## **Regression analysis in the process of studying the correlation between climate factors of the Chisinau weather station**

Anatolie Puțuntică 🗅 and Vitalie Puțuntică 🗇

**Abstract.** The study presents linear and nonlinear mathematical models that analyze the regression in the process of correlation between climatic factors. The elaborated research is carried out for the period 1960-2019, analyzing the experimental data of the average annual temperature and the amount of annual precipitation. Various forms of regressions (linear, parabolic, cubic, etc.) and predictions for the correlation between the year and the average annual temperature, the year and the amount of annual precipitation, the average annual temperature and the amount of annual precipitation were obtained.

Keywords: regression, covariance, correlation coefficient.

## Analiza de regresie în procesul de studiere a corelației dintre factorii climatici ai stației meteo Chișinău

**Rezumat.** Studiul prezintă modele matematice liniare și neliniare care analizează regresia în procesul de corelație între factorii climatici. Cercetarea elaborată este realizată pentru perioada 1960-2019, analizând datele experimentale privind temperatura medie anuală și cantitatea de precipitații anuale. Au fost obținute diverse forme de regresii (liniare, parabolice, cubice etc.) și prognoze pentru corelația dintre an și temperatura medie anuală, an și cantitatea de precipitații anuale, temperatura medie anuală și cantitatea de precipitații anuale.

Cuvinte-cheie: regresie, covarianță, coeficient de corelație.

#### 1. INTRODUCTION

The forms of manifestation of the interdependence relations between the processes and the natural phenomena are extremely varied and most often difficult to notice. An essential problem to be solved in the analysis of the link between a dependency variable (denoted by y) and one or more independent variables (denoted by  $x_i$ ) is the existence of the link between them. In practice, the following situations are encountered [1]:

- a) the independent variable determines the modification of the dependent variable in case there is an univocal;
- b) the two variables influence each other;

## REGRESSION ANALYSIS IN THE PROCESS OF STUDYING THE CORRELATION BETWEEN CLIMATE FACTORS IN CHISINAU

- c) the variables evolve similarly independently, but influenced by another variable simultaneously;
- d) the variables have a similar evolution without any connection between them.

Thus, for the systematic study of the relations between the two types of variables it is necessary to classify them according to certain criteria:

- by the nature of the interdependence relationship (functional and statistical links);
- by the number of factorial variables (single and multiple links);
- by the nature of the characteristics (association and correlation links);
- by the direction of the connection (direct and inverse connections);
- according to the shape of the function by which the connection is described (linear and nonlinear connections);
- after the connection time (synchronous and asynchronous connections).

### 2. Analytical method of measuring links

Analytical methods are those that allow the precise determination of both the relationship between two or more variables and its intensity. The analytical methods are:

- regression method;
- correlation method.

### 2.1. Regression method

This method is based on the use of mathematical functions to describe the shape of the connection between variables. The regression function has the following form:

$$y = f(x_1, x_2, ..., x_n) + \varepsilon,$$

where y - the dependent variable;  $x_1$ ,  $x_2$ , ...,  $x_n$  - independent variables; n - the number of influencing factors;  $\varepsilon$  - random variable or error that synthesizes the influence of unspecified factors.

In relation to the number of registered influencing factors are [2]:

- simple regression (unifactorial);
- multiple regression (multifactorial).

Only simple regression will be used in this research. It is based on function  $y = f(x) + \varepsilon$ and studies the variation of a dependent variable y in relation to a single independent variable x, the other factors being considered neglected and with constant action.

The choice of the function is made with the help of the correlation graph. The most common simple correlation functions used are:

- (1) y = ax + b (linear);
- (2)  $y = ax^2 + bx + c$  (parabolic);
- (3)  $y = ax^3 + bx^2 + cx + d$ (cubic);
- (4)  $y = ax^4 + bx^3 + cx^2 + dx + e$  (polynomial of degree IV);
- (5)  $y = ax^{b}$  (power);
- (6)  $y = ab^x$  (exponential);
- (7)  $y = a + b \ln x$  (logarithmic);
- (8)  $y = \frac{1}{a+bx}$  (hyperbole);
- (9)  $y = \frac{ax}{x+b}$  (Törniquist),

where a, b, c, d, e, f are parameters to be determined.

