
Acta et Commentationes, Exact and Natural Sciences ISSN: 2537-6284
Volume 2(14), 2022, Pages 101–105 E-ISSN: 2587-3644
CZU 004.627:519.61 DOI: 10.36120/2587-3644.v14i2.101-105

Finding N bits using 𝑂 (𝑁
log 𝑁

) sums

Sergiu Corlat , Veaceslav Guzun , and Victor Vorona

Abstract. The problem we are trying to solve sounds as follows: You are given 𝑁 bits.
Find the value of each bit. We will show a technique which enables finding the values of
𝑁 bits using 𝑂 (𝑁

log 𝑁
) subsequence-sum queries. The algorithm consists of two phases:

Constructing the queries for each layer and using the queries for a particular layer to get
the value of every bit. We described the following technique in this blog [1], which was
inspired by this article [2]. It should be noted that this number of queries is indeed the
optimal one for finding all 𝑁 bits of a binary array, since each subsequence-sum queries
offers us at most log2 𝑁 bits of information.
Keywords: binary array, query problem, divide et impera, optimization.

Aflarea a N biţi folosind 𝑂 (𝑁
log 𝑁

) sume
Rezumat. Problema pe care ı̂ncercăm să o rezolvăm sună astfel: vi se oferă 𝑁 bit,i.
Găsit,i valoarea fiecărui bit. Vom prezenta o tehnică care permite aflarea valorilor a 𝑁 bit,i
folosind 𝑂 (𝑁

log 𝑁
) interogări de sume pe subsecvent,e. Algoritmul se divide ı̂n două faze:

construirea interogărilor pentru fiecare strat s, i utlizarea acestora pentru un strat particular
pentru a obt,ine valoarea fiecărui bit. Am descris această tehnică ı̂n articolul de blog
[1], care dezvoltă rezultatele din articolul lui Zhenting Zhu din universitatea Tsinghua
[2]. Trebuie să mentionăm faptul că acest număr de interogări este ı̂ntr-adevăr optimal
pentru găsirea tuturor 𝑁 bit,ilor unui s, ir binar, deoarece fiecare interogare de sumă de
subsecvent,e ne oferă cel mult log2 𝑁 bit,i de informat,ie.
Cuvinte-cheie: s, ir binar, problemă de interogare, divide et impera, optimizare.

1. Introduction

1.1. Core of the Problem

Finding the whole array of elements by knowing some information about some of its
subsequences is a popular problem in computer science and can be found in many forms.
In this case, we will explain how to find each element in a binary array (an array consisting
only of zeroes and ones) by only being able to query the sums of some subsequences of
it and try to minimize the number of queries we perform.

101

https://orcid.org/0000-0002-5471-2957
https://orcid.org/0000-0001-6907-1809
https://orcid.org/0000-0002-9934-0480

FINDING N BITS USING 𝑂 (𝑁
log 𝑁

) SUMS

We will treat the problem as an interactive one. Initially, the only information about
the binary array 𝑏 we have is its size, and we can ask the interactor several questions in
the following format:

What is the sum of the subsequence of the values on positions: 𝑝1, 𝑝2, ..., 𝑝𝑘 . In other
words, you will give the sequence 𝑝1, 𝑝2, ..., 𝑝𝑘 to the interactor and it will return you the
value of

∑𝑘
𝑖=1 𝑏𝑝𝑖 .

After querying some number of sums, we should be able to tell the value of the element
on each position.

1.2. Main Idea

The main idea of the algorithm involves a divide-and-conquer-like approach [3] which
will work in two phases. In the first phase, the set of queries will be constructed, and
the second phase will reconstruct the array values. We will show that it is possible to
reconstruct the whole array using 𝑂 (𝑁

log 𝑁
) [4] well-built queries, and will also explain

how the queries should be constructed.

2. Overview

2.1. Notations

In the coming explanation we will use the following notations:

• 𝑥𝑖 – refers to the position 𝑖

• 𝐴 – any capital letter (except S) refers to a set of points 𝑥𝑖
• 𝑣𝐴 =

∑
𝑏𝑥𝑖 for 𝑥𝑖 ∈ 𝐴

• 𝑘 – the layer we are currently considering
• 𝑆𝑖 – A set of queries

We will also use 0-indexing when talking about the array’s elements’ positions.

