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PROFESSOR MIHAIL POPA - 70TH ANNIVERSARY

Professor Mihail Popa is a Moldavian mathematician and a remarkable leader of the
Moldavian school of differential equations, who contributed a lot to the qualitative theory
of differential equations and to the education of new generations of highly-qualified
specialists. Professor Mihail Popa is Habilitated Doctor in Mathematical and Physical
Sciences and Full University Professor. On May 15" 2018, Professor Mihail Popa will
celebrate his 70" anniversary.

Mihail Popa was born in the village Valcinet of the Calarasi District, Republic of
Moldova. In 1963, he graduated from the elementary school of the village Temeleuti,
Caldrasi District; in 1966 he finished the secondary school nr.1 of the city Calarasi and in
1971 he graduated from the Faculty of Physics and Mathematics of the State University
of Chisinau. In 1978, he started his Candidate's Degree (1% PhD equivalent) (at Institute
of Mathematics and Computer Sciences of the Academy of Sciences of Moldova
(specialty 01.01.02 — Differential Equations).

In 1979, Mihail Popa defended his Candidate's Degree thesis in Mathematical and
Physical Sciences at Gorki State University. He did it under the supervision of the well-
known mathematician Academician Constantin Sibirschi. In 1992, he defended his
Habilitated Doctor’s degree thesis (2" PhD thesis) in Kiev at the Institute of Mathematics
of the Ukrainian Academy of Sciences.

The professional activity of Professor Mihail Popa took place at the Institute of
Mathematics and Informatics of the Academy of Sciences of Moldova and it evolved as
follows: Collaborator of the Laboratory (1975 — 1977), Scientific Researcher (1977 —
1980), Scientific Secretary (1980 - 1999), Deputy Director (1999 — 2006), Director
(2006-2010), Scientific Principal Researcher (2010 - present).



The scientific interests of Professor Popa involve the use of invariant processes in
the qualitative study of differential equations. A new viewpoint on the qualitative theory
of differential equations based on the method of algebraic invariants founded by the
Academician C. Sibirschi was established. This new viewpoint consists in application of
the Lie algebras of operators of representations of the linear groups in the space of
coefficients of systems of polynomial differential equations and of the graduate algebras
of invariants and comitants to the geometry of these systems. This new viewpoint
extended the scientific domain where it was applied, thus, to comprise methods of group
analysis. This brought forth the study of the graduate algebras of invariants of differential
equations with the help of generating functions and of Hilbert series. A sequence of
generating series and of Hilbert series for diverse graduate algebras of comitants and
invariants of differential systems was obtained for which it is possible to evaluate their
Krull dimension.

A substantial part of the results are about the study of the Lie algebra of operators
L4 for the center-affine group and its representations in the space of coefficients of
autonomous systems of polynomial ordinary differential equations (S.0.D.E) of first
order. Another category of results is connected to the classification of the dimensions of
orbits of polynomial S.0.D.E with respect to the admissible groups. A new direction in
the use of Lie algebras and of algebras of invariants is the extension to autonomous
multidimensional systems of first order differential equations with polynomial right-hand
sides, which have constant coefficients.

In his works Professor Popa used Lie L4 algebra and the Sibirsky’s graduate
algebras of the invariants and thus, a numerical estimation of the maximum margin of the
maximum number of algebraically independent focal lengths was obtained. Professor
Popa solved the Problem of the Center and Focal Center formulated by Henri Poincare
over 130 years ago with help of the above-mentioned results for any two-dimensional
differential system with polynomial nonlinearities.

Professor Mihail Popa is the author of over 120 scientific publications, among them
four monographs on applications of algebras to systems of differential equations, two text
books for Master’s Degree students on Lie algebras and systems of differential equations
and three books to popularize science.

The scientific activity of Professor Mihail Popa was highly appreciated by the
scholars from many Scientific Centers, as the Université de Limoges (France), the State
University of Minsk (Belarus), the University of Pitesti (Romania), the Center of
Research in Mathematics of Montreal (Canada), the University of Lund (Sweden), the
Institute of Mathematics of the Romanian Academy of Science (Bucuresti), the State
University M. Lomonosov of Moscow, etc.

At Scientific Symposium dedicated to 70-anniversary of Professor Mihail Popa,
held on 16 May 2018, on this occasion, the following letter was received and signed by
the scholars of the Department of Mathematics of University of Barcelona, Spain:



We are a group of four scholars, J.C. Artes (Universitat Autonoma de Barcelona),
J. Llibre (Universitat Autonoma de Barcelona), D. Schlomiuk (University de Montreal)
and N. Vulpe (Institute of Mathematics and Computer Science, Moldova) who know
personally Professor Popa whom we met either in Chisindu or in Montreal and we all
value his work in the development of the invariant theory of differential equations,
founded in Moldova by academician C.S. Sibirschi.

The four of us work on a long term project based on the results obtained by the
Moldavian school in the invariant theory of differential equations.

Professor M. Popa is a brilliant disciple of C.S. Sibirschi and his work introduced a
new viewpoint in the method of invariant theory, by using Lie algebras and differential
operators for constructing new invariant polynomials and applying them in the
qualitative study of differential equations. During the period 1998 - 2014 Professor
M. Popa has been the scientific advisor of nine young mathematicians who obtained their
doctorate under his supervision and he continues to form other young mathematicians.
Thus, he is a leading member of the Moldavian school in mathematics.

On the occasion of his 70th birthday we congratulate Professor M. Popa on his
achievements and we wish him good health and many more contributions in mathematics.

The contribution of Professor Mihail Popa to the education of new generations of
highly-qualified mathematicians is enormous. From the year 1996 he works fruitfully at
Tiraspol State University, where he won by competition the position of Full Professor
and holds lectures for students, master students and PhD students. He was appointed as a
scientific adviser of thesis for several university’s graduates and master degree students.
He is an exemplary figure and exceptional teacher who is inspiring his colleagues and
former students in the best possible way in math and in real life.

It is one of the founders of the Seminar on Differential Equations and Algebras at
Tiraspol State University, which works on regular basis since 2002 and it is designed for
students, Master degree students, PhD students and scientific researches.
Professor Mihail Popa has been a supervisor for ten defended PhD thesis; eight PhD
graduates studied at Tiraspol State University (in Chisinau).

From February to June 2001, Mihail Popa was Invited Professor at the Université de
Limoges (France), where he gave courses and seminars for students and professors.

Professor Mihail Popa was a director for many scientific projects, in particular: the
Workshop” Qualitative Study of Differential Equations” (Chisindu, February 14-15,
2003), Second Conference of the Mathematical Society of Moldova, (Chisindu, August
17-19, 2004), International Conference ,,Algebraic Systems and their Applications to
Differential Equations and to other mathematical domains” (Chisindu, August 21-23,
2007). He is a member of the Scientific Committee of the Institute of Mathematics and
Informatics, a member of the Commission of Experts of the National Council of
Accreditations and Attestation of the Republic of Moldova, a member of the Editorial



Boards of the Bulletin of the Academy of Sciences in Mathematics (Moldova) and of
ROMAI Journal (Romania).

Professor Mihail Popa was awarded of Doctor Honorius Causa Degree of Tiraspol
State University (2013), the Academy of Sciences of Moldova Award (2003), the
”Academician Constantin Sibirschi” Award (2004).

At the age of 70, full of vigor and optimism, Professor Mihail Popa is very active in
the academic community of the Republic of Moldova. We wish him a good health,
prosperity and new accomplishments in his scientific and didactic activities:

”Happy Birthday to You, Many Happy returns of the Day”.

The present volume is dedicated to Professor Mihail Popa and contains a part of
communications presented at the Scientific Symposium dedicated to 70-anniversary of
Professor Mihail Popa, held on 16 May 2018.

The more complete description of the life of Professor Mihail Popa and his
scientific works can be found in the following publications:

1. M. Ciobanu, T. Rotaru. 130 years of the effort in the solving of the Poincaré center-
focus problem. Akademos 2013, no. 3, 13-21. (in Romanian)
2. M. Popa. My way in mathematics. Academy of Scenice of Moldova. Chisinau,

2018, 343 p. (in Romanian)

3. M.N. Popa, V.V. Pricop. The center-focus problem: algebraic solutions and
hypotheses. Academy of Scenice of Moldova. Chisinau, 2018, 240 p. (in Russian)
4. M. Popa, V. Repesco. Lie algebras and dynamical systems in the plane. Tiraspol

State University. Chisinau, 2016, 237 p. (in Romanian)

5. M.N. Popa. Invariant processes to differential systems and their applications in the
qualitative theory. Academy of Scenice of Moldova, 2014, 223 p. (in Russian)

6. M. Popa and T. Rotaru editors. Academician Vladimir Andrunachievici. Academy
of Scenice of Moldova, 2009, 269 p. (in Romanian)

7. M.N. Popa. Lie algebras and differential systems. Academy of Scenice of Moldova,

2008, 163 p. (in Romanian)

8. M. Popa and T. Rotaru editors. Institute of Mathematics and Informatics. Academy
of Scenice of Moldova, 2004, 454 p. (in Romanian)
9. M.N. Popa. Algebraic methods for differential systems. Flower Power edition.

University of Pitesti, Applied and Industrial Mathematical series, no. 15, 2004, 340

p. (in Romanian)

10. M.N. Popa. Applications of algebras to differential systems. Academy of Science of

Moldova, Chisinau, 2001, 224 p. (in Russian)

Mitrofan CIOBAN

Academician of ASM, Professor, Doctor Habilitatus of Sciences
President of the Mathematical Society of the Republic of Moldova
Dumitru COZMA

Professor, Doctor Habilitatus of Sciences
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AROUND THE POINCARE CENTER-FOCUS PROBLEM
Mitrofan M. CIOBAN, Academician
Tiraspol State University
Summary . It is well known that many mathematical models use differential equation systems and apply the
qualitative theory of differential equations, introduced by Poincaré and Liapunoff. One of the problems that
persists in order to control the behavior of systems of this type, is to distinguish between a focus or a center
(the Center-Focus Problem). The solving of this problem goes through the computation of the Poincaré-
Liapunoff quantities. The problem of estimating the maximal number of algebraically independent essential
constants is called the Generalized Center-Focus Problem. The present article contains: some moments
related to the history of the Center-Focus Problem; the contribution of the Academician C. Sibirschi’s
school in the solving of the Center-Focus Problem; methodological aspects of the M. N. Popa and V. V.
Pricop solution of the Generalized Center-Focus Problem.
Key words: Poincaré-Liapunoff quantities, center-focus problem, generalized center-focus problem, Krull
dimension, sober spaces.
2010 Mathematics Subject Classification: 34C05, 34C07

REFLECTII ASUPRA PROBLEMEI LUI POINCARE
DESPRE CENTRU SI FOCAR

Rezumat. Multe modele matematice folosesc sisteme de ecuatii diferentiale si aplica teoria calitativa a
ecuatiilor diferentiale, elaborata de Poincaré i Liapunoff. Una din probleme ce persista in studiul acestor
sisteme constd in determinarea conditiilor care asigura c& punctul singular este un centru (Problema Cen-
trului i Focarului). Problema Generalizatd a Centrului si Focarului constd in estimarea de sus a numarului
de elemete algebric independente din careva sistem complet de conditii esentiale. Problema Generalizata a
Centrului si Focarului a fost rezolvata de M. N.Popa si V. V. Pricop. In articolul prezent: se expun unele
momente din istoria rezolvarii Problemei Centrului si Focarului; se mentioneaza contributia scolii acad. C.
Sibirschi la rezolvarea Problemei Centrului si Focarului; se analizeaza aspectele metodologice ale solutiei
propusa de M. N.Popa gi V. V. Pricop.

Cuvinte-cheie: constantele Poincaré-Liapunoff, Problema Centrului si Focarului, Problema Generalizata a

Centrului i Focarului, dimensiunea Krull, spatiu sobru.

1. Introduction

Mathematical research has helped to solve a number of problems that have sprouted the
scientists’” minds for almost 2500 years, starting with Plato, Aristotle, Euclid, Archimedes.
The nineteenth century brought to human civilization several surprising discoveries. Much
of them is the result of the logical analysis and, in general, of the mathematical analysis of
phenomena: Gauss discovered through calculus the asteroids Ceres, Palass, Vesta, Iunona;
Galle also, based on the calculations, identified the planet Neptune; Mendeleev, starting
from the atomic table, systematized the chemical elements and anticipated the existence of
many new ones; Schliemann, based on Homer’s descriptions, determined the place of Troy’s
placement, etc. At the end of the nineteenth century, the genius French mathematician
Jules Henri Poincaré (1854 — 1912) created new areas of research such as topology, qualitative
theory of dynamic systems, etc. We mention that by the quantitative methods, the Romanian
mathematician Spiru Haret (1851 — 1912) demonstrated in 1878 the instability of the Solar
System. He made a fundamental contribution to the n-body problem in celestial mechanics.
Haret’s major scientific contribution was made in 1878, in his Ph.D. thesis ”Sur linvariabilité
des grandes axes des orbites planétaires”. At the time it was known that planets disturb each

others orbits, thus deviating from the elliptic motion described by Johannes Kepler’s First
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Law. Pierre Laplace (in 1773) and Joseph Louis Lagrange (in 1776) had already studied
the problem, both of them showing that the major axes of the orbits are stable, by using
a first degree approximation of the perturbing forces. In 1808 Siméon Denis Poisson had
proved that the stability also holds when using second degree approximations. In his thesis,
Haret proved by using third degree approximations that the axes are not stable as previously
believed, but instead feature a time variability, which he called secular perturbations. This
result implies that planetary motion is not absolutely stable. Henri Poincaré considered
this result a great surprise and continued Haret’s research, which eventually led him to the
creation of chaos theory and qualitative theory of dynamic systems [10, 19].

Henri Poincaré formulated a series of important problems, the solution of which deter-
mines the further development of mathematical sciences. One of them is the the Poincaré
conjecture about the characterization of the 3-sphere, which is the hypersphere that bounds
the unit ball in four-dimensional space. In 2000, it was named one of the seven Millennium
Prize Problems, for which the Clay Mathematics Institute offered one million dollars prize for
the first correct solution. The enigmatic Russian mathematician Grigori Perelman presented
a proof of the conjecture in three papers made available in 2002 and 2003 on arXiv. On 22
December 2006, the scientific journal Science recognized Perelman’s proof of the Poincaré
conjecture as the scientific ”Breakthrough of the Year”, the first such recognition in the area
of mathematics.

One of the famous problems of the qualitative theory of differential equations is the
Center-Focus Problem, formulated by Poincaré about 135 years ago, in period 1881-1885
[10]. The Center-Focus Problem consists in distinguishing when a monodromic singular
point is either a center or a focus. The Center-Focus Problem arises many open questions
and it has deep links with Hilbert’s 16th Problem.

Hilbert’s 16th problem was posed by David Hilbert (1862 — 1943) at the Paris Interna-
tional Congress of Mathematicians in 1900, as part of his list of 23 problems in mathematics
(see [4, 1, 6]). The original problem was posed as the Problem of the topology of algebraic
curves and surfaces. Actually the problem consists of two similar problems in different fields
of mathematics:

1. An investigation of the relative positions of the branches of real algebraic curves of
degree n.

2. The determination of the upper bound for the number of limit cycles in two-
dimensional polynomial vector fields of degree n and an investigation of their relative posi-
tions.

In 1976, Academician Constantin Sibirschi (Sibirsky) (1928 — 1990), Head of Labora-
tory at the Institute of Mathematics and Computer Science of the Academy of Sciences of
Moldova, founder of the scientific school of differential equations in the Republic of Moldova,
published the monograph ” Algebraic Invariants of Differential Equations and Matrices” (see
[16, 15]), which had a great resonance in the world of mathematicians. Over three years
in 1979, Professor C.S. Coleman has published a review of this scientific paper, in which
he stated that it is written in the spirit of the research of Norwegian mathematician Mar-
ius Sophus Lie (1842 — 1899). Marius Sophus Lie obtained his PhD at the University of

12



Christiania (present day Oslo) in 1871 with the thesis entitled ”Over en Classe Geometriske
Transformationer”. He created the theory of continuous symmetry, introducing the con-
cept of algebra, those bearing his name today, and applied it to the study of geometry and
differential equations. It would be described by Darboux as ”"one of the most handsome
discoveries of Modern Geometry”.

The mathematician Mihail Popa, who was a student of the Professor C. Sibirschi, went
his own way, starting from establishing the link between the Lie algebras and the graduated
algebra of Sibirschi invariants — a tool for further researches. M. Popa took as a basis the
Generalized Center-Focus Problem for Polynomial Differential Systems, avoiding calculating
Poincaré-Lyapunoff quantities for each system. Poincaré-Lyapunoff’s quantities was sub-
stituted by a sequence of Lie algebras and a sequence of linear subspaces of the graduate
algebra of Sibirsky’s invariants (see [17, 13, 14]). When estimating the maximum number
of algebraically independent focal constants, he applied these algebras. As a result, a finite
numerical estimation was obtained for independent algebraic focal quantities, participating
in the solving of the generalized Center-Focus Problem for any polynomial differential sys-
tem (see Theorem 1). Currently, Professor Mihail Popa, along with his disciples, continues
his research in the theory of polynomial differential systems, successfully using Lie algebras.

An analysis of the activity of Professor Mihail Popa is contained in article [2].

2. The Center-Focus Problem
Consider the differential system

dz/dt = P(z,y), dy/dt = Q(z,y), (1)
where P(x,y) and Q(z,y) are polynomials that contain the linear part and satisfy the con-
ditions P(0,0) = Q(0,0) = 0. The coefficients of polynomials P(x,y), Q(z,y) and variables
from the system (1) takes values from the field of the real numbers R. It is known [7, 10] that
the conditions which distinguish center from focus for the system (1) consist in study of an
infinite sequence of polynomials (focal quantities, Lyapunoff constants, Poincaré-Lyapunoff

quantities (constants))
Ly, Ly, .. Ly, .. 2)

in the coefficients of the polynomials from the right side of the system (1).

It was shown that if the focal quantities (2) are equal to zero then the origin of coor-
dinates for the system (1) is a center, i.e. the trajectories near this point are closed. On the
contrary the origin of coordinates is a focus and the trajectories are spirals.

We can assume that P(z,y) = S{P,, : i € {0,1,2,...01}} and Q(z,y) = X{Qm, : i €
{0,1,2,...1}}, where P,,, and @Q,,, are homogeneous polynomials of degree m; > 1 in x and
y, mg = 1. In this case we denote the system (1) by s(1, mq, ma, ..., m;)

It is known that if the roots of characteristic equation of the singular point O(0,0) of
the system (1) are imaginary, then the singular point O is a center or a focus. In this case
the origin of coordinates is a singular point of the second type.

The Center-Focus Problem can be formulated as follows: Let for the system
s(1,my, ma, ...,my) the origin of coordinates be a singular point of the second type (center or
focus). Find the conditions which distinguish center from focus. This problem was posed by
H. Poincaré [10]. The basic results were obtained by A. M. Lyapunoff (1857 — 1918) [7].
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It is well known that, from the Hilbert’s theorem on the finiteness of basis of polynomial

ideals, for any concrete system s(1,mq,ma, ..., m;) the set

PL(l,ml,mg,...,ml) = {ZGN:{LQ,} LZ#O} (3)
is finite. Assume that

PL(1,my,ma,...,my) = {ny,na, ..., ng} (4)
and Ng =n1 <Ny < ... < ng. (5)

The Poincaré’s Center-Focus Problem determines the following problems:

P1. The problem of finding the number n, or obtaining for it an argued numerical upper
bound.

P2. The problem of finding the number ng or obtaining for it an argued numerical upper
bound.