To determine the parameters a, b, c, d, e, f, the least squares method is usually used, according to which in order for the chosen regression function to be really significant we must have:

$$S = \sum_{i=1}^{n} \left( y_i - y_{x_i} \right)^2$$

to be minimal, where  $i = \overline{1, n}$  - number of statistical units observed,  $y_i$  – the observed (empirical) values of the dependent variable,  $y_{x_i}$  – the theoretical values expressed by the regression equation. Determination of the values of each parameter (a, b, c etc.) is done by applying the conditions for obtaining the minimum value in the partial derivatives of the function S considered in the variables a, b, c etc.:

$$\frac{\partial S(a, b, c \dots)}{\partial a} = 0, \quad \frac{\partial S(a, b, c, \dots)}{\partial b} = 0, \quad \frac{\partial S(a, b, c, \dots)}{\partial c} = 0, \dots$$

The formulas deduced for the mentioned correlation functions are brought in Tab. 1

|           | Table 1. Functions formula correlation                                               |                                                                                                                                                                                                                                                                                                |  |  |  |  |
|-----------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Linear    | $\begin{cases} a\sum x^2 + b\sum x = \sum xy, \\ a\sum x + bn = \sum y; \end{cases}$ |                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Parabolic | $y = ax^2 + bx + c$                                                                  | $\begin{cases} a\sum x^4 + b\sum x^3 + c\sum x^2 = \sum x^2 y, \\ a\sum x^3 + b\sum x^2 + c\sum x = \sum xy, \\ a\sum x^2 + b\sum x + cn = \sum y; \end{cases}$                                                                                                                                |  |  |  |  |
| Cubic     | $y = ax^3 + bx^2 + +cx + d$                                                          | $\begin{cases} a\sum x^{6} + b\sum x^{5} + c\sum x^{4} + d\sum x^{3} = \sum x^{3}y, \\ a\sum x^{5} + b\sum x^{4} + c\sum x^{3} + d\sum x^{2} = \sum x^{2}y, \\ a\sum x^{4} + b\sum x^{3} + c\sum x^{2} + d\sum x = \sum xy, \\ a\sum x^{3} + b\sum x^{2} + c\sum x + dn = \sum y; \end{cases}$ |  |  |  |  |

