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Compactificări generalizate Hausdorff
Rezumat. În acest articol se studiază unele proprietăţi ale compactificărilor generalizate
Hausdorff ale 𝑇0-spaţiilor topologice. În particular, se demonstrează că totalitatea com-
pactificărilor formează o latice de 𝑔-extensii ı̂n care există elementul maximal.
Cuvinte-cheie: aplicaţie continuă, extensie, 𝑔-extensie, compactificare, latice, spaţiu.

1. Extensions

Let us mention, that in case there are no concrete indications, then the topological
space is considered 𝑇0–space.

Definition 1.1. A pair (𝑌, 𝑓 ) it is called a generalized extension or 𝑔–extension of space
𝑋 , where 𝑌 is a space, 𝑓 : 𝑋 → 𝑌 is a continuous mapping and the set 𝑓 (𝑋) is dense in
𝑌 . If 𝑓 is an embadding of space 𝑋 in 𝑌 , i.e. an omeomorphism of space 𝑋 on subspace
𝑓 (𝑋) of 𝑌 , then the pair (𝑌, 𝑓 ) is called an extension of space 𝑋 .

If (𝑌, 𝑓 ) is an extension of space 𝑋, then, as a rule, the point 𝑥 ∈ 𝑋 is identified with
𝑓 (𝑥) ∈ 𝑌 and it is considered to be 𝑋 ⊆ 𝑌 . In this case 𝑓 (𝑥) = 𝑥 for any 𝑥 ∈ 𝑋 .

Let 𝐺𝐸 (𝑋) be the set of all 𝑔–extensions of the space 𝑋 and 𝐸 (𝑋) be the set of all
extensions of 𝑋 . Obviously, 𝐸 (𝑋) ⊆ 𝐺𝐸 (𝑋).

In class 𝐺𝐸 (𝑋) the binary increased relationship is introduced. If (𝑌, 𝑓 ) and (𝑍, 𝑔)
are two 𝑔–extensions of 𝑋 space, then it is considered (𝑍, 𝑔) ≤ (𝑌, 𝑓 ). If there is a
continuous mapping 𝜑 : 𝑌 → 𝑍 , for which 𝑔(𝑥) = 𝜑( 𝑓 (𝑥)) for any 𝑥 ∈ 𝑋 , i.e. 𝑔 = 𝜑 ◦ 𝑓
and Diagram 1 is commutative.
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Figure 1. Diagrams 1 and 2.

If (𝑌, 𝑓 ) ≤ (𝑍, 𝑔) and (𝑍, 𝑔) ≤ (𝑌, 𝑓 ), then these 𝑔–extensions (𝑌, 𝑓 ) and (𝑍, 𝑔) are
called equivalent and we denote this by (𝑌, 𝑓 ) ∼ (𝑍, 𝑔).

Proposition 1.1. If (𝑌, 𝑓 ) and (𝑍, 𝑔) are two 𝑔–extensions of space 𝑋 , (𝑍, 𝑔) ≤ (𝑌, 𝑓 )
and (𝑍, 𝑔) ∈ 𝐸 (𝑋), then (𝑌, 𝑓 ) ∈ 𝐸 (𝑋).

Proof. Let 𝜑 : 𝑌 → 𝑍 be a continuous mapping and 𝑔 = 𝜑◦ 𝑓 . According to the definition
of relationship ≤, 𝑔 is a dive. Let us denote ℎ = 𝜑 | 𝑓 (𝑋) : 𝑓 (𝑋) → 𝑔 (𝑋). Then
we get Diagram 2. As 𝑔 is a bijection and 𝑓 , ℎ are surjections, it turns out that 𝑓 and ℎ
are bijections. We have 𝑓 (𝐴) = ℎ−1 (𝑔 (𝐴)). Therefore, for any open set 𝑈 of 𝑋 the set
𝑓 (𝑈) is open in 𝑓 (𝑋), and the mapping 𝑓 −1 : 𝑓 (𝑋) → 𝑋 is continuous. So, 𝑓 is a dive.
Obviously, ℎ is a homomorphism. Proposition 1.1 is proved. □

Corollary 1.1. If (𝑌, 𝑓 ) and (𝑍, 𝑔) are two 𝑔–extensions equivalent of space 𝑋 and one
of them is extension, then the other one is extension.