P3. The problem of finding the number 5 or obtaining for it an argued numerical upper
bound.

Problems P1 and P2 are open. Solution of the Problem P1 contains a solution of the
Center-Focus Problem. Positive solution of Problem P2 contains the solution of Problem
P1. Hence Problem P2 is the strong Center-Focus Problem. Problem P3 is the weakly
Center-Focus Problem.

Denote by D the set of all systems (1). Since the Center-Focus Problem is very compli-
cated, it presents interest the following problem: Finding the subsets H of the set D for which
Problems P1-P3 (or some of them) are positive solutions. Monographs [16, 18, 11, 14, 12, 3]
contain some results of that kind. The Center-Focus Problem is solved for the class QS of
all quadratic systems (see [16, 18, 17, 15]). Using global geometric concepts, was completely
studied the class QW3 of quadratic systems with a third order weak focus (see [15]). The
class QW2 of all quadratic differential systems with a weak focus of second order is important
for Hilbert’s 16th problem (see [15, 1, 6]). Are important (see [3, 15]) the classes:

- the class of dynamical systems with special invariant algebraic curves;

- the class of dynamical systems with a Darboux first integral or a Darboux integrating
factor.

3. Sibirschi graded algebras

C. S. Sibirschi (see [13, 11, 14]), for any system s(1,my, ma,...,m;), were introduced
the graded algebra ST = SI(1,my, my,...,m;) of unimodular invariants and the graded al-
gebra S = S(1,mqy,mg,...,m;) of comitants of the system s(1,mq,ms,...,m;). Obviously
SI(1,my,mg,....,my) C S(1,my,ma,...,my).

The maximal number of algebraically independent elements of the Sibirsky graded
algebra S is denoted by p(.5).

Let R be a finitely generated algebra over a field K. By the virtue of Krull’s theorem
the maximum number of elements of R that are algebraically independent over K is the same
as the Krull dimension of R. Hence p(S) is the Krull dimension of the Sibirschi algebra S.

A natural question is of course: Which properties of s(1,mq, ma,...,m;) are described
in SI(1,my,ma,...,my) and S(1,my,ms,...,m;)? In particular, the following problem may

be considered as the generalized Poincaré Center-Focus Problem (see [13, 2, 14]):
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P4. The problem of finding the number p(S(1,my, ma, ..., my)).

In [13, 14] was proved the following unexpected assertion.
Theorem 1. p(S(1,mq1,ma,....my)) = 2(X{m; : 1 < i < I} +1)+ 3 for any system
s(1,my, ma, ...,my).

In this context, in [13] was formulated the following
Conjecture. 5 < 2(X{m; : 1 <i <I}+1)+ 3 for any system s(1,my,ma,...,my).

Present interest the following open question
P5. For which n there exist two polynomials P(x,y) = 3X{P,,, : 1 € {0,1,2,...1}} and Q(x,y)
=3{Qm, :1€{0,1,2,...1}} for which:

- P(x,y) is a polynomial of degree ny, Q(x,y) is a polynomial of degree ny and n =
maximumi{ny,na};

- =23{m;:1<i<I}+1)+3.

4. Krull’s dimension of spaces

Any space X is considered to be a Kolmogorov space, i.e. for any two distinct points
x,y € X there exists an open subset U of X for which the intersection U N {z,y} is a
singleton set.

A subset F' of a space X is called an irreducible subset if for any two closed subsets
Fy, F, of X for which F' C FyUF, we have F' C F; for some ¢ € {1,2}. The closure clx{z} of
the singleton set {x} is irreducible. A sober space is a topological space X such that every
non-empty irreducible closed subset of X is the closure of one point of X. If F' = clx{z},
then x is a generic point of the set F'. A non-empty irreducible subset has a unique generic
point.

Denote by |L| the cardinality of a set L.

The following assertion is obvious.

Proposition 1. A subset L of a space X is irreducible if and only if the its closure clx L is
wrreducible.

Example 1. Let X = {1,2,3} with the topology {@, X, {2},{1,2},{2,3}}. Then X is a
sober irreducible space and the closed subspace Y = {1, 3} is discrete and not irreducible.

A closed subspace of a sober space is a sober space.

Example 2. Let w = {0,1,2,...,n,..} and X = {0,1,2,...,n,...,w} with the topology
{2, X}U{X \ F: F is a finite subset of w}. Then X is a sobre irreducible space and the
subspace Y = {0, 1,2,...,n, ...} is irreducible and not sober.

Define the Krull dimension dk(X) of a space X to be the maximum n such that there
exists a chain of pairwise distinct non-empty irreducible closed sets Fy, Fy, F5 ..., F}, such that
FyC Fy C F, C...CF, IfYisan irreducible closed subset of X the Krull co-dimension
co-dkx(Y) of Y in X is the supremum over all n such that there is a chain of pairwise distinct
non-empty irreducible closed sets Fy, Fi, F5 ..., Fj, such that Y C Fy C Iy C 5, C ... C F,,.
We observe that dk(X) = co-dkx (). We can assume that dk(X) = -1 for X = &.

From Proposition 1 it follows that dk(Y) < dk(X) for any subspace Y of a space X.

If{X;:i€eN, ={1,2,...,n}} is a finite family of closed subspaces of a space X, n > 2
and X = U{X; : ¢« € N}, then dk(X) = supremum{dk(X;) : i € N,}. This fact follows
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from Claim 1 in the proof of the following proposition.
Proposition 2. Let {X; :i € N,,} be a finite family of subspaces of a space X, n > 2 and
X =U{X;:ieN,}. Then:

1. If F s a closed irreducible subset of X, then there exists © € N,, such that F; =
F N X, is an irreducible subset of the spaces X; and X, and F = clx F;.

2. If F is a closed irreducible subset of X, 1 € N,, F; = FNX; and F = clxF;, then
F; is an irreducible subset of the spaces X; and X.

3. dk(X) = X{dk(X;) : i € N, }.

Proof. In the first we prove the following assertion.
Clam 1. Let I be an irreducible subset of the space X, v is a finite family of closed subsets
of X and F C Uy. Then FFCY for someY € 7.

The assertion follows from the definition for |y| < 2. Assume that £ > 2 and the
assertion is true provided |y| < k. Fix a collection v of closed subsets of X for which |y| = &
and F' C Uy. Now fix Y € 4 and put v, = v\ {Y'}. We have two possible cases.

Case 1. F C Unm;.

Since ;| = k — 1 < k, there exists Z € v such that F C Z.
Case 2. ' ¢ Um;.

We put Z = Uy;. Then F C ZUY and F ¢ Z. Hence FF C Y € ~. The proof of
Claim 1 is complete.

Clam 2. If F is a closed irreducible subset of X, then there exists © € N,, such that F =
cdx(FNX;).

We put F; = FNX; and ®; = clxF;. Then v = {®; : i € N,} is a finite family of
closed subsets of X and F' C Uy. Thus F' C ®; for some ¢ € N,,. Claim is proved.

Assertion 2 follows from Proposition 1.

Fix a chain of pairwise distinct non-empty irreducible closed sets Fy, Fi, Fs ..., F,,
of the space X such that Fy C Fy C F, C ... C F,,. Weput F;; = F; N X,. Let A, =
{j:0<j<m,F =clxF;} and m; = |A;|. Then m; < dk(X;) and, by virtue of assertions
1 and 2, we have m < ¥X{m,; : i € N} < ¥{dk(X;) : i € N,,}. Assertion 3 is proved. The
proof is complete.

Proposition 3. Let {X; :i € N,} be a finite family of sober subspaces of a space X, n > 2
and X = U{X, i€ N,}. Then:

1. If F' is a closed irreducible subset of X, 1 € N,,, F; = FNX; and F = clxF;, then
F; is an irreducible subset of X; and the generic point x € X; of F; in X; is a generic point
of Fin X.

2. X 1s a sober space.

Proof. Assertion 1 follows from Proposition 1. Assertion 2 follows from assertions 1 and

Proposition 2.

5. Spectrum of a ring
Let R be a commutative ring [9, 5]. A subset I of R is called an ideal of R if:
1. (I,+) is a subgroup of the group (R, +).
2.R-ICI.
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3. If R is an algebra over field K, then K - I C I for any ideal I of R.

An ideal I of R is said to be prime ideal if x,y € R and x-y € I implies I N{z,y} # @.

The set of all prime ideal of R, is denoted by Spec(R), is called spectrum of the ring
R. Let A be an ideal of R and let V(A) be the collection of all prime ideal contains A. The
collection of all V' (A) satisfies the axioms of closed subsets of a topology for Spec(R), called
the Zariski topology for Spec(R). The space Spec(R) is a compact Kolmogorov space.

For any commutative ring R and m € N the following assertions are equivalent:

1. dk(Spec(R) = m.

2. If Iy Cc I C ... C I, is a chain of distinct prime ideals of R, then n < m.

From Theorem 1 it follows that dk(S(1,my1, ma,...,my)) = 2(Z{m; : 1 <i <I}+1)+3

for any system s(1,my, ma, ..., my).

6. Representation of a class of problems

The problem of determining the finite numbers n,, ng and 8 (see (5) in Section 2), or
obtaining for them some numerical boundaries from the top, is important for the complete
solution of the Center-Focus Problem. Obviously the Center-Focus Problem is a difficult one.
So far, no general methods have been found for studying the Poincaré-Liapunoff quantities
(2). In particular, there is no a general strategy to solve. Another impediment is the
enormous calculations that can not be overcome by the modern supercomputers, even for
the system s(1,2,3), not to mention more complicated systems. From a psychological point
of view, there are also impediments to the human conservatism to explore the problems
traditionally, classically. History confirms that new, unusual methods with great difficulty are
approved and valued at their fair value. However, according to Kurt Godel’s incompleteness
theorem, as a rule, the resources created up to now are not sufficient for further studies.
Therefore, it is undeniable that the successes of the future depend to a large extent on the
newly created tools.

The study of a new problem or an unsolved problem, applying the methods of solving
the known problem is done by various methods: the method of substitution of the variables;
the method of crossing on limit, etc. Some of them have been well-known since ancient times
and have generated new methods, appropriate to the mathematical concepts of the respective
period. For example, with the method of crossing on limit, Hopf has solved the quasi-linear
equations. In [8] the method of substitution of algebraic operations was successfully used in
the solving of some problems of the theory of differential equations.

The principle of contrast revealed in "matter and anti-matter”, ”parallel spaces”,
"world and anti-world” penetrates into the essence of the universe, thus constituting amaz-
ing "symmetries” in the world of known phenomena. From a mathematical point of view
such "symmetries” are built based on the duality principle. To build a duality means to
determine a correspondence between certain types of objects, where each property of the
original object corresponds to a particular property of that object in that correspondence.
In any duality, their ”objects” and ”properties” have dual ”objects” and ”properties”. Any
concrete duality is a valuable event for these theories. The dualities in the projective ge-

ometry, the duality of Pontryagin in the theory of the local compact Abelian groups, the
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Kolmogorov-Gelfand duality of compact spaces and functional Banach algebras, the duali-
ties of Serre and Alexander in the topology, the duality of Radu Miron of the Cartan spaces
and the Finsler spaces, the duality of De Morgan in the theory of sets, the Stone duality
between zero-dimensional compact spaces and Boolean rings, wave-particle duality in quan-
tum mechanics, Kramers—Wannier dualism in statistical physics, etc. This method, which
is also an "anti-analogy reasoning”, determines from the point of view of formal logic that
many objects different in form and content are built in a similar way.

From this point of view, represent interest some correspondences of concrete class of
objects of one theory into other theory. Let A and B be two theories, P be a class of problems
of the theory A and 8(P) be a set of solution of the problem P € P. A correspondence
U : P — B is a representation of the class of problems P in the theory B if:

- U(P) is a problem of the theory B for any problem P € P;

-if P € P and Q € 8§(P) is a given solution of the problem P, then ¥(f2) is a solution
of the problem ¥ (P).

In this case the problem W(P) is a generalized form of the initial problem P € P.
Solving generalized forms is important if for a long time there is no solution for the initial
problem. Moreover, the solutions of the generalized problem propose strategies and hypothe-
ses to solve the initial problem. Some estimates in the generalized problem solution can serve
as working hypotheses for the initial problem. Furthermore, the solution to the generalized
problem reflects possible ways of examining some particular cases.

Denote by & the theory of polynomial differential systems (1), by R the theory of com-
mutative algebras and by T the theory of topological spaces. For any problem s(1,my, mo, ...,
my) is determined the number {8} as the set of solutions 8(s(1, my, ma, ...,m;)).

The correspondence W, : D — R, where W4 (s(1,mq, ma, ..., my)) = S(s(1, mq, mo, ...,
my) and D is the set of all equations (1), is a representation of the class of problems D in
the theory R. We have U 4(5) = dk(S(1, my, ma, ...,my)) for any problem s(1,my, ms, ..., m;)
(Theorem 1).

The correspondence U : D — T, where

Ur(s(1,my,ma,...,my)) = Spec(S(1,my, ma, ..., my))
is a representation of the class of problems D in the theory 7. We have
U, (B8) = dk(Spec(S(1,my,ma,...,my)))
for any problem s(1,mq, ma,...,m;) (Theorem 1).

Therefore the number dk(S(1,my,ma,...,m;)) = dk(Spec(S(1,my, ma,...,my))) is a
generalized solution of the Center-Focus Problem of the system s(1, my, ma, ..., my).
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MEDIEREA iN SISTEMELE DE MULTIFRECVENTA
CU ARGUMENTE LINIAR TRANSFORMATE SI CU PUNCT

SI CONDITIILE DE INTEGRARE

Rezumat. in aceastd lucrare se prezinti o sintezi a rezultatelor ce tin de solvabilitatea sistemelor
diferentiale de multifrecventa cu argumente liniar transformate si multipunct si conditiile de integrare.
Este introdusa conditia de rezonanta a oscilatiei, care depinde de intarzierea in variabilele rapide. Se
considera problema de existentda si unicitate a solutiei si Se justifici metoda de mediere pe variabile
rapide. Sunt obtinute cele mai bune estimiri ale metodei de mediere, care, evident, depind de un
parametru mic.

Cuvinte-cheie: metoda de mediere, sisteme de multifrecventa, argument liniar transformat, conditii de
frontiera, problema Noether.

Introduction
Numerous oscillation processes in mechanics, physics, ecology, etc. are described
with multifrequency nonlinear systems in the form [1]
E=X(T,a,¢),8), d—(pzw+Y(r,a,¢J,5), 0<r<L, @
dr dr £

where a and ¢ are n— and m—dimensional vectors, respectively, 7 =&t is slow time,

0 <& — small parameter, X, Y and vector of frequency o belong to certain classes of
smooth functions 2z —periodic in ¢ .
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As the system of equation (1) is complex both for research and for solution finding,
then, in the times of Lagrange and Laplace, the procedure of averaging over fast variables
@ is used. Much simpler system of equation is obtained

B _x (rae 2903 v as), @)
dr dr

where
[XoYo] = 20 [[X(2.8.0.6)Y (r.8,0.2)ldp. ©)

The main problem in investigation of system (1), where m > 2, is the problem of
resonances. Here, the resonance case is understood as the case where the scalar product
of the vector w(a,z) and a nonzero vector with integer-valued coordinates turns into zero

or becomes close to zero for certain values of a and .
The system (1) could remain in the neighborhood of the resonance quite long, and
then deviation of the solutions could be
||a(L,g) —a(L,g)|| =0@) for a(0,&)=2a(0,&).
For two-frequency system (m=2) when o= w(a) averaging method was justified
in the work of V. Arnold [2] and estimate ||a(t,g) —é(t,g)|| <cJeln? & was obtained for

O<g<gy,<<land 0<t<Ls™.

Multifrequency systems (1) were investigated by E. Grebenikov [3], M. Khapaev
[4], A. Neishtadt [5] and others.

Significant progress in investigation of multifrequency systems is achieved in the
works of A. Samoilenko and R. Petryshyn. Such systems both with initial and with
multipoint and integral conditions are investigated in [1].

The works of Ya. Bihun [6] and others are devoted to multifrequency systems with
constant and variable delay. In particular, systems with integral conditions are
investigated in [7]. Multifrequency systems with Noether boundary conditions are
investigated by I. Krasnokutska [8]. Some new results for multifrequency systems with
many linearly transformed arguments and with multipoint and/or integral conditions are
also shown in [9].

Methods and materials used
Oscillation integrals, suggested in [1, 10], are used for averaging method justification.
For system (1), when @ = w(z) the oscillation integral takes a form

t+7 =y
L tEze)= | f(y)em{if(k,w(z))dz}dy, (4)

where 7€[0,L], t,teR, keZ", ||k||¢0, k,o)=ko, +..+k @, .
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The proving of existence and uniqueness of the solution is based on the Banach fixed-
point theorem [11].

Obtained results and discussion

1. Multifrequency system of ODE
By W (t) and W/ (t) we denote the matrix (a)ﬁj‘l)(t))j’jil and its transpose,

respectively.
Theorem 1 [1]. Let H(\NpT HW, ()W, (t)H be uniformly bounded and let the functions

o (), v=1..m, j=1..,p be uniformly continuous for teR. Then one can
indicate constants & >0 and c, >0 independent of K,t,t,z,& and such that the
following estimate holds forall k #0, teR, t eR, 7 €[0,L], and £ €(0,&]:

. b 1
(T zr,e)|<ce [rn%” f(y)|+ I max

0|

Remark 1. If p=m then det(W_ ()W, (t)) = (detW_(t))*>. Therefore, in this case, the
condition that the Wronskian determinant of the functions @, (7),...®,,(r) is nonzero on

[O,L] is a sufficient condition for finding an efficient estimate for the oscillation integral

I (7,¢).
Let us consider the nonlinear multifrequency system (1), where o= w(7),
re[0,L]. Let e C'[0,L], I>m+1, F:=[X,Y], a—':,a—':ec'(c;), a—':ec:'+1(c3).
ot oa op

Theorem 2 [1]. Let us suppose that the following conditions are satisfied:
1) det(WpT (W, (r)):t 0 Vze[0,L] for certain minimal m< p<I|+1;
2) X, Y and @ belong to certain classes of smooth functions;
3) for all z€[0,L], yeD,cD and £e<(0,¢,] the curve a=af(z,y,e), a(0,y,&)=y,
liesin D together with its p —neighborhood.

Then one can find the constant c, >0 independent on & and such that, for
sufficiently small £, >0 and for every r €[0,L], yeD,, yeD,cD and v eR", and
€ €(0,¢,] the following estimate holds:

”a(T, y,l//,é') —é(r, Y, ‘9)” +||¢(T, Y, (//18) 2(5(2', Y. v, ‘9)” < ngl/p ) (5)

where a(0,y,y,¢)=a(0,y,e)=Yy, ¢(0,y,,&) =00, y,w,e) =y .
Theorem 2 is generalized for multifrequency systems with oscillation vector
o= w(r,a) and higher approximation systems. Result of theorem 2 is applied for the

problem of existence of the solution and justification of averaging method for system (1)
with boundary conditions of the form [1]
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F(a r=0’¢ T=L’¢ T=L’8):O (6)
and multipoint conditions, boundary-value problems with parameters.

=0 a

2. Multifrequency Systems of Equations with Linearly Transformed Arguments
Let us suppose that 4; and &; are numbers from semi-interval (0,1],

O<A <..<4 =1, 0<6,<..<6, <1, a, (r) =a(A7), Py, (7) =9(0;7),

ay =(a;8; ) Po=(0g )
The system of equations is considered

da d
@ _xanee) 2= v(ra, .0, 7
dr dr &

where aeDcR", peR™, m>1, 7 €[0,L], £€(0,¢,].