Table 1. Functions formula correlation

REGRESSION ANALYSIS IN THE PROCESS OF STUDYING THE CORRELATION BETWEEN CLIMATE FACTORS IN CHISINAU

| Polynomial<br>of degree<br>IV                                                                        | $y = ax^4 + bx^3 + +cx^2 + dx + e$ | $\begin{cases} a\sum x^{8} + b\sum x^{7} + c\sum x^{6} + d\sum x^{5} + e\sum x^{4} = \sum x^{4}y, \\ a\sum x^{7} + b\sum x^{6} + c\sum x^{5} + d\sum x^{4} + e\sum x^{3} = \sum x^{3}y, \\ a\sum x^{6} + b\sum x^{5} + c\sum x^{4} + d\sum x^{3} + e\sum x^{2} = \sum x^{2}y, \\ a\sum x^{5} + b\sum x^{4} + c\sum x^{3} + d\sum x^{2} + e\sum x = \sum xy, \\ a\sum x^{4} + b\sum x^{3} + c\sum x^{2} + d\sum x + en = \sum y; \end{cases}$ |
|------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power                                                                                                | $y = ax^b$                         | $\begin{cases} n\lg a + b\sum \lg x = \sum \lg y, \\ \lg a\sum \lg x + b\sum (\lg x)^2 = \sum \lg x \cdot \lg y; \end{cases}$                                                                                                                                                                                                                                                                                                                |
| Exponential                                                                                          | $y = ab^x$                         | $\begin{cases} n\lg a + \lg b\sum x = \sum \lg y, \\ \lg a\sum x + \lg b\sum x^2 = \sum x\lg y; \end{cases}$                                                                                                                                                                                                                                                                                                                                 |
| <b>Logarithm</b> $y = a + b \ln x$ $\begin{cases} an + b \sum \ln x \\ a \sum \ln x + b \end{cases}$ |                                    | $\begin{cases} an+b\sum \ln x = \sum y, \\ a\sum \ln x + b\sum \ln^2 x = \sum y \ln x; \end{cases}$                                                                                                                                                                                                                                                                                                                                          |
| Hyperbole                                                                                            | $y = \frac{1}{a+bx}$               | $\begin{cases} an+b\sum x = \sum 1/y, \\ a\sum x+b\sum x^2 = \sum x/y; \end{cases}$                                                                                                                                                                                                                                                                                                                                                          |
| Törniquist                                                                                           | $y = \frac{ax}{x+b}$               | $\begin{cases} \frac{n}{a} + \frac{b}{a} \sum \frac{1}{x} = \sum \frac{1}{y}, \\ \frac{1}{a} \sum \frac{1}{x} + \frac{b}{a} \sum \frac{1}{x^2} = \sum \frac{1}{xy}. \end{cases}$                                                                                                                                                                                                                                                             |

### 2.2. Correlation method

The correlation method is used to measure the intensity of the link between the dependent variable y and the independent variable x. Depending on the nature of the link between the dependent variable y and the independent variable x, the correlation can be positive (in the case of the direct link) or negative (in the case of the reverse link). In this method the following indicators are used: covariance, correlation coefficient and correlation ratio [1,2].

*Covariance* captures the existence and direction of the link between the dependent variable y and an independent variable x. It is calculated as the simple arithmetic mean of the products of the deviations of the two correlated variables y and x from their arithmetic average  $\bar{y}$  and  $\bar{x}$  using the relation:

$$\operatorname{cov}(x, y) = \frac{\sum (x_i - \bar{x}) (y_i - \bar{y})}{n}.$$

The positive values of this indicator reflect a direct link, and the negative ones reflect an inverse link.

High values of the indicator show a strong link, while values close to zero signify the lack of links between the variables y and x. The correlation coefficient is determined according to one of the relations:

$$r = \frac{n\sum x_i y_i - \sum x_i \cdot \sum y_i}{\sqrt{\left(n\sum x_i^2 - (\sum x_i)^2\right) \cdot \left(n\sum y_i^2 - (\sum y_i)^2\right)}} \Leftrightarrow r = \frac{\sum (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \cdot \sum (y_i - \bar{y})^2}}.$$

The correlation coefficient can take values between -1 and 1. If  $r \in [-1, 0)$  – reverse link,  $r \in [0, 1)$  – direct link, r = 0 – the two variables do not correlate linearly.

*The correlation* ratio measures the intensity of the connection between the dependent variable *y* and the independent variable *x* in the case of nonlinear regression functions. The correlation ratio is determined by the relation:

$$F = \sqrt{1 - \frac{\sum (y_i - y_{i, curba})^2}{\sum (y_i - \bar{y})^2}}.$$

Thus, the value of the correlation ratio is always positive and between 0 and 1. In the case of linear type connections the correlation ratio must be equal to the correlation coefficient.

Calculating this coefficient F for each of the variants of the functions considered we obtain a value close to 1. The most appropriate function is the one with the value F closest to 1.

## 3. Study of the correlation between some climatic elements at the Chisinau Meteorological Station

In this study, we will study the correlation between: the calendar year and the annual temperature, the calendar year and the annual amount of precipitation, the annual temperature and the annual amount of precipitation. According to the State Hydro meteorological Service of Chisinau station [3,4], in Tab. 2 we indicated the average annual temperature ( $^{\circ}C$ ) and the amount of annual precipitation (mm) in the period 1960-2019, here by MT we denoted the medium temperature, and by AP - the amount of precipitation.

