CZU: 515.12 (043.3) DOI: 10.36120/2587-3644.v16i2.89-96

ISSN: 2537-6284

E-ISSN: 2587-3644

Dedicated to Professor Alexandru Şubă on the occasion of his 70th birthday

Generalized Hausdorff compactifications

Laurențiu Calmuţchi

Abstract. This article investigates some properties of generalized Hausdorff compactifications of topological T_0 -spaces. In particular, it is show that the totality of these compactifications forms a lattice of g-extensions in which there is the maximum element. **2010 Mathematics Subject Classification:** 54D30, 54D40.

Keywords: continuous application, extension, *g*-extension, compactification, lattice, space.

Compactificări generalizate Hausdorff

Rezumat. În acest articol se studiază unele proprietăți ale compactificărilor generalizate Hausdorff ale T_0 -spațiilor topologice. În particular, se demonstrează că totalitatea compactificărilor formează o latice de g-extensii în care există elementul maximal.

Cuvinte-cheie: aplicație continuă, extensie, g-extensie, compactificare, latice, spațiu.

1. Extensions

Let us mention, that in case there are no concrete indications, then the topological space is considered T_0 -space.

Definition 1.1. A pair (Y, f) it is called a generalized extension or g-extension of space X, where Y is a space, $f: X \to Y$ is a continuous mapping and the set f(X) is dense in Y. If f is an embadding of space X in Y, i.e. an omeomorphism of space X on subspace f(X) of Y, then the pair (Y, f) is called an extension of space X.

If (Y, f) is an extension of space X, then, as a rule, the point $x \in X$ is identified with $f(x) \in Y$ and it is considered to be $X \subseteq Y$. In this case f(x) = x for any $x \in X$.

Let GE(X) be the set of all g-extensions of the space X and E(X) be the set of all extensions of X. Obviously, $E(X) \subseteq GE(X)$.

In class GE(X) the binary increased relationship is introduced. If (Y, f) and (Z, g) are two g-extensions of X space, then it is considered $(Z, g) \leq (Y, f)$. If there is a continuous mapping $\varphi: Y \to Z$, for which $g(x) = \varphi(f(x))$ for any $x \in X$, i.e. $g = \varphi \circ f$ and Diagram 1 is commutative.

Figure 1. Diagrams 1 and 2.

If $(Y, f) \le (Z, g)$ and $(Z, g) \le (Y, f)$, then these g-extensions (Y, f) and (Z, g) are called *equivalent* and we denote this by $(Y, f) \sim (Z, g)$.

Proposition 1.1. If (Y, f) and (Z, g) are two g-extensions of space X, $(Z, g) \le (Y, f)$ and $(Z, g) \in E(X)$, then $(Y, f) \in E(X)$.

Proof. Let $\varphi: Y \to Z$ be a continuous mapping and $g = \varphi \circ f$. According to the definition of relationship \leq , g is a dive. Let us denote $h = \varphi \mid f(X) : f(X) \to g(X)$. Then we get Diagram 2. As g is a bijection and f, h are surjections, it turns out that f and h are bijections. We have $f(A) = h^{-1}(g(A))$. Therefore, for any open set G of G the set G obviously, G is a homomorphism. Proposition 1.1 is proved.

Corollary 1.1. If (Y, f) and (Z, g) are two g-extensions equivalent of space X and one of them is extension, then the other one is extension.

The pair (X, f), where f(x) = x for any $x \in X$ is an extension of space X. This is the trivial extension or maximum extension. Let us denote this extension by (X, e_X) .

Let S be a space consisting of a single point and let $s_X(x) = S$ for any $x \in X$. Then (S, s_X) is called g-extension minimal or g-zero extension of space X.

Let P be a property of topological spaces. The property P is called *multiplicative* if the product of a set of spaces with the property P is a space with the property P.

The property P is called *hereditary closed* if any closed subspace of a space with the property P is a space with the property P.

Property P is called *additive* if the reunion space of a finite number of subspaces with the property P is a space with the property P.

Example 1.1. The property of being compact space is multiplicative, hereditary closed and additive.

Example 1.2. The property of being countable compact space is hereditary, additive but not multiplicative. The product of two countable compact spaces can not be a countable compact space ([4], Example 3.10.19).

Example 1.3. The property of being pseudocompact is additive, but it is neither multiplicative and not hereditary closed [4].

Example 1.4. The property of being space is multiplicative, hereditary and additive. This property is called trivial property.

2. Lattice of extensions

Let us fix a property P of topological spaces. We denote by PGE(X) the totality of g-extensions (Y, f) with the property P, i.e. Y possesses the property P and denote $Y \in P$.