In [12] the problem of existence of the solution of the system of equations (7),
which satisfies integral conditions

T f(z,a,(7), 0o (7))d7 = d,

s 8)
J| 20;i(z.2, ()¢, () +9(7.8, (), 06 (7)) [d7 =,
o=

Is solved. Here vector-functions f,g,X and Y are 2z —periodic in variables Py,

d,eR", d, eR™.
In the problem (7), (8) both system (7) and vector-functions f and g in conditions

(8) are averaged over fast variables. The averaged system takes the form

@ _x,(a,) 99 o)y (ra,)
dr dr

&
] 0 9)
[fo(ray(edz=dy  [) 3., (7,8, ()7, (7)+ 9o (7,8, (7)) |d7 = .

0

The oscillation resonance condition in point 7, which depends on delay in fast
variables in contradistinction to condition (k,®) =0 [13, 14], and takes the form

zs;ej(kj,w(ejr))zo, K ez™, ZS;HKJ-H:&O, (10)
i= iz

is found.
The existence of the solution of the problem (7), (8), is proved and the estimate of
error of averaging method for slow variables is obtained

la(z, Y+ + &, 6)—a(r, ¥, €)|| < c,e%,

where 0<a <(ms)™, a(0,y,&) =Y, |lu|<c,e”, |n]|<ce”™.
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If b;=b;(z), j=1..,s, then the solution of the problem (7), (8) exists and is

unique.
In the work [9] there is investigated the system of equation (7), when for slow
variables (amplitudes) the value
a(r,)=a,, 0=<r,<L,
or linear combination of values, is set, and integral conditions have the form

7

_[ ibj (z,a, (7))¢9j (0)+9(7,a,(7), ¢q (7))}'7 =d;, 0<r <7, <L

Let us denlote
S(5) =3 b, (7,8, (. 7))
S(c)=1 - Zjax ((fa (z, y))aad(;y)

Theorem 3. Let us suppose that the following conditions are satisfied:
1) vector-fuctions X,Y,w, f,g and matrix functions bj belong to certain classes of

smooth functions;
2) the Wronskian determinant of ms order of the functions {w(6,7),..., @(6,7)} is not zero
for 7 €[0,L];
3) the unique solution of averaged problem (9) for slow variables, which lies in D
together with its o —neighborhood, exists;
4) the matrixes S(z;,7,) and S(z,) are non-degenerate.

Then for sufficiently small &; >0 the unique solution of the problem (7), (8) exists
and for every 7 €[0,L] and ¢ € (0, ;] the following estimate holds:

laz,y + w7 +&,e)-a@ Y| +p(z, Y+ 7 + &) = o(z, ¥,7,8) - n(s)| < e,

where o =(ms) ™, |n(e)| <c,e”™
Remark 2. The asymptotic of estimates in theorems 1-3 under the imposed conditions is

the finest.
Example 1. Let us consider the problem:

?:1+cos(¢—2q)g), 6=05, a(r,)=a,, 0O0<r,<1;
T

d_(p_l+27

, 7€[0]], J.(p(r):d, 0<r7 <7, <L
dr £

There is resonance w(r)—20w(07)=7 in the point z=0. The Woronskian
determinant equals to —1. The estimate of error for slow variable is
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<c,e .

|a(T,é‘) —ﬁ(r)| =

T 2
ICOS(T—H//de
7y ¢

3. Averaging of Multifrequency System with Noether Boundary Conditions
Let us consider the system (7) with boundary conditions

L

Aval.o+Adl . +[ f(s,a,,00(s)ds=d, (11)
0
L L

Bo#l .o + Bl + [B(S)9(5)ds = goal .o + 048], +7,[a(s)ds, (12)
0 0

where f — preset n—measurable function 2z —periodic in components ¢g, A,,A are
constant (nxn)—matrixes, By, B, — constant (qxm)—matrixes, and B is vector-function
of the same extension, d — preset n vector, g,,9,,9, — constant (gxn)—matrixes.
Under the solution of problem (7), (11), (12) we will understand vector-function
{a(r),(o(z')}, which satisfies the system of equations (7) and boundary condition (11) in
classical understanding, and boundary condition (12) as pseudo solution [15], i.e. by
substitution ¢ =¢(z7,y,v,¢€), @(0,y,,&) =y in the condition (12), the initial value y
Is found as vector, which minimizes euclidean norm of discrepancy and the norm of
which is the least under the conditions.
The oscillation resonance condition is condition (10).
Theorem 4. Let us suppose, that:
1) conditions 1), 2) of Theorem 3 are true;
2) the unique solution of averaged Noether problem for slow variables, which lies in D
together with its o —neighborhood, exists;

3) matrix Mle()JrAletj'fo(s,a(s,y))@ds Is invertible, and
0

L
M, =B, +B,; +IB(s)ds is (gxm) full rank matrix, q>m.
0

Then there will be found constants ¢, >0, &, >0 such that for every ¢ € (0,&,] the
unique solution of the boundary problem (7), (11), (12) exists, moreover, for fast
variables ¢ as pseudo solution, and for all 7 €[0,L] and ¢ €(0,¢,], estimate performs

”a(’l', Y., 8) - a(T1 y)” + ||¢(Z', Y., ‘9) —5(7’ Y, 8) _77(8)” < nga'
Example 2. Let us consider the problem:
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? =1+cosdep,, 6=05 a(0)=a,,
.

LB 0o -1 30(0)-20(0) =2
T &

There is resonance in the point 7 =0 because @, (z)=2z. The pseudo solution

¢(0) =0 is found from boundary conditions. The estimate of error for slow variable for

r=1is|ale)-a@)|<c, Ve .
The Case of the Classic Solution. Let us write boundary condition (12) in the form

L
Qp=008],0+0:8 -+ gzja(s)dS,
0

where Qg =B,

L
o+Bo | + j B(s)p(s)ds is linear bounded Noether operator.
0

Condition, which provides the existence of solving the system (7), which would
satisfy the condition (12) in classic understanding was received in [15] and was written as

L
L+, [a(s)ds) =0,
0

P, (908 + 9,2

where P_. is orthoprojector on the core ker Q" of operator Q" , conjugated to Q.

Conclusion

The results of research of multifrequency systems with linearly transformed
arguments, with in the process of evolution pass through the resonances, are shown. The
existence and uniqueness of solution of the boundary problems with multipoint and
integral conditions are proved and the averaging method on fast variables is justified.

The obtained results are the basis for further investigation of new classes of
systems, especially systems with frequencies depending on slow variables, and systems
of higher approximation, and systems with transformed arguments.
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SELECTII ALE FUNCTIILOR POLIFORME
SI PROPRIETAIILE LOCAL FINITE ALE FUNCTIILOR
Rezumat. Folosind unele metode din lucrarile lui E. Michael [10, 11, 12], T. Dobrowolski si J. van Mill
[5] si ale unui din autori [1, 2, 3|, se demonstreazi doud teoreme de existentd a selectiilor cu conditii de
continuitate.

Cuvinte-cheie: functie poliforma, selectie, spatiu liniar.

1. Introduction

A single-valued mapping f : X — Y of a space X into a space Y is said to be a
selection of a given set-valued mapping F' : X — Y if f(z) € F(z) for each z € X. Note
that by the Axiom of Choice selections always exist. In the category of topological spaces
and continuous single-valued mappings the situation is more complex.

The following problem is important: Under what conditions there exist continuous
selections? There exist many theorems on continuous selections. One of them is the following
classical Michael selection theorem for convex-valued mappings.

Theorem M. (E. Michael, [10]). A multivalued mapping F' : X — B admits a continuous
single-valued selection, provided that the following conditions are satisfied:

(1) X is a paracompact space;

(2) B is a Banach space or a locally conver complete metrizable linear space;

(3) F is a lower semicontinuous mapping;

(4) for every point x € X, F(x) is a nonempty convex subset of B;

(5) for every point x € X, F(x) is a closed subset of B.

A natural question arises concerning the essentiality of each of conditions (1)-(5). There
are lower semicontinuous convex-valued mappings F' : X — Y without any continuous
single-valued selections, even for X = [0;1] (see Example 6.2 from [10]. An important
example is published in [7]. It was proved that every convex-valued lower semicontinuous
mapping mapping of a metrizable domain into a separable Banach space admits a selection,
provided that all values are finite-dimensional ([10], special case of Theorem 3.1). Distinct
results of this kind were proved in [4, 5, 6, 8, 13, 14, 15].

2. Main results

Any space is considered to be a Hausdorff space.

Let X and Y be topological spaces. We say that F': X — Y is a set-valued mapping
if F'(x) is a non-empty subset of Y for any point z € X.
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The set-valued mapping F': X — Y is called:

- lower semicontinuous mapping if the set F~'(H) = {r € X : F(z) N H # @} is an
open subset of the space X for any open subset H of the space Y;

- upper semicontinuous mapping if the set F~'(H) = {z € X : F(z) N H # O} is a
closed subset of the space X for any closed subset H of the space Y;

- locally closed-valued if for any point @ € X and any point b € F'(x) there exist an
open subset U of X and an open subset V' of ¥ such that F(z) NNclyV is a closed subset
of Y for each point = € U;

- locally linear finite dimensional, where Y is a linear space, if for any point a € X and

any point b € F(z) there exist an open subset U of X and an open subset V' of Y such that
F(z) NV is a subset of some finite dimensional linear subspace of Y for each point z € U.
Theorem 1. Let F : X — Y be a lower semicontinuous mapping of a normal metacompact
or a hereditary metacompact space X into a complete metrizable space Y. If the mapping
F'is locally closed-valued, then there exists a lower semicontinuous compact-valued mapping
¢: X —Y such that ¢(x) C F(x) for each point x € X.
Proof. Let d be a complete metric on a space Y. For any point a € X we fix an open
subset Ua of the space X and an open subset Va of Y such that a € Ua C F~(V,) and
F(z)NelyVais a closed subset of Y for any point « € Ua. Since X is a metacompact space,
there exist a subset A of X and an open point-finite cover {W, : a € A} of the space X such
that Wa C Ua. If X is a normal space, then we can assume that Wa is an F,-subset of X for
each a € A. Hence Wa is a metacompact subspace of X for each a € A. Since Va is an open
subset of the complete space (Y, d), on Va there exists a complete metric d,. For any a € A
consider the lower semicontinuous closed-valued mapping F, : Wa — Va, where F' — a(x)
= F9x) N Va for any x € Wa, of a metacompact space Wa into a complete metrizable
space (Va,d,). Fix a € A. As was proved in [1, 2|, there exists a lower semicontinuous
compact-valued mapping ¢, : Wa — Va such that ¢,(z) C F,(x) for each point = € Wa.
Then ¢(x) = U{¢py(z) : a € A,z € Wa} is the desired mapping. The proof is complete.

From the E.Michael result from [12] and Theorem 1 it follows
Corollary 1. Let F' : X — Y be a lower semicontinuous mapping of a paracompact space X
into a complete metrizable space Y . If the mapping F is locally closed-valued, then there exist
a lower semicontinuous compact-valued mapping ¢ : X — Y and a upper semicontinuous
compact-valued mapping 1 : X — Y such that p(x) C (x) C F(z) for each point x € X.
Theorem 2. Let F': X — Y be a lower semicontinuous mapping of a normal metacompact
or a hereditary metacompact space X into a linear metrizable locally convex space Y . If the
mapping F is locally closed-valued and locally linear finite dimensional, then there exists
a lower semicontinuous compact-valued mapping ¢ : X — Y such that ¢p(x) C F(x) for
each point x € X. Moreover, if the mapping F is convex-valued, then the mapping ¢ 1is
convex-valued too.

Proof. Let d be an invariant metric on a space Y. For any point a € X we fix an open
subset Ua of the space X and an open subset Va of Y such that a € Ua C F~(V,) and
F(z)NclYVa is a closed subset of some finite dimensional linear subspace L(a,z) for any

point x € Ua. By virtue of the V.L. Klee theorem [9], the metric d is complete on any
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finite dimensional linear subspace L of Y. Hence the existence of the mapping ¢ follows
from Theorem 1. Assume now that the sets F'(z) are convex. Then the conv(¢): X — Y
is lower semicontinuous too [10]. Fix x € X. Then ¢(z) is a compact subset of the finite
dimensional subspace L(a) which contains the linear subspaces {L(a,x) : * € Wa}. Hence
conv(¢)(x) is a compact convex subset of Y. The proof is complete.
From the E.Michael result [10] and Theorem 2 it follows

Corollary 2. Let F': X — Y be a lower semicontinuous mapping of a paracompact space
X into a linear metrizable locally convexr space Y. If the mapping F' is locally closed-valued

and locally linear finite dimensional, then there exists a single-valued continuous mapping
f: X —Y such that f(x) C F(z) for each point v € X.
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CONDITII DE INTEGRABILITATE PENTRU SISTEMUL DIFERENTIAL
LOTKA-VOLTERRA CU UN FASCICOL DIN DOUA DREPTE INVARIANTE
SI O CUBICA INVARIANTA

Rezumat. Pentru sistemul diferential Lotka-Volterra sunt determinate conditiile de existentd a unui
fascicol format din doua drepte invariante si o cubica invarianta ireductibild. Aplicand teoria Darboux de
integrabilitate se studiaza integrabilitatea sistemelor obtinute cu trei solutii algebrice.

Cuvinte-cheie: sistemul diferential Lotka-Volterra, curbe invariante algebrice, integrabilitate.

1. Introduction
A planar polynomial differential system is a differential system of the form

x=Pxy), y=0(xy), 1)
where P(x,y) and Q(x,y) are real polynomials, x = %,y = % denotes the derivatives

with respect to independent variable t. We say that the polynomial differential system (1)
has degree n, if n = max{degP(x,y),degQ(x,y)}. In particular, when n=2, a
differential system (1) will be called a quadratic system.

In this paper we consider the quadratic system of differential equations

x=x(a;x +by+c¢) =Pxy), ¥y=y(ax+byy+c) =Q(x,y), (2)
in which all coefficients a,, bq,c;,a,, b,,c, and variables x = x(t), y = y(t) are
assumed to be real. The system (2) introduced by Lotka and Volterra appears in
chemistry and ecology where it models two species in competition. It has been widely
used in applied mathematics and in a large variety of physical topics such as laser
physics, plasma physics, neural networks, hydrodynamics, etc [1]. Many authors have
examined the integrability of system (2).

The Darboux integrability of (2) by using invariant straight lines and conics was
investigated in [2]. The integrability of (2) via polynomial first integrals and polynomial
inverse integrating factors was studied in [1]. The complete classification of systems (2)
in the plane having a global analytic first integral was provided in [3]. The family of
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systems (2) according to their geometric properties encoded in the configurations of
invariant straight lines which these systems possess was classified in [4].

The integrability conditions for some classes of quadratic systems (2) having an
irreducible invariant cubic curve were obtained in [5] and [6].

In this paper we study the integrability of system (2) using invariant algebraic
curves, two invariant straight lines and one irreducible invariant cubic curve, passing
through one singular point, i.e. forming a bundle of invariant algebraic curves.

The integrability conditions will be found modulo the symmetry

(xl }’; a1; b11 Cly aZ; bz, CZ) - (y: x, b21 a21 C2; bl; a11 Cl)' (3)

2. Invariant cubic curves

In this section we find the conditions under which the Lotka-Volterra system (2) has
a bundle of two invariant straight lines and one irreducible invariant cubic.

Definition 2.1. An algebraic curve ®(x,y) =0 in C* with ®(x,y) € C[x,y] is an
invariant algebraic curve of a differential system (2) if the following identity holds

D b + T2 0) = 0K () @
for some polynomial K(x,y) € C[x,y] called the cofactor of the curve ®(x,y) = 0.

By Definition 2.1, a straight line C + Ax + By =0, A,B,C€C, (A,B)# 0isan
invariant straight line of system (2) if and only if there exists a polynomial K(x,y) =
vy + ax + By such that the following identity holds

A-P(x,y)+B-Q(x,y) = (C + Ax + By)(y + ax + By). (5)

If the quadratic system (2) has complex invariant straight lines then obviously they
occur in complex conjugated pairs C + Ax + By = 0 and C + Ax + By = 0.

By using the identity (5), it is easy to verify that the quadratic system (2) has always
two invariant straight lines x = 0 and y = 0 with cofactors K; = a;x + b,y + ¢; and
K, = a,x + b,y + c,, respectively.

By Definition 2.1, a cubic curve

D(x,y) = azox3 + ay X%y + axy% + agzy® +
+azox? + ayxy + agey? + ajox + agy =0, (6)
where a;; € R, i +j = 1,2,3 and (aso, az1, 12, a3) # 0 is said to be an invariant cubic
curve of system (2) if the identity (4) holds for some polynomial K(x,y) =y + ax +
By, called the cofactor of the invariant cubic curve ®(x,y) = 0.

Identifying the coefficients of the monomials x‘y/ in (4) for cubic curve (6), we
reduce this identity to an algebraic system of fourteen equations
Uso = azo(3a; — ) =0,

Usy = az1(2ay + a; — B) + a3o(3b; —y) =0,
Uz = agp(ay + 2a; — B) + az(2by + b, —y) =0,
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Uiz = ay5(by + 2b; —y) + ag3(3a, — B) =0,

Uos = ag3(3b, —v) =0,

Uso = az0(2a; — B) + azo(3¢c; —a) =0,

Uzr = ay1(ay + az — B) + az(2by —y) + az1(c; + 2¢; —a) =0, (7)
Uiz = ay1(by + by —y) + ap(2a; — B) + ag2(2¢; + ¢4 —a) =0,

Uos = ag2(2b; —v) + ap3(3c; —a) =0,

Uzo = ajo(ay — B) + azo(2¢; —a) =0,

U1 = agi(a; — B) + aro(by —y) + agi(cz + ¢4 —a) =0,

Uoz = ao1(b; —¥) + ag2(2¢c; —a) =0,

U = ayo(cy —a) =0,

U1 = ag1(c; — @) =0,
for the unknowns asg, a,1, @12, A3, A20, A11, Ag2, A19, Ag1 ANA a, B, Y.

To simplify derivation of the invariant cubic curves from (7) we use the following
assertion proved in [7] .
Lemma 2.1. Suppose that a polynomial system (1) of degree n has the invariant algebraic
curve ®(x,y) = 0 of degree m. Let P,, Q,, and ®,,, be the homogeneous components of
P, Q and @ of degree n and m, respectively. Then the irreducible factors of ®,, must be
factors of yP, — xQ,,.

According to Lemma 2.1, the irreducible factors of ®; must be the factors of

yP, —xQ; = xyl[(a; — az)x + (by — by)yl.

The symmetry (3) implies ®(x, y) = 0 to have one of the following forms

D(x,y) = x3 + ayox?® + ay1xy + agyy? + aj0x + ag,y = 0, (8)
D(x,y) = x%y + ayox? + ay xy + agyy? + ajox + ag;y =0, 9)
O (x,y) = xy[(a; — ay)x + (by — by)yl + ayex? + a1 xy + agy? +

+a10x + a01y = 0, (10)
O (x,y) = x*[(a; — a)x + (by — b))yl + azox® + ay1xy + ag,y* +

+a10x + a01y == 0, (11)
@ (x,y) = x[(a; — a)x + (by — by)y]* + azox? + a1 xy + agyy? +

+a10x + a01y == 0, (12)
@ (x,y) = [(ay — az)x + (by — b)y? + azex? + ajyxy + agy* +

+a10x + aOly = 0, (13)

where a,, a1, Aoy, 19, Aoy are unknown coefficients.

