
Acta et Commentationes, Exact and Natural Sciences ISSN: 2537-6284
Volume 2(16), 2023, Pages 128–142 E-ISSN: 2587-3644
CZU: 004.8:519.1 DOI: 10.36120/2587-3644.v16i2.128-142

Dedicated to Professor Alexandru S, ubă on the occasion of his 70th birthday

Application of genetic algorithm to solving the optimization
problem of locations graph vertices in the line

Liubomir Chiriac , Natalia Lupashco , and Maria Pavel

Abstract. This article examines genetic algorithms that are built on the ”survival of
the fittest” principle enunciated by Charles Darwin. By applying genetic algorithms to
solving optimization problems, it is not always possible to guarantee the determination
of the global optimum in polynomial time. This fact does not occur because only brute
force search methods allow us to find the global optimum. Instead the genetic algorithm
allows selecting good decisions, in a reasonable time, compared to other well-known de-
terministic or heuristic search engine optimization algorithms. The authors of this article
develop an algorithm of solving the optimization problem of locations graph vertices in
the line.
2010 Mathematics Subject Classification: 05C85, 05C90.
Keywords: genetic algorithm, optimization problem, location problem, graphs algo-
rithms.

Aplicarea algoritmului genetic la rezolvarea problemei de
optimizare privind amplasarea vârfurilor grafului ı̂n linie

Rezumat. Acest articol examinează algoritmii genetici care se bazează pe principiul
”supravieţuirii celui mai adaptat” enunţat de Charles Darwin. Prin aplicarea algoritmi-
lor genetici la rezolvarea problemelor de optimizare, nu este ı̂ntotdeauna posibil să se
garanteze determinarea optimului global ı̂n timp polinomial. Acest fapt nu se ı̂ntâmplă
deoarece numai metodele de căutare prin forţă brută ne permit să găsim optimul global.
În schimb, algoritmul genetic permite selectarea unor decizii bune, ı̂ntr-un timp rezona-
bil, ı̂n comparaţie cu alţi algoritmi de optimizare a motoarelor de căutare deterministe
sau euristice bine cunoscute. Autorii acestui articol dezvoltă un algoritm de rezolvare a
problemei de optimizare a amplasării vârfurilor grafurilor ı̂n linie.
Cuvinte-cheie: algoritm genetic, problema de optimizare, problema de localizare, algo-
ritmi de grafuri.

1. History of the development of the evolutionary calculus

The approach regarding the application of evolutionary principles (evolutionary com-
putation) in the automated solving of problems dates back long before the emergence and
development of modern computers.

128

https://orcid.org/0000-0002-5786-5828
https://orcid.org/0000-0002-3854-2521
https://orcid.org/0000-0003-4803-6398

Chiriac L., Lupashco N., and Pavel M.

As early as 1948, Alan Turing introduced a new approach applied to problem-solving
called evolutionary or genetic approach. Subsequently, in the 1960s, Dr. Lawrence Jerome
Fogel (March 2, 1928 - February 18, 2007), a pioneer in evolutionary computation,
along with Wlash (later David B. Fogel, born on February 2, 1964), introduced and
developed the concept of evolutionary programming. During the same period, Holland
focused on genetic algorithms. Hans-Paul Schwefel (born on December 4, 1940), a
German computer scientist and emeritus professor at the University of Dortmund, and
Ingo Rechenberg (November 20, 1934 - September 25, 2021), a German researcher
and professor in the field of bionics, launched and developed evolutionary strategies as
alternative methods for automated problem-solving. Later, in the 1990s, J. R. Koza
developed genetic programming, a new technique for searching solutions.

Therefore, evolutionary computation is a field of modern computer science with a
strong emphasis on mathematics, inspired by the natural evolutionary process. The
fundamental concept underlying evolutionary computation is the interconnection between
natural evolution and the trial-and-error problem-solving technique [1].

In the context of the above, evolutionary computation is currently an important research
field in computer science. As known, this field derives from the natural evolutionary
process. The algorithms that emerge and develop in this field are called evolutionary
algorithms, and they include significant and promising subdomains such as:

• Evolutionary programming;
• Evolutionary strategies;
• Genetic programming;
• Genetic algorithms.