We will describe the process, for example, for the function of the parabolic form between the average annual temperature and the amount of annual precipitation. For this model, we complete the following table:

According to Tab. 1 (parabolic model), we obtain:

## REGRESSION ANALYSIS IN THE PROCESS OF STUDYING THE CORRELATION BETWEEN CLIMATE FACTORS IN CHISINAU

 Table 2. Average annual temperature and amount of annual rainfall in the period

| Year | MT     | AP  |
|------|--------|-----|------|--------|-----|------|--------|-----|------|--------|-----|
| 1960 | 10,575 | 537 | 1975 | 10,808 | 484 | 1990 | 11,342 | 361 | 2005 | 10,492 | 638 |
| 1961 | 10,408 | 450 | 1976 | 8,342  | 600 | 1991 | 9,433  | 673 | 2006 | 10,208 | 564 |
| 1962 | 10,092 | 559 | 1977 | 9,525  | 464 | 1992 | 10,117 | 417 | 2007 | 12,042 | 480 |
| 1963 | 9,192  | 532 | 1978 | 8,725  | 563 | 1993 | 9,408  | 532 | 2008 | 11,308 | 466 |
| 1964 | 9,442  | 511 | 1979 | 9,783  | 684 | 1994 | 11,342 | 415 | 2009 | 11,408 | 446 |
| 1965 | 9,033  | 537 | 1980 | 8,300  | 712 | 1995 | 10,017 | 702 | 2010 | 10,558 | 734 |
| 1966 | 10,858 | 774 | 1981 | 9,667  | 536 | 1996 | 9,050  | 711 | 2011 | 10,450 | 428 |
| 1967 | 10,042 | 481 | 1982 | 9,783  | 384 | 1997 | 9,400  | 607 | 2012 | 11,217 | 522 |
| 1968 | 9,992  | 532 | 1983 | 10,458 | 549 | 1998 | 10,250 | 668 | 2013 | 11,083 | 531 |
| 1969 | 8,692  | 525 | 1984 | 9,167  | 669 | 1999 | 11,025 | 485 | 2014 | 10,917 | 604 |
| 1970 | 10,067 | 672 | 1985 | 8,000  | 591 | 2000 | 11,150 | 437 | 2015 | 11,983 | 431 |
| 1971 | 9,967  | 590 | 1986 | 9,625  | 402 | 2001 | 10,308 | 618 | 2016 | 11,225 | 644 |
| 1972 | 9,758  | 621 | 1987 | 8,075  | 592 | 2002 | 10,842 | 604 | 2017 | 11,208 | 635 |
| 1973 | 9,500  | 396 | 1988 | 9,025  | 652 | 2003 | 9,800  | 459 | 2018 | 11,200 | 609 |
| 1974 | 9,958  | 562 | 1989 | 10,933 | 460 | 2004 | 10,300 | 591 | 2019 | 12,225 | 403 |

1960-2019, Chisinau

Table 3. Parabolic function model

| n  | x      | у     | <i>x</i> <sup>2</sup> | x <sup>3</sup> | <i>x</i> <sup>4</sup> | xy          | $x^2y$      |
|----|--------|-------|-----------------------|----------------|-----------------------|-------------|-------------|
| 1  | 10,575 | 537   | 111,830625            | 1182,608859    | 12506,08869           | 5678,775    | 60053,04563 |
| 2  | 10,408 | 450   | 108,333333            | 1127,569084    | 11736,11112           | 4683,7485   | 48750,00003 |
|    |        |       |                       |                |                       |             |             |
| 59 | 11,2   | 609   | 125,44                | 1404,928       | 15735,1936            | 6820,8      | 76392,96    |
| 60 | 12,225 | 403   | 149,450625            | 1827,033891    | 22335,48931           | 4926,675    | 60228,60188 |
| Σ  | 609,1  | 33036 | 6240,452323           | 64502,06588    | 672353,4868           | 333539,6911 | 3398332,086 |