The pair (𝑋, 𝑓 ), where 𝑓 (𝑥) = 𝑥 for any 𝑥 ∈ 𝑋 is an extension of space 𝑋 . This is the
trivial extension or maximum extension. Let us denote this extension by (𝑋, 𝑒𝑋).

Let 𝑆 be a space consisting of a single point and let 𝑠𝑋 (𝑥) = 𝑆 for any 𝑥 ∈ 𝑋 . Then
(𝑆, 𝑠𝑋) is called 𝑔–extension minimal or 𝑔–zero extension of space 𝑋 .

Let 𝑃 be a property of topological spaces. The property 𝑃 is called multiplicative if
the product of a set of spaces with the property 𝑃 is a space with the property 𝑃.

The property 𝑃 is called hereditary closed if any closed subspace of a space with the
property 𝑃 is a space with the property 𝑃.

Property 𝑃 is called additive if the reunion space of a finite number of subspaces with
the property 𝑃 is a space with the property 𝑃.

Example 1.1. The property of being compact space is multiplicative, hereditary closed
and additive.
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Example 1.2. The property of being countable compact space is hereditary, additive but
not multiplicative. The product of two countable compact spaces can not be a countable
compact space ([4], Example 3.10.19).

Example 1.3. The property of being pseudocompact is additive, but it is neither multi-
plicative and not hereditary closed [4].

Example 1.4. The property of being space is multiplicative, hereditary and additive. This
property is called trivial property.

2. Lattice of extensions

Let us fix a property 𝑃 of topological spaces. We denote by 𝑃𝐺𝐸 (𝑋) the totality
of 𝑔–extensions (𝑌, 𝑓 ) with the property 𝑃, i.e. 𝑌 possesses the property 𝑃 and denote
𝑌 ∈ 𝑃.

Let 𝑃𝐸 (𝑋) = 𝐸 (𝑋) ∩ 𝑃𝐺𝐸 (𝑋). If 𝑃 is a trivial property, then 𝑃𝐸 (𝑋) = 𝐸 (𝑋) and
𝑃𝐺𝐸 (𝑋) = 𝐺𝐸 (𝑋).

Definition 2.1. If 𝐿 is a nonempty set of 𝑃𝐺𝐸 (𝑋) and (𝑌, 𝑓 ) ∈ 𝑃𝐺𝐸 (𝑋), then:

(1) the extension (𝑌, 𝑓 ) is called the upper bound of a set 𝐿 in 𝑃𝐺𝐸 (𝑋) and denote
(𝑌, 𝑓 ) ∈ ∨𝐿, if (𝑍, 𝑔) ≤ (𝑌, 𝑓 ) for any (𝑍, 𝑔) ∈ 𝐿. If (𝑌1, 𝑓1) ∈ 𝑃𝐺𝐸 (𝑋) and
(𝑍, 𝑔) ≤ (𝑌, 𝑓 ) for any (𝑍, 𝑔) ∈ 𝐿, then (𝑌, 𝑓 ) ≤ (𝑌1, 𝑓1);

(2) the extension (𝑌, 𝑓 ) is called the lower bound of a set 𝐿 in 𝑃𝐺𝐸 (𝑋) and denote
(𝑌, 𝑓 ) ∈ ∧𝐿, if (𝑌, 𝑓 ) ≤ (𝑍, 𝑔) for anything (𝑍, 𝑔) ∈ 𝐿. If (𝑌1, 𝑓1) ∈ 𝑃𝐺𝐸 (𝑋)
and (𝑌, 𝑓 ) ≤ (𝑍, 𝑔) for any (𝑍, 𝑔) ∈ 𝐿, then (𝑌, 𝑓 ) ≤ (𝑌1, 𝑓1).