2. Genetic Algorithms

The fact that mathematics and computer science are widely applied in various sciences,
including biology, is a well-known and appreciated phenomenon. However, the reciprocity
of this relationship does not always occur. For instance, in modern science, there are not
many instances where mechanisms, concepts and basic notions from biology that are
widely and efficiently used in mathematics and computer science.

In this context, the genetic algorithm is an eloquent and convincing example. Genetic
algorithms represent adaptive heuristic search techniques that are implemented based on
the principles of natural selection and genetics.

The mechanisms of the Genetic Algorithm are similar to natural evolution and rely
on the principle stated by Charles Darwin, ”survival of the fittest”, meaning that the
most well-adapted individuals, not necessarily the strongest or most intelligent, survive.

129

APPLICATION OF GENETIC ALGORITHM TO SOLVING THE OPTIMIZATION
PROBLEM OF LOCATIONS GRAPH VERTICES IN THE LINE

Thus, the Genetic Algorithm represents a computer-mathematical model that mimics the
evolutionary biological model to solve search and optimization problems. The Genetic
Algorithm is determined by a set of elements representing a population, consisting of
chromosomes (binary strings), and a set of genetic operators (selection, crossover, and
mutation) that influence the population’s structure.

Genetic algorithms are commonly used for problems where finding the optimal solution
is not simple or at least inefficient due to the characteristics of probabilistic search. Genetic
algorithms encode a possible solution to a specific problem in a unique data structure
called a ”chromosome” and apply genetic operators to these structures to maintain critical
information. The implementation process of genetic algorithms starts with an ”initial set
of possible solutions” to the examined problem (usually chosen randomly) referred to in
the literature as ”population” [2], [3].

Each individual in the ”examined population” represents a potential solution to the
problem and is called a ”chromosome”, which is a string of symbols, typically expressed
as a string of bits. The examined chromosomes evolve over successive iterations, sym-
bolically called generations. In each generation, these chromosomes are evaluated, using
fitness measures.

To generate the next population (generations), the most ”efficient” or ”best” chromo-
somes from the current generation are selected. New chromosomes are formed, using
one of the three (or even all three) central genetic operators: selection, crossover and
mutation.

Selection ensures the process from the following perspective: certain chromosomes
from the examined (current) generation are copied, depending on their fitness value,
in accordance with the problem requirements into the new generation. This indicates
that chromosomes with high significance have a high probability of contributing to the
formation of the new generation.

The genetic operator crossover represents the process by which, based on two individ-
uals (chromosomes) from the current population, two individuals (chromosomes), called
descendants, are formed for the next population. Mutation is the genetic operator that rep-
resents the process through which a chromosome from the current population is modified
and saved in the new population.

Genetic algorithms have been successfully applied to a variety of NP-complete prob-
lems that require global optimization of the solution and, in this regard, there is no iterative
method for resolution [4], [5].

In genetic algorithms, the individuals in a population are represented by chromosomes
with encoded sets, task parameters, for example, solutions otherwise called points in

130

Chiriac L., Lupashco N., and Pavel M.

the search space or search points. In some works, individuals are called organisms. In
this sense, we will clarify the meaning of the following biological concepts from the
perspective of computer science.

Darwin’s concept of evolution is adapted to the functioning of the genetic algorithm to
find solutions to a problem expressed through the fitness function (objective function or
adaptation function).

The fitness function represents a measure of the adaptability of a given individual
within each generation. This characteristic allows the evaluation of the adaptation degree
of individuals in the population and selects the most adapted ones, i.e., those with the
highest values of fitness function, following the evolution principle of the survival of the
fittest [6], [7].

Thus, selection represents the choice of individuals with the best aptitude for repro-
duction (sorting by the value of the objective function). The better an individual’s fitness
is, the greater the chances of crossing and passing on its genes to the next generation
are. The crossover operator is analogous to biological reproduction and crossover and
usually it is applied to individuals in the intermediate population. Two individuals are
selected from the intermediate population, and certain portions of their two chromosomes
are exchanged.