Let $PE(X) = E(X) \cap PGE(X)$. If P is a trivial property, then PE(X) = E(X) and PGE(X) = GE(X).

Definition 2.1. *If* L *is a nonempty set of* PGE(X) *and* $(Y, f) \in PGE(X)$ *, then:*

- (1) the extension (Y, f) is called the upper bound of a set L in PGE(X) and denote $(Y, f) \in \forall L$, if $(Z, g) \leq (Y, f)$ for any $(Z, g) \in L$. If $(Y_1, f_1) \in PGE(X)$ and $(Z, g) \leq (Y, f)$ for any $(Z, g) \in L$, then $(Y, f) \leq (Y_1, f_1)$;
- (2) the extension (Y, f) is called the lower bound of a set L in PGE(X) and denote $(Y, f) \in \land L$, if $(Y, f) \leq (Z, g)$ for anything $(Z, g) \in L$. If $(Y_1, f_1) \in PGE(X)$ and $(Y, f) \leq (Z, g)$ for any $(Z, g) \in L$, then $(Y, f) \leq (Y_1, f_1)$.

Proposition 2.1. Let P be a multiplicative and hereditary closed property. Then for any nonempty set $L \subseteq PGE(X)$ there are extensions $(Y, f) \in \lor L$.

Proof. Let $L = \{(Y_{\mu}, f_{\mu}) : \mu \in M\}$, $f(x) = (f_{\mu}(x) : \mu \in M) \in \prod \{Y_{\mu} : \mu \in M\}$ for any $x \in X$ and let Y be the adherence of a set f(x) in $\prod \{Y_{\mu} : \mu \in M\}$. Then $(Y, f) \in \vee L$. Proposition 2.1 is proved.

Definition 2.2. The set $L \subseteq PGE(X)$ is called:

- (1) the upper semilattice of extensions, if L is nonempty and for any nonempty subset $M \subseteq L$ there exists $(Y, f) \in \forall M$.
- (2) the lower semilattice of extensions, if L is nonempty and for any nonempty subset $M \subseteq L$ there exists $(Y, f) \in \land M$;
- (3) the lattice of extensions, if it is an upper semilattice and a lower semilattice of extensions.

Proposition 2.2. Let P be a multiplicative and closed hereditary property. Then for any nonempty set $H \subseteq PGE(X)$ there exists an upper semilattice of extensions $L^*(H)$ with properties:

- (1) $H \subseteq L^*(H)$;
- (2) if L is an upper semilattice of extensions and if $H \subseteq L \subseteq L^*(H)$, then $L = L^*(H)$.

Proof. Let us fix $(Y_M, f_M) \in \vee M$ for any nonempty subset $M \subseteq H$. If $M = \{(Y, f)\}$, then $Y_M = Y$ and $f_M = f$. They can be obtained by constructing (Y_M, f_M) as in the proof of Proposition 2.1.

Let us denote $L^*(H) = \{(Y_M, f_M) : M \subseteq H, M \neq \emptyset\}$. Obviously, $H \subseteq L^*(H)$. If $M \subseteq K \subseteq H$, then $(Y_M, f_M) \leq (Y_K, f_K)$. According to construction $L^*(H)$ is an upper semilattice. If $K = \{(Y_{M_\alpha}, f_{M_\alpha}) : \alpha \in A\}$ and $M = \bigcup \{M_\alpha : \alpha \in A\}$, then $(Y_M, f_M) \in \bigvee K$. The proof is complete. \square

Definition 2.3. The upper semilattice $L^*(H)$ built in the proof of Proposition 2.2 is called the upper semilattice generated by set H.

Corollary 2.1. Let P be a multiplicative and closed hereditary property. Suppose that the continuous image of a space with property P is a space with property P. Then any nonempty set $H \subseteq PGE(X)$ is contained in a lattice of extensions of PGE(X).

Proof. Let (Z_0, g_0) be the extension, where Z_0 is a space consisting of a single point, and let $g_0: X \to Z_0$ be the only possible application. It is clear that $(Z_0, g_0) \le (Y, f)$ for any $(Y, f) \in GE(X)$. Let us denote $L(H) = L^*(H \cup \{(Z_0, g_0)\})$. Obviously, L(H) is an upper semilattice. As the upper lattice L(H) contains an element of $\wedge L(H)$, it is a lattice. But $(Z_0, g_0) \in \wedge L(H)$. The proof is complete.

Definition 2.4. A g-extension (Y, f) of the space X is called correct, if the family $\{cl_Y f(A) : A \subseteq X\}$ forms a closed base of the space Y.

Let us denote by KGE(X) the totality of correct g-extensions of the space X and let $KE(X) = E(X) \cap KGE(X)$.