Proposition 2.1. Let 𝑃 be a multiplicative and hereditary closed property. Then for any
nonempty set 𝐿 ⊆ 𝑃𝐺𝐸 (𝑋) there are extensions (𝑌, 𝑓 ) ∈ ∨𝐿.

Proof. Let 𝐿 =
{(
𝑌𝜇, 𝑓𝜇

)
: 𝜇 ∈ 𝑀

}
, 𝑓 (𝑥) =

(
𝑓𝜇 (𝑥) : 𝜇 ∈ 𝑀

)
∈ ∏ {

𝑌𝜇 : 𝜇 ∈ 𝑀
}

for any
𝑥 ∈ 𝑋 and let 𝑌 be the adherence of a set 𝑓 (𝑥) in

∏ {
𝑌𝜇 : 𝜇 ∈ 𝑀

}
. Then (𝑌, 𝑓 ) ∈ ∨𝐿.

Proposition 2.1 is proved. □

Definition 2.2. The set 𝐿 ⊆ 𝑃𝐺𝐸 (𝑋) is called:

(1) the upper semilattice of extensions, if 𝐿 is nonempty and for any nonempty subset
𝑀 ⊆ 𝐿 there exists (𝑌, 𝑓 ) ∈ ∨𝑀 .

(2) the lower semilattice of extensions, if 𝐿 is nonempty and for any nonempty subset
𝑀 ⊆ 𝐿 there exists (𝑌, 𝑓 ) ∈ ∧𝑀;

(3) the lattice of extensions, if it is an upper semilattice and a lower semilattice of
extensions.
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Proposition 2.2. Let 𝑃 be a multiplicative and closed hereditary property. Then for any
nonempty set 𝐻 ⊆ 𝑃𝐺𝐸 (𝑋) there exists an upper semilattice of extensions 𝐿∗ (𝐻) with
properties:

(1) 𝐻 ⊆ 𝐿∗ (𝐻);
(2) if 𝐿 is an upper semilattice of extensions and if𝐻 ⊆ 𝐿 ⊆ 𝐿∗ (𝐻), then 𝐿 = 𝐿∗ (𝐻).

Proof. Let us fix (𝑌𝑀 , 𝑓𝑀 ) ∈ ∨𝑀 for any nonempty subset 𝑀 ⊆ 𝐻. If 𝑀 = {(𝑌, 𝑓 )},
then 𝑌𝑀 = 𝑌 and 𝑓𝑀 = 𝑓 . They can be obtained by constructing (𝑌𝑀 , 𝑓𝑀 ) as in the proof
of Proposition 2.1.

Let us denote 𝐿∗(𝐻) = {(𝑌𝑀 , 𝑓𝑀 ) : 𝑀 ⊆ 𝐻, 𝑀 ≠ ∅}. Obviously, 𝐻 ⊆ 𝐿∗ (𝐻). If
𝑀 ⊆ 𝐾 ⊆ 𝐻, then (𝑌𝑀 , 𝑓𝑀 ) ≤ (𝑌𝐾 , 𝑓𝐾 ). According to construction 𝐿∗ (𝐻) is an upper
semilattice. If 𝐾 =

{(
𝑌𝑀𝛼

, 𝑓𝑀𝛼

)
: 𝛼 ∈ 𝐴

}
and 𝑀 = ∪ {𝑀𝛼 : 𝛼 ∈ 𝐴}, then (𝑌𝑀 , 𝑓𝑀 ) ∈

∨𝐾 . The proof is complete. □

Definition 2.3. The upper semilattice 𝐿∗ (𝐻) built in the proof of Proposition 2.2 is called
the upper semilattice generated by set 𝐻.

Corollary 2.1. Let 𝑃 be a multiplicative and closed hereditary property. Suppose that
the continuous image of a space with property 𝑃 is a space with property 𝑃. Then any
nonempty set 𝐻 ⊆ 𝑃𝐺𝐸 (𝑋) is contained in a lattice of extensions of 𝑃𝐺𝐸 (𝑋).