In simple terms, mutation can be defined as a small random modification of the
chromosome to obtain a new solution. Mutation is used to maintain and introduce
diversity into the genetic population. Mutation is the part of the Genetic Algorithm
related to ”exploring” the search space [4].

3. Introductory Concepts

Genetic Algorithms are algorithms of evolutionary computation, inspired by Darwin’s
Theory of Evolution. In 1960, Ingo Rechenberg (November 20, 1934 - September
25, 2021) introduced the idea of evolutionary computation in a work titled ”Evolution
strategies”. Rechenberg, a German researcher and professor in the field of bionics, was
a pioneer in the fields of evolutionary computation and artificial evolution. In the 1960s
and 1970s, he invented several optimization methods known as evolution strategies (in
German, Evolutionsstrategie). His research team successfully applied these algorithms to
optimization problems, including the aerodynamic design of wings. These were the first
serious technical applications of artificial evolution, an important component of bionics
and artificial intelligence [8].

In 1975, John Henry Holland (February 2, 1929 - August 9, 2015), an American
scientist and professor of psychology and electrical engineering and computer science at

131

APPLICATION OF GENETIC ALGORITHM TO SOLVING THE OPTIMIZATION
PROBLEM OF LOCATIONS GRAPH VERTICES IN THE LINE

the University of Michigan, introduced and analyzed a mathematical model that, through
adaptive procedures, relied on a mechanism of natural selection and genetic evolution
called genetic algorithm. He was a pioneer in what became known as genetic algorithms
[1], [9].

Genetic algorithms are used often in cases where the optimal solution involves searches
among all combinations, permutations or probabilistic arrangements, a very complex and
sometimes inefficient process. They implement specific data structures called ”chromo-
somes” to encode, through genetic operators, the possible solution to a particular problem
while retaining important information.

Usually, to solve a problem using a genetic algorithm, the so-called ”population” is
identified, constructed randomly based on the ”initial set of possible solutions”. Each
individual or ”chromosome” (a string of characters expressed as a sequence of bits) in
the examined ”population” represents a possible solution to the problem. Through con-
secutive iterations, the evolution of the ”chromosomes” occurs at the ”generation” level,
each of which is validated by an evaluation function called fitness. Using one of the
three main genetic operators (selection, crossover, and mutation) new ”chromosomes”
identified from the current generation as the most ”efficient” are generated for the future
population. Thus, just like in biology, the most ”powerful chromosomes”, with a higher
probability, are selected from the given generation to transmit their characteristics (values
of the ”evaluation function”, according to the requirements of the problem), to the next
generation, ensuring the perpetuation of the entire process. Using the crossover genetic
operator combines information from two individuals (”parents”) from the current popula-
tion to generate one or more descendants. Mutation, on the other hand, allows the random
modification of a gene or a small section of the ”chromosome” to ensure diversity in the
future population.

The success of genetic algorithms is ensured by their implementation in solving a
series of NP-complete problems, whose solutions cannot be identified through iterative
methods, but rather by obtaining the optimal solution globally.

In genetic algorithms, individuals in a population are represented by chromosomes
with encoded sets of task parameters, e.g., solutions, otherwise called points in the search
space (search points). In some works, individuals are called organisms.

In this sense, the following biological concepts, borrowed by computer scientists from
the perspective of genetic algorithms, will be clarified:

Chromosomes: Ordered sequences of genes.
Gene: Also called a property, sign, or detector, is the atomic element of the genotype,

especially of chromosomes.

132

Chiriac L., Lupashco N., and Pavel M.

Genotype: The set of chromosomes of a given individual. Consequently, individuals in
a population can be genotypes or unique chromosomes (in a common case when
the genotype consists of a single chromosome).

Phenotype: A set of values that correspond to a specific genotype or set of task parameters
(solution, search space point).

Allele: The value of a specific gene, also defined as the property value or property variant.
Locus: The position indicating the location of a specific gene in a chromosome (chain).