(672353, 486759a + 64502, 065881b + 6240, 452323c = 3398332, 085749;  $64502, 065881a + 6240, 452323b + 609, 1c = 333539, 69105; \qquad \Leftrightarrow$ 6240, 452323a + 609, 1b + 60c = 6240, 452323;

$$\Leftrightarrow \begin{cases} a = -8,8035497; \\ b = 145,4784458; \\ c = -10,6131547. \end{cases}$$

Therefore, the parabolic regression will be:

$$y = -8,8035497x^2 + 145,4784458x - 10,6131547.$$

If the connection between the average annual temperature and the amount of average annual precipitation is assumed to be linear, then the coefficients of the equation y = ax+b based on the system of equations must be determined using the least squares method (see Tab.1):

$$\begin{cases} 6240, 4523236a + 609, 1b = 333539, 69105; \\ 609, 1a + 60b = 33036; \end{cases} \longleftrightarrow \begin{cases} a = -32, 0781457; \\ b = 876, 2466428. \end{cases}$$

So the regression line will be y = 876, 2466428 - 32, 0781457x. For the covariance sizes and the correlation coefficient of the regression line we will have to complete the table:

| n  | x      | у     | $x - \overline{x}$ | $(x-\overline{x})^2$ | $y - \overline{y}$ | $(y-\overline{y})^2$ | $(x-\overline{x})(y-\overline{y})$ |
|----|--------|-------|--------------------|----------------------|--------------------|----------------------|------------------------------------|
| 1  | 10,575 | 537   | 0,423333           | 0,179211             | -13,6              | 184,96               | -5,757333                          |
| 2  | 10,408 | 450   | 0,256663           | 0,065876             | -100,6             | 10120,36             | -25,820331                         |
|    |        |       |                    |                      |                    |                      |                                    |
| 59 | 11,2   | 609   | 1,048333           | 1,099003             | 58,4               | 3410,56              | 61,222667                          |
| 60 | 12,225 | 403   | 2,073333           | 4,298711             | -147,6             | 21785,76             | -306,024                           |
| Σ  | 609,1  | 33036 | 0                  | 57,07216             | 0                  | 584508,4             | -1830,76895                        |

Table 4. Calculating covariance and regression.

As a result we get:

$$r = \frac{\Sigma(x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\Sigma(x_i - \overline{x})^2 \cdot \Sigma(y_i - \overline{y})^2}} = \frac{-1830,76895}{\sqrt{57,072156 \cdot 584508,4}} = -0,3169757358483542.$$

Because cov(x, y) < 0, respectively r < 0, then we have a strong inverse link between the average annual temperature and the amount of average annual rainfall, well increasing the average annual temperature leads to a decrease in the amount of average annual rainfall.

To determine the correlation ratio for parabolic regression:

## $y_{parabola} = -8,8035497x^2 + 145,4784458x - 10,6131547,$

we complete Table 5.

| xi     | y <sub>i</sub> | Yi,parabola | yi – yi,parabola | $(y_i - y_{i,parabola})^2$ | $y_i - \overline{y}$ | $(y_i - \overline{y})^2$ |
|--------|----------------|-------------|------------------|----------------------------|----------------------|--------------------------|
| 10,575 | 537            | 543,3149    | -6,31495         | 39,87855                   | -13,6                | 184,96                   |
| 10,408 | 450            | 549,8566    | -99,8566         | 9971,347                   | -100,6               | 10120,36                 |
|        |                |             |                  |                            |                      |                          |
| 11,2   | 609            | 514,4282    | 94,57183         | 8943,832                   | 58,4                 | 3410,56                  |
| 12,225 | 403            | 452,1648    | -49,1648         | 2417,182                   | -147,6               | 21785,76                 |
| Σ      | 33036          | 33036       | -25,6656         | 519295,7                   | 0                    | 584508,4                 |

Table 5. Correlation for the parabolic regression.

