An approach to the problem of the center is to
study the local integrability of the system (1) in some neighborhood of the singular point
𝑂 (0, 0). It is known that a singular point𝑂 (0, 0) is a center for system (1) if and only if it
has a holomorphic first integral of the form 𝐹 (𝑥, 𝑦) = 𝐶 in some neighborhood of𝑂 (0, 0)
[17]. Also, 𝑂 (0, 0) is a center if and only if the system (1) has a holomorphic integrating
factor of the form 𝜇 = 1 +∑

𝜇 𝑗 (𝑥, 𝑦) in some neighborhood of 𝑂 (0, 0) [1].
The problem of the center was solved for some families of cubic differential systems

having invariant algebraic curves (invariant straight lines, invariant conics, invariant
cubics) in [5], [7], [9], [10], [12], [13], [16], [19], [20], [21]. Center conditions were
determined for some cubic systems having integrating factors in [8], [11], [14], for some
reversible cubic systems in [2] and for a few families of the complex cubic system in [15].

In this paper we determine the center conditions for cubic differential system (1)
assuming that the system has invariant straight lines and exponential factors. The paper
is organized as follows. In Section 2 we present the results concerning the existence of
invariant straight lines and exponential factors. In Section 3 we find conditions under
which the cubic system has exponential factors. In Section 4 we obtain center conditions
for system (1) with two homogeneous invariant straight lines and one exponential factor.

2. Invariant straight lines and exponential factors

We study the problem of the center for cubic differential system (1) assuming that the
system has invariant algebraic curves and exponential factors.

Definition 2.1. An algebraic curve Φ(𝑥, 𝑦) = 0 in C2 with Φ ∈ C[𝑥, 𝑦] is said to be an
invariant algebraic curve of system (1) if

𝜕Φ

𝜕𝑥
𝑃(𝑥, 𝑦) + 𝜕Φ

𝜕𝑦
𝑄(𝑥, 𝑦) = Φ(𝑥, 𝑦)𝐾 (𝑥, 𝑦), (2)

for some polynomial 𝐾 (𝑥, 𝑦) ∈ C[𝑥, 𝑦], called the cofactor of the invariant algebraic
curve Φ(𝑥, 𝑦) = 0.

By the above definition, a straight line

𝐶 + 𝐴𝑥 + 𝐵𝑦 = 0, 𝐴, 𝐵, 𝐶 ∈ C, (𝐴, 𝐵) ≠ (0, 0), (3)

is an invariant straight line for system (1) if and only if there exists a polynomial 𝐾 (𝑥, 𝑦)
such that the following identity holds

𝐴 · 𝑃(𝑥, 𝑦) + 𝐵 · 𝑄(𝑥, 𝑦) ≡ (𝐶 + 𝐴𝑥 + 𝐵𝑦) · 𝐾 (𝑥, 𝑦). (4)
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If the cubic system (1) has complex invariant straight lines then obviously they occur
in complex conjugated pairs [5]

𝐶 + 𝐴𝑥 + 𝐵𝑦 = 0 and 𝐶 + 𝐴𝑥 + 𝐵𝑦 = 0.

According to [6] the cubic system (1) cannot have more than four nonhomogeneous
invariant straight lines, i.e. invariant straight lines of the form

1 + 𝐴𝑥 + 𝐵𝑦 = 0, (𝐴, 𝐵) ≠ (0, 0). (5)

As homogeneous invariant straight lines 𝐴𝑥 + 𝐵𝑦 = 0, the system (1) can have only the
lines 𝑥 ∓ 𝑖𝑦 = 0, 𝑖2 = −1.

Lemma 2.1. The cubic system (1) has the invariant straight lines 𝑥 ∓ 𝑖𝑦 = 0 if and only
if the following set of conditions holds

𝑑 = 𝑓 − 𝑎, 𝑐 = 𝑔 − 𝑏, 𝑘 − 𝑙 = 𝑝 − 𝑞, 𝑟 + 𝑠 = 𝑚 + 𝑛. (6)

Proof. By Definition 2.1, the straight lines 𝑥 ∓ 𝑖𝑦 = 0 are invariant for (1) if and only if

𝑃(𝑥, 𝑦) ∓ 𝑖𝑄(𝑥, 𝑦) ≡ (𝑥 ∓ 𝑖𝑦) (𝑐00 + 𝑐10𝑥 + 𝑐01𝑦 + 𝑐20𝑥
2 + 𝑐11𝑥𝑦 + 𝑐02𝑦

2). (7)

Identifying the coefficients of the monomials 𝑥 𝑗 𝑦ℎ in (7), we find that

𝑐00 = ±𝑖, 𝑐10 = 𝑎 ± 𝑖𝑔, 𝑐02 = 𝑝 − 𝑘 − 𝑞 ± 𝑖(𝑚 + 𝑛 − 𝑠),
𝑐01 = 𝑐 − 𝑔 ± 𝑖(𝑎 + 𝑑), 𝑐20 = 𝑘 ± 𝑖𝑠, 𝑐11 = 𝑚 − 𝑠 ± 𝑖(𝑘 + 𝑞)

and
𝑓 − 𝑎 − 𝑑 ± 𝑖(𝑏 + 𝑐 − 𝑔) = 0, 𝑟 + 𝑠 − 𝑚 − 𝑛 ± 𝑖(𝑙 − 𝑘 + 𝑝 − 𝑞) = 0.

The last identities yield the set of conditions (6). □

The cofactors of the invariant straight lines 𝑥 ∓ 𝑖𝑦 = 0 are

𝐾1(𝑥, 𝑦) = 𝑖 + (𝑎 + 𝑖(𝑏 + 𝑐))𝑥 + (−𝑏 + 𝑖(𝑎 + 𝑑))𝑦 + (𝑘 + 𝑖𝑠)𝑥2 +
+ (𝑚 − 𝑠 + 𝑖(𝑘 + 𝑞))𝑥𝑦 + (𝑝 − 𝑘 − 𝑞 + 𝑖(𝑚 + 𝑛 − 𝑠))𝑦2,

𝐾2(𝑥, 𝑦) = 𝐾1(𝑥, 𝑦).