The set of gene positions represents loci.
Genome: The totality of the genetic material of an organism or species, determining the

development, functioning and transmission of hereditary traits from one genera-
tion to another.

Individual: A unique entity that has a specific set of chromosomes inherited from par-
ents. In genetic algorithms, an individual represents a possible solution or a
combination of parameters that can be optimized over time by selection and
recombination processes and is evaluated within a specific problem.

Population: A group of individuals sharing a common set of genetic characteristics that
occupy a certain type of environment. Genetic variation within populations is
important for adaptation to environmental changes.

Mapping: An essential evaluation function that assigns a numerical value to each indi-
vidual in the given population, reflecting the quality or appropriateness of that
solution within the optimization problem. The mapping process is also called
morphogenesis.

A crucial concept in genetic algorithms is the function that measures the degree of
adaptability known as the fitness function.

The fitness function is a measure of the adaptability of a given individual within
each generation. This characteristic allows the evaluation of the adaptation degree of
individuals in the population and the most adapted individuals, those with the highest
values of the fitness function, are selected in accordance with the evolutionary principle
of the survival of the fittest.

The fitness function got its name directly from genetics. It has a strong impact on the
functioning of genetic algorithms and must have precision and correct definition. In op-
timization problems, the fitness function is usually optimized (maximized or minimized)
and is called the objective function.

At each iteration of the genetic algorithm, the fitness (adaptation degree) of each
individual in a particular population is estimated using the fitness function. Based on this,

133

APPLICATION OF GENETIC ALGORITHM TO SOLVING THE OPTIMIZATION
PROBLEM OF LOCATIONS GRAPH VERTICES IN THE LINE

the next generation (population of individuals) is generated, constituting the possible set
of solutions to the examined problem [1], [4].

4. Implementation of the Genetic Algorithm

In the specialized literature, the Genetic Algorithm involves a series of steps (originally
proposed by John Henry Holland) intended to conclude with an optimal solution to the
examined problem. Below, we will outline the steps regarding the implementation of the
Genetic Algorithm.

Step 1: Creating/generating the initial population.
Step 2: Evaluating the fitness function value of each individual (a mechanism used to

measure and evaluate the state of a chromosome).
Step 3: Selection - considering the characteristics of each individual, during this stage,

some individuals may reproduce more frequently than others.
Step 4: Crossover.
Step 5: Mutation.
Step 6: Replacing the old population of chromosomes with the new population of chro-

mosomes.
Step 7: Finding the best solutions (but if the optimization criteria are not met, then the

method requires returning to Step 2 and ultimately selecting the best individual
as the final solution).

Genetic algorithms generate a new population composed of individuals with better and
more adapted characteristics to the environment than those of the previous population.
The logical scheme related to the implementation of the Genetic Algorithm is presented
in Figure 1.

The process begins by initializing a random genetic pool through the creation of a set
of chromosomes according to a predefined template, where the values of all genes are
randomly selected for each chromosome. These initial chromosomes correspond to the
individuals in the initial population. Typically, the number of individuals (and implicitly
chromosomes) in the population remains constant at different generations, although this
is not always the case. The Genetic Algorithm starts with a set of permissible solutions
called the ”population” (created arbitrarily, as mentioned earlier), each of which represents
a potential solution to the problem, called a ”chromosome” [10].

Once the population is established, it evolves towards better solutions through various
genetic processes (selection, crossover, mutation) that lead to a better fitness function
value, used to evaluate the state of each chromosome.

134

Chiriac L., Lupashco N., and Pavel M.

Figure 1. Logical Scheme of the Genetic Algorithm

5. Genetic algorithm for solving the optimization problem of
locations graph vertices in the line

The problem of optimal placement of vertices of an undirected graph on a linear grid
is a classic problem that requires knowledge in mathematics, computer science, and,
evidently, genetic algorithms. In this section, the authors propose an algorithm that solves
this problem under certain conditions.