Proposition 2.3. If (Y, f), (Z, g) are two correct and equivalent g-compactifications of the space X, then (Y, f) = (Z, g), i.e. the continuous application $\varphi : Y \to Z$ for any $g = \varphi \circ f$ is a homeomorphism of the space Y onto the space Z.

Proof. Let $\varphi: Y \to Z$ and $\psi: Z \to Y$ be two continuous applications, for which $g = \varphi \circ f$ and $f = \psi \circ g$. If $A \subseteq X$, then $\varphi(cl_Y f(A)) \subseteq cl_Z g(A)$ and $\psi(cl_Z g(A)) \subseteq (cl_Y f(A))$. Hence, $\varphi(cl_Y f(A)) = cl_Z g(A)$ and $\psi(cl_Z g(A)) = cl_Y f(A)$. From these two equalities

we conclude that φ, ψ are reciprocal bijective applications and $\varphi^{-1} = \psi$. Proposition 2.3 is proved.

3. Compacts

For topological spaces the notion of compact space was introduced by P.S. Alexandroff and P.S. Urysohn (see [1]).

Definition 3.1. *The class P of topological spaces is called strict compactness if it satisfies the conditions:*

- (C1) class P is not empty;
- (C2) in P there is a space X containing at least two different points;
- (C3) class P is multiplicative;
- (C4) class P is closed hereditary;
- (C5) if Y is a dense subspace of the space $X \in P$, then $\{cl_X A : A \subseteq Y\}$ is a closed basis of the space X.

Definition 3.2. The class P of spaces with properties (C1)–(C4) is called quasi-compactness.

Definition 3.3. A quasi-compactness P of Hausdorff spaces is called compactness.

Proposition 3.1. *If P is a strict compactness, then:*

- (1) PGE(X) = KPGE(X) for any space X;
- (2) PGE(X) is a set for any space X;
- (3) PGE(X) is a lattice of extensions for any space X.

Proof. Equality (1) is a consequence of condition (C5) in Definition 3.1. It follows from Proposition 2.3 that PGE(X) is a set. Since $L^*PGE(X) = L(PGE(X)) = PGE(X)$, from Corollary 2.1 we obtain that PGE(X) is a lattice of extensions. The proof is complete.

Proposition 3.2. If P is a compactness, then PGE(X) is a lattice of extensions for any space X.

Proof. If (Y, f) is a g-extension of the space X, Y is a Hausdorff space, and τ is the power of the set X, then the weight $\omega(Y) \leq 2^{\tau}$. Therefore, PGE(X) is a set. Then, based on Corollary 2.1, we obtain that $L^*(PGE(X)) = L(PGE(X)) = PGE(X)$ is a lattice of extensions. The proof is complete.

Corollary 3.1. Let P be a compactness or a strict compactness, X be a space and suppose that $PE(X) \neq \emptyset$. Then PE(X) is a upper semilattice of extensions.

Corollary 3.2. *Let P be a compactness or a strict compactness. Then:*

- (1) for any space X a unique maximal g-extension $(\beta_P X, \beta_X) \in PGE(X)$ is determined;
- (2) for any continuous mapping $\varphi: X \to Y$ there is a unique continuous mapping $\beta_{P\varphi}: \beta_P X \to \beta_P Y$, for which $\beta_Y \circ \varphi = \beta_{P\varphi} \circ \beta_X$, i.e. Diagram 3 is commutative.

Proof. The statement (1) follows from Propositions 3.1 and 3.2. If $\varphi: X \to Y$ is continuous mapping and $(Z, g) \in PGE(X)$, then $(Z, g \circ \varphi) \in PGE(X)$. This fact proves the presence of $\beta_{P\varphi}$. The proof is complete.

4. Generalized Hausdorff Compactifications

Let us denote by HGC(X) the totality of g-compactifications (bX, b_X) of the space X for which bX is a Hausdorff space.

Theorem 4.1. The totality of HGC(X) is a complete lattice of g-extensions.

Proof. We will prove this theorem after the following steps:

- (1) Let us note that the totality of HGC(X) is not empty, since it contains the minimal extension (mX, m_X) of a point.
- (2) If Y is a Hausdorff space, then for the power (cardinality) of the set Y we have $|Y| \le \exp(\exp d(Y))$, where d(Y) is the density of the space Y (see [4], Theorem 1.5.3). If $(Y, f) \in GE(X)$, then $d(Y) \le |X|$. Hence, $|Y| \le \exp(\exp|X|)$ for any Hausdorff g-compactification $(Y, f) \in HGC(X)$. But all topological spaces of power $\le \exp(\exp|X|)$ form a set, which contains the entirety of HGC(X). So the totality of HGC(X) is a set.