2.2. Explanation

The idea is to use a divide-and-conquer-like approach but in two phases. The first
phase will be the construction of the queries we will ask at the end and the second phase
will reconstruct the array of elements by having the answers to the relevant subsequences
already obtained after the first phase.

The first phase
As it is a divide-and-conquer-like idea, we are going to work with layers. Let’s say that

for the 𝑘 𝑡ℎ layer we use 2𝑘 queries and that by using them we can find out the value of 𝑓𝑘

elements.

102

Corlat S., Guzun V., and Vorona V.

Using the idea that is described below we will be able to make the following recurrence
possible: 𝑓𝑘+1 = 2 · 𝑓𝑘 + 2𝑘 − 1.

Firstly, we will need to set our base case, which is 𝑘 = 0. So, for 𝑘 = 0, we will have
𝑓0 = 1 and the query set will be 1. This means we will find out the value of a single
element using a query.

Now, what we are trying to achieve in order to make the recurrence possible is to form
the new block (𝑓𝑘+1), using two blocks of size 𝑓𝑘 , and find 2𝑘 − 1 additional elements in
the process. Let’s say 𝑘1 will denote the first block of the 𝑓𝑘 elements we will use, and 𝑘2

the second such block.
The first query is used to get the sum on [𝑓𝑘 , 2 · 𝑓𝑘) – the sum of the second block. Then

we add two new queries for each non-last query in 𝑆𝑘1 and 𝑆𝑘2 . First one is 𝑆𝑘1 [𝑖]∪𝑆𝑘2 [𝑖].
Second one is 𝑆𝑘1 [𝑖] ∪ ([𝑓𝑘 , 2 · 𝑓𝑘)/𝑆𝑘2 [𝑖]) ∪ 𝑥 (2· 𝑓𝑘+𝑖) .

The last query is for the entire range [0, 𝑓𝑘+1). It’s easy to see that now, we have used
exactly 2𝑘+1 queries. Now, why don’t we lose any value in the process? And how will
we be able to recursively [5] obtain the elements back? This will be clear in the second
phase of the algorithm.

The second phase
Having answered all the 𝑆𝑘+1 queries, we can calculate all the 𝑣𝑆𝑘1 [𝑖] and 𝑣𝑆𝑘2 [𝑖] .
Now, when we reach a 𝑘 with a value of 𝑓𝑘 >= 𝑛 we can stop there. Let’s assume

𝑛 = 𝑓𝑘 since it will be easier to work with it (when 𝑛 is smaller than 𝑓𝑘 we can just think
of it as appending 𝑓𝑘 − 𝑛 zeroes at the end since they won’t influence the sum at all).
Using the set of queries responsible for the 𝑘 𝑡ℎ layer we can in fact now reconstruct the
whole sequence, recursively going from the 𝑘 𝑡ℎ layer to the (𝑘 − 1)𝑡ℎ one (but consider
each layer can have multiple blocks).

First of all, the only information relevant for the 𝑘 𝑡ℎ layer are:

• The query set for the corresponding block of the corresponding layer.
• The block we are currently at (can be dealt with using an offset value in the

recursion).

So we will store them when going recursively.
Firstly, let’s set our base case: 𝑘 = 0. We are now sure that only one element is

responsible for this block from this layer, so we can just set the value of the 𝑏𝑥-th bit
(where 𝑥 is some offset value we use to keep track of the block) to 𝑣𝑆0 (since that’s the
sum for a single element which we’ve seen at the build-up).

Now, since the base case is already dealt with, here’s how we will go to the (𝑘 − 1)𝑡ℎ

layer:

103

FINDING N BITS USING 𝑂 (𝑁
log 𝑁

) SUMS

We will need to reconstruct the previous query sets for the first block and the second
block of size 𝑓𝑘−1, and set the values for the other 2(𝑘−1) − 1 values respectively (since
they aren’t part of any of the blocks they shouldn’t be part of the recursion either).