Problem Statement: Given a graph 𝐺, where 𝑛 = |𝐺 | is the number of vertices of
graph 𝐺. The goal is to find the best placement of the vertices of graph 𝐺 on a linear grid
after performing a genetic algorithm for 𝑘 iterations (𝑘 generations), where 𝑘 < 𝑛. It is
assumed that the distances between the vertices of the graph are equal.

Solution: The total length of the edges of graph 𝐺 is calculated according to the
following formula:

𝐿 (𝐺) =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑑𝑖, 𝑗𝑎𝑖, 𝑗 (1)

where 𝑛 = |𝐺 | is the number of vertices, 𝑑𝑖, 𝑗 represents the distance between vertices of
graph 𝐺, 𝑣𝑖 and 𝑣 𝑗 , on the examined line. The distance in this case is measured in the
number of edges of the graph, 𝑎𝑖, 𝑗 is the corresponding element of the adjacency matrix
(0 or 1). In other words, the task is to find min 𝐿 (𝐺) after changing 𝑘 generations (after
performing 𝑘 iterations).

135

APPLICATION OF GENETIC ALGORITHM TO SOLVING THE OPTIMIZATION
PROBLEM OF LOCATIONS GRAPH VERTICES IN THE LINE

The main goal of placement algorithms is to minimize the total length of the edges
of a graph or hypergraph. Let us formulate this placement problem as an optimization
problem. Formula (1) is selected as the objective function, which needs to be minimized.

Notations. The index 𝑖 for chromosomes 𝐶𝑖
1, 𝐶

𝑖
2, . . . , 𝐶

𝑖
𝑘

represents the number of the
generation to which chromosomes numbered 1, 2, . . . , 𝑘 belong.

The output will be the positions of each vertex. The genetic algorithm applied consists
of the following steps:

Step 1: Create the initial population consisting of 𝑘 chromosomes, each composed of 𝑛
elements (vertices of the graph):

𝐶𝑖
1, 𝐶

𝑖
2, . . . , 𝐶

𝑖
𝑘 , where 𝑖 = 0, 1, 2, . . . , 𝑛 − 1.

Step 2: Place the vertices of the graph on the linear grid according to the values of the
examined chromosomes: 𝐶𝑖

1, 𝐶
𝑖
2, . . . , 𝐶

𝑖
𝑘
.

Step 3: Calculate the length of each chromosome 𝐶𝑖
1, 𝐶

𝑖
2, . . . , 𝐶

𝑖
𝑘
. This involves calcu-

lating the number of horizontal segments that connect the vertices of the graph,
according to the placement made in Step 2, for each individual chromosome.
Obtain lengths:

𝐿1(𝐶𝑖
1), 𝐿2(𝐶𝑖

2), . . . , 𝐿𝑘 (𝐶𝑖
𝑘).

Step 4: Calculate the total sum of the edges of the graph according to the placement of
the vertices on the grid determined by that particular population of chromosomes:

𝑆(𝑖) = 𝐿1(𝐶𝑖
1) + 𝐿2(𝐶𝑖

2) + . . . + 𝐿𝑘 (𝐶𝑖
𝑘), 𝑖 = 0, 1, 2, . . . , 𝑛 − 1 (2)

where 𝑖 is the number of the iteration or generation of the population.
Step 5: Choose the ”fittest” chromosome (with the smallest length) from the population

𝐶𝑖
1, 𝐶

𝑖
2, . . . , 𝐶

𝑖
𝑘
. Let this chromosome be 𝐶𝑖

𝑟 , where 1 ≤ 𝑟 ≤ 𝑘 .
Step 6: Apply the inverse mutation genetic operator on chromosome 𝐶𝑖

𝑟 after the first
element. In other words, in the first iteration, the first element of the chromosome
remains in place and the other elements are written in reverse order, starting with
the last one, which will already be in the second position in the chromosome
representation. In the second iteration, the first and second elements remain
intact and the other elements are written in reverse order, starting with the last
one, which will already be in the third position. And so on for each iteration.
Denote the newly obtained chromosome after performing the inverse mutation by
𝐶𝑖
𝑟𝑚.