We study the consistency of system (7) for each cubic curve (8) - (13) and
determine the conditions under which the Lotka-Volterra system (2) has an irreducible
invariant cubic. We assume that

(a? + b? + a5 + b3)(a? + c?) (b2 +c3) # 0 (14)
and that
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a2 _b, _¢

= = 15
a b o (15)

do not hold simultaneously. These conditions ensure the system (2) to be not linear and
the vector field defined by (2) to be not constant.

There are proved the following theorems:
Theorem 2.1. The quadratic differential system (2) has an irreducible invariant cubic of
the form (8) if and only if one of the following sets of conditions holds:

i 3a i 3b
() az = Tl’bl = bZ = 0, CZ = Cl; ( ) bZ = 71, CZ = Cl;
i = =b, = = Cq; v 3b
(iii) a, =3ay,by =b; =0, ¢c; =¢y; (iv) a, = 3a, b, = 71,C2 = ¢y
\Y; 5a 3b Vi 3a
() a2=_1: 2=_1,C2=C1,' ( ) a2=_1, b1=b2=0,C1=2C2;
3 2 2
Vii 5a 3b Viii = =bh, = = :
( ) az — _1’ ) — _1, Cl — 2C2, ( ) aZ Zaly bl bZ 0, CZ 3C1,
2 2
IX = =b, = = 2¢q; X 3b
( ) a, 3611, b1 bz 0, (o) 2C1; ( ) a, = 2a1,b2 — 71’ c, = 3C1;
(xi) 15a, 3b,
a2=T, 2=T,C2=2C1.

Proof. Let ®(x,y) = 0 be of the form (8). We study the consistency of system (7) with
aso =1, a,; = a;, = ays = 0. In this case the equations U,, = 0, U3, = 0 of (7) yield
B =3a;,y =3band Uy = a;o(@ —c¢1) =0,Up; = ag1(a@—cy) = 0.

1) Assume that a;, = ay; = 0. In this case, the equations U,, = 0 and Uy,; = 0
imply @« = 2¢, and b, = (3b,)/2.

Let ¢, = ¢4, then ayg = ¢, /ay. If by =0, then a, = (3a4)/2, a;; = 0 and we get
the invariant cubic

(a;x + ¢)x? + ag,a,y? = 0

with cofactor K;(x,y) = 3a,x + 2c;, where a,c;a,, # 0. We obtain the set of
conditions (i) of Theorem 2.1. If b; # 0 and a, = 2a,, then ¢; = 0. In this case we
obtain a set of conditions which is contained in (x).

Suppose that b,(2a, — a,) # 0. Then express a,; from U;, =0 and a,, from
U,, = 0. We get the invariant cubic

2(3a; — 2a,)((a1x + ¢;)(2a; — az)x — bycy)x + bic;y? =0

with cofactor K;(x,y) = 3a,x + 3b;y + 2¢,, Where a,c,b,(2a, — a,)(3a, — 2a,) # 0.
We obtain the set of conditions (ii) of Theorem 2.1.

Let c, # c;. Then a,, = a,; = 0. In this case the system (7) has no solutions.

2) Assume that a,;qa,; # 0. Then @ = ¢, ¢, = ¢; and c;a; # 0. We express a,,
from U;, = 0, a,, from U,, = 0, a,, from Uy, = 0 and a,; from U,; = 0. Then
Uys = (3b; — b,)(3by — 2b,) = 0.
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Let b, = 3b; and a, = 3a,. In this case b, = 0 and the system (2) has an invariant

cubic curve
(a1x + ¢1)*x + ag,a?y =0
with cofactor K;(x,y) = 3a,x + ¢;, where a,c;a,; # 0. We get the conditions (iii).

When b, = 3b; and a, # 3a,, the system (7) is not consistent.

Let b, = (3b,)/2, b; # 0 and express a,; from U;, = 0. In this case we have
U,; = (5a; — 3a,)(3a, — a,) = 0. If a, = 3a,, then we get the set of conditions (iv).
The invariant cubic is

9a,x(a;x + ¢;)? + 18a,b,c;xy + 3b%c;y? + 2byciy =0
with cofactor K;(x,y) = 3a,x + 3b,y + ¢;, where a,c;b; # 0.
If a, = (5a,)/3, then we obtain the set of conditions (v). The invariant cubic is
a;x(a;x + ¢;)? — 6a,b;c;xy — 9b%c,y? — 6bc?y =0
with cofactor K;(x,y) = 3a,x + 3b,y + ¢;, where a,c,b; # 0.

3) Assume that a,, # 0 and let a,; = 0. Then a,, # 0 and @ = ¢;. In this case we
express c;, b,, ao, @49, ay; from the equations Uy, =0, Uy3 =0, U3, =0, U,, = 0,
U1 = 0, respectively. If b; = 0 and a, = (3a,)/2, then we obtain the invariant cubic

(a1x + 2¢,)%x + aga?y? =0
with cofactor K;(x,y) = 3a,x + 2c,, where a,c,a,, # 0. We get the conditions (vi).
If b; # 0 and a, = (5a,)/2, then we find the invariant cubic curve
a,x(a;x + 2¢,)? + 8a,;bycyxy + 2b%c,y? =0
with cofactor K;(x,y) = 3a;x + 3b,y + 2c,, where a,b,c, # 0. We determine the set
of conditions (vii).

4) Assume that a,; #+ 0 and let a,, = 0. Suppose that ay, = a,, = 0. Then ¢, =
3¢y and b, = 3b;. If a;; = 0, then the system (7) is not consistent. If a,; # 0, then b, =
0 and a, = 2a,. In this case we obtain the invariant cubic

ax3+a,y(c; +a;x) =0
with cofactor K;(x,y) = 3(a,;x + ¢;), where a,c,a,, # 0. We get the conditions (viii).

Let ay, = 0 and a,, # 0. In this case from the equations of (7) we find that a = c,,
C; = 2¢y, by = 3Dy, ayp = ¢1/ay, 411 = ap1(3a; — az)/c.

If b, = 0 and a, = 3a,. Then (2) has an invariant cubic curve

a,x3 + cx% + agia,y =0
with cofactor K;(x,y) = 3a,x + 2c;, where a,c;ay; # 0. We obtain the set of
conditions (ix). If b, = 0 and a, = 2a,, then the cubic curve (8) is reducible.

Let a,, = 0 and ay, # 0. In this case the equations of (7) yield @ = c,, ¢, = 3¢y,
b, = (3b1)/2, apy = (2¢1a02) /b1, a11 = 2ap2(3a; — a3)/b;.

When a, = 2a,, we get the set of conditions (x). The invariant cubic is

b,x3 + 2ag,a,xy + ag b y? + 2a4,c,y =0
with cofactor K;(x,y) = 3(a;x + byy + ¢;), where a,c;b,ay, # 0.
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Let a,oay, # 0. In this case the equations of (7) yield a = c¢,, ¢, = 2¢;, b, =
(3b1)/2, az = c1/as, agz = (3b1a01)/(4¢1), 11 = ap1(3a; — az)/cy.
If a, = (15a,)/8, then we obtain the set of conditions (xi). The invariant cubic is
9a2x?(a;x + ¢;) — 72a,;b,c;xy — 48b%c,;y? — 64b,ciy =0
with cofactor K;(x,y) = 3a,x + 3b,;y + 2¢4, where a,c,b; # 0. Theorem 2.1 is proved.
Theorem 2.2. The quadratic differential system (2) has an irreducible invariant cubic of
the form (9) if and only if one of the following sets of conditions is realized:

(I) az == 0, bz == 2b1, CZ - Cl; (”) az = _al, b1 == O, C2 == Cl;
(l”) az = _al, b2 - 2b1, Cz - Cl; (lV) az = _al, bz == Zbl, Cl == 2C2,
(V) a, =0, b, = 2by, ¢; = 2¢y; (vi) a, =0, by =0, ¢, = 2¢;.

Proof. Let ®(x,y) = 0 be of the form (9). We study the consistency of system (7) with
a,; =1, azg = a;, = ay3 = 0. In this case the equations Us; = 0, U,, = 0 of (7) yield
B =2a,+a,y=2by+b,.

1) Assume that a;, = ay; = 0. Then a,ya,y, # 0 and the equations of (7) yield a =
2¢y, ¢ = ¢1,a; = 0,by = 2by, a1y = (—2a1G02) /by, 30 = (2a9205 +byc;)/(2b7).
In this case obtain the set of conditions (i) of Theorem 2.2. The invariant cubic is

x2(2ag,a? + 2b2y+b,c;) — 4a,byag,xy + 2biag,y? =0

with cofactor K;(x,y) = 2(a;x + 2b,y + ¢;), Where a,,b; # 0.

2) Assume that a,yay; # 0. Then a = ¢4, ¢, = ¢;. Let a,, = 0, then the equations
Uzo = 0,Up; = 0,Uy, = 0yield a, = —ay, ay; = (2¢1)/ay, agp = (—2b1¢;)/(3a7).

If b, = 0, then we get the set of conditions (ii). The invariant cubic is

(2a?x + 4a,c)xy + 2a?a,0x + (2¢ — a;a,0b,)y =0

with cofactor K;(x,y) = a;x + b,y + ¢;), where a;oa,(2¢f — a,a,4b,) # 0.

If b; # 0, then b, = 2b, and we obtain the set of conditions (iii) of Theorem 2.2.
The invariant cubic (9) looks

9a,b,xy(a;x + 2¢;) — 6bic,y? + 8a,cix — 3b,cty =0

with cofactor K;(x,y) = a;x + 4b,y + ¢;, where a,c,b; # 0.

Suppose that a,, # 0 and let a, = 0. Then the equations U,, = 0,U,, = 0,U;; = 0
yield ayo = (a1a10)/¢1, @o2 = (2b1a01)/c1, a1 = (2a1a01 + byay9 + byase)/c1.

When b; = 0, the cubic is reducible. If b; # 0, then we express a,, from U,, = 0
and a,, from U,; = 0. In this case the cubic (9) is also reducible.

3) Assume ay; = 0 and let a,, # 0. Then a,, # 0 and a = c,. The equations U, =
0, Uys = Ovyield ¢; = 2¢,, b, = 2b,. If a,, =0, then a, = —a,, a;; = (3¢,)/ay,
ag, = (—bycy)/(a?), ayo = c2/(a,by). In this case we get the set of conditions (iv) of
Theorem 2.2. The invariant cubic (9) is

2a,b;xy(2a;x + 3¢;) — 2bZ2c,y* + a;ctx =0

with cofactor K;(x,y) = a;x + 4b,y + c;, where a,c,b; # 0.
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If a,, # 0, then a, = 0. In this case a,, = (2c,a,0)/a4, a;1 = (6b1ayy)/aq, Az =

(3¢,)/(8b,) and we obtain the set of conditions (v). The invariant cubic is
a,b;xy(8a,x + 18¢,) + 3aZc,x? — 9bic,y? + 6a,c5x = 0
with cofactor K;(x,y) = 2(a;x + 2b,y + ¢;), where a,c,b; # 0.

4) Assume a;o = 0and let ay; # 0. Then a,y # 0, @ = ¢y,a, = 0 and ¢, = 2¢;.

Let ayp, =0. Then b, =0 and a,; = (2a,a4,)/c;. In this case we have the
invariant cubic

2aix*(y + azo) + 2a,(2¢; — byaz0)xy + ¢1(2¢; — byaze)y = 0
with cofactor K;(x,y) = 2a,x + b,y + 2¢;, where a;c,a,,(2¢c; — bya,,) # 0. We get
the set of conditions (vi) of Theorem 2.2.

Let ay, # 0. Then b, = 2b;, ay, = (b1a01)/c1, a11 = (2a1a41)/c1, a; =0 and
a,o, = ¢;1/b,. In this case the cubic curve (9) is reducible. Theorem 2.2 is proved.
Theorem 2.3. The quadratic differential system (2) has an irreducible invariant cubic of
the form (10) if and only if the following set of conditions is satisfied
1) a, =—ay4, by =0, ¢, =c¢4.

Proof. Let ®(x,y) = 0 be of the form (10). We study the consistency of system (7) with
a,; = a, — a,, a;, = by — b,, azy = ay3 = 0. In this case the equations U;; = 0, U;3 =
0 of (7) yield § = 2a, + a,, y = by + 2b,.

1) Assume that a,, = ay; = 0. Then a,ya,, # 0 and the equations of (7) imply
a =2¢y, ¢; =¢,a; = by =0, ayy = (—2a;a9,—by¢1) /b, az0 = a1(a1a02+byc1)/b3.
In this case the invariant cubic (10) is reducible.

2) Assume that a,qay; # 0. Then a =c¢;,¢c, = c;.Whena,y, = a,, =0, the
equations of (7) yield a, = —a,,b, = —by, ay; = ¢, =0, a;o = (ap1a,)/ b;. In this
case the cubic curve is reducible.

Suppose that a,, # 0 and let a,, = 0. Then from the equations of (7) we find that
ay = —ay, by =0, ay; = 4cy,a0, = (—2by¢1)/ ay, agy = (—2¢1)/ ay, ayo = (4¢7)/ b
In this case the cubic curve (10) is reducible.

Suppose that a,, # 0 and let ay, = 0. Then from (7) we determine that a, = 0,
b, = —by, ay; = —4cy, ayo = (—2¢)/ by, azo = (—2a1¢1)/ by, agy = (—4ci)/ a;.

In this case the cubic curve (10) is also reducible.

When a,,ay, # 0, the equations of (7) yield b, = a, = a;; =0, a;y =c?/ b,,
ag, = (—c?)/ aq, ayy = (ayc;)/ b, and ay, = (—b,c;)/ a,. The cubic (10) is reducible.

3) Assume a,, #= 0 and let ap; = 0. Then ay, # 0, by =0 and a = ¢; = 2¢c,. We
express a,q, a1, a;o from the equations U,, = 0, U;, = 0, U;; = 0 of (7).

If ¢, = 0 or a, = 0, then the cubic curve (10) is reducible. Suppose that a,c, # 0,
then a, = —a, and ay, = (—8b,c,)/(3a,). In this case we get the set of conditions (i)
of Theorem 2.3. The invariant cubic (10) looks

3a,b,xy(2a,;x — b,y + 6¢,) — 8b3c,y? + 9a,cix = 0
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with cofactor K;(x,y) = a,x + 2b,y + 2c,, where a,c,b, # 0.

4) Assume ay, # 0 and let a;, = 0. This case is symmetric to the case 3) and we
obtain the set of conditions symmetric to (i). Theorem 2.3 is proved.
Theorem 2.4. The quadratic differential system (2) has an irreducible invariant cubic of
the form (11) if and only if one of the following sets of conditions holds:

(i) 3a, (i) a, =3a,, by =0, ¢, = cy;
az == 2 ,bz - 2b1, CZ - Cl; 2 1 1 2 1
i 5a V) by = =3¢y
( ) a, = 31’ bz — 2b1, C, = ¢y ( ) bl 0! Cy 3611
(V) 15a (Vi) a, =3ay, by =0, ¢, = 2¢q;
a, = 7 ! B bz = 2b1, Cy, = 3C1,' 2 1 1 2 1
(vii) 5a, o (viii) 7a, o
az - T, b2 - Zbl, C2 - ?, az = ?, bz = 2b1, CZ = ?

Proof. Let ®(x,y) = 0 be of the form (11). We study the consistency of system (7) with
Az = A, — Ay, Ay; = by — by, a1, = a3 = 0. In this case the equations U,y = 0, U,, =
0 of (7) yield 8 = 3a,, y = 2b; + b,.

1) Assume that a;y = ay; = 0. Then a4, # 0 and a = 2¢,. Suppose that ¢, = ¢y,
then b, = 2b;. We express a,; and a,, from the equations U;, = 0 and U,; = 0 of (7).

If a, = (3a,)/2, then we get the set of conditions (i). The invariant cubic is

a,x3 + 2b;x%y + cix? — 2a,,y> =0

with cofactor K5(x,y) = 3a,x + 4b,y + 2¢,, where a,b,a,y, # 0. If a, # (3a,)/2, then
ay, = (b%c;)/[a,(2a, — a,)]. In this case the invariant cubic (11) is reducible.

Suppose that ¢, # c¢;. Then a,, = a,; =0, b, = 2b; and a, = (3a,)/2. In this
case the algebraic system (7) is not consistent.

2) Assume that a,yay; # 0. Then a = ¢y, ¢, = ¢; and c;a; # 0. We express a,,
Qg2, Aq1, A4 from the equations U,, = 0, U,, = 0, U;; = 0, U3, = 0 of (7).

Let b, = 0. If a, = 2a,, then the invariant cubic (11) is reducible.

If a, = 3a,, then we obtain the set of conditions (ii). The invariant cubic is

a;x%(2a,x + b,y + 4c;) + 2b,cixy + 2¢ix — ag;a,y = 0

with cofactor K;(x,y) = 3a,x + b,y + ¢;, where a,c;b,ay; # 0.

If (a, —2a;)(a, —3a;,) #0 and ay, = (—byc?)/ a2, then (11) is reducible.

Suppose that b; # 0. Then Uy; = 0 vyields b, = 2b;. If a, = 3a,, then ay; =
(—b,c?)/ a? and the invariant cubic (11) is reducible.

Let a, # 3a;. Then express a,, from U,; =0. In this case U, = (3a; —
2a,)(5a; — 3a,) = 0. If a, = (3a,)/2, then the invariant cubic (11) is reducible.

If a, = (5a,)/3, then we get the set of conditions (iii). The invariant cubic is

a?x*(2a;x + 3byy + 4c,) — 6a,;byc;xy — 18bic,;y? + 2a,¢ix — 9b ¢ty = 0
with cofactor K;(x,y) = 3a,x + 4b,y + ¢;, where a,c,b; # 0.
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3) Assume that a,; # 0 and let a;, = 0. Then a = c,. Suppose that a,, = ay, =
0, then b, =0, ¢, = 3¢; and a,; = (2b,c;)/(a, — 2a,). When a, = 3a,, we get a set
of conditions which is contained in (ii). When a, # 3a,, we express a,; from U;; = 0.
In this case we get the set of conditions (iv). The invariant cubic is

(Ba; — a;)(2a; — ay)(2a,x + byy)x? + 2by,c?y =0
with cofactor K;(x,y) = 3a,x + b,y + 3c,, where a,c,;b,(3a; — a,)(2a, — a,) # 0.

Let a,paq, # 0. Then ¢, = 2¢; and b, = 2b,. We express a,;, from U;, = 0, a,,
from U,; = 0, ay, from Uy, = 0 and a, from U;; = 0. In this case the invariant cubic
(11) is reducible.

Let a,, =0 and ay, # 0. Then from the equations of (7) we find that a,, =
(2b1ao1)/ (3¢1), ayy = (6a1a01)/ (7¢1), agy = (49bicf)/ (3af) and a, = (15a,)/ 7.
In this case we get the set of conditions (v) of Theorem 2.4. The invariant cubic is

a?(72a,x + 63b;y)x? — 882a,b,c;xy — 686bZc;y?> — 1029b,c?y = 0
with cofactor K;(x,y) = 3a,x + 4b,y + 3¢, where a,c,b; # 0.
Let a,, # 0 and a,, = 0. Then from the equations of (7) we find that
by =0, ¢c; = 2¢1, Gz9 = (a1011)/b3, 411 = ap1(3a; — ay).
If a, = 3a,, then we obtain the set of conditions (vi). The invariant cubic is
(2a;x + b,y + 2¢)x* —ag,y =0
with cofactor K;(x,y) = 3a,x + b,y + 2¢,, where a,b,c,;ay; # 0.

If a, # 3a,, then express a,, from U;, = 0. The invariant cubic is reducible.