So,

$$F = \sqrt{1 - \frac{519295,65987597423}{584508,4}} = 0,3340187496937681.$$

The graphical representation of the initial data, the parabolic regression and the linear regression is represented in Fig. 1.



Figure 1. Linear regression (blue) and parabolic regression (red).

| Correlation | Pagrassion ourva         | Regression of curve      | Correlation | Forecast |
|-------------|--------------------------|--------------------------|-------------|----------|
| Correlation | Regression curve         | coefficients             | ratio       | for 2020 |
|             | 1                        | 0,031261439              | 0.555102    | 11,1051  |
|             | linear                   | -52,04296569             | 0,555102    |          |
|             |                          | 0,001411821              |             | 11,9951  |
|             | parabolic                | -5,586376217             | 0,677351    |          |
|             |                          | 5535,678664              |             |          |
|             |                          | $-2,8101 \cdot 10^{-5}$  |             | 11,6603  |
|             | ouhio                    | 0,169132863              | 0 697117    |          |
|             | cubic                    | -339,2522238             | 0,087447    |          |
| Voor ond    |                          | 226791,6331              |             |          |
|             |                          | $-2,56495 \cdot 10^{-7}$ |             | 11,6044  |
| average     |                          | 0,00201309               |             |          |
| annuar      | quartic                  | -5,922092462             | 0,687637    |          |
| (°C)        |                          | 7739,21872               |             |          |
| (())        |                          | -3790846,75              |             |          |
|             | ···· · · · · · · · · · 1 | 0,018015157              | 0 564272    | 11,1691  |
|             | exponential              | 1,003188088              | 0,304372    |          |
|             | lagonithmia              | -460,9379324             | 0 552595    | 11,0976  |
|             | logariunnic              | 62,02137463              | 0,555585    |          |
|             | hyperbole                | 0,741389957              | 0 572484    | 11,2382  |
|             | nyperbole                | -0,000322974             | 0,373464    |          |
|             | Timinist                 | 6,45085·10 <sup>14</sup> | 0 202071    | 10,3113  |
|             | Torniquist               | 1,26373·10 <sup>17</sup> | 0,303971    |          |
|             | lincor                   | -0,122422895             | 0.02149     |          |
|             | Intear                   | 794,1603501              | 0,02146     | 540,800  |
|             |                          | -0,01772693              |             |          |
| Year and    | parabolic                | 70,41303189              | 0,052732    | 535,692  |
| amount of   |                          | -69365,6667              |             |          |
| annual      |                          | 0,000725385              |             |          |
| rainfall    | ouhio                    | -4,347184658             | 0.06064     | 544 224  |
| (mm)        | cubic                    | 8683,477728              | 0,00004     | 544,554  |
|             |                          | -5780743,873             |             |          |
|             | quartic                  | -0,000120363             | 0.006406    | 510 114  |
|             | qualtic                  | 0,958571053              | 0,090400    | 510,114  |