Step 7: Calculate the length of the newly obtained chromosome 𝐶𝑖
𝑟𝑚.

136

Chiriac L., Lupashco N., and Pavel M.

Step 8: Identify and eliminate the weakest chromosome (with the maximum length)
from the first generation of chromosomes, which is subsequently replaced by the
chromosome 𝐶𝑖

𝑟𝑚.
Step 9: Build the next generation of chromosomes (which already includes the new

chromosome 𝐶𝑟𝑚 and excludes the weakest chromosome) and then proceed to
Step 2.

Step 10: The process of the genetic algorithm stops after performing 𝑘 iterations or, in
other words, after constructing 𝑘 generations of chromosomes. At each iteration,
calculate 𝑆(0), 𝑆(1), . . . , 𝑆(𝑘), where for each sum, the condition

𝑆(𝑚) ≥ 𝑆(𝑚 + 1), 𝑚 = 0, 1, . . . , 𝑘 (3)

is satisfied. The best placement of the vertices of the graph is obtained after
completing the last iteration, in which the last genetically modified chromosome
𝐶𝑖
𝑟𝑚 represents the solution min 𝐿 (𝐺).

6. Example of genetic algorithm application for solving the
optimization problem of locations graph vertices in the line

Problem: Find the best placement of the vertices of graph 𝐺 in Figure 2 on a line
after performing three iterations of the genetic algorithm. The graph 𝐺 and the initial
population consisting of 3 chromosomes are given below.

Figure 2. The examined graph, 𝑛 = 5, and 𝑚 = 5.

Solution: Place the vertices of the graph on the line according to the initial population
of chromosomes to calculate the length of each chromosome.

Therefore, we get the graphical representation of the chromosomes.

137

APPLICATION OF GENETIC ALGORITHM TO SOLVING THE OPTIMIZATION
PROBLEM OF LOCATIONS GRAPH VERTICES IN THE LINE

Table 1. Initial Population of Chromosomes (Generation 0)

Chromosome 𝐶0
1 1 2 3 4 5

Chromosome 𝐶0
2 1 3 2 4 5

Chromosome 𝐶0
3 5 2 3 4 1

Chromosome 𝐶0
1

Chromosome 𝐶0
2

Chromosome 𝐶0
3

We calculate the number of horizontal segments between the vertices of the graph
(between chromosome elements). We obtain:

𝐿1(𝐶0
1) = 1 + 4 + 4 + 2 = 11;

𝐿2(𝐶0
2) = 1 + 3 + 4 + 2 = 10;

𝐿3(𝐶0
3) = 2 + 3 + 3 + 1 = 9.

Calculate the total sum of the edges of the graph according to the placement of the
vertices on the grid determined by that particular population of chromosomes:

𝑆(0) = 𝐿1(𝐶0
1) + 𝐿2(𝐶0

2) + 𝐿3(𝐶0
3) = 11 + 10 + 9 = 30.

Among the examined chromosomes, chromosome 𝐶0
3 has the minimum length, which is

9, so it is the fittest. Consider chromosome 𝐶0
3 selected.

Chromosome 𝐶0
3 5 2 3 4 1

138

Chiriac L., Lupashco N., and Pavel M.

Apply the inverse mutation genetic operator on chromosome 𝐶0
3 to obtain a new

chromosome, which we will denote as 𝐶1
1 .

Chromosome 𝐶1
1 5 1 4 3 2

In other words, in the first iteration, the first element of the chromosome (5) remains
in place, and the other elements are written in reverse order, starting with the last one,
which will already be in the second position in the chromosome representation.

Chromosome 𝐶1
1

Calculate the length of chromosome 𝐶1
1 :

𝐿1(𝐶1
1) = 2 + 1 + 3 + 3 = 9.

Thus, from the initial generation of the population, we replace the less fit chromosome
𝐶0

1 with the more fit chromosome 𝐶1
1 with a length of 9. Chromosome 𝐶0

2 will be denoted
as 𝐶1

2 , and chromosome 𝐶0
3 will be denoted as 𝐶1

3 . Thus, we obtain Generation 1 of the
population of chromosomes.