Proof. Let (𝑍0, 𝑔0) be the extension, where 𝑍0 is a space consisting of a single point, and
let 𝑔0 : 𝑋 → 𝑍0 be the only possible application. It is clear that (𝑍0, 𝑔0) ≤ (𝑌, 𝑓 ) for
any (𝑌, 𝑓 ) ∈ 𝐺𝐸 (𝑋). Let us denote 𝐿 (𝐻) = 𝐿∗ (𝐻 ∪ {(𝑍0, 𝑔0)}). Obviously, 𝐿 (𝐻) is
an upper semilattice. As the upper lattice 𝐿 (𝐻) contains an element of ∧𝐿 (𝐻), it is a
lattice. But (𝑍0, 𝑔0) ∈ ∧𝐿 (𝐻). The proof is complete. □

Definition 2.4. A 𝑔–extension (𝑌, 𝑓 ) of the space 𝑋 is called correct, if the family
{𝑐𝑙𝑌 𝑓 (𝐴) : 𝐴 ⊆ 𝑋} forms a closed base of the space 𝑌 .

Let us denote by 𝐾𝐺𝐸 (𝑋) the totality of correct 𝑔–extensions of the space 𝑋 and let
𝐾𝐸 (𝑋) = 𝐸 (𝑋) ∩ 𝐾𝐺𝐸 (𝑋).

Proposition 2.3. If (𝑌, 𝑓 ) , (𝑍, 𝑔) are two correct and equivalent 𝑔–compactifications of
the space 𝑋 , then (𝑌, 𝑓 ) = (𝑍, 𝑔), i.e. the continuous application 𝜑 : 𝑌 → 𝑍 for any
𝑔 = 𝜑 ◦ 𝑓 is a homeomorphism of the space 𝑌 onto the space 𝑍 .

Proof. Let 𝜑 : 𝑌 → 𝑍 and 𝜓 : 𝑍 → 𝑌 be two continuous applications, for which 𝑔 = 𝜑◦ 𝑓
and 𝑓 = 𝜓 ◦ 𝑔. If 𝐴 ⊆ 𝑋 , then 𝜑 (𝑐𝑙𝑌 𝑓 (𝐴)) ⊆ 𝑐𝑙𝑍𝑔 (𝐴) and 𝜓 (𝑐𝑙𝑍𝑔 (𝐴)) ⊆ (𝑐𝑙𝑌 𝑓 (𝐴)).
Hence, 𝜑 (𝑐𝑙𝑌 𝑓 (𝐴)) = 𝑐𝑙𝑍𝑔 (𝐴) and 𝜓 (𝑐𝑙𝑧𝑔 (𝐴)) = 𝑐𝑙𝑌 𝑓 (𝐴). From these two equalities
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we conclude that 𝜑, 𝜓 are reciprocal bijective applications and 𝜑−1 = 𝜓. Proposition 2.3
is proved. □

3. Compacts

For topological spaces the notion of compact space was introduced by P.S. Alexandroff
and P.S. Urysohn (see [1]).

Definition 3.1. The class 𝑃 of topological spaces is called strict compactness if it satisfies
the conditions:

(𝐶1) class 𝑃 is not empty;
(𝐶2) in 𝑃 there is a space 𝑋 containing at least two different points;
(𝐶3) class 𝑃 is multiplicative;
(𝐶4) class 𝑃 is closed hereditary;
(𝐶5) if 𝑌 is a dense subspace of the space 𝑋 ∈ 𝑃, then {𝑐𝑙𝑋𝐴 : 𝐴 ⊆ 𝑌 } is a closed

basis of the space 𝑋 .

Definition 3.2. The class 𝑃 of spaces with properties (𝐶1)–(𝐶4) is called quasi-
compactness.

Definition 3.3. A quasi-compactness 𝑃 of Hausdorff spaces is called compactness.

Proposition 3.1. If 𝑃 is a strict compactness, then:

(1) 𝑃𝐺𝐸 (𝑋) = 𝐾𝑃𝐺𝐸 (𝑋) for any space 𝑋;
(2) 𝑃𝐺𝐸 (𝑋) is a set for any space 𝑋;
(3) 𝑃𝐺𝐸 (𝑋) is a lattice of extensions for any space 𝑋 .