(8)

Denote 𝑘 = 𝑢+ 𝑙, 𝑝 = 𝑢+𝑞, 𝑠 = 𝑣−𝑟, 𝑛 = 𝑣−𝑚, where 𝑢, 𝑣 are some real parameters.
Assume that the conditions (6) are fulfilled, then system (1) can be written as follows

¤𝑥 = 𝑦 + 𝑎𝑥2 + (𝑔 − 𝑏)𝑥𝑦 + 𝑓 𝑦2 + (𝑢 + 𝑙)𝑥3 + 𝑚𝑥2𝑦 +
+ (𝑢 + 𝑞)𝑥𝑦2 + 𝑟𝑦3 ≡ 𝑃(𝑥, 𝑦),

¤𝑦 = −(𝑥 + 𝑔𝑥2 + ( 𝑓 − 𝑎)𝑥𝑦 + 𝑏𝑦2 + (𝑣 − 𝑟)𝑥3 + 𝑞𝑥2𝑦 +
+ (𝑣 − 𝑚)𝑥𝑦2 + 𝑙𝑦3) ≡ 𝑄(𝑥, 𝑦).

(9)
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The problem of the center was solved for system (9) with: one invariant straight line
1 + 𝐴𝑥 + 𝐵𝑦 = 0 in [20], two invariant straight lines of the form (5) in [5], one invariant
conic 𝑎20𝑥

2 + 𝑎11𝑥𝑦 + 𝑎02𝑦
2 + 𝑎10𝑥 + 𝑎01𝑦 + 1 = 0 in [7]. By using the method of Darboux

integrability and rational reversibility, the center conditions were found for (9) in [8].

In this Section, we investigate the problem of the existence of exponential factors for
cubic differential system (9).

Definition 2.2. Let ℎ, 𝑔 ∈ C[𝑥, 𝑦] be relatively prime in the ring C[𝑥, 𝑦]. The function
Φ = exp(𝑔/ℎ) is called an exponential factor of a system (1) if for some polynomial
𝐾 ∈ C[𝑥, 𝑦] of degree at most two it satisfies the equation

𝜕Φ

𝜕𝑥
𝑃(𝑥, 𝑦) + 𝜕Φ

𝜕𝑦
𝑄(𝑥, 𝑦) ≡ Φ𝐾 (𝑥, 𝑦). (10)

As before, we say that 𝐾 is the cofactor of the exponential factor exp(𝑔/ℎ).
This means that if we have a cubic differential system (1) with an exponential factor

of the form exp(𝑔/ℎ), then there is a 1-parameter perturbation of system (1), given by a
small 𝜀, with two invariant algebraic curves, namely ℎ = 0 and ℎ + 𝜀𝑔 = 0. Hence, when
𝜀 = 0, these two curves coalesce giving the exponential factor exp(𝑔/ℎ) for the system
with 𝜀 = 0 (the invariant algebraic curve ℎ = 0 has geometric multiplicity larger than
one), as well as the invariant algebraic curve ℎ = 0 which does not disappear [3].

Since the exponential factor cannot vanish, it does not define invariant curves of the
cubic system (1). The next theorem, proved in [3], gives the relationship between the
notion of invariant algebraic curve and exponential factor.

Theorem 2.1. If exp(𝑔/ℎ) is an exponential factor with cofactor 𝐾 for a cubic system (1)
and if ℎ is not a constant, then ℎ = 0 is an invariant algebraic curve with cofactor 𝐾ℎ,
and 𝑔 satisfies the equation X(𝑔) = 𝑔𝐾ℎ + ℎ𝐾 .

Eventually Φ = exp(𝑔) can be an exponential factor coming from the multiplicity of
the infinite invariant straight line.

3. Cubic differential systems with exponential factors

In this Section, we consider the cubic differential system (9) with two homogeneous
invariant straight lines 𝑥 ∓ 𝑖𝑦 = 0. We determine the conditions under which the system
(9) has exponential factors of the form

Φ = exp (𝑔(𝑥, 𝑦)) , Φ = exp
(
𝑔(𝑥, 𝑦)
𝑥2 + 𝑦2

)
, (11)

where 𝑔(𝑥, 𝑦) is a real polynomial with degree(𝑔) ≤ 2.
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Lemma 3.1. The cubic differential system (9) has an exponential factor of the form
Φ = exp (𝑎10𝑥 + 𝑎01𝑦) if and only if one the following two sets of conditions holds:

(𝑖1) 𝑚 = 𝑟, 𝑞 = 𝑙, 𝑙 = (𝑟𝑎10)/𝑎01, 𝑣 = (𝑟𝑎2
01 + 𝑢𝑎01𝑎10 + 𝑟𝑎2

10)/𝑎
2
01;

(𝑖2) 𝑚 = 𝑟 = 0, 𝑞 = 𝑙, 𝑢 = −𝑙.

Proof. By Definition 2.2, the function Φ = exp (𝑎10𝑥 + 𝑎01𝑦) is an exponential factor for
system (9) if there exists numbers 𝑐10, 𝑐01, 𝑐20, 𝑐11, 𝑐02 such that

𝑎10𝑃(𝑥, 𝑦) + 𝑎01𝑄(𝑥, 𝑦) = 𝑐10𝑥 + 𝑐01𝑦 + 𝑐20𝑥
2 + 𝑐11𝑥𝑦 + 𝑐02𝑦

2. (12)

Substituting 𝑃(𝑥, 𝑦), 𝑄(𝑥, 𝑦) in (12) and identifying the coefficients of the monomials
𝑥𝑖𝑦 𝑗 , 𝑖 + 𝑗 = 1, 2, 3, we find that 𝑐01 = 𝑎10, 𝑐10 = −𝑎01, 𝑐20 = 𝑎𝑎10 − 𝑔𝑎01, 𝑐11 =

(𝑎 − 𝑓 )𝑎01 + (𝑔 − 𝑏)𝑎10, 𝑐02 = 𝑓 𝑎10 − 𝑏𝑎01 and 𝑎10, 𝑎01 satisfy the system of equations:

𝑈30 ≡ (𝑙 + 𝑢)𝑎10 + (𝑟 − 𝑣)𝑎01 = 0,
𝑈21 ≡ 𝑚𝑎10 − 𝑞𝑎01 = 0,
𝑈12 ≡ (𝑞 + 𝑢)𝑎10 + (𝑚 − 𝑣)𝑎01 = 0,
𝑈03 ≡ 𝑟𝑎10 − 𝑙𝑎01 = 0.