Table 2. Population of Chromosomes (Generation 1)

Chromosome 𝐶1
1 5 1 4 3 2

Chromosome 𝐶1
2 1 3 2 4 5

Chromosome 𝐶1
3 5 2 3 4 1

The length of each chromosome is:

𝐿1(𝐶1
1) = 2 + 1 + 3 + 3 = 9;

𝐿2(𝐶1
2) = 1 + 3 + 4 + 2 = 10;

𝐿3(𝐶1
3) = 2 + 3 + 3 + 1 = 9.

The total sum of the edges of the graph according to the placement of the vertices on
the grid determined by that particular population of chromosomes in the first iteration is:

𝑆(1) = 𝐿1(𝐶1
1) + 𝐿2(𝐶1

2) + 𝐿3(𝐶1
3) = 9 + 10 + 9 = 28.

139

APPLICATION OF GENETIC ALGORITHM TO SOLVING THE OPTIMIZATION
PROBLEM OF LOCATIONS GRAPH VERTICES IN THE LINE

Among the two chromosomes with a length of 9, we select chromosome 𝐶1
1 as the

fittest from Generation 1.

Chromosome 𝐶1
1 5 1 4 3 2

Apply the inverse mutation genetic operator on chromosome 𝐶1
1 to obtain a new

chromosome 𝐶2
2 . In other words, in iteration 2, the first and second elements of the

chromosome (5, 1) remain intact, and the other elements are written in reverse order,
starting with the last one, which will already be in the third position in the chromosome
representation. Thus, we obtain:

Chromosome 𝐶2
2 5 1 2 3 4

Chromosome 𝐶2
2

Calculate the length of chromosome 𝐶2
2 . We have

𝐿2(𝐶2
2) = 2 + 1 + 2 + 2 = 7.

Further, in Generation 1 of the population, we have two chromosomes with a maximum
length of 9, considered the least fit: 𝐶1

3 and 𝐶1
2 . We replace less fit chromosome 𝐶1

2 with
fitter chromosome 𝐶2

2 with a length of 7. Thus, we obtain Generation 2 of the population
of chromosomes.

Table 3. Population of Chromosomes (Generation 2)

Chromosome 𝐶2
1 5 1 4 3 2

Chromosome 𝐶2
2 5 1 2 3 4

Chromosome 𝐶2
3 5 2 3 4 1

The length of each chromosome is:

𝐿1(𝐶2
1) = 2 + 1 + 3 + 3 = 9;

𝐿2(𝐶2
2) = 2 + 1 + 2 + 2 = 7;

𝐿3(𝐶2
3) = 2 + 3 + 3 + 1 = 9.

140

Chiriac L., Lupashco N., and Pavel M.

The total sum of the edges of the graph according to the placement of the vertices on
the grid determined by that particular population of chromosomes in the second iteration
is:

𝑆(2) = 𝐿1(𝐶2
1) + 𝐿2(𝐶2

2) + 𝐿3(𝐶2
3) = 9 + 7 + 9 = 25.

Choose the best chromosome from Generation 2. Clearly, we need to choose the
chromosome of minimum length, which is 𝐶2

2 :

Chromosome 𝐶2
2 5 1 2 3 4

Apply the inverse mutation genetic operator on chromosome 𝐶2
2 to obtain a new

chromosome 𝐶3
3 . In other words, in iteration 3, the first, second and third elements (5, 1,

2) of the chromosome remain in place, and the other elements are written in reverse order,
starting with the last one, which will already be in the fourth position in the chromosome
representation. Thus, we obtain:

Chromosome 𝐶3
3 5 1 2 4 3

Chromosome 𝐶3
3

Calculate the length of chromosome 𝐶3
3 :

𝐿3(𝐶3
3) = 2 + 1 + 2 + 2 = 7.