Proof. Equality (1) is a consequence of condition (C5) in Definition 3.1. It follows from
Proposition 2.3 that 𝑃𝐺𝐸 (𝑋) is a set. Since 𝐿∗𝑃𝐺𝐸 (𝑋)) = 𝐿 (𝑃𝐺𝐸 (𝑋)) = 𝑃𝐺𝐸 (𝑋),
from Corollary 2.1 we obtain that 𝑃𝐺𝐸 (𝑋) is a lattice of extensions. The proof is
complete. □

Proposition 3.2. If 𝑃 is a compactness, then 𝑃𝐺𝐸 (𝑋) is a lattice of extensions for any
space 𝑋 .

Proof. If (𝑌, 𝑓 ) is a 𝑔–extension of the space 𝑋 , 𝑌 is a Hausdorff space, and 𝜏 is the
power of the set 𝑋 , then the weight 𝜔(𝑌 ) ≤ 2𝜏 . Therefore, 𝑃𝐺𝐸 (𝑋) is a set. Then, based
on Corollary 2.1, we obtain that 𝐿∗(𝑃𝐺𝐸 (𝑋)) = 𝐿 (𝑃𝐺𝐸 (𝑋)) = 𝑃𝐺𝐸 (𝑋) is a lattice of
extensions. The proof is complete. □

Corollary 3.1. Let 𝑃 be a compactness or a strict compactness, 𝑋 be a space and suppose
that 𝑃𝐸 (𝑋) ≠ ∅. Then 𝑃𝐸 (𝑋) is a upper semilattice of extensions.
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Corollary 3.2. Let 𝑃 be a compactness or a strict compactness. Then:

(1) for any space 𝑋 a unique maximal 𝑔–extension (𝛽𝑃𝑋, 𝛽𝑋) ∈ 𝑃𝐺𝐸 (𝑋) is deter-
mined;

(2) for any continuous mapping 𝜑 : 𝑋 → 𝑌 there is a unique continuous mapping
𝛽𝑃𝜑 : 𝛽𝑃𝑋 → 𝛽𝑃𝑌 , for which 𝛽𝑌 ◦𝜑 = 𝛽𝑃𝜑 ◦ 𝛽𝑋, i.e. Diagram 3 is commutative.

Proof. The statement (1) follows from Propositions 3.1 and 3.2. If 𝜑 : 𝑋 → 𝑌 is
continuous mapping and (𝑍, 𝑔) ∈ 𝑃𝐺𝐸 (𝑋), then (𝑍, 𝑔 ◦ 𝜑) ∈ 𝑃𝐺𝐸 (𝑋). This fact
proves the presence of 𝛽𝑃𝜑 . The proof is complete. □

4. Generalized Hausdorff Compactifications

Let us denote by 𝐻𝐺𝐶 (𝑋) the totality of 𝑔–compactifications (𝑏𝑋, 𝑏𝑋) of the space
𝑋 for which 𝑏𝑋 is a Hausdorff space.

Theorem 4.1. The totality of 𝐻𝐺𝐶 (𝑋) is a complete lattice of 𝑔–extensions.

Proof. We will prove this theorem after the following steps:

(1) Let us note that the totality of𝐻𝐺𝐶 (𝑋) is not empty, since it contains the minimal
extension (𝑚𝑋, 𝑚𝑋) of a point.

(2) If 𝑌 is a Hausdorff space, then for the power (cardinality) of the set 𝑌 we have
|𝑌 | ≤ exp (exp 𝑑 (𝑌 ) ) , where 𝑑 (𝑌 ) is the density of the space𝑌 (see [4], Theorem
1.5.3). If (𝑌, 𝑓 ) ∈ 𝐺𝐸 (𝑋), then 𝑑 (𝑌 ) ≤ |𝑋 |. Hence, |𝑌 | ≤ exp (exp |𝑋 | ) for
any Hausdorff 𝑔–compactification (𝑌, 𝑓 ) ∈ 𝐻𝐺𝐶 (𝑋). But all topological spaces
of power ≤ exp (exp |𝑋 | ) form a set, which contains the entirety of 𝐻𝐺𝐶 (𝑋).
So the totality of 𝐻𝐺𝐶 (𝑋) is a set.