4) Assume that a;, # 0 and let aj;, = 0. Then ¢ = ¢,, b, = 2b, and ¢, = ¢; /2.
We express a,,, a,1, a4y, from the equations of (7) and obtain that

U,, = (7a, — 6a,)(5a, — 2a,) = 0.
If a, = (5a,)/2, then we get the set of conditions (vii). The invariant cubic is
a?x?(3a;x + 2b;y + 6¢;) + 18a,b,c;xy + 3a,cix + 9bic,y?> =0
with cofactor K;(x,y) = 3a,x + 4b,y + ¢;, where a,c,b; # 0.
If a, = (7a,)/6, then we get the set of conditions (viii). The invariant cubic is
a?x?(a,x + 6b;y + 2¢;) + 6a,b,cixy + a;c?x — 9bic,y? =0
with cofactor K;(x,y) = 3a,x + 4b,y + ¢;, where a,c,;b; # 0. Theorem 2.4 is proved.
Theorem 2.5. The quadratic differential system (2) has an irreducible invariant cubic of
the form (12) if and only if one of the following sets of conditions is realized:

) a = %: b, =0, c; =cy; () a; =3ay,b, = =by, ¢; = cy;
(i) a, = %, b, = —b;y, ¢; =cy; (v) a, = %,bz = —by, ¢, = 3¢y;
V) a, = %' by =0, ¢z =3cy; “ 42 = %’ bi=0, ¢ =3cy

Vil) @ =7ay, by =—b,c;=2¢,; (Vi) S,

3
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(ix) 4 5a; (x) 3a, Cy

2= b =0c=2¢; Ay =—" b1 =0,c==;
(xi) 5a, o)
aZ =TI b1 = 0, CZ =?.

Proof. Let ®(x,y) = 0 be of the form (12). We study the consistency of system (7) with
azo = (a; — az)% ay; = 2(a; — ay)(by — by), ay, = (by — by)?, ag3 = 0.

In this case we have U,, = a,y(c; —¢c;) =0, U;; = ay1(c; —c,) =0 and the
equations U,, =0, Us; =0 of (7) yield g =3a,, ¥y = b, +2b,. We divide the
investigation into the following cases:

1) Assume that a;, = ag; = 0. Then ay, # 0 and @ = 2¢,, b; = 0.

Let ¢, = c¢;. Then express a,; from U;, = 0 and a,, from U;, = 0. If a, = 2a,,
then the cubic curve (12) is reducible. If a, = (3a,)/2, then we get the set of conditions
(i) of Theorem 2.5. The invariant cubic is

x(a;x + 2b,y)? + a,c,x? + 4bycixy + 4ay,y? =0
with cofactor K;(x,y) = 3a,x + 2b,y + 2¢,, where ay,a,b, # 0.

If (a, —2a,)(2a, —3a;) # 0, then U,; = 0 implies ay, = (b5c;)/a, and the
invariant cubic (12) is reducible.

Let ¢, # ¢4, then a,, = ay, = 0. In this case the system (7) is not consistent.

2) Assume that a,pay; # 0. Then a = ¢;,c, = ¢; and ¢y b,a; # 0. We express a,,
from U,, = 0, a,, from U,, = 0 and a,; from U;; = 0, then U,, = b;(b, + b,) = 0.

Suppose that b; = 0 and express a,, from U;, = 0. If a, = 2a,, then the cubic
curve (12) is reducible. Let a, # 2a,and express a,; from Uz, = 0. If a, = 3a, or a, =
(3a,)/2, then the cubic (12) is reducible.

Suppose that b, = —b,, b; # 0and express a,, from U;, = 0. If a, = 3a,, then
we obtain the set of conditions (ii) of Theorem 2.5. The invariant cubic is

4x(a;x — byy)? + 8a,c,x? — 8b,cixy + 4cix + ag,y =0
with cofactor K;(x,y) = 3a,x — b,y + ¢;, where ay,a,b,c; # 0.
If a, # 3a,, then express a,; from U,; = 0. In this case a, = (5a;)/3 and we get
the set of conditions (iii) of Theorem 2.5. The invariant cubic is
a,x(a;x — 3byy)? + 2aic;x? — 18a,b,cyxy + a;cix — 12b,cty = 0
with cofactor K;(x,y) = 3a,x — b,y + ¢;, where a,b,c; # 0.
3) Assume that ay; # 0 and let a,;, = 0. Then @ = ¢, and
Uzo = ay(2¢; — c3) = 0.

Let a,, = 0. Then Uz, = 0 yields ¢, = 3¢;. If ¢, = 0, then b, = —b,,a, = 3a, and
this case is contained in (ii). When ¢, # 0, we express a,;, from U;; = 0, a,, from U,, =
0 and obtain that Uy; = b,(b, + b;) = 0.

If b, = —b,, then express a,y; from U;, = 0. In this case a, = (5a,)/3 and we get
the set of conditions (iv) of Theorem 2.5. The invariant cubic looks

a,x(a;x — 3b,y)? — 36a,b,c;xy — 27b,ciy =0
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with cofactor K;(x,y) = 3a,x — b;y + 3¢;, where a;b,c; # 0.
If b, # —b,, then b; = 0. We express a,, from U,, = 0 and obtain that
U,; = (5a; — 2a,)(3a; — 2a,) = 0.

Suppose that a, = (5a,)/2. In this case we obtain the set of conditions (v). The

invariant cubic is
a,x(3a;x + 2b,y)? — 48a,b,c;xy — 32b5y? — 96b,c2y = 0
with cofactor K;(x,y) = 3a,x + 2b,y + 3¢, Where a,b,c; # 0.

Suppose that a, = (3a,)/2, then we obtain the set of conditions (vi) of Theorem

2.5. The invariant cubic is
9a,x(a;x + 2b,y)? + 144a,b,c,xy + 32b3c,y? + 96b,ciy = 0
with cofactor K;(x,y) = 3a,x + 2b,y + 3¢, where a,b,c; # 0.

Let a,, # 0. Then Us, = 0 yields ¢, = 2¢;. We express a,, from U;; =0, a,
from Uy, = 0 and obtain that Uy,; = b,(b, + b;) = 0. If b, = —b;, then express ay;
from U,, = 0, a,, from U,; = 0 and we get Us, = (a, — 7a,)(3a, — 5a,) = 0.

When a, = 7a,, we get the set of conditions (vii). The invariant cubic is

4a,x(3a,x — by;y)? + 36a2c,x* — 12a,b,c;xy + 3b,ciy =0
with cofactor K;(x,y) = 3a;x — b;y + 2¢,, where a;b,c; # 0.
When a, = (5a,)/3, we obtain the set of conditions (viii). The invariant cubic is
4a,x(a;x — 3b,y)? + 4a?c;x? — 108a,b,c;xy — 81b,;c?y = 0
with cofactor K;(x,y) = 3a,x — byy + 2¢4, where a,b,c; # 0.

If b, # —b4, then Uy; = 0 yields b; = 0. We express a,; from U;, = 0, a,, from
U,, = 0 and we find that U;, = (5a, — 2a,)(3a, — 2a,)(3a,; — a,) = 0.

When a, = 3a, or a, = (3a,)/2, the cubic curve (12) is reducible. When a, =
(5a,)/2, we obtain the set of conditions (ix). The invariant cubic is

a,x(3a,x + 2b,y)? + 9a%c;x* — 12a,b,cxy — 12b%c,y? — 24b,ciy = 0
with cofactor K;(x,y) = 3a,x + 2b,y + 2¢,, Where a,b,c; # 0.

4) Assume that a,, # 0 and let ay; = 0. Then ay, # 0, a =c¢;, by =0 and ¢, =
¢, /2. We express a,, from U,, = 0, a,, from U,;; = 0, a,, from U3, = 0 and obtain that
U,;, = (5a; — 2a,)(3a, — 2a,) = 0.

If a, = (3a,)/2, then we get the set of conditions (x). The invariant cubic is

x(a,x + 2b,y)? + 2a,¢,x% + 4bycixy + 4ag,y? + c2x =0
with cofactor K;(x,y) = 3a,x + 2b,y + c;, where a,b,c; # 0.

If a, = (5a,)/2, then ay, = (4b%c,)/a, and we obtain the set of conditions (xi).
The invariant cubic is

a;x(3a,x + 2b,y)? + 18a%c,x? + 36a,b,c;xy + 16b3c;y? + 9a,c?x = 0
with cofactor K;(x,y) = 3a,x + 2b,y + ¢;, where a,b,c; # 0. Theorem 2.5 is proved.

41



Theorem 2.6. The quadratic differential system (2) has an irreducible invariant cubic of
the form (13) if and only if one of the following sets of conditions holds:
(l) a2 == 2a1, b1 = 2b2, CZ = C]_ = 0; (”) al(bl - 4‘b2) + a2(3b2 - Zbl) = 0,

CZ = Cl;
ii 5a iv 7b
( ) az = Tl, bl = 3b2, CZ = Cl; ( ) b1 = TZ, az = 5a1, CZ = 3C1,
v 7b 9a Vi 4b
( ) bl = TZ, az = Tl,CZ = 3C1; ( ) bl = TZ’ aZ = O, CZ = 3C1;
vii 5b viii 5b
( ) bl = Tzl a, = 4a1, Cy, = 2C1,' ( ) b1 = 72, a, = —5a1, Cy = 2C1;
2 4 » M1 2 )y L2 1’ 2 4 » V1 6 » L2 1

Proof. Let ®(x,y) = 0 be of the form (13). We study the consistency of system (7) with
azp = (a1 — az)?, a;; = 3(a; — ay)(by — b))%, az; =3(a; — a)*(by — by), ag3 =
(b; — b,)3. In this case the equations U,y = 0, U3, = 0 of (7) yield 8 = 3a,, y = 3b,.
We divide the investigation into the following cases:

1) Assume that a;, = ay; = 0. Letay, =0and a;; = 0. Then a = 2¢,, ¢, = ¢; =
0 and a; = 0. We obtain a contradiction with conditions (14).

If ap, = 0 and a,; # 0, then ¢; = 2¢,, @ = ¢; + ¢,. In this case the system (7) is
consistent only if a,, = 0. We get the set of conditions (i) of Theorem 2.6. The invariant
cubic is

(a;x — byy)® —a;1xy =0
with cofactor K;(x,y) = 3(a;x + b,y), where a,;;a,b, # 0.

Let ay, # 0. Then @ = 2¢, and U,y = (¢; — ¢,)a, = 0, U4 = (¢ — ¢3)a,; = 0.
Suppose that ¢, = ¢;. Then b,a,; # 0. We express a,, from U;, = 0 and a,, from Uy; =
0. If a, = 2a4, then the cubic curve (13) is reducible. If a, # 2a,, then express a,, from
U,, =0, and U;, = 0 becomes U,, = e,e,e; = 0, where e; = a;b;, — 2a,b, + a,b,,
e, = 2a,b; — 3a,b, — a,b; + 2a,b,, e; = 3a,b; — 4a,b, — 2a,b; + 3a,b,.

If e, =0 or e, =0, then the cubic curve (13) is reducible. If e; = 0, then we
obtain the set of conditions (ii) of Theorem 2.6. The invariant cubic looks

a1b,(2a; — ay)[(a; — ax)x — (by — b)y)® + c1by(ay — a;)%(2a; — ay)x* +

+2a;byc1(by — by)(ar — ax)?xy + ascy(by — by)°(2a; — ay)y* = 0,
where K;(x,y) = 3a,;x + 3b,y + 2¢, and c;a,b,(2a, — a,)(a, — a,)(b; — b,) # 0.

Suppose ¢, # ¢4, then a,, = a;; = 0 and the system (7) has no solutions.

2) Assume that a,yay; # 0. Then a = ¢;, ¢, = ¢4 and ¢y b,a; # 0. We express a,,
from U,, = 0, a,, from U,, =0, a,; from U;; =0, ay; from U,; = 0 and a,, from
U;o, = 0.In this case the equations U,; = 0 and U,;, = 0 have a common factor h =
a;b, — 2a,b, + a,b,. If h = 0, then the cubic (13) is reducible.
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Let h # 0 and suppose b, = 3b,. Then we obtain an irreducible cubic curve of the
form (13) only if a, = (5a,)/3. We get the set of conditions (iii). The invariant cubic is

(a;x — 3b,y)3 + 2a%c;x? — 36a,b,c,xy — 54a3c,y? + a;cix — 27b,c2y = 0
with cofactor K;(x,y) = 3a,x + 3b,y + c;, where ¢;a; b, # 0.

Suppose that h(b; — 3b,) # 0 and let a, = 3a;. Then (2) has an irreducible cubic
curve only if b; = (5b,)/3. In this case we obtain the set of conditions symmetric to (iii).

Let h(b; — 3b,)(a, — 3a,) # 0. Then the system of equations (7) (U,; =0, U}, =
0) is not consistent.

3) Assume that ay; # 0 and let a;, = 0. Then a = ¢, and

Uzo = ay(2¢1 — c3) = 0.

Suppose that a,, = 0. Then Uz, = 0 yields ¢, = 3c; and c;b, # 0. We express a,,

from Uy; = 0, ay; from Uy, = 0 and a,, from U;; = 0. In this case
Uz = (3by — 7b,)[(Bay — az)by — 2(2a, — a;)b,] = 0.

If b, = (7b,)/3 and a, = 5a,, then we obtain the set of conditions (iv) of Theorem

2.6. The invariant cubic is
(3a;x — byy)® + 18a,b,c,xy — 6b2c,y? — 9byciy = 0
with cofactor K;(x,y) = 3(a;x + b,y + ¢;), where c;a, b, # 0.

If b, = (7b,)/3 and a, = (9a,)/5, then we obtain the set of conditions (v) of

Theorem 2.6. The invariant cubic is
(3a,x — 5b,y)3 — 1350a,b,c,xy — 750b5¢,;y? — 1125b,c2y = 0
with cofactor K;(x,y) = 3(a;x + b,y + ¢;), where ¢;a, b, # 0.

Suppose that 3b, —7b, # 0 and let (3a, —a,)b; — 2(2a, — a,)b, = 0. Then

U, = 0 imply a, = 0. We get the set of conditions (vi). The invariant cubic looks
(3a,x + byy)® + 27a,b,cixy + 6b3c,y% + 9byciy =0
with cofactor K;(x,y) = 3(a;x + b,y + ¢;), where ¢;a, b, # 0.

Suppose that a,, # 0, then U,, = 0 yields ¢, = 2¢; and a;c,;b, # 0. We express
aq, from Uy, =0, a;; from U;; =0, ay, from Uy; = 0 and a,, from Us, = 0. In this
case U, = (2b; — 5b,)[2b,(3a; — a;) — b,(9a, — 5a,)] = 0.

If by = (5b,)/2 and a, = 4a,, then we obtain the set of conditions (vii) of
Theorem 2.6. The invariant cubic is

(2a,x — b,y)3 + 8aic;x? + 4a,byc,xy — 6bic,y? — 4b,ciy =0
with cofactor K;(x,y) = 3a,x + 3b,y + 2¢,, Where ¢;a, b, # 0.

If b, = (5b,)/2 and a, = —5a,, then we obtain the set of conditions (viii) of

Theorem 2.6. The invariant cubic is
(4a,x + byy)® + 64a%c,x? + 32a,b,cxy + 4bsc,y? + 4byciy =0
with cofactor K;(x,y) = 3a,x + 3b,y + 2¢,, where ¢;a, b, # 0.

If b, = (5by)/2 and a, = (7a,)/4, then we obtain the set of conditions (ix) of

Theorem 2.6. The invariant cubic is
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(a;x — 2b,y)3 + a?c;x? — 40a,b,cixy — 32b5c,y? — 32byciy =0

with cofactor K;(x,y) = 3a,x + 3b,y + 2¢,, Where ¢;a, b, # 0.

Suppose that 2b; — 5b, # 0 and let 2b,(3a; — a,) — b,(9a, — 5a,) = 0. Then
U,; = a,(3a; —4a,) = 0. If a, = 0, then the cubic curve (13) is reducible.

If a, = (3a,)/4, then we obtain the set of conditions (x). The invariant cubic is

(3a,x + 2b,y)3 + 27a%c,x? + 72a,b,c,xy + 32b5¢,y? + 32b,ciy = 0

with cofactor K;(x,y) = 3a,x + 3b,y + 2¢,, Where c;a, b, # 0.

4) Assume that a,, # 0 and let ay,; = 0. In this case we obtain the sets of
conditions symmetric to (iv) - (X). Theorem 2.6 is proved.

3. Darboux theory of integrability

Let the polynomial differential system (1) have the invariant algebraic curves
®;(x,y) =0, j =1, ...,q with cofactors K;(x,y). Then in most cases a first integral (an
integrating factor) can be constructed in the Darboux form [8]

q):flll(b;lz CDZCI
and we say that the polynomial system (1) is Darboux integrable.

Theorem 3.1. The system (1) has a Draboux first integral

F(x,y) = @) d7 = C (16)
if and only if there exists constants a; € C, not all identically zero, such that
h K (x,y) + h Ko (x,y) + -+ hg Ky (x,y) =0, (17)

where K;(x, y) are the cofactors of ®;(x,y) =0,j=1,...,q.
Following [8], the relation (16) is a first integral for system (1) if and only if
oF (x,y) dF (x,y)
Tox TN rT50
If a first integral cannot be found, Darboux proposed to search for an integrating
factor p of the same form.

Theorem 3.2. The system (1) has a Draboux integrating factor
hq

(x,y) =0.

T S SR (18)
if and only if there exists constants o; € C, not all identically zero, such that
oP 0
hiKi(x,y) + h Ky (x,y) + -+ hg Ky (x,y) + I + % =0, (19)

where K;(x, y) are the cofactors of ®;(x,y) =0,j=1,..,q.
Following [8], the relation (18) is an integrating for system (1) if and only if

ou ou daP
P(x,y)a+ Q(x,y)@+u<a+a) = 0.

How many invariant algebraic curves ®;(x,y) = 0 must admit the system (1) to
have a Daroux first integral or a Darboux integrating factor? Darboux proved

44



Theorem 3.3. Suppose system (1) has g distinct invariant algebraic curves ®;(x,y) = 0,
j=1,..,q.1fqg = n(n + 1)/2, then either we have a Darboux first integral or a Darboux
integrating factor.

By Theorem 3.3, in the case of quadratic system (2), if g = 3, then either we have a
Darboux first integral or a Darboux integrating factor.

The method of Darboux is very useful and elegant one to prove integrability for
some classes of differential systems depending on parameters [8].