(4) The property H to be compact and Hausdorff space is multiplicative and hereditary over closed subspaces. Applying Proposition 3.2 we obtain that HGC(X) is a complete lattice. Theorem 4.1 is proved.

Definition 4.1. The maximal element of the lattice HGC(X) is denoted by $(\beta X, \beta_X)$ and is called the Stone-Čech g-compactification.

Corollary 4.1. If $f: X \to Y$ is a continuous mapping, then there is a unique continuous mapping $\beta f: \beta X \to \beta Y$ for which $\beta f \circ \beta_X = \beta_Y \circ f$, i.e. Diagram 4 is commutative.

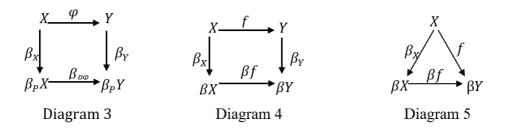


Figure 2. Diagrams 3, 4 and 5.

Corollary 4.2. If $f: X \to Y$ is a continuous application of X space in the Hausdorff and compact space Y, then there is a unique continuous mapping $\beta f: \beta X \to Y$ for which $f = \beta f \circ \beta_X$, i.e. Diagram 5 is commutative.

Corollary 4.3. (See [4], Chapter 3). Let $HC(X) = E(X) \cap HGC(X)$ be the set of Hausdorff compactifications of the space X. Then:

- (1) if $HC(X) \neq \emptyset$, then HC(X) is a complete upper semilattice with maximal element βX ;
- (2) the following statements are equivalent:
- (2.1) $HC(X) \neq \emptyset$;
- (2.2) X is a T_0 -completely regular space;
- (2.3) βX is an extension of the space X.

Theorem 4.2. (see [4], for T_1 spaces). For any continuous application $f: X \to Y$ in a compact Hausdorff space Y there is a unique continuous application $\omega f: \omega X \to Y$ for which $f = \omega X \mid X$. The mapping ωf is always perfect.

Proof. Denote $\varphi(x) = f(x)$ for any $x \in X$ and let $\varphi(\xi) = \bigcap \{cl_Y f(H) : H \in \xi\}$ for any ultrafilter $\xi \in \omega X \setminus X$. Let $y, z \in cl_Y f(X)$ be two different points. There are two open sets

U and V in Y for which $x \in U$, $y \in V$, and the sets $F = cl_Y U$, $\Phi = cl_Y V$ do not intersect. Then $cl_{\omega X}f^{-1}(F) \cap cl_{\omega X}f^{-1}(\Phi) = \emptyset$. If $X \setminus f^{-1}(U) \in \mathcal{E}$, then $y \notin \varphi(\mathcal{E})$. If $X \setminus V \in \mathcal{E}$, then $z \notin \varphi(\mathcal{E})$. But $\mathcal{E} \cap \{X \setminus f^{-1}(U), X \setminus f^{-1}(V)\} = \emptyset$. So the mapping $\varphi \colon \omega X \to Y$ is unique and $f = \varphi \mid X$. The set $Z = \{cl_Y A : A \subseteq f(x)\}$ forms a closed basis of the space $Z = cl_Y f(X)$. If A is closed in f(X) and $y \in cl_Y A$, then there exists an ultrafilter η of closed sets in f(X) for which $\{y\} = \cap \{cl_Y H : H \in \eta\}$. There exists at least one ultrafilter $\mathcal{E} \in \omega X$ for which $f^{-1}(\eta) \subseteq \mathcal{E}$. Then $\varphi(\mathcal{E}) = y$. Therefore, $\varphi^{-1}(A) = cl_{\omega X} f^{-1}(A)$ is a closed set in ωX . So, φ is a continuous mapping. From the construction and continuity of the mapping φ we obtain its uniqueness. If the set F is closed in ωX , then $\varphi(F)$ is a compact set. The compact set in a Hausdorff space is closed. So, φ is a closed mapping. Theorem 4.2 is proved.

References

- [1] ALEXANDROFF, P.S., URYSOHN, P.S. Memoir on compact topological expaces. *Vern. Acad. Wetensch.* Amsterdam, 14, 1929.
- [2] Calmuţchi, L. Algebraic and functional methods in the theory of extensions of topological spaces, Ed. Earth, Piteşti, 2007.
- [3] Calmuţchi, L. The lattice of compactification of topological spaces. *Matematika Balkanica*, 2006, vol. 20, no. 3–4, 315–332.
- [4] Engelking, R. General Topology, PWN, Warszawa, 1977.

Received: January 23, 2023

Accepted: October 11, 2023

(Laurenţiu Calmuţchi) "Ion Creangă" State Pedagogical University, 5 Gh. Iablocikin st., Chişinău, MD-2069, Republic of Moldova