(13)

Assume that 𝑎01 ≠ 0. Then the equations of (13) yield

𝑚 = 𝑟, 𝑞 = 𝑙, 𝑙 = (𝑟𝑎10)/𝑎01, 𝑣 = (𝑟𝑎2
01 + 𝑢𝑎01𝑎10 + 𝑟𝑎2

10)/𝑎
2
01.

We obtain the set of conditions (𝑖1) of Lemma 3.1. The system (9) has the exponential
factor Φ = exp (𝑎10𝑥 + 𝑎01𝑦) with cofactor 𝐾 (𝑥, 𝑦) = (𝑎𝑎10 − 𝑔𝑎01)𝑥2 + (𝑎𝑎01 − 𝑓 𝑎01 −
𝑏𝑎10 + 𝑔𝑎10)𝑥𝑦 + ( 𝑓 𝑎10 − 𝑏𝑎01)𝑦2 − 𝑎01𝑥 + 𝑎10𝑦.

Assume that 𝑎01 = 0, then 𝑎10 ≠ 0. In this case the equations of (13) imply 𝑚 = 𝑟 =

0, 𝑞 = 𝑙, 𝑢 = −𝑙. We obtain the set of conditions (𝑖2) of Lemma 3.1. The system (9) has
the exponential factor Φ = exp (𝑥) with cofactor 𝐾 (𝑥, 𝑦) = 𝑎𝑥2 − 𝑏𝑥𝑦 +𝑔𝑥𝑦 + 𝑓 𝑦2 + 𝑦. □

Lemma 3.2. The cubic system (9) has an exponential factor of the form

Φ = exp (𝑎20𝑥
2 + 𝑎11𝑥𝑦 + 𝑎02𝑦

2 + 𝑎10𝑥 + 𝑎01𝑦 + 𝑎00) (14)

if and only if one the following three sets of conditions holds:

(𝑖1) 𝑐 = 𝑑 = 0, 𝑓 = 𝑎, 𝑔 = 𝑏, 𝑘 = 𝑝 = 𝑞 = 𝑙, 𝑟 = 𝑚, 𝑠 = 𝑛;
(𝑖2) 𝑐 = 𝑑 = 0, 𝑓 = 𝑎, 𝑔 = 𝑏, 𝑘 = 𝑝, 𝑝 = 𝑙 + 𝑢, 𝑟 = 𝑚, 𝑚 = (𝑎𝑙)/𝑏, 𝑠 = 𝑛,

𝑛 = ((𝑙 + 𝑢)𝑏)/𝑎, 𝑞 = 𝑙;
(𝑖3) 𝑐 = 𝑔 − 𝑏, 𝑑 = 𝑓 − 𝑎, 𝑘 = 𝑙 = 𝑝 = 𝑞 = 0, 𝑚 = 𝑛 = 𝑠 = 𝑟.
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Proof. By Definition 2.2, the function (14) is an exponential factor for cubic system (9)
if there exist numbers 𝑐20, 𝑐11, 𝑐02, 𝑐10, 𝑐01 such that

(2𝑎20𝑥 + 𝑎11𝑦 + 𝑎10)𝑃(𝑥, 𝑦) + (2𝑎02𝑦 + 𝑎11𝑥 + 𝑎01)𝑄(𝑥, 𝑦) =
= 𝑐20𝑥

2 + 𝑐11𝑥𝑦 + 𝑐02𝑦
2 + 𝑐10𝑥 + 𝑐01𝑦.

(15)

Substituting 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) in (15) and identifying the coefficients of the mono-
mials 𝑥𝑖𝑦 𝑗 , we reduce this identity to a system of fourteen equations

{𝑈𝑖 𝑗 = 0, 𝑖 + 𝑗 = 1, 2, 3, 4} (16)

for the unknowns 𝑎𝑖 𝑗 , 𝑐𝑖 𝑗 and the coefficient of system (9).
When 𝑖 + 𝑗 = 1, 2, from the equations of (16) we get

𝑐01 = 𝑎10, 𝑐10 = −𝑎01, 𝑐02 = 𝑎11 − 𝑏𝑎01 + 𝑓 𝑎10,
𝑐20 = 𝑎𝑎10 − 𝑔𝑎01 − 𝑎11, 𝑐11 = (𝑎 − 𝑓 )𝑎01 + 2𝑎20 − 2𝑎02 + (𝑔 − 𝑏)𝑎10.

1. Assume that 𝑎11 ≠ 0. In this case the equations𝑈40 = 0,𝑈22 = 0 and𝑈04 = 0 of (16)
yield 𝑣 = (𝑟𝑎11 + 2𝑙𝑎20 + 2𝑢𝑎20)/𝑎11, 𝑟 = (2𝑙𝑎02)/𝑎11, 𝑚 = ((𝑙 + 𝑞)𝑎02 + (𝑙 − 𝑞)𝑎20)/𝑎11.
The resultant of the polynomials 𝑈31 and 𝑈13 with respect to 𝑞 is 𝑅𝑒𝑠(𝑈31,𝑈13, 𝑞) =

2𝑢 𝑓1 𝑓2, where 𝑓1 = 4𝑎02𝑎20 − 𝑎2
11, 𝑓2 = (𝑎02 − 𝑎20)2 + 𝑎2

11 ≠ 0.
Let 𝑢 = 0. Then𝑈31 = 0 and𝑈13 = 0 imply 𝑞 = 𝑙. From the equations𝑈30 = 0,𝑈03 = 0

of (16) we express 𝑓 , 𝑔 and calculate the resultant of the polynomials 𝑈21 and 𝑈12 with
respect to 𝑏. We obtain that 𝑅𝑒𝑠(𝑈21,𝑈12, 𝑏) = −4𝑎11𝑔1𝑔2𝑔3, where 𝑔1 = 𝑎𝑎11 − 𝑙𝑎01,
𝑔2 = 4𝑎02𝑎20 − 𝑎2

11, 𝑔3 = (𝑎02 − 𝑎20)2 + 𝑎2
11 ≠ 0.