4. Darboux first integrals
In this section we determine the sets of conditions from Theorems 2.1 — 2.5, under
which the quadratic system (2) has Darboux first integrals of the form
xhyhaphs = (, (20)
where x = 0,y = 0 are invariant straight lines, @ = 0 is an irreducible invariant cubic of
the form (6) and h,, h,, h; are real numbers.
To construct the first integrals (20) we take into account the cofactors
K, (x,y),K,(x,y) and K;(x,y) of these algebraic solutions, obtained in the proofs of
Theorems 2.1 — 2.5. Then we apply the identity (17)
hiKi(x,y) + hy Ky (x,¥) + h3K3(x,y) =0 (21)
to each set of conditions from Theorems 2.1 — 2.5. It was proved the following theorem.
Theorem 4.1. The Lotka-Volterra system (2) has a Darboux first integral of the form
(20) if one of the following conditions is satisfied:

(i) a, = %,Iﬁ b, =0, = cy; (i) a, =3ay, by =b, =0, ¢, = cq;
(iii) a, = %’ b= b, =0, ¢ = 2,; (iv) a, =2a,, by =b, =0, ¢, = 3¢y;
(V) a, =3a4, by =b, =0, ¢, = 2¢y; (vi) o, = 2a,,b, = 37111, ¢, = 3¢,

(vii) a, = %.bz _2b,, ¢ =y (viii) a, =3ay, b; =0, ¢, =cy;
(ix) a, = %’ b, = 2b,, ¢, = cy; (X) a, =3ay, by =0, ¢, = 2¢y;
(xi) a, = %’ b =0, ¢, = cy: (xii) a, = 3ay,b, = —by, ¢, =cy;

(xiii) a, = %, b; =0, ¢, = 2¢q; (xiv) a, = %, b, =0, c, = %;
(Xv) a, = 2ay, by =2by, c; =c; =0;  (xvi) b, = % 0, = 4a, ¢, = 2¢;

2
(XV”) al(bl - 4b2) + a2(3b2 - Zbl) = 0,

Cz == Cl'
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Proof. We use the identity (21) for each set of conditions from Theorems 2.1 — 2.5.
Substituting in this identity the expressions of the cofactors and identifying the
coefficients of x°, x,7y, we obtain systems of algebraic equations for the unknowns h,, h,
and hs. Solving the obtained systems we determine the exponents hy, h, and h;.
Applying the identity (21) to the sets of conditions from Theorem 2.1, we obtain:
In case (i), ® = (a;x + ¢;)x* + ap,a,;y* =0 and hy; =2, h, =2, hy =—1.
In case (ii), ® = (a;x +¢;)?’x+ap;a?y =0 and h; =2, h, =1, h; = —1.
In case (iii), ® = (a;x + 2¢,)*x + ag,aiy? =0 and h;, =2, h, =2, hy = —1.
In case (iv), ® = a;x®*+ a;;y(c; +a;x) =0 and h; =3, h, =0, h; = —1.
Incase (V), ® = a;x3 + ¢;x* + ag,a,y=0and h, =0, h, =1, h; = —1.
In case (vi), ® = b;x3 + 2ag,a;xy + agyb,y* + 2a4,¢,y = 0 and
h, =3, h, =0, h; =—1.
Applying the identity (21) to the sets of conditions from Theorem 2.4, we have:
In case (vii), ® = a;x3 + 2b;x%y + cix? — 2a4,y? =0and h; =0,h, =2,h; = —1.
In case (viii), ® = a,;x%(2a;x + b,y + 4c;) + 2b,cixy + 2¢ix — ag,a,y = 0
and h, =0, h, =1, h; =—1.
In case (ix), ® = a?x?(2a,x + 3b;y + 4c;) — 6a,b,c;xy — 18b%?c;y? + 2a,c?x —
—9b,c?y =0 and h; =-2, h, =3, hy=—1.
Incase (x), ® = (2a;x + b,y + 2¢;)x* —ag,y =0 and h; =0, h, =1, hy = —1.
Applying the identity (21) to the sets of conditions from Theorem 2.5, we get:
In case (xi), ® = x(a;x + 2b,y)? + a;c;x? + 4bycyxy + 4ay,y* = 0 and
h, =0, h, =2, h; =—-1.
In case (xii), ® = 4x(a;x — b;y)? + 8a,c,;x* — 8b,cyxy + 4c?x + ap;y = 0 and
h, =0, h, =1, h; =-1.
In case (xiii), ® = a;x(3a;x + 2b,y)? + 9aic,x? — 12a,b,c;xy — 12b3c,y? —
—24b,c?y =0 and h, = -2, h, =2, hy =—1
In case (xiv), ® = x(a,;x + 2b,y)? + 2a,¢,x? + 4b,cixy + 4ay,y? + c2x = 0 and
h, =0, h, =2, h; =—1.
Applying the identity (21) to the set of conditions from Theorem 2.6, we obtain:
In case (xv), ® = (a;x — b,y)®  —ay;xy=0and h, =1, h, =1, hy = —1.
In case (xvi), ® = 4a,x(3a,x — b;y)? + 36aic,x* — 12a,b,c;xy + 3b,c?y = 0 and
h, = =2, h, =2, hy; =—1.
In case (xvii), ® = a,b,(2a, — a,)[(a; — ay)x — (by — by)y]® + ¢;b,(a; — ay)® -
- (2a; — az)x*+2a1byc1(by — by)(a; — a)?xy + ascy(by — by)*(2a; — ay)y? =0
and h, =2a, —3ay, h, =a,, hy=a, —a,.
Theorem 4.1 is proved.
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5. Darboux integrating factors
In this section we determine the sets of conditions from Theorems 2.1 — 2.5, under
which the quadratic system (2) has Darboux integrating factors of the form
p=x"yt2@hs, (22)
where x = 0,y = 0 are invariant straight lines, ® = 0 is an irreducible invariant cubic of
the form (6) and h,, h,, h; are real numbers.
To construct the integrating factors (22) we take into account the cofactors
K, (x,v),K,(x,y) and K;(x,y) of these algebraic solutions, obtained in the proofs of
Theorems 2.1 — 2.5. Then we apply the identity (19)
u(7) + ok (6,7) + ks (,9) + 5+ 502 0 23)
for each set of conditions from Theorems 2.1 — 2.5. It was proved the following theorem.
Theorem 5.1. The Lotka-Volterra system (2) has a Darboux integrating factor of the

form (22) if one of the following conditions is satisfied:

i 3b i

() bzle,szcl; () a2=3a1,b2=71,6'2=c1;

(i) _Sa 3 _ (v _Sa, _3b _,
2 — T4 U2 — 75,02 — (g, 2 — T4 U2 =75, — 27
3 2 2 2

Y] 15a 3b Vi = =2 = Cq:

(V) a, = - 1’ , = Tl'CZ = 2¢,; (Vi) a, =0, b, by, ¢; = ¢y;
(V”) az == _al, b1 = 0, CZ = Cl; (V”l) az == _al, bz = Zbl, Cz = Cl;
(lX) az - _al, b2 == 2b1, Cl == 2C2; (X) a2 - 0, b2 - 2b1, Cl == ZCZ;
(Xl) az == 0, bl = 0, CZ = 2C1, (X”) a,z == —(11, bl = 0, Cz = Cl;

xiii) by =0 = 3¢y; Xiv 15a
( ) 1 0 G2 v ( ) a, = 7 1, b2 = 2b1, C, = 3C1;
XV 5a c XVi 7a o
( ) a, =71, bz =2b1, Cy =?1, ( ) a, :?1, b2 :Zbl, Cy :?1;
(xvii) 5a, (xviii) 5a,
a, = 3 b, = —by, ¢; = ¢cy; a; = T,bz = —by,c; = 3¢y;
XIX 5a XX 3a
( ) a2 == Tl, bl = 0, C2 = 3C1, ( ) az == Tl, bl == O, CZ = 3C1,
XX = = — = 2¢q; XXii 5a
(xxi) a, = 7a4, b, by, ¢, €1 ( ) a, = Tl' b, = —by, ¢; = 2¢y;
(XXiii)a—&b—Oc—c—l' (Xiv)a—&b—Bb C, = Cq;
2 — » V1 — Y, L2 ) 2 — » V1 — 2 2 — *D
2 2 3
XXV 7b XXVI 7b 9a
( ) bl = ?2, a, = 5a1, Cy = 3C1, ( ) b1 = TZ, a, = Tl,CZ = 3C1,
XXVII 4b XXVili 5b
( ) bl = TZ, az = 0, CZ = 3C1, ( ) b1 = TZ, az = —5a1, C2 = 2C1,
XXiX 7a 5b XXX 3a 7b
( ) az :Tl’ 1 :Tz, C2 :ch, ( ) a2 :Tl' 1 :TZ’ C2 :2C1.
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Proof. We use the identity (23) for each set of conditions from Theorems 2.1 — 2.5.

Substituting in this identity the expressions of the cofactors and identifying the

coefficients of x°, x,7y, we obtain systems of algebraic equations for the unknowns h,, h,

and hs. Solving the obtained systems we determine the exponents hy, h, and h;.
Applying the identity (23) to the sets of conditions from Theorem 2.1, we obtain:

In case (i), ® = 2(3a,; — 2a,)((a;x + ¢;)(2a; — a,)x — byc;y)x + bZc,y? = 0 and

_ 2(a; — 2ay) 3a, — 4a,

) 3 —

h, =2, h .
1 2 3(11 - 2a2 3(11 - Zaz

In case (ii), ® = 9a,x(a;x + ¢;)? + 18a,b,c;xy + 3b?c;y? + 2b;c?y = 0 and
hy=2  hy=-1/2, hy=-5/6.
In case (iii), ® = a;x(a;x + ¢;)? — 6a,;b,c;xy — 9b2c,y? — 6b,ciy = 0 and
hy=-5/2, hy=2  hy=-3/2.
In case (iv), ® = a;x(a;x + 2¢,)? + 8a,b;c,xy + 2b2c,y? = 0 and
hy=-1/4, hy=-1/2, hy=-1.
In case (V), ® = 9a?x?(a;x + ¢;) — 72a,b,c;xy — 48b%c,y? — 64b,c?y = 0 and
hy=-2  hy,=1/3, hy=-5/6.
Applying the identity (23) to each set of conditions from Theorem 2.2, we get:
In case (vi), ® = x2(2aq,a? + 2biy+b;ic;) — 4a,b;ay,xy + 2b?a,,y? = 0 and
hy=1, h,=0, hy=—3/2
In case (vii), ® = (2a?x + 4a,c)xy + 2a%a,0x + (2¢? — a,a,0b,)y = 0 and
hy=0, hy=-1/2, hy=-3/2.
In case (viii), ® = 9a,b,;xy(a;x + 2¢;) — 6b?c;y* + 8a,cix — 3b,ciy = 0 and
hy=-2/3, h,=-1/2, hy=—5/6.
In case (ix), ® = 2a,;b,xy(2a,x + 3¢;) — 2b?c;y* + a;cix = 0 and
hy=-1/3, h,=-1/3, hy=—1.
In case (X), ® = a;b;xy(8a,;x + 18¢,) + 3a?c,x? — 9b%c,y? + 6a,c5x = 0 and
h,=-1/3, h,=-2/3, hy=-5/6.
In case (xi), ® = 2a?x%(y + ayo) + 2a,(2¢c; — byaye)xy + ¢;(2¢; — bya,,)y = 0 and
hy=1,  hy,=-1/2, hy=—-3/2.
Applying the identity (23) to the set of conditions from Theorem 2.3, we obtain
the case (xii), with ® = 3a,b,xy(2a,x — b,y + 6¢,) — 8b2c,y? + 9a,c5x = 0 and
h,=0, hy=0  hy=—1.
Applying the identity (23) to the sets of conditions from Theorem 2.4, we have:
In case (xiii), ® = (3a, — a,)(2a; — a,)( 2a,x + b,y)x? + 2b,c?y = 0 and
a, —2a4 a, —4a,

3 =

h, =2, h, = , :
1 2 3a1_a2 3a1_a2

In case (xiv), ® = a?(72a,x + 63b,y)x? — 882a,b,c;xy — 686b%c;y* —
_1029b1C%y =0 and h'l = _2, hz = 1/6, h3 = _5/6.
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In case (xv), ® = a?x%(3a,x + 2b;y + 6¢;) + 18a,b,c;xy + 3a,cix + 9bic;y? =0
and hy; = —1/3, h, = —2/3, hy = —5/6.
In case (xvi), ® = a?x%(a;x + 6b,y + 2¢;) + 6a,b,c;xy + a;c?x — 9b%c,y? = 0 and
hy = —1/3, hy = —2, hy = —1/6.
Applying the identity (23) to the sets of conditions from Theorem 2.5, we get:
In case (xvii), ® = a;x(a;x — 3b,y)? + 2a%c,x* — 18a,b,cyxy + a,cix —
—12b,c2y =0and h, = —1/2, hy = —1, hy = —1/2.
In case (xviii), ® = a;x(a;x — 3b;y)? — 36a,b,c;xy — 27b,c?y =0 and
hy=—1/4  h,=—-1/4  hy =—1.
In case (xix), ® = a;x(3a,x + 2b,y)? — 48a,b,c,xy — 32b5y? — 96b,c?y = 0 and
hy=-5/2, hy=1  hy=—3/2.
In case (xx), ® = 9a,x(a;x + 2b,y)? + 144a,b,c,xy + 32b3¢c;y? + 96b,cZy = 0
and hy = -5/6, h, = —1/3, hy = —1/2.
In case (xxi), ® = 4a,x(3a,x — b;y)? + 36aic,x* — 12a,b,c;xy + 3b,c?y = 0 and
hy=-1/3, h,=-7/6, hy=—1/6.
In case (xxii), ® = 4a,x(a;x — 3b;y)? + 4a%c,x* — 108a,b,c;xy — 81b,c?y =0
and h, = —1/3, h, = —1/2, hy = —5/6.
In case (xxiii), ® = a;x(3a,x + 2b,y)? + 18ac;x? + 36a,b,c;xy + 16b5¢c,y? +
+9a,c?x =0 and h; = —1/2, h, = —1, hy = —1/2.
Applying the identity (23) to the sets of conditions from Theorem 2.6, we obtain:
In case (xxiv), ® = (a,;x — 3b,y)3 + 2a?c,x? — 36a,b,c;xy — 54a3c,y? + a,;cix —
—27b,c2y = 0and hy = —5/6, h, = —1/2, hy = —2/3.
In case (xxv), ® = (3a,x — b,y)® + 18a,b,c,xy — 6b%c,y?> — 9b,c?y = 0 and
hy=—5/2, h,=-3/2, hy=1.
In case (xxvi), ® = (3a;x — 5b,y)® — 1350a,b,c;xy — 750b%c,y*> — 1125b,ciy = 0
and hy =-1/2, h, =-1/6, hy; = —1.
In case (xxvii), ® = (3a;x + b,y)3 + 27a,b,c,xy + 6b5c,;y? + 9b,ciy = 0
and h, = -2, h, =-2/3, h; =0.
In case (xxviii), ® = (4a,x + b,y)® + 64afc;x* + 32a,b,c,xy + 4b5c,y* +
+4byc2y =0 and hy = —5/3, hy = —5/6, hs = 1/6.
In case (xxix), ® = (a;x — 2b,y)® + a?c,x? — 40a,b,c;xy — 32b3c,y? —
_32b,c2y =0 and h; = —2/3, hy = —1/3, hy = —5/6.
In case (xxx), ® = (3a,x + 2b,y)3 + 27a%c,x? + 72a,b,c,xy + 32b3c,y? +
+32byc2y =0 and hy = -2, hy = —5/9, hy = —2/9.
Theorem 5.1 is proved.
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Conclusion

For Lotka-Volterra system (2) with a bundle of two invariant straight lines and one
irreducible invariant cubic, modulo the symmetry (3), there were obtained 47 sets of
Darboux integrability conditions.
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CONDITII CENTROAFIN-INVARIANTE DE STABILITATE A MISCARII
NEPERTURBATE PENTRU SISTEMUL DIFERENTIAL s(1,2,3) CUPARTEA

PATRATICA DE TIP DARBOUX
Rezumat. A fost determinata algebra Lie, seria Lyapunov si conditiile centroafin-invariante de stabilitate
a miscarii neperturbate guvernate de sistemul critic de tip Lyapunov cu partea patratica de tip Darboux.
Cuvinte-cheie: Sistem diferential, stabilitatea miscarii neperturbate, comitanti si invatianti centro-afini,
algebra Lie, algebra Sibirschi graduata, grup.

Introduction

A lot of papers were written in the field of stability of motion. The universal scientific
literature, concerning the stability of motion contains thousands of papers, including
hundreds of monographs and textbooks of many authors. This literature is rich in the
development of this theory, as well as in its applications in practice.

Note that many problems on stability treated in these works are governed by two-
dimensional (or multidimensional) autonomous polynomial differential systems. Methods
of the theory of invariants for such systems were elaborated in the school of differential
equations from Chisinau. Moreover, there was developed the theory of the Lie algebras
and Sibirsky graded algebras [1-5] with applications in the qualitative theory of these
equations.

With a special weight, in this domain, it is published the Lyapunov (1857-1918) PhD
thesis concerning the stability of motion in 1882 [6]. This work contains many fruitful
ideas and results of great importance. It is considered that all history related to the theory
on stability of motion is divided into periods before and after Lyapunov.

First of all, A.M. Lyapunov gave a strict definition of the stability of motion, which
was so successful that all scientists took it as fundamental one for their researches.
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In this paper and [7], with these visions was studied the Lie algebra, was built the
Lyapunov series and was determined the stability of the unperturbed motion for two-
dimensional critical differential system s(1,2,3) with quadratic part of Darboux type.

1. The Lie algebra allowed of Lyapunov canonical form of the differential system
s(1, 2, 3) with quadratic part of Darboux type

We will examine the differential system s(1,2,3) with quadratic part of Darboux type
of the form

dx’ : : - .
ar = QX" agpxtxl +agy xxxr e By =12), (1)
where aéﬁ and agzﬁy are a symmetric tensors in lower indices in which the total

convolution is done. Coefficients and variables in (1) are given over the field of real

numbers R.

Remark 1.1. The characteristic equation of system (1) has one zero root and the other

ones real and negative if and only if the following invariant conditions [7] hold
Z-1,=0  1,<0, (2)

where

I, =ag, I, = agag. (3)

When the characteristic equation of (1) has one zero root and the other one is negative,
I.e. the conditions (2) and R, = 0 from (18) are satisfied, then this system by a center-
affine transformation can be brought to its critical form

dx
e x(gx + 2hy) + px3 + 3qx?y + 3rxy* + sy> = P,
4)
d (
2 ex + fy + y(gx + 2hy) + tx3 + 3ux?y + 3vxy? + wy3 = Q,

dt
1
where aj = a3 =al, =a?, =0 and a? =e,a5 = f,a}, = 2a%, = g,ai, = Eagz = h,
1 _ 1 _ 1 _ 1 _ 2 _ 2 _ 2 _ 2 _
Q111 =D, Q112 =G, Q12 = 1, Q22 =S, Q111 = 1, Q112 = U, A1z =V, Agpp = W.
We examine the determined equations [8] for system (4)
1 1 — 1 2
§xP+8,Q0 =8P +$°P, + D(P),

5
E2P + £2Q = £1Q, + £2Q, + D(Q), ®)
where
9 9 9 9 9 9 9 9
D= 1__ 2 3_— 4 5_— 6 7 8 _—
U PR A R P A TR e PR mh i ©

) ) ) )
97 10 7 11 7 12 Y
Tt T e T

The polynomials P,Q are given in (4) and n/ (j = 1,12) are functions of the
parameterse, f,g,h,p,q,r,s, t, u,v,w.
Let us consider
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& =Ax+B'y (i=12), (7)
where A%, B* are unknown parameters.
We write the operator

x=a2i02% p (8)
- ox oy '
where &1, &2 are given in (7) and D is defined in (6).

Solving the system of equations (5) with respect to the operators (6), (8) with
coordinates (7) we obtain 3 independent linear operators

o a4 2 9 9 9 9 o 0
X1=Xa—e£—g@—2p%—q%+5£—3ta—2ua—0%,
_,29, 6,0 ,0 o0 08 ,0,0 9 , 0
X =yt e T o T T T T s e T Y M aw ©
X =x——fi—2hi—3 i—27"i—si+( -3 )i+
379y e “"ag  "Map “Taq Car TP T Wyt
9 9 @
+(q—2v)£+(r—w)%+sw.

Remark 1.2. The system (4) admits a solvable three-dimensional Lie algebra L; composed
of operators (9).

The following transformation of the phase plan

X =X, y=—ax+y

corresponds to the representation operator X5 from (9) of the system (4) .