(3) If (𝑌, 𝑓 ) and (𝑍, 𝑔) are two equivalent Hausdorff 𝑔–compactifications, then they
coincide. Let 𝜑 : 𝑌 → 𝑍 and 𝜓 : 𝑍 → 𝑌 be two continuous maps for which
𝑔 = 𝜑 ◦ 𝑓 and 𝑓 = 𝜓 ◦ 𝑔. Let us prove that 𝜓 = 𝜑−1. We examine the
application ℎ = 𝜓 ◦ 𝜑 : 𝑌 → 𝑌 . This mapping is continuous and ℎ (𝑦) = 𝑦 for
any 𝑦 ∈ 𝑓 (𝑋). Indeed, let 𝑦 = 𝑓 (𝑥) and 𝑥 ∈ 𝑋 . Then 𝜑(𝑦) = 𝜑 ( 𝑓 (𝑥)) = 𝑔(𝑥)
and 𝜓 (𝜑 (𝑦)) = 𝜓 (𝑔 (𝑥)) = 𝑓 (𝑥) = 𝑦. Therefore, ℎ(𝑦) = 𝑦. The space 𝑌 is
Hausdorff and 𝑌1 = {𝑦 ∈ 𝑌 : ℎ(𝑦) = 𝑦} contains the set 𝑓 (𝑋). So the set 𝑌1

is dense in 𝑌 . Now let us prove that 𝑌1 = 𝑌 . Assume that 𝑦0 ∈ 𝑌\𝑌1. Then
𝑦1 = ℎ (𝑦0) ≠ 𝑦0 and there are two open sets 𝑈,𝑉 in 𝑌 for which 𝑦1 ∈ 𝑈, 𝑦0 ∈ 𝑉
and𝑈 ∩𝑉=∅. The set𝑊 = 𝑈 ∩ ℎ−1 (𝑉) is open in 𝑌 and 𝑦1 ∈ 𝑊 . If 𝑌 ∈ 𝑊 , then
ℎ (𝑦) ∈ 𝑉 and ℎ (𝑦) ≠ 𝑦. Hence, 𝑊 ∩ 𝑌1 = ∅. Therefore, the set 𝑌1 is closed in
𝑌 . But 𝑌1 is dense in 𝑌 , and a dense and closed set in 𝑌 coincides with 𝑌 . So,
𝑌1 = 𝑌 . We proved that ℎ(𝑦) = 𝑦 for any 𝑦 ∈ 𝑌 . Therefore, 𝜓 = 𝜑−1.
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(4) The property𝐻 to be compact and Hausdorff space is multiplicative and hereditary
over closed subspaces. Applying Proposition 3.2 we obtain that 𝐻𝐺𝐶 (𝑋) is a
complete lattice. Theorem 4.1 is proved.

□

Definition 4.1. The maximal element of the lattice 𝐻𝐺𝐶 (𝑋) is denoted by (𝛽𝑋, 𝛽𝑋) and
is called the Stone-Čech 𝑔–compactification.

Corollary 4.1. If 𝑓 : 𝑋 → 𝑌 is a continuous mapping, then there is a unique continuous
mapping 𝛽 𝑓 : 𝛽𝑋 → 𝛽𝑌 for which 𝛽 𝑓 ◦ 𝛽𝑋=𝛽𝑌 ◦ 𝑓 , i.e. Diagram 4 is commutative.

Figure 2. Diagrams 3, 4 and 5.

Corollary 4.2. If 𝑓 : 𝑋 → 𝑌 is a continuous application of 𝑋 space in the Hausdorff and
compact space 𝑌 , then there is a unique continuous mapping 𝛽 𝑓 : 𝛽𝑋 → 𝑌 for which
𝑓 = 𝛽 𝑓 ◦ 𝛽𝑋, i.e. Diagram 5 is commutative.