If 𝑔1 = 0, then 𝑎01 = (𝑎𝑎11)/𝑙 and 𝑎10 = (𝑏𝑎11)/𝑙. In this case we obtain the set of
conditions (𝑖1) of Lemma 3.2. The exponential factor is

Φ = exp(2𝑏𝑥 + 2𝑎𝑦 + 2𝑙𝑥𝑦 + 𝑛𝑥2 + 𝑚𝑦2)
having the cofactor 𝐾 (𝑥, 𝑦) = 2(−𝑎𝑥 + 𝑏𝑦 − 𝑙𝑥2 + 𝑙𝑦2 − 𝑚𝑥𝑦 + 𝑛𝑥𝑦).

If 𝑔1 ≠ 0 and 𝑔2 = 0, then 𝑎20 = 𝑎2
11/(4𝑎02), 𝑎10 = [(𝑙𝑎01−𝑎𝑎11+2𝑏𝑎02)𝑎11]/(2𝑙𝑎02).

This case is contained in Lemma 3.2, (𝑖1) (𝑛 = 𝑙2/𝑚).
Assume that 𝑢 ≠ 0 and let 𝑓1 = 0. Then 𝑈31 = 0 and 𝑈13 = 0 yield 𝑞 = 𝑙. From the

equations𝑈30 = 0,𝑈03 = 0 we express 𝑎, 𝑓 and calculate the resultant of the polynomials
𝑈21 and 𝑈12 with respect to 𝑏. We obtain that 𝑅𝑒𝑠(𝑈21,𝑈12, 𝑏) = 𝑎11𝑢ℎ1ℎ2, where
ℎ1 = 𝑎01𝑎11 − 2𝑎02𝑎10, ℎ2 = 4𝑎2

02 + 𝑎
2
11 ≠ 0, 𝑎11𝑢 ≠ 0.

Let ℎ1 = 0. Then 𝑎10 = (𝑎01𝑎11)/(2𝑎02) and 𝑔 = 𝑏. In this case we get the set of
conditions (𝑖2) of Lemma 3.2. The exponential factor is

Φ = exp((𝑏𝑥 + 𝑎𝑦) (2𝑏𝑎01 + 𝑏𝑎11𝑥 + 𝑎𝑎11𝑦)/(2𝑎𝑏))
having the cofactor 𝐾 (𝑥, 𝑦) = (𝑏𝑦 − 𝑎𝑥) (𝑏𝑎01 + 𝑏𝑎11𝑥 + 𝑎𝑎11𝑦)/(𝑎𝑏).

2. Assume that 𝑎11 = 0 and let 𝑎02 = 0. This case is contained in Lemma 3.2, (𝑖1)
(𝑙 = 𝑛 = 0).
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3. Assume that 𝑎11 = 0 and let 𝑎02 ≠ 0. In this case 𝑙 = 0 and𝑈40 ≡ 𝑢𝑎20 = 0.
If 𝑢 = 0, then 𝑎20 = 𝑎02, 𝑣 = 𝑚 + 𝑟 . The equations 𝑈𝑖 𝑗 = 0, 𝑖 + 𝑗 = 3 of (16) yield

𝑚 = 𝑟 , 𝑞 = 0, 𝑎01 = (2𝑎𝑎02)/𝑟 , 𝑎10 = (2𝑏𝑎02)/𝑟 . We obtain the set of conditions (𝑖3) of
Lemma 3.2. The exponential factor is

Φ = exp(2𝑏𝑥 + 2𝑎𝑦 + 𝑟𝑥2 + 𝑟𝑦2)

with cofactor 𝐾 (𝑥, 𝑦) = 2(𝑎𝑥 − 𝑏𝑦) (𝑎𝑦 + 𝑏𝑥 − 𝑓 𝑦 − 𝑔𝑥 − 1).

If 𝑎20 = 0 and 𝑢 ≠ 0, then 𝑞 = 0, 𝑚 = 𝑣 = 𝑟 . The equations 𝑈𝑖 𝑗 = 0, 𝑖 + 𝑗 = 3 of (16)
yield 𝑎10 = 0, 𝑏 = 𝑔 = 0, 𝑓 = 𝑎. In this case 𝑃(𝑥, 𝑦) = −𝑥 is not a cubic polynomial. □

Lemma 3.3. The cubic system (9) has an exponential factor of the form

Φ = exp((𝑎10𝑥 + 𝑎01𝑦 + 𝑎00)/(𝑥2 + 𝑦2)) (17)

if and only if the following set of conditions holds

𝑙 = 𝑏(𝑎 + 𝑓 ), 𝑚 = 2𝑎2 +2𝑎 𝑓 −2𝑏2 −2𝑏𝑔 + 𝑟, 𝑞 = −3𝑎𝑏−2𝑎𝑔− 𝑏 𝑓 , 𝑢 = 𝑎𝑔− 𝑏 𝑓 ,
𝑣 = 𝑚 + 𝑟 − 𝑎2 − 𝑎 𝑓 + 𝑏2 + 𝑏𝑔.

Proof. By Definition 2.2, the function (17) is an exponential factor for cubic system (9)
if there exist numbers 𝑐10, 𝑐01 such that

(−𝑎10𝑥
2 + 𝑎10𝑦

2 − 2𝑎01𝑥𝑦 − 2𝑎00𝑥)𝑃(𝑥, 𝑦)+
+ (𝑎01𝑥

2 − 𝑎01𝑦
2 − 2𝑎10𝑥𝑦 − 2𝑎00𝑦)𝑄(𝑥, 𝑦) = (𝑥2 + 𝑦2)2(𝑐10𝑥 + 𝑐01𝑦).