# REGRESSION ANALYSIS IN THE PROCESS OF STUDYING THE CORRELATION BETWEEN CLIMATE FACTORS IN CHISINAU

|             |                 | -2862,705381             |          |         |  |
|-------------|-----------------|--------------------------|----------|---------|--|
|             |                 | 3799573,226              | -        |         |  |
|             |                 | -1891091005              |          |         |  |
|             | avaonantial     | 854,0270487              | 0.021208 | 546.002 |  |
|             | exponential     | 0,999779385              | 0,021398 | 340,903 |  |
|             | logorithmia     | 2384,28375               | 0.021202 | 546.019 |  |
|             | logariumic      | -241,4139201             | 0,021292 | 540,710 |  |
|             | buparbala       | 0,001025088              | 0.021216 | 546,94  |  |
|             | nyperbole       | 3,97657.10 <sup>-7</sup> | 0,021310 |         |  |
|             | Tärniquist      | 385,6266587              | 0.02004  | 547.042 |  |
|             | Torniquist      | -596,0389292             | 0,02094  | 347,042 |  |
|             | lincon          | -32,07814573             | 0.216076 | 520.016 |  |
|             | Intear          | 876,2466428              | 0,310970 | 520,010 |  |
|             | parabolic       | -8,803549677             |          | 467,739 |  |
|             |                 | 145,4784458              | 0,334019 |         |  |
|             |                 | -10,61315474             |          |         |  |
|             | cubic           | -11,75781748             |          | 486,022 |  |
|             |                 | 346,625388               | 0 274276 |         |  |
| A           |                 | -3407,48275              | 0,374370 |         |  |
| Average     |                 | 11730,63422              |          |         |  |
| tamparatura |                 | -0,907613644             |          | 494,343 |  |
| and amount  |                 | 25,02808731              |          |         |  |
| and amount  | quartic         | -208,9526932             | 0,374624 |         |  |
| or annual   |                 | 297,6295967              |          |         |  |
| (mm)        |                 | 2526,383239              |          |         |  |
| (IIIII)     | avaonantial     | 977,2843906              | 0.212296 | 519.077 |  |
|             | exponential     | -0,056666872             | 0,313280 | 510,977 |  |
|             | logorithmia     | 1276,94661               | 0.210704 | 521 142 |  |
|             | logarithmic     | -314,038121              | 0,310794 | 321,142 |  |
|             | have a dir a la | 0,000806208              | 0.200868 | 518,131 |  |
|             | nyperbole       | 0,0000999988             | 0,509808 |         |  |
|             | Törniquist      | 365,1741364              | 0 207274 | 542 412 |  |
|             |                 | -3,369321499             | 0,291214 | 542,415 |  |

Table 6. Correlations results for other types of regression.

From Fig.1 we notice that the increase of temperature leads to a decrease in the amount of precipitation. Therefore, we can make the following predictions: for an average annual air temperature of  $11,015^{\circ}$  C, we will have according to the parabolic regression the amount of annual precipitation 519,257 *mm* and according to the linear regression 520,014 *mm*.

Proceeding according to the above model, the other types of regressions are also studied: cubic, degree IV curve, logarithmic, exponential, etc. The results are presented in Tab. 6.

Also, the correlation between the year and the average annual temperature, the year and the amount of annual precipitation are analyzed (see Tab. 6).

To estimate the amount of average annual rainfall for 2020, the average annual temperatures were obtained by correlating the year with the average annual temperatures.

#### 4. Conclusions

As a result of analyzing all forms of correlation (calendar year and annual temperature, calendar year and annual rainfall, annual temperature and annual rainfall) it can be concluded that the best function is grade IV. Cubic function as well provides good results. In addition to the correlations of mathematical functions, obviously, we will take into account the geographical conditions of the weather station location (altitude, latitude, exposure, vegetation, transparency of the atmosphere, pollution, fragmentation of the relief, etc.). Similar works in the future could take into account other logical correlations, passed through the mathematical apparatus (temperature and humidity, cloudiness and precipitation, cloudiness and visibility, visibility and humidity - very important correlation for road, air, sea, river, rail transport traffic).

#### References

- [1] СІИМАС, Р., СІИМАС, V., СІИМАС, М. *Teoria probabilității și elemente de statistică matematică*. Chișinău, Ed. Tehnică, UTM, 2003;
- [2] RANCU, N., TÖVISSI, L. Statistica matematică cu aplicații în producție, Ed. Academiei Republicii Populare Române, 1963;
- [3] www.meteo.md;

[4] www.bns.md.

Received: February 20, 2023

Accepted: July 27, 2023

(Anatolie Puțuntică, Vitalie Puțuntică) "Ion Creangă" State Pedagogical University of Chisinau *E-mail address*: aputuntica@gmail.com, putunticavitalie@gmail.com