Further, in Generation 2 of the population, we select the chromosome with the max-
imum length equal to 9, considered the least fit, either 𝐶2

1 or 𝐶2
3 . We replace the less

fit chromosome 𝐶2
3 with fitter chromosome 𝐶3

3 with a length of 7. Thus, we obtain
Generation 3 of the population of chromosomes.

Table 4. Population of Chromosomes (Generation 3)

Chromosome 𝐶3
1 5 1 4 3 2

Chromosome 𝐶3
2 5 1 2 3 4

Chromosome 𝐶3
3 5 1 2 4 3

141

APPLICATION OF GENETIC ALGORITHM TO SOLVING THE OPTIMIZATION
PROBLEM OF LOCATIONS GRAPH VERTICES IN THE LINE

The length of each chromosome is:

𝐿1(𝐶3
1) = 1 + 1 + 3 + 2 = 7;

𝐿2(𝐶3
2) = 1 + 1 + 2 + 2 = 7;

𝐿3(𝐶3
3) = 1 + 1 + 3 + 2 = 7.

The total sum of the edges of the graph according to the placement of the vertices on the
grid determined by that particular population of chromosomes in the third iteration is:

𝑆(3) = 𝐿1(𝐶3
1) + 𝐿2(𝐶3

2) + 𝐿3(𝐶3
3) = 7 + 7 + 7 = 21.

The evolution of lengths in the case of generations 0, 1, 2, 3 is as follows:

𝑆(0) = 30 > 𝑆(1) = 28 > 𝑆(2) = 25 > 𝑆(3) = 21.

The best placement of the vertices of the graph on the line is obtained in the last iteration,
in which the last genetically modified chromosomes 𝐶3

2 and 𝐶3
3 represent the solution

with min 𝐿 (𝐺) = 7 and 𝑆(3) = 21.

References

[1] Holland, John H. Adaptation in Natural and Artificial Systems. Ann. Arbor: University of Michigan
Press, 1975.

[2] Mitchell, Melanie. An Introduction to Genetic Algorithms. Cambridge: MIT Press, 1996.
[3] Mitchell, Melanie. Genetic Algorithms: An Overview. Complexity, 1995, vol. 1, no. 1, 31–39.
[4] Russell, Stuart J., Norvig, Peter. Artificial Intelligence: A Modern Approach. Second Edition.

Prentice Hall, 2003.
[5] Beasley, David, Bull, David R., Martin, Ralph R. An Overview of Genetic Algorithms: Part 1,

Fundamentals. University Computing, 1993, vol. 15, no. 2, 58–69.
[6] Dumitrescu, Dan. Algoritmi genetici şi strategii evolutive - Aplicaţii ı̂n inteligenţa artificială şi ı̂n

domenii conexe. Cluj-Napoca: Editura Albastră, 2000.
[7] Åìåëüÿíîâ, Â.Â., Êóðåé÷èê, Â.Â., Êóðåé÷èê, Â.Ì. Òåîðèÿ è ïðàêòèêà ýâîëþöèîííîãî

ìîäåëèðîâàíèÿ. Ìîñêâà: Ôèçìàòëèò, 2003.
[8] Goldberg, David Edward. Genetic algorithms in search, optimization and machine learning. Addison

-Wesley: Reading, MA, 1989.
[9] Garey, Michael R., Johnson, David S. Computers and Intractability: A Guide to NP-completeness.

New York: W.H. Freeman and Company, 1978.
[10] Oltean, Mihai. Proiectarea şi implementarea algoritmilor. Cluj-Napoca: Comp. Libris Agora, 2000.

Received: October 20, 2023 Accepted: December 15, 2023

(Liubomir Chiriac, Natalia Lupashco, Maria Pavel) “Ion Creangă” State Pedagogical University,
5 Gh. Iablocikin st., Chişinău, MD-2069, Republic of Moldova

142

	History of the development of the evolutionary calculus
	Genetic Algorithms
	Introductory Concepts
	Implementation of the Genetic Algorithm
	Genetic algorithm for solving the optimization problem of locations graph vertices in the line
	Example of genetic algorithm application for solving the optimization problem of locations graph vertices in the line