(18)

Substituting 𝑃(𝑥, 𝑦), 𝑄(𝑥, 𝑦) in (18) and identifying the coefficients of the monomials
𝑥𝑖𝑦 𝑗 , we reduce this identity to a system of nine equations

{𝑈𝑖 𝑗 = 0, 𝑖 + 𝑗 = 1, 2, 3} (19)

for the unknowns 𝑎10, 𝑎01, 𝑎00, 𝑐10, 𝑐01 and the coefficient of system (9).
From the equations𝑈30 = 0,𝑈03 = 0 of (19), we find that

𝑐01 = 𝑙𝑎01 + 𝑟𝑎10, 𝑐10 = (𝑟 − 𝑣)𝑎01 − (𝑙 + 𝑢)𝑎10.
When 𝑖 + 𝑗 = 1, we obtain that 𝑎10 = −2𝑏𝑎00 and 𝑎01 = −2𝑎𝑎00. Then the equations

𝑈20 = 0,𝑈11 = 0,𝑈02 = 0 of (19) yield
𝑙 = 𝑏(𝑎 + 𝑓 ), 𝑢 = 𝑎𝑔 − 𝑏 𝑓 , 𝑣 = 𝑚 + 𝑟 − 𝑎2 − 𝑎 𝑓 + 𝑏2 + 𝑏𝑔.

The equations𝑈21 = 0,𝑈12 = 0 of (19) imply
𝑚 = 2𝑎2 + 2𝑎 𝑓 − 2𝑏2 − 2𝑏𝑔 + 𝑟, 𝑞 = −3𝑎𝑏 − 2𝑎𝑔 − 𝑏 𝑓 .

In this case we determine the exponential factor

Φ = exp((1 − 2𝑏𝑥 − 2𝑎𝑦)/(𝑥2 + 𝑦2))

with cofactor 𝐾3(𝑥, 𝑦) = 2(𝑎2 + 𝑎 𝑓 + 𝑟) (𝑎𝑥 − 𝑏𝑦). □
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Lemma 3.4. The cubic system (9) has an exponential factor of the form

Φ = exp((𝑎20𝑥
2 + 𝑎11𝑥𝑦 + 𝑎02𝑦

2 + 𝑎10𝑥 + 𝑎01𝑦 + 𝑎00)/(𝑥2 + 𝑦2)) (20)

if and only if one of the following two sets of conditions holds:

(𝑖1) 𝑙 = 𝑏 𝑓 , 𝑚 = 𝑟 + 𝑎 𝑓 − 𝑏𝑔, 𝑞 = −𝑎𝑔, 𝑣 = 2𝑟 , 𝑢 = 𝑎𝑔 − 𝑏 𝑓 ;
(𝑖2) 𝑓 = −𝑎, 𝑔 = −𝑏, 𝑞 = −𝑙, 𝑣 = 2𝑟 , 𝑢 = 0.

Proof. By Definition 2.2, the function (20) is an exponential factor for cubic differential
system (9) if there exist numbers 𝑐20, 𝑐11, 𝑐02, 𝑐10, 𝑐01 such that

(2𝑎20𝑥𝑦
2 − 2𝑎02𝑥𝑦

2 − 𝑎11𝑥
2𝑦 + 𝑎11𝑦

3 − 𝑎10𝑥
2 − 2𝑎01𝑥𝑦 +

+ 𝑎10𝑦
2 − 2𝑎00𝑥)𝑃(𝑥, 𝑦) + (𝑎11𝑥

3 + 2𝑎02𝑥
2𝑦 − 2𝑎20𝑥

2𝑦 − 𝑎11𝑥𝑦
2 +

+ 𝑎01𝑥
2 − 𝑎01𝑦

2 − 2𝑎10𝑥𝑦 − 2𝑎00𝑦)𝑄(𝑥, 𝑦) =
= (𝑥2 + 𝑦2) (𝑐20𝑥

2 + 𝑐11𝑥𝑦 + 𝑐02𝑦
2 + 𝑐10𝑥 + 𝑐01𝑦).

(21)

Substituting the polynomials 𝑃(𝑥, 𝑦), 𝑄(𝑥, 𝑦) from (9) in (21) and identifying the
coefficients of the monomials 𝑥𝑖𝑦 𝑗 , we reduce (21) to a system of fourteen equations

{𝑈𝑖 𝑗 = 0, 𝑖 + 𝑗 = 1, 2, 3, 4} (22)

for the unknowns 𝑎20, 𝑎11, 𝑎02, 𝑎10, 𝑎01, 𝑎00, 𝑐20, 𝑐11, 𝑐02, 𝑐10, 𝑐01 and the coefficient of
system (9). From the equations𝑈04 = 0,𝑈13 = 0,𝑈40 = 0 of (22), we obtain that

𝑐02 = 𝑟𝑎11, 𝑐11 = 2𝑟 (𝑎20 − 𝑎02) + (𝑙 + 𝑞 + 𝑢)𝑎11, 𝑐20 = (𝑟 − 𝑣)𝑎11

and from the equations𝑈03 = 0,𝑈30 = 0, we get that
𝑐01 = 𝑙𝑎01 + 𝑟𝑎10 + 𝑓 𝑎11, 𝑐10 = (𝑟 − 𝑣)𝑎01 − (𝑙 + 𝑢)𝑎10 − 𝑔𝑎11.

The equations𝑈10 = 0,𝑈01 = 0 and𝑈20 = 0 yield
𝑎01 = −2𝑎𝑎00, 𝑎10 = −2𝑏𝑎00, 𝑎11 = 2𝑎00(𝑎𝑏 + 𝑎𝑔 − 𝑙 − 𝑢)

and the equations𝑈02 = 0,𝑈11 = 0 imply
𝑢 = 𝑎𝑔 − 𝑏 𝑓 , 𝑎02 = (𝑎2 + 𝑎 𝑓 − 𝑏2 − 𝑏𝑔 − 𝑚 − 𝑟 + 𝑣)𝑎00 + 𝑎20.

Then the system of equations (22) becomes

𝑈21 = 0,𝑈12 = 0,𝑈31 = 0,𝑈22 = 0. (23)

The resultant of the polynomials𝑈22,𝑈31 with respect to𝑚 is 𝑅𝑒𝑠(𝑈22,𝑈31, 𝑚) = 𝑓1 𝑓2,
where 𝑓1 = 𝑎𝑏 + 𝑏 𝑓 − 𝑙, 𝑓2 = (𝑎𝑔 − 𝑏 𝑓 + 𝑙 + 𝑞)2 + (2𝑟 − 𝑣)2.