Let’s denote the numbers of 1-s in [𝑓𝑘 , 2 · 𝑓𝑘) with 𝑐. It’s obvious that 𝑐 = 𝑣𝑆 [0] .
We will now go through every pair of queries, starting from 1. That means we will be
analyzing queries 𝑆1 [𝑖] ∪ 𝑆2 [𝑖] and 𝑆1 [𝑖] ∪ ([𝑓𝑘−1, 2 · 𝑓𝑘−1)/𝑆2 [𝑖]) ∪ 𝑥 (2· 𝑓𝑘−1+𝑖) .

• 𝑣𝑆 [2·𝑖+1] = 𝑣𝑆1 [𝑖] + 𝑣𝑆2 [𝑖]

• 𝑣𝑆 [2·𝑖+2] = 𝑣𝑆1 [𝑖] + 𝑐 − 𝑣𝑆2 [𝑖] + 𝑏2· 𝑓𝑘−1+𝑖

In this case we will calculate 3 values: 𝑣𝑆1 [𝑖] , 𝑣𝑆2 [𝑖] , 𝑏2· 𝑓𝑘−1+𝑖 .

• 𝑣𝑆1 [𝑖] = ⌊ 𝑣𝑆 [2·𝑖+1]+𝑣𝑆 [2·𝑖+2]−𝑐
2 ⌋

• 𝑣𝑆2 [𝑖] = ⌈ 𝑣𝑆 [2·𝑖+1]−𝑣𝑆 [2·𝑖+2]+𝑐
2 ⌉

• 𝑏2· 𝑓𝑘−1+𝑖 = (𝑣𝑆 [2·𝑖+1] + 𝑣𝑆 [2·𝑖+2] − 𝑐) ∧ 1

The only remaining queries to answer are 𝑣𝑆1 [2𝑘−1] and 𝑣𝑆2 [2𝑘−1] as they were not added
in 𝑆.

• 𝑣𝑆2 [2𝑘−1] = 𝑐 = 𝑣𝑆 [0]

• 𝑣𝑆1 [2𝑘−1] = 𝑣𝑆 [2𝑘] − 𝑐 −∑2𝑘−1−1
𝑖=0 𝑏2· 𝑓𝑘−1+𝑖

After calculating this, we could use the divide-and-conquer property specified earlier and
go down a layer. We are going to do this recursively from layer 𝑘 til layer 0. The last
layer will consist of only 1 bit and only 1 sum, the value of said bit.

3. Visual Representation

Representation of how the algorithm works for 𝑘 = 3 (Figure 1). Here is the color
coding we used:

(1) The green squares represent the queries responsible for the first block of the
previous layer.

(2) The orange squares represent the queries responsible for the second block of the
previous layer.

(3) The blue squares represent the queries that query the whole second block exclud-
ing the elements from the query of the second block.

(4) The red squares represent the last 2𝑘 − 1 bits.

104

Corlat S., Guzun V., and Vorona V.

Figure 1. The second phase for 𝑘 = 3

References

[1] http://codeforces.com/blog/entry/105188
[2] http://codeforces.com/blog/entry/82924
[3] Knuth, Donald The Art of Computer Programming: Volume 3 Sorting and Searching. (1998). p. 159.

ISBN 0-201-89685-0.
[4] Cormen, Thomas; Leiserson, Charles; Rivest, Ronald; Stein, Clifford. Introduction to Algo-

rithms (Third ed.). MIT. (2009). p. 53
[5] Dijkstra, Edsger W. ”Recursive Programming”. Numerische Mathematik. (1960). 2 (1): 312–318.

Received: November 03, 2022 Accepted: December 21, 2022

(Corlat Sergiu) Moldova State University, 60 Alexei Mateevici St., Chişinău, Moldova
E-mail address: sergiu.corlat@gmail.com

(Guzun Veaceslav, Vorona Victor) Liceul Teoretic Orizont

105

http://codeforces.com/blog/entry/105188
http://codeforces.com/blog/entry/82924

	Introduction
	Core of the Problem
	Main Idea

	Overview
	Notations
	Explanation

	Visual Representation