Corollary 4.3. (See [4], Chapter 3). Let 𝐻𝐶 (𝑋) =𝐸 (𝑋) ∩ 𝐻𝐺𝐶 (𝑋) be the set of
Hausdorff compactifications of the space 𝑋 . Then:

(1) if𝐻𝐶 (𝑋) ≠ ∅, then𝐻𝐶 (𝑋) is a complete upper semilattice with maximal element
𝛽𝑋;

(2) the following statements are equivalent:
(2.1) 𝐻𝐶 (𝑋) ≠ ∅;
(2.2) 𝑋 is a 𝑇0–completely regular space;
(2.3) 𝛽𝑋 is an extension of the space 𝑋 .

Theorem 4.2. (see [4], for 𝑇1 spaces). For any continuous application 𝑓 : 𝑋 → 𝑌 in a
compact Hausdorff space 𝑌 there is a unique continuous application 𝜔 𝑓 : 𝜔𝑋 → 𝑌 for
which 𝑓 = 𝜔𝑋 | 𝑋 . The mapping 𝜔 𝑓 is always perfect.

Proof. Denote 𝜑(𝑥) = 𝑓 (𝑥) for any 𝑥 ∈ 𝑋 and let 𝜑(𝜉) = ∩ {𝑐𝑙𝑌 𝑓 (𝐻) : 𝐻 ∈ 𝜉} for any
ultrafilter 𝜉 ∈ 𝜔𝑋\𝑋 . Let 𝑦, 𝑧 ∈ 𝑐𝑙𝑌 𝑓 (𝑋) be two different points. There are two open sets
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𝑈 and 𝑉 in 𝑌 for which 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 , and the sets 𝐹 = 𝑐𝑙𝑌𝑈,Φ = 𝑐𝑙𝑌𝑉 do not intersect.
Then 𝑐𝑙𝜔𝑋 𝑓 −1 (𝐹) ∩ 𝑐𝑙𝜔𝑋 𝑓 −1 (Φ) = ∅. If 𝑋\ 𝑓 −1 (𝑈) ∈ 𝜉, then 𝑦 ∉ 𝜑 (𝜉). If 𝑋\𝑉 ∈ 𝜉,
then 𝑧 ∉ 𝜑 (𝜉). But 𝜉 ∩

{
𝑋\ 𝑓 −1 (𝑈) , 𝑋\ 𝑓 −1 (𝑉)

}
=∅. So the mapping 𝜑: 𝜔𝑋 → 𝑌 is

unique and 𝑓=𝜑 | 𝑋 . The set 𝑍= {𝑐𝑙𝑌 𝐴 :𝐴 ⊆ 𝑓 (𝑥)} forms a closed basis of the space
𝑍=𝑐𝑙𝑌 𝑓 (𝑋). If 𝐴 is closed in 𝑓 (𝑋) and 𝑦 ∈ 𝑐𝑙𝑌 𝐴, then there exists an ultrafilter 𝜂 of
closed sets in 𝑓 (𝑋) for which {𝑦} =∩{𝑐𝑙𝑌𝐻 : 𝐻 ∈ 𝜂}. There exists at least one ultrafilter
𝜉 ∈ 𝜔𝑋 for which 𝑓 −1 (𝜂) ⊆ 𝜉. Then 𝜑 (𝜉) = 𝑦. Therefore, 𝜑−1 (𝐴) = 𝑐𝑙𝜔𝑋 𝑓 −1 (𝐴) is a
closed set in 𝜔𝑋 . So, 𝜑 is a continuous mapping. From the construction and continuity
of the mapping 𝜑 we obtain its uniqueness. If the set 𝐹 is closed in 𝜔𝑋 , then 𝜑 (𝐹) is a
compact set. The compact set in a Hausdorff space is closed. So, 𝜑 is a closed mapping.
Theorem 4.2 is proved. □
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