1. Assume that 𝑓1 = 0, then 𝑙 = 𝑏(𝑎 + 𝑓 ) and𝑈31 ≡ 𝑔1𝑔2 = 0, where
𝑔1 = 𝑎2 + 𝑎 𝑓 − 𝑏2 − 𝑏𝑔 − 𝑚 − 𝑟 + 𝑣, 𝑔2 = 2𝑟 − 𝑣.

When 𝑔1 = 0 we obtain that 𝑈31 ≡ 0, 𝑈22 ≡ 0. The resultant of the polynomials
𝑈21,𝑈12 with respect to 𝑞 is 𝑅𝑒𝑠(𝑈21,𝑈12, 𝑞) = ℎ1ℎ2, where

ℎ1 = 2𝑎2 + 2𝑎 𝑓 − 2𝑏2 − 2𝑏𝑔 − 𝑚 + 𝑟, ℎ2 = 𝑎2 + 𝑏2.
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If ℎ1 = 0, then we have the exponential factor Φ = exp((1 − 2𝑏𝑥 − 2𝑎𝑦)/(𝑥2 + 𝑦2))
obtained in Lemma 3.3. If ℎ1 ≠ 0 and 𝑎 = 𝑏 = 0, then the right hand sides of (9) have a
common factor 𝑟𝑥2 + 𝑟𝑦2 + 𝑞𝑥𝑦 + 𝑔𝑥 + 𝑓 𝑦 + 1.

Assume that 𝑔1 ≠ 0 and let 𝑔2 = 0. Then 𝑣 = 2𝑟 , 𝑈31 ≡ 0 and the equation 𝑈22 = 0
yields 𝑞 = −𝑎(𝑏 + 𝑔). The resultant of the polynomials𝑈21,𝑈12 with respect to 𝑚 is

𝑅𝑒𝑠(𝑈21,𝑈12, 𝑚) = −2𝑎𝑏((𝑎 + 𝑓 )2 + (𝑏 + 𝑔)2).
If 𝑓 = −𝑎 and 𝑔 = −𝑏, then we obtain the set of conditions (𝑖2) (𝑙 = 0), Lemma 3.4.
Suppose that (𝑎 + 𝑓 )2 + (𝑏 + 𝑔)2 ≠ 0. If 𝑎 = 0, then𝑈21 = 0,𝑈12 = 0 imply 𝑚 = 𝑟 − 𝑏𝑔

and we get set of conditions (𝑖1) (𝑎 = 0). If 𝑎 ≠ 0 and 𝑏 = 0, then we have the set of
conditions (𝑖1) (𝑏 = 𝑓 = 0).

2. Assume that 𝑓1 ≠ 0 and let 𝑓2 = 0. Then 𝑞 = 𝑏 𝑓 − 𝑙 − 𝑎𝑔 and 𝑣 = 2𝑟 . In this
case 𝑈22 ≡ 0, 𝑈31 ≡ 0 and the resultant of the polynomials 𝑈21, 𝑈12 with respect to 𝑚 is
𝑅𝑒𝑠(𝑈21,𝑈12, 𝑚) = 𝑒1𝑒2, where 𝑒1 = 𝑙 − 𝑏 𝑓 , 𝑒2 = (𝑎 + 𝑓 )2 + (𝑏 + 𝑔)2.

If 𝑒1 = 0, then 𝑚 = 𝑟 + 𝑎 𝑓 − 𝑏𝑔. We get the condition (𝑖1). The exponential factor is

Φ = exp((𝑏2𝑥2 − 𝑎2𝑥2 + 2𝑎𝑏𝑥𝑦 − 2𝑏𝑥 − 2𝑎𝑦 + 1)/(𝑥2 + 𝑦2))
and have the cofactor 𝐾3(𝑥, 𝑦) = 2𝑟 (𝑏𝑦 − 𝑎𝑥) (𝑎𝑦 + 𝑏𝑥 − 1).

If 𝑒1 ≠ 0 and 𝑒2 = 0, then 𝑓 = −𝑎, 𝑔 = −𝑏. We obtain the set of conditions (𝑖2),
Lemma 3.4. The exponential factor is

Φ = exp((𝑚𝑥2 − 𝑟𝑥2 − 2𝑙𝑥𝑦 − 2𝑏𝑥 − 2𝑎𝑦 + 1)/(𝑥2 + 𝑦2))
and have the cofactor 𝐾3(𝑥, 𝑦) = 2𝑟 (𝑎𝑥 − 𝑏𝑦 + 𝑙𝑥2 − 𝑙𝑦2 + 𝑚𝑥𝑦 − 𝑟𝑥𝑦). □

4. The problem of the center

We are interested in the algebraic integrability of a cubic differential system (1) with
two homogeneous invariant straight lines 𝑥 ∓ 𝑖𝑦 = 0 and an exponential factor of the
form (11), called the Darboux integrability [4], [22]. It consists in constructing of a first
integral or an integrating factor of the Darboux form

𝑓
𝛼1

1 𝑓
𝛼2

2 Φ𝛼3 , (24)

where 𝛼 𝑗 ∈ C, 𝑓1 = 𝑥 − 𝑖𝑦, 𝑓2 = 𝑥 + 𝑖𝑦 and Φ is of the form (11).
By [18, pag. 141], if for the cubic system (1) we can construct an integrating factor (a

first integral) of the form (24), then 𝑂 (0, 0) is a center.