With this transformation, for f # 0, we can always get the equality e = 0.
Remark 1.3. This property, for f # 0, is true for any Lyapunov canonical two-
dimensional system.

2. Invariant conditions of stability of unperturbed motion for critical system
s(1,2,3) of Lyapunov type (4) with quadratic part of Darboux type
According to Lyapunov's Theorem [6, §32], we examine the non-critical equation of
the system (4)

ex + fy + gxy + 2hy? + tx3 + 3ux?y + 3vxy? + wy3 = 0. (10)
Then from this relation we express y and obtain
e g h , t . u vo,ow o,
y=—=x———xy—2-y°——-x>—3Z-x°y—-3-xy° ——y°. (11)
f f f f f f f

We seek y as a holomorphic function of x. Then we can write
e 2 3 4 5 6 7 8 9
y = —?x + B,x“ + B3x® + Byx™ + Bsx®> + Bgx® + B;x” + Bgx® + Bgx” + -+ (12)

Substituting (12) into (11) and identifying the coefficients of the same powers of x in
the obtained relation we have
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B, =fi2(9_26}—h),

1 eh 1 eu e’v e3w
EBz+l<g—2 B; +— (u 2Q+62—W)B]
f2 f 3 £

eh
f
1 eh 3 ev ew

(ZBZB4+B§)+fBZ+6(f fz)BZB3 ;(g—ZTh)BS‘f‘

B4_ = _[2

B, = —[4a™ W
f

B, [zf

2 e
f foor
B, [4f(BzBs+B3B4)+3fB2B3+3(f fz)(ZBZB4+B32)+

+1< 2eh)B +3¢ Zev e W)B]
— — — u_ — ,
I7F)e Ty s
(ZBZB6+2B3B5+B)+3

Bg [2 (BZB, + B,B%) +

f f
ev e’w

<f fz)(BzBs-l—BngL)-l—;.( —ZTh)B7+f(u—ZT+ 7 ——)B,],

By [4 (ByB; + B3Bg + ByBs) + — (3B235 + 6B,B3B, + B3) +

f f
( ew)(ZBB + 2B;B +BZ)+1( zeh (u_2g+e2w)B]
fr? ae e f f £

h w
BlO == _[2?(23238 + 2B3B7 + 2B4B6 + Bé) + 37(32236 + ZBzB3B5 + BzB42_ +

) Bot >

1 eh
+B3 B4_) + 6 ( (BzB7 + BSB6 + B4_BS) + f( 2_) Bg +

f fz) f

+—(u —2—
f f
h w
Bll = _[4?(82B9 + B3BS + B4_B7 + BSB6) + 37(32237 + ZBZB3B6 +

e’w
+ f—z)Bs],

+2B,B,B + B2B: + B;B2) + 3 ( ) (2B,Bg + 2B3B, + 2B,B, + B2) +

ANE
+1< —Zeh)B NPT
fFAIT )P0 [

h w
Blz = _[2?(232810 + B3Bg + B4_B8 + BSB7 + B62) + 7(3822B8 + 6BzB3B7 +

+6B,B,B + 3B,B% + 3B2B, + 6B;B,Bs + BY) + 6( (B,Bo + B3Bg +

)
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2

B,B, + BsBs) + +1(g _ 2ﬂ) Butow-22+%p 1., 13)
f f f f f?

Substituting (12) into the right-hand side of the critical differential equation (4) we
obtain
gx? + 2hxy + px3 + 3qx?y + 3rxy? + sy3 =
= A,x% + A3x3 + Ayxt + Acx® + Agx® + A,x7 + Agx® + Agx® + Ajgxt0 + -
From this, taking into account (12) and (13), we get

eh
AZ = g - 27,
eq _e*r e3s
A; = 2hB, +(t—37+3f—2—f—3)],
er e’s
2
A5 = 2hB4_ + 3(7' 7)32 + 3(q - 2 f fz )B3)
2
A6 = SBS + 2hB5 + 6(1‘ - )BzB3 + 3(q - 2 2 )Bél-;
f f f
2
e
es T' e S

es
Ay = s(3B2B; + 6B,B3B, + B3) + 2hBg + 3 (r — 7) (2B,B¢ + 2B3Bs + BZ) +

er e-s
+3 (q - 27+f—2> B7, (14)

es

2
er e
+B3B6 + B4Bs) + 3(q - 2 7 + fz )BS,
Ay = 35(3237 + 2B,B3Bg + 2B,B,Bs + B2Bs + B;B? ) + 2hBy, +
2

e

Ay, = s3(B%Bg + 6B,B3B, + 6B,B,Bs + 3B,B% + 3B2B, + 6B;B,Bs + B}) +

es er e’s
+2h’Bll + 6 (T‘ - 7) (Bng + B3BS + B4_B7 + BsB6) + 3 ( - 2 7 + f2 )Blo,

We introduce the following notations:
N, = fg —2eh; N,=f3p—3ef?q+3e*fr—ess;
= f3t—3efu+3e’fv—e3w; N,=f?q—2e*fr—e3s; (15)
Ns = fr —es.
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Then, from (13) and (14) with this notations we obtain

e 1 1
B, = f_3N1: B; = _(f_szN1 + f_4N3)»
1 1 3
AZ = le, A3 = ZhBZ +f,_3N2, A4_ = 2hB3 + f,_2B2N4,
3 3
AS = 2hB4 + ?BZZNS + f,_2B3N4_,
; 6 3
A6 = SBZ + ZhBS + _BzB3N5 + _ZB4_N4_,
f f
3 3
A, = 3sB2B; + 2hBg + = (2B, B, + BY)Ns + — BN,

f f

6 3
AS = BS(BZZB4 + B2B§) + 2hB7 + _(BzBs + B3B4)N5 + _ZB6N4,
f f
3 3
A9 = S(SBZZBS + 6BzB3B4_ + B??) + ZhBS + f(ZBzB6 + 23335 + B‘f)NS + f,_ZB7N4_,
AlO == 35(B22B6 + 2B2B3B5 + BzBf + B3ZB4) + Zth +
6 3
? (BzB7 + B3B6 + B4_BS)N5 + f‘_ZBSNAl" (16)

Lemma 2.1. The stability of unperturbed motion in the system of perturbed motion (4) is
described by one of the following twelve possible cases, if for expressions (15)
I, = f < 0) the following conditions are satisfied:

l. N, # 0, then the unperturbed motion is unstable;

. N; = 0, N, > 0, then the unperturbed motion is stable;

1. N; =0,N, < 0, then the unperturbed motion is unstable;

IV. N; =N, =0, hN; # 0, then the unperturbed motion is unstable;

V. N, =N, = h =0; N;N, < 0, then the unperturbed motion is unstable;

VI. N; =N, = h=0; N3N, > 0, then the unperturbed motion is stable;

VII. Ny=N,=N,= h=0, N;#0,; Ns >0, then the unperturbed motion is

stable;

VIIl. Ny=N,=N,= h=0, N;#0,; Ns <0, then the unperturbed motion is
unstable;

IX. N,=N,=N,= N.=h=0; sN; <0, then the unperturbed motion is
unstable;

X. N;y=N,=N,= N;=h=0;sN; > 0, then the unperturbed motion is stable;
XI. N, =N, = N; = 0, then the unperturbed motion is stable;
XIl. N;=N,=N,= N =h=s =0, then the unperturbed motion is stable.
In the last two cases, the unperturbed motion belongs to some continuous series of
stabilized motion. Moreover, this motion is also asymptotic stable in Cases II, VI, VII and
X. The expressions N; (i = 1,5) are given in (15).

56



Proof. According to Lyapunov Theorem [6, §32], the coefficients of the A; series from
(14) are analyzed.

If A, # 0, then from (16) we get N; # 0 (taking into account that I; = f < 0).
According to Lyapunov Theorem [6, §32], we have proved the Case I.

If A, = 0,i.e. N, = 0 respectively B, = 0, then by (16) the stability or the instability
of unperturbed motion is determined by the sign of the expression A5 (the sign of the
product N,). Using the Lyapunov Theorem [6, §32] we obtain the Cases II and III.

If N, = N, = 0, then from (16) we get 4, = —Z%N& If hN; # 0. Then we obtain
the Cases IV (see the Lyapunov Theorem [6, §32]).
Suppose N; = N, = h = 0. Then from (16) it results that A = —%N3N4. So the

stability or the instability of the unperturbed motion is determined by the sign of expression
N;N,. Using the Lyapunov Theorem [6, §32] we get the Cases V and V1.

If Ny =N, = N; =0, then all B; = 0 (i = 3) and respectively A; = 0 (i = 5). By
the Lyapunov Theorem [6, §32] we have the Case XI.

If NN =N,=N,=h=0 and N; # 0, then A, = 0, but A7=f19N32N5. So the

stability or the instability of the unperturbed motion is determined by the sign of expression
Ne. Using the Lyapunov Theorem [6, §32] we get the Cases VIl and VIII.

12

the stability or the instability of the unperturbed motion is determined by the sign of
expression sN5. Using the Lyapunov Theorem [6, §32] we get the Cases IX and X.

If N\ =N, =N, = N; =h =5 = 0then all 4, = 0 (Vi) vanish. By the Lyapunov
Theorem [6, §32] we get the Case XII. Lemma 2.1 is proved.

Let ¢ and Y be homogeneous comitants of degree p, and p, respectively of the
phase variables x and y of a two-dimensional polynomial differential system. Then the
transvectant

(p1 = )p, — J)z( 1)] ' 0’1 a7
p1! P! 6x1 lay dxtdylt
Is also a comitant for this system.

In the lu. Calin's works, see for example [9], it is shown that by means of the
transvectant (17) all generators of the Sibirsky algebras of comitants and invariant for any
system of type (1) can be constructed.

According to [10] we write the following comitants of the system (1)

_ _1(oP(x,y) 0Qi(x,y)\ .. —
Ry = P,(x,y)y — Qi(x, ¥)x, Si—?< T 5 ),(1_1,3). (18)

Later on, we will need the following comitants and invariants from [10] of system (1)
built by operations (17) and (18):

(o, 1/,)(1’) =
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L =8, I,= (R1:R1)(2): I; = ((R3»R1)(2)»R1)(2)» Iy = (53:R1)(2):
K; =Ry, Ks=35; Kg=R3 Ky= (R3»R1)(1): Ko = (R3:R1)(2): (19)
K, = ((R3»R1)(2)»R1)(1)» Ky, = (52»R1)(1): Kis = 53, Ki6 = (53»R1)(1)-

We consider for system (1) the following expressions composed of comitants and

invariants from (19) that can be written in the form:
Ny = 2Ky4 — 1K,
N, =212 Kjg— 41, Ky — 31, LKys — 3 12K, + 41K, + 31; 1,K,,
Ny =-12I; K;o K, + 8K, K, + 312 Kis K, — 61, Kjg K, + 61, K2 —
—4 B3 Kg+ 812Ky, Ny =21, + L1, Ng=2Kyy + I, Kjs- K,  (20)
S=3K:sK, — 21, Ky — 4K,.
Theorem [11]. Let for system of perturbed motion (1) the invariant conditions (2)-(3) and
R, = 0 from (18) are satisfied. Then the stability of unperturbed motion is described by
one of the following twelve possible cases:
l. N, # 0, then the unperturbed motion is unstable;
1. N =0,, > 0, then the unperturbed motion is stable;
. N, = 0,, < 0, then the unperturbed motion is unstable;
IV. N =N, =0, KsV; # 0, then the unperturbed motion is unstable;
V. M =N = K; =0; V3V, <0, then the unperturbed motion is unstable;
VI.L. V=N, = = 0; V3V, > 0, then the unperturbed motion is stable;
VII. M =N, =N, = Ks =0, NV; #0; N; > 0, then the unperturbed motion is stable;
VIL M =M, =N, = Ks=0, N3 #0; N; <0, then the unperturbed motion is
unstable;

IX. M =N, =N, = N =K. = 0; SN; < 0, then the unperturbed motion is unstable;
X. M=N =N = N; =K =0; SN; > 0, then the unperturbed motion is stable;
Xl. N, =N, =N; = 0, then the unperturbed motion is stable;
XIl. M =N, =N, = N; =K =85 = 0, then the unperturbed motion is stable.

In the last two cases, the unperturbed motion belongs to some continuous series of
stabilized motion. Moreover, this motion is also asymptotic stable in Cases II, VI, VII and
X. The expressions S, Kz, V; (i = 1,5) are given in (19)-(20).

Proof. Observe that the first three expressions from (20), for critical system (4), look as
follows:

I
N

.N;_ = _3N1x, M = 4'N2x2, ‘NE)) = 8N3X4 - 8N2x3y, ]V;l- = 2N4_,
2 h S 21
N = ]7N5(ex + fy)?, Ks = 3]—C(ex + fy), S = —4f—3N5(ex +fy)4.( )

Using the expressions (21) and the last assertion together with Lemma 2.1, we obtain
the Cases I-XII. We note that the comitants IV,, N3V, Ns, SN; from (20), used in the
Cases I1-X of Theorem, are even-degree comitants with respect to x and y and have the
weights [1] equal to 0, 0, 0, -2, respectively. Moreover, each one of these comitants (in the
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case when it is applied) is a binary form with a well-defined sing. This ensures that any
center-affine transformation cannot change their sign. Theorem is proved.

Conclusions

In this paper the Lie algebra allowed by differential system s(1,2,3) of the Lyapunov

canonical form with quadratic part of the Darboux type was determined, which is a solvable
three-dimensional algebra. Based on the constructed Lyapunov series, all center-affine
invariant conditions of stability of the unperturbed motion were obtained and they are
included in twelve cases.
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SERII HILBERT OBISNUITE PENTRU UNELE SISTEME DIFERENTIALE
CU NELINIARITATI IMPARE

Rezumat. Seriile Hilbert pentru algebrele graduate Sibirschi ale sistemelor diferentiale pana in prezent au
fost examinate utilizind metoda generalizata a lui Sylvester. Aceste serii au o importanta deosebita pentru
unele probleme ale teoriei calitative ale sistemelor diferentiale. De exemplu, o problema legata de seriile
Hilbert corespunzatoare sistemelor diferentiale este determinarea unor relatii intre ele. Pentru a obtine relatii
intre serii Hilbert att generalizate cat si obisnuite este nevoie de a construi aceste serii Hilbert. In articol
se propune construirea seriilor Hilbert ale algebrelor graduate Sibirschi prin metoda reziduurilor.
Cuvinte-cheie: Serii Hilbert, algebre graduate Sibirschi, sisteme diferentiale.

1. Introduction
A problem related to the Hilbert series of differential systems is to determine the
relationships between them. Some relations between generalized Hilbert series of
differential systems with homogeneous nonlinearities of odd degree were found in [1].
Lemma 1 [1]. The following relation
H(Sl,4,b,d) =H(SI;,b)H(S;,u,d) | ., (N
exists between the generalized Hilbert series of algebras Sl,, S, and Sl ,.
Lemma 2 [1]. The following relation
H(Sl5,b, f) =H(SI;,b)H(Ss,u, )] ., (2
exists between the generalized Hilbert series of algebras SI,, S, and Sl ;.
According to (1) and (2) we can assume that between generalized Hilbert series of
algebras SI,, S,,,; and Sl ,,,, there exists the next relation

H (S|1,2k+1’ b,z) =H(SI;,b)H(S,.;,U,2) |u2:b ()
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forany k >1.

Before finding some relations between Hilbert series, generalized or ordinary, it is
necessary to build these Hilbert series.

The construction of Hilbert series with generalized Sylvester method [2] is not always
simple. The method of computing ordinary Hilbert series for invariants rings using the
residues it is known from [3].

2. Hilbert series

Definition 1 [3]. For a graded vector space V = évd with V, finite dimensional for all d

we define the Hilbert series of V as a formal Laurent series
H(v,t)= Zdim(vd )td.
d=k

Let G be a linearly reductive group over an algebraically closed field K and V be a
n — dimensional rational representation. Through H(K[V]°,t) is denoted the Hilbert series
of invariants ring K[V]® [3].
Theorem 1 (Molien’s formula [3]). Let G be a finite group acting on a finite dimensional
vector space V over a field K of characteristic not dividing |G |. Then

e 1 1
MOV D=5 2 et 0=to)

If K has characteristic 0, then det} (1—to) can be taken as det, (1—to).
Suppose that char(K)= 0. In Theorem 1 we have seen that for a finite group the

Hilbert series of invariant ring can easily be computed. If G is a finite group and V is a
finite dimensional representation, then according to [3] we have

1 1
H(K[V]®,t) = : 4
KV |GIUEZGdetV(1—ta) @)
This idea can be generalized to arbitrary reductive groups. Let us assume that K is

the complex numbers C. We can choose a Haar measure duz on C and normalize it such

that _[d,uzl. Let V be a finite dimensional rational representation of G. The proper
C
generalization of (4) is given in [3]

H(EVT ) = % (5)

We mention that the Hilbert series H(C[V]®,t) converges for |t| < 1 because it is a
rational function with poles only at t = 1. Since C is compact, there exist constants A > 0
such that for every o eC and every eigenvalue A of o we have || < A Since ' is an
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eigenvalue of &', it follows that | A | < A for all ¢, so |/1|sl. It is clear that the integral

on the right-hand side of (5) is also defined for |t| < 1 [3].
Assume that G is also connected. Let T be a maximal torus of G, and let D be a

maximal compact subgroup of T. We may assume that C contains D. The torus can be
identified with (C)", where r is the rank of G, and D can be identified with the subgroup

(SY)" of (C)", where S* < C"is the unit circle. We can choose a Haar measure du on D
such that [du =1 [3]
D

Suppose that f is a continuous class function on C. An integral like _[ f(o)du can
Cc

be viewed as an integral over D, since f isconstant on conjugacy classes. More precisely,
there exists a weight function ¢: D — R, such that for every continuous class function f

we have [ f(c)du=[p(o)f(c)dv.
C D
So, from [3], we have

G gy _ du ¢ p(o)dv
H(CLV] ’t)_-!detv(l—ta)_-ldetv(l—ta)' ©)

3. The Residue Theorem

We recall the Residue Theorem in complex function theory. This theorem can be
applied to compute the Hilbert series of invariant rings [3].

Suppose that f (z) is a meromorphic function on C. If aeC, then f can be written

as a Laurent series around z=a
f(z)=Yc(z—a)"
k=—d

Ifd>0and c_, #0, then f has a pole at z=a and the pole order is d.

The residue of f atz=a is denoted by Res(f, a) and defined by

Res(f,a)=c_,.
If the pole order of f atz=ais k 21, then the residue can be computed by
Res(f,a)= 1 lim dk:l ((z—a)" f(2)).
(k=12 dz

Suppose that » :[0, 1] — Cisasmooth curve. The integral over the curve y is defined

by
[ f@dz= f ()7 Odt
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Theorem 2 (The Residue Theorem [3]). Suppose that D is a connected, simply connected
compact region in C whose border is 0D, and y:[0, 1] > C is a smooth curve such that

7([0, 1]) =0D, y(0)=y(1) and y circles around D exactly once in counterclockwise

direction. Assume that f is a meromorphic function on C with no poles in éD. Then we
have

—jf(z)dz_zRes(f a).

aeD
There are only finitely many points in the compact region D such that f has
non-zero residue there. So we have
Theorem 3 [4].
1 J' 1 dz

HIKVT D = 2] et —t,(2) 2’

(7)

where S' < C is the unit circle {z:| z|=1}.