Definition 4.1. An integrating factor for system (1) on some open set 𝑈 of R2 is a 𝐶1

function 𝜇 defined on𝑈, not identically zero on𝑈 such that

𝑃(𝑥, 𝑦) 𝜕𝜇
𝜕𝑥

+𝑄(𝑥, 𝑦) 𝜕𝜇
𝜕𝑦

+ 𝜇
(
𝜕𝑃

𝜕𝑥
+ 𝜕𝑄
𝜕𝑦

)
≡ 0. (25)
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Lemma 4.1. The following three sets of conditions are sufficient conditions for the origin
to be a center for system (1):

(i) 𝑐 = 𝑔 − 𝑏, 𝑑 = 𝑙 = 𝑚 = 𝑞 = 𝑟 = 0, 𝑓 = 𝑎, 𝑘 = 𝑝 = 𝑎(𝑔 − 𝑏), 𝑠 = 𝑛;
(ii) 𝑐 = 𝑔 − 𝑏, 𝑑 = 𝑓 − 𝑎, 𝑔 = (𝑎𝑏 𝑓 − 𝑏 𝑓 2 + 𝑓 𝑙 − 𝑎𝑙 + 𝑏𝑟)/(𝑎2 − 𝑎 𝑓 + 𝑟), 𝑠 = 𝑛,

𝑛 = (𝑝𝑙)/𝑟 , 𝑘 = 𝑝 = [𝑟 (𝑎𝑏 − 𝑏 𝑓 + 𝑙)]/(𝑎2 − 𝑎 𝑓 + 𝑟), 𝑞 = 𝑙, 𝑚 = 𝑟;
(iii) 𝑐 = 𝑔 − 𝑏, 𝑑 = 𝑓 − 𝑎, 𝑘 = 𝑚 = 𝑝 = 𝑟 = 0, 𝑞 = 𝑙, 𝑙 = 𝑏 𝑓 − 𝑎𝑔, 𝑠 = 𝑛,

(𝑎𝑔 − 𝑏 𝑓 ) (𝑏 − 𝑔) + (𝑎 − 𝑓 )𝑛 = 0.

Proof. Let the conditions (𝑖1) and (𝑖2) of Lemma 3.1 be fulfilled. By Definition 4.1, the
cubic system (1) has an integrating factor of the form (24) if and only if the identity (25)
holds. Identifying the coefficients of the monomials 𝑥𝑖𝑦 𝑗 in (25), we obtain that 𝛼1 = 𝛼2

and 𝛼2, 𝛼3 are the solutions of the system

{𝐹𝑖 𝑗 = 0, 𝑖 + 𝑗 = 1, 2}. (26)

In Case (𝑖1), from the equations 𝐹10 = 0 and 𝐹02 = 0 of (26) we express 𝛼3 and 𝑢.
Then we reduce the equations 𝐹20 = 0, 𝐹11 = 0 by 𝑔 from 𝐹01 = 0. If 𝑟 = 𝑎( 𝑓 − 𝑎),
then 𝑓 = 𝑎 and we get the condition (i) of Lemma 4.1. We obtain the exponential factor
Φ = exp ((𝑎𝑏𝑦 − 𝑎𝑔𝑦 − 𝑛𝑥)/(𝑎(𝑏 − 𝑔))) and the system (1) has the integrating factor

𝜇 = (𝑥2 + 𝑦2) (4𝑏𝑔−3𝑏2−𝑔2−2𝑛)/(2(𝑏2−𝑏𝑔+𝑛) ) exp
(
(𝑏 − 𝑔) (𝑛𝑥 − 𝑎𝑏𝑦 + 𝑎𝑔𝑦)

𝑏2 − 𝑏𝑔 + 𝑛

)
.

If 𝑟 ≠ 𝑎( 𝑓−𝑎), then𝛼2 = (4𝑎 𝑓−3𝑎2− 𝑓 2−2𝑟)/[(𝑎2−𝑎 𝑓 +𝑟)]. In this case we determine
the condition (ii) of Lemma 4.1. We have the exponential factor Φ = exp ((𝑙𝑥 + 𝑟𝑦)/𝑟)
and the system (1) has the integrating factor

𝜇 = (𝑥2 + 𝑦2) (4𝑎 𝑓 −3𝑎2− 𝑓 2−2𝑟 )/(2(𝑎2−𝑎 𝑓 +𝑟 ) ) exp
(
(𝑎 − 𝑓 ) (𝑙𝑥 + 𝑟𝑦)
𝑎2 − 𝑎 𝑓 + 𝑟

)
.

In Case (𝑖2), the equations 𝐹20 = 0, 𝐹02 = 0, 𝐹01 = 0 of (26) yield 𝛼3 = 𝑙/𝑎,
𝛼2 = ( 𝑓 − 3𝑎)/(2𝑎), 𝑙 = 𝑓 (𝑏 − 𝑎). In this case we get the condition (iii) of Lemma 4.1.
The system (1) has the exponential factor Φ = exp (𝑥) and the functon

𝜇 = (𝑥2 + 𝑦2) ( 𝑓 −3𝑎)/(2𝑎) exp
(
(𝑏 𝑓 − 𝑎𝑔)𝑥

𝑎

)
.

is an integrating factor for system (1). □

Lemma 4.2. The following four sets of conditions are sufficient condition for the origin
to be a center for system (1).

(i) 𝑐 = 𝑑 = 0, 𝑓 = 𝑎, 𝑔 = 𝑏, 𝑘 = 𝑝 = 𝑞 = 𝑙, 𝑟 = 𝑚, 𝑠 = 𝑛;
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(ii) 𝑐 = 𝑔 − 𝑏, 𝑑 = 𝑓 − 𝑎, 𝑘 = 𝑙, 𝑞 = 𝑝, 𝑛 = 2𝑟 − 𝑠, 𝑚 = 2𝑠 − 𝑟 , 𝑝 = −3𝑙, 𝑙 = 𝑏(𝑎 + 𝑓 ),
𝑠 = 𝑎2 + 𝑎 𝑓 − 𝑏2 − 𝑏𝑔 + 𝑟 , 𝑎𝑔 − 𝑏 𝑓 = 0;

(iii) 𝑐 = 𝑔 − 𝑏, 𝑑 = 𝑓 − 𝑎, 𝑘 = 𝑎𝑔, 𝑙 = 𝑏 𝑓 , 𝑚 = 𝑎 𝑓 − 𝑏𝑔 + 𝑟 , 𝑛 = −𝑚, 𝑝 = −𝑏 𝑓 ,
𝑞 = −𝑎𝑔, 𝑠 = 𝑟;

(iv) 𝑐 = −2𝑏, 𝑑 = −2𝑎, 𝑓 = −𝑎, 𝑔 = −𝑏, 𝑘 = 𝑙, 𝑛 = 2𝑟 − 𝑚, 𝑝 = −𝑙, 𝑞 = −𝑙, 𝑠 = 𝑟 .

Proof. In each of the cases (i) – (iv) the cubic differential system (1) has two homogeneous
invariant straight lines 𝑥 ∓ 𝑖𝑦 = 0 and an exponential factor Φ.

In Case (i), we find the exponential factor Φ = exp(2𝑏𝑥 + 2𝑎𝑦 + 2𝑙𝑥𝑦 + 𝑛𝑥2 +𝑚𝑦2) and
the system (1) has the first integral

(𝑥2 + 𝑦2) exp(2𝑏𝑥 + 2𝑎𝑦 + 2𝑙𝑥𝑦 + 𝑛𝑥2 + 𝑚𝑦2) = 𝐶.

In Case (ii), we have Φ = exp((1 − 2𝑏𝑥 − 2𝑎𝑦)/(𝑥2 + 𝑦2)). We can construct an
integrating factor of the form

𝜇 = (𝑥2 + 𝑦2)−3 exp
(
(3𝑏 + 𝑔) (1 − 2𝑏𝑥 − 2𝑎𝑦)
2𝑏(𝑎2 + 𝑎 𝑓 + 𝑟) (𝑥2 + 𝑦2)

)
.

In Case (iii), we determine Φ = exp((𝑏2𝑥2 −𝑎2𝑥2 +2𝑎𝑏𝑥𝑦−2𝑏𝑥−2𝑎𝑦 +1)/(𝑥2 + 𝑦2)).
We can construct an integrating factor of the form

𝜇 = (𝑥2 + 𝑦2)−3/2 exp
(
𝑔(𝑏2𝑥2 − 𝑎2𝑥2 + 2𝑎𝑏𝑥𝑦 − 2𝑏𝑥 − 2𝑎𝑦 + 1)

2𝑏𝑟 (𝑥2 + 𝑦2)

)
.

In Case (iv), we have Φ = exp((𝑚𝑥2 − 𝑟𝑥2 − 2𝑙𝑥𝑦 − 2𝑏𝑥 − 2𝑎𝑦 + 1)/(𝑥2 + 𝑦2)). We
can construct the first integral

(𝑥2 + 𝑦2)−𝑟 exp
(
𝑚𝑥2 − 𝑟𝑥2 − 2𝑙𝑥𝑦 − 2𝑏𝑥 − 2𝑎𝑦 + 1

𝑥2 + 𝑦2

)
= 𝐶.

□

Theorem 4.1. The cubic system (1) with two invariant straight lines 𝑥 ∓ 𝑖𝑦 = 0 and an
exponential factor of the form (14) has a center at the origin𝑂 (0, 0) if and only if the first
Lyapunov quantity vanishes.

Proof. We compute the first Lyapunov quantities 𝐿1 for cubic system (9) assuming that
the conditions of Lemma 3.2 hold.

In Case (𝑖1) the first Lyapunov quantity vanishes. We have Lemma 4.2, (i).
In Case (𝑖2) we find that 𝐿1 = 𝑢 ≠ 0. Therefore, the origin is a focus.
In Case (𝑖3) the first Lyapunov quantity is 𝐿1 = 𝑎𝑔 − 𝑏 𝑓 . If 𝐿1 = 0, then we have

Lemma 2.2.2, (iv) (𝑙 = 0, 𝑛 = 𝑟) from [5] and the origin is a center. □
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Theorem 4.2. The cubic system (1) with two invariant straight lines 𝑥 ∓ 𝑖𝑦 = 0 and an
exponential factor Φ = exp((1− 2𝑏𝑥 − 2𝑎𝑦)/(𝑥2 + 𝑦2)) has a center at the origin𝑂 (0, 0)
if and only if the first two Lyapunov quantities vanish.

Proof. We compute the first two Lyapunov quantities 𝐿1, 𝐿2 for cubic system (9) assuming
that the set of conditions of Lemma 3.3 is fulfilled. The vanishing of the first Lyapunov
quantity gives 𝑢 = 𝑎𝑔 − 𝑏 𝑓 . The second Lyapunov quantity looks

𝐿2 = 48(𝑎2 + 𝑎 𝑓 + 𝑟) (𝑎𝑔 − 𝑏 𝑓 ).
Let 𝑟 = −𝑎2 − 𝑎 𝑓 . Then the right hand sides of (1) have a common factor ℎ(𝑥, 𝑦) =

𝑎𝑦 + 𝑏𝑥 + 𝑓 𝑦 + 𝑔𝑥 + 1. Assume that 𝑟 ≠ −𝑎2 − 𝑎 𝑓 and let 𝑎𝑔− 𝑏 𝑓 = 0. In this case 𝐿2 = 0
and we have Lemma 4.2, (ii). □

Theorem 4.3. The cubic system (1) with two invariant straight lines 𝑥 ∓ 𝑖𝑦 = 0 and an
exponential factor of the form (20) has a center at the origin𝑂 (0, 0) if and only if the first
two Lyapunov quantities vanish.

Proof. We compute the first two Lyapunov quantities 𝐿1, 𝐿2 for cubic system (9) assuming
that the conditions of Lemma 3.4 hold.

In Case (𝑖1) we have 𝐿1 = 0 and the second Lyapunov quanity is 𝐿2 = 48𝑟 (𝑎𝑔 − 𝑏 𝑓 ).
If 𝑟 = 0, then the right hand sides of (1) have a common factor ℎ(𝑥, 𝑦) = 𝑔𝑥 + 𝑓 𝑦 + 1.

Assume that 𝑟 ≠ 0 and let 𝑎𝑔 − 𝑏 𝑓 = 0. In this case 𝐿2 = 0 and we have Lemma 4.2, (iii).
In Case (𝑖2) we find that 𝐿1 = 𝐿2 = 0. Then Lemma 4.2, (iv). □
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