4. Applications of the Residue Theorem to compute Hilbert series of Sibirsky graded
algebras of differential systems

Using the Residue Theorem and corresponding generating function [2] the formula
(7) can be adapted for computing ordinary Hilbert series for Sibirsky graded algebras of
comitants and invariants of differential systems [5].
Theorem 4. The ordinary Hilbert series for Sibirsky graded algebras of invariants of
differential systems can be calculated using the formula

(0)
Hq, (0= j oDy, ®)

where S* < C is the unit circle {z |z|_1} and ¢ (z) is the corresponding generating
function [2],

00 == W @ @) @)

L form =0
A-zt)1-z 1)’ b
© (5} —
Vi (2)= 1 — , form; =0,
(l_ Zmi+1t)(l_ Z—mi—lt)H (1_ Zmi—2k+lt)2
k=1

I'={m.}_, and consists of a finite number (¢ <o0) of distinct natural numbers.

We mention that this method of computing ordinary Hilbert series for Sibirsky graded
algebras of comitants and invariants for differential systems was verified for the following
known Hilbert series Hg, , Hs, Hg , Hg , H Hg,,, Hs from [2] and

Slm’
HSLS, HS,LE from [1].

Sl !
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Remark 1. The ordinary Hilbert series of Sibirsky graded algebra of comitants are
obtained from the ordinary Hilbert series of algebra of invariants in the following way:
Hs () =H,, , (), where T={m,m,,...,m} ={0}.

From the paper [3] it is known the method of computing ordinary Hilbert series for
invariants rings using the residues. This method was adapted for ordinary Hilbert series of
Sibirsky graded algebras of comitants and invariants of differential systems. In contrast to
the construction methods of these series, exposed in [2], with the help of residues [3], of
the primary generating functions [2], we obtained the ordinary Hilbert series for Sibirsky
graded algebras of the differential systems s(7), s(@7), s@23), s(35), s(3,7),
s(,3,5,7).

Theorem 5. For differential system s(7) the following ordinary Hilbert series of the
Sibirsky graded algebras of comitants S, and invariants SI, were obtained

1
(1+1)° 1-t) Q-t3)*'@-t")* -t 1-t")’1-t%)
+ 28t° + 112t° + 325t +788t% + 1719t° + 3499t1% + 6716t + 12225112 + 21205t +
+ 35194t + 56030t1° + 85698t® + 126023t1" + 178425118 + 243697t1° + 321789t%° +
+ 411501t + 510260t?? + 613944t% + 717118t>* + 813553t? + 896906t?° + 961309t* +
+1002042t% + 1015982t2° + 1002042t%° + 961309t + 896906t +
+ 813553t3% +717118t3 + 613944t% + 51026013 + 41150137 + 321789t +
+ 243697t%° + 17842540 + 126023t* +
+ 8569812 + 56030t*3 + 35194t* + 21205t* + 122254 + 6716t*" + 3499t + 1719t*° +
+ 788t°0 + 32551 + 112152 + 28t53+ 6t%* + 61> + 7t + 4t°7 + 158),
H () = 4 34143 543 772
’ A+ (A-)(A-t)'1-t")y" 1-t°)" (1-t")
+ 50t + 150t7 + 3128 + 578t° + 1011t1° + 1673t + 2631t12 + 3917t13+ 5541114 + 7450t1°
+ + 9551t16 + 11651tY7 + 13543t'8 + 15011t'° + 15933t%° + 16238t*! + 15933t?? +
+ 15011t% + 135432 + 11651t?° + 9551t%° + 7450t?" + 5541t% + 3917t%° + 2631130 +
1673t31 + 101113 + 578t33 + 312134 + 150t3° + 59t36 + 15t37 + 2t%8 + 2139 + 4140 + 34 + t42),
From this theorem it results that the Krull dimension [2] of the Sibirsky graded
algebra S, (respectively Sl,) is equal to 15 (respectively 13).
Theorem 6. For differential system s(1,7) the following ordinary Hilbert series of the
Sibirsky graded algebras of comitants S, ; and invariants Sl , were obtained
Hy (1) = 3 213 3 :
L+1)°A-t*)°@-t3)°@-t)°’@-t°)*'A-t")°’(1-1t%)
+ 85t° + 331t° + 1009t" + 2657t + 6368t° + 14278t1° + 30208t!! + 60574112 + 115441t +

+209688t4 + 363888t + 604838t° + 965096t'7 + 1481667t'8 + 2193216 t1° +
+ 3135942t%° + 4337738t2! + 5811835t%? + 7550176t% + 9518852t>* + 11655892t* +

He (1) = Q+4t+7t*+6t° +6t" +

(L+4t+4t2 +2t° +2t" +15t° +

(L+4t+7t° + 763 +17t" +



+ 13872730t% + 16058633t?” + 18089130t%® + 19836497t*° + 21182751t% +
+ 22032184131 + 22322579t%2 + 22032184t> + 2118275113 + 19836497t* +
+ 18089130t + 16058633t%” + 13872730t% + 11655892t + 9518852t*° + 7550176t +
+ 5811835t* + 4337738t* + 3135942t* + 2193216t* + 1481667t + 965096t*" +
+ 604838t + 363888t*° + 209688t° + 115441t>! + 60574t>2 + 30208t + 14278t>* +
+ 6368t + 2657t%° + 1009t + 331t°8 + 85t + 17t%0 + 7161 + 7152 + 4163 +{64),
H,, (1) = 5 3 351 aNa 513 772
@+t -’ a-t°)y’-tH*@a-t2)°'@a-t")
+ 196t° + 525t7 + 121418 + 2558t° + 5097110 + 9569t'! + 16975t2 + 28396113 + 44981t'4 +
+ 67577t + 96665t1° + 131839t17 + 171920t + 214631t1° + 257063t%° + 295599t +
+ 326684122 + 346880t>° + 353937124 + 346880t%° + 326684t%% + 295599t%" + 257063t +
+ 214631t%° + 171920t%° + 13183913 + 96665t32 + 675773 + 44981134 + 28396t°° +
+ 16975t% + 956913 + 5097t + 2558t3° + 1214140 + 5254 + 19642 + 5343 +
+ Ot%4 + 2t% + 4146 + 3t4 +t48).
From this theorem it results that the Krull dimension [2] of the Sibirsky graded
algebra S, , (respectively Sl ,) is equal to 19 (respectively 17).

(143t +4t% + 2t° + 9t* +53t° +

Theorem 7. For differential system s(1,2,3) the following ordinary Hilbert series of the
Sibirsky graded algebras of comitants S, , , and invariants Sl , , were obtained

1
"0 = ey aeraryaeran)
+ 220t5 + 459t7 + 94618 + 1748t° + 3032t10 + 4845t + 7302t12 + 10268t + 1374914 +
+ 17327t + 20781t¢ + 23565t + 25460t!8 + 26051t%° + 25460t%° + 23565t +
+20781t%2 + 17327t + 13749t + 10268t% + 7302t% + 4845t%7 + 3032t%8 + 1748t*° +
+ 946130 + 45931 + 22032 + 90t> + 36134 + 9t® + 3t — 137 + 39),
1
Ho. )= A-t)A-t*)°(1-t*)°(1-t*)*A-t°)’A-t")
+ 24417 + 44718 + 756t° + 1203t10 + 1760t + 2433t12 + 3124113 + 3800t + 4351t%° +
+ 4736110 + 4854t17 + 473618 + 4351t1° +3800t%° + 3124t + 243322 + 1760t>° +
+1203t24 + 756t% + 447t%° + 24427 + 128128 + 5712 + 24130 + 6131 +132 + t34),
From this theorem it results that the Krull dimension [2] of the Sibirsky graded
algebra S, , (respectively Sl ,,) is equal to 17 (respectively 15).

(1-t+3t* +9t° + 36t* +90t° +

(L+1t +6t° + 24t +57t° +128t° +

Theorem 8. For ifferential system s(1,3,5) the following ordinary Hilbert series of the

Sibirsky graded algebras of comitants S, ,; and invariants Sl ,; were obtained

H = 7 6 3 81 4N 4 514 7
1o Q+t)'@A-t)’1L-t)° 1-t")"Q-t’)' 1-t")

+ 1295t° + 3788t" + 10229t + 25559t + 59435t10 + 128624t + 26075412 + 49714213 +
+ 895543t14 + 1528784t° + 2480535t1¢ + 3832821t17 + 5651535t + 7964888t1° +

(1+ 2t + 3t +17t° +102t* +393t° +
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+ 10746190t%° + 13897132t + 17246232t% + 20554573t% + 23544429t% +
+ 25932413t% + 27476107t% + 28009657t>" + 27476107t%® + 25932413t +
+ 23544429t%0 + 20554573t3 + 17246232t% + 13897132t* + 10746190t +
+ 7964888t% + 5651535t% +497142t* + 260754t* + 383282113 + 2480535t +
+ 1528784t + 895543t + 128624t* + 59435t + + 25559t*° + 1022940 +
+ 3788t4" + 1295t%8 + 393t + 102t + 17t° + 3t52 + 2153 +1%4),
HSI (t) = L
L+1)°@A-t)°@A-t3)" 1-t")°(1-t°)°
+ 2077t" + 5160t% + 11689t° + 24616t1° + 47739t'! + 86576t12 + 14647913 + 233075t14 +
+ 348813t%° + 493340t + 659032t'7 + 834212t'® + 1000116t*° + 1138132t%° +
+1228974t?! + 1261281t%? + 1228974t + 1138132t%* + 1000116t>° + 834212t%° +
+659032t27 + 493340t?8 + 348813t?° + 233075t% + 146479t3! + 86576132 + 47739t +
+24616t3* +11689t* + 5160t + 2077t%7 + 781t38 + 253t3° + 77t%0 +
+1 4t41 + 2t42 +t43 + t44).
From this theorem it results that the Krull dimension [2] of the Sibirsky graded
algebra S, ,; (respectively Sl ;) is equal to 23 (respectively 21).

(L+t+t° +14t° + 77t* + 253t° + 781t° +

Theorem 9. For differential system s(1,3,7) the following ordinary Hilbert series of the
Sibirsky graded algebras of comitants S, ,, and invariants S, ,, were obtained

1
e O e er e rratra-rra-ryar)
+ 630t + 2704t° + 10022t" + 33698t% + 104818t° + 304181t'° + 826655t + 2112616t +
+ 5098405t + 11666106t + 254005871%° +52790206t%° + 105011044t +
+ 200416900t + 367773321t*° + 650140950t%° + 1109089748t>* + 1828673257t%% +
+2918286116t% + 4513317434t** + 6772373326t%° + 9869976204t%¢ +
+ 1398398855627 + 19277729149t + 25877612329t%° + 3384825938913 +
+ 4316794999511 + 53708076135t%2 + 6522041301032 + 7733571490934 +
+ 89575940034t%° + 1013808417736 + 112147463549t37 + 121279087722t38 +
+ 128238286339t + 132597788686t*° + 34082589969t* + 132597788686t*2 +
+ 128238286339t*3 + 121279087722t* + 112147463549t* + 101380841773t* +
+ 89575940034t* + 77335714909t* + 65220413010t*° + 53708076135t>° +
+ 4316794999511 + 33848259389t°2 + 25877612329t%3 + 19277729149t>* +
+ 13983988556t%° + 9869976204t + 6772373326t%" + 451331743418 + 2918286116t>° +
+1828673257t%° + 1109089748t%* + 650140950t%? + 367773321t5 + 20041690054 +
+ 105011044t% + 52790206t% + 25400587t%" + 11666106t° + 5098405t%° +
+2112616t7° + 826655t'! + 304181t"% + 104818t" + 33698t'4 + 10022t™ + 2704t +
+630t77 + 119t78 + 20t™ + 8t80 + 48 +182),
1
1+1)°(1-t3)*'@-t>)°1-t)°A-t°)°Q1-t")?

(1+ 4t +8t* + 20t° +119t* +

(L+ 4t +9t* + 22t° +114t° +

Hs,., ) =
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+ 576t + 24336 + 8812t" + 28787t + 86580t° + 24234910 + 633691t!! + 1554313t!2 +
+ 3589873t + 783876 7t14 + 16239174t + 32018338116 + 60242752t + 108417618t8 +
+ 187010583t° + 309738539t%° + 493386952t?! + 756961044122 + 1119980967t> +
+1599914185t%* + 2208870842t> + 2949986298t2° + 3814040685t>” + 4777086279t +
+5799732655t?° + 6828681083t%° + 780062122413 + 8648294432132 + 9307907390t +
+9726879111t3* + 9870564527t%° + 972687911113 + 9307907390t3" + 8648294432t +
+ 7800621224t%° + 6828681083t*° + 5799732655t* + 4777086279t*2 + 3814040685t* +
+2949986298t* + 2208870842t* + 1599914185t* + 1119980967t*" + 75696104418 +
+ 493386952t*° +309738539t° + 187010583t°! + 108417618t°2 + 60242752t +
+32018338t>* + 16239174t>° + 7838767t%¢ + 3589873t%7 + 1554313t%8 + 633691t>° +
+ 242349t%° + 86580t°! + 28787t52 + 8812153 + 2433t%* + 576t + 114t% + 2257 + 9t%8 +
+ 4180 + t70),

From this theorem it results that the Krull dimension [2] of the Sibirsky graded
algebra S, ,, (respectively Sl ;) is equal to 27 (respectively 25).

Theorem 10. For differential system s(1,3,5,7) the following ordinary Hilbert series of the
Sibirsky graded algebras of comitants S, , and invariants Sl , ., were obtained

U (t) + 2298270315 143980746 t% +t2U (t™)
)= A+t)°Q+t?) Q- (1-t°)?(1-t°)’A-t")* A -t°)’
where U(t)=1 + 6t + 20t? + 8713 + 642t* + 4481t> + 26793t° + 141973t" + 684115t® +
+ 3033350t + 12465139t1° + 47749507t + 171414077t'% + 579433144t13 +
+ 1852114710t + 5618767624t'° + 16230539293t6 + 44770726947t +
+ 118233818156t18 + 299625404135t1° + 730145608913t%° + 1714167261299t%1 +
+ 3883773551652t%2 + 8505306230645t22 + 18029418149708t2* +37042309655531t%° +
+ 738519593578941%° + 143039363140182t*" +269416219454043t%8 +
+ 493944596168225t%° + 882268074320900t%° + 1536543007952396t3* +
+ 2611196867637156t%? + 4333024660344442t% + 7025611335473678t3* +
+ 11137398421309529t3% + 17271787147116907t% + 26216525599773850t%" +
+ 38968364210329669t% + 56747752371861786t>° + 80997424826732157t* +
+ 113358368681589288t** + 155617153462411693t*> + 209620178940739772t*3 +
+ 277153165150321324t* + 359788117447054402t* + 4587047705827513941%6 +
+ 574498645384155800t*" + 706992640391687667t* + 855072713288320920t*° +
+ 1016569872742669961t>° + 1188209740459545784t%! + 1365646993055807450t°% +
+ 1543595104982837472t> + 1716052512321252802t>* +1876615582976246945t> +
+ 2018857942986265569t°° + 2136746272693569424t%" + 2225056091622875140t°8 +
+ 2279748435060291614t>°,
V() +3293350250 5147932 t°2 + 1V (t )
(t)= 19 15 2\9 33\12 517 7\3 !
Q+0)7@Q-t)"@+t°)’1L-t)"@-t7) ' 1-t")
where V(t)=1 + 5t + 15t* + 70t® + 546t* + 3691t° + 21211t5 + 108097t" + 501215t8 +

S135,7

Sli35.7
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+2135708t° + 8420376t1° + 30894213t!! + 106057925t12 + 342316946113 +
+ 1043225615t + 3012988906t + 8273667765t1° + 21663519624t17 +
+ 54225659702t8 + 130054129145t + 299492368986t + 663439513913t +

+1416140486098t% + 2917219852903t% + 5807630254373t + 11187994444298t%° +

+ 20880385856690t2° + 37794195363608t%" + 66411190209119t%8 +
+ 113391841520052t%° + 188282608991333t%° + 304271520124478t3! +
+ 478898737877115t%2 + 734584562409596t%% + 1098797608776741t>* +
+ 1603661779481979t> + 2284804664001899t%¢ + 3179293473234493t%" +
+ 4322594520474429t% + 5744627532607767t*° + 7465155325802975t4 +
+9488929831214829t* + 11801175204390804t*? + 14364091127469868t* +
+ 17115070624832596t* + 19967223601230372t* + 22812575427180540t*° +
+ 25527987499683011t*" + 27983465544664079t*® + 30052140716959960t*° +

+ 31620895669339212t>° + 32600424240909358t°L,
From this theorem it results that the Krull dimension [2] of the Sibirsky graded

algebra S, ,, (respectively Sl ;) is equal to 39 (respectively 37).

Remark 2. The Theorem 5— 10 are published for the first time into the papers [6-11].

We note that the Krull dimension plays an important role in solving the center-focus

problem for differential systems [12].
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MULTIPLICITATEA MAXIMALA A LINIEI DE LA INFINIT PENTRU
SISTEMELE DIFERENTIALE DE GRADUL PATRU

Rezumat. In aceastd lucrare se aratd ci in clasa sistemelor diferentiale de gradul patru multiplicitatea
algebrica maximala a liniei de la infinit este egala cu 10.
Cuvinte-cheie: sistem diferential de gradul patru, dreapta invarianta, multiplicitate algebrica.

1. Introduction and the statement of main result

We consider the real polynomial system of differential equations

Z=Py), Z=0xy). (1)

dt t
Denote n = max{deg(P),deg(Q)}. If n = 4 then system (1) is called quartic.

At present, a great number of works are dedicated to the investigation of polynomial
differential systems with invariant straight lines. The problem of the estimation of the
number of invariant straight lines which can have a polynomial differential system was
considered in [1].

In [2] it is given the estimation 3n — 2 < M,(n) < 3n — 1 of maximal algebraic
multiplicity M,(n) of an invariant straight line for the class of two-dimensional
polynomial differential systems of degree n > 2 and it was shown that in the class of
cubic differential systems the maximal multiplicity of an affine real straight line (of the
line at infinity) is seven.

In this paper we show that in the class of quartic differential systems the maximal
algebraic multiplicity of the line at infinity is equal to 10.

Theorem. For quartic differential systems the algebraic multiplicity of the line at infinity
Is at most ten. Any quartic system having the line at infinite of multiplicity 10 via affine
transformations and time rescaling can be written in the form

x=-x, y=x*+3y. (2)

2. The proof of the Theorem
We consider the real quartic system of differential equations

X=Xt opi(ny) =p(y), ¥=3oq;(x6y) = q(xy), @3)
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where  po_ag, p1(x,¥) = aix + @y, p(x,¥) = azx® + ayxy + asy?, ps(x,y) =
agx® + a;x%y + agxy? + agy®,  pia(x,y) = ajox* + a1 x3y + apx%y? + azxy® +
a14Y*, Qo=bo 1 (x,¥) = bix + byy, q;(x,¥) = b3x? + byxy + bsy?, q3(x,y) = bex® +
b;x%y + bgxy? + boy®, qu(x,y) = byox* + by X%y + b1;x%y? + byzxy® + byyy™.

Suppose that the right-hand sides of (3) do not have the common divisors of degree
greatest than 0, i.e.

gcd(p,q) = 1and yp,(x,y) — xq4(x,y) # 0, 4)

I.e. at infinity the system (3) has at most five distinct singular points.

The homogeneous system associated to the system (3) has the form

X=X1o0jVZ* T =P, ,Z), y=2loq;(x.NZ* =Q(x,,2). (5)
d d
Denote X = P(x, y, 2)5 +Q (x,y,2) e

We say that the line at infinity Z = 0 has algebraic multiplicity m + 1 if m is the
greatest positive integer such that Z™ divides E,, = P - X(Q) — Q - X(P) (see [3]).
In this section, for quartic system (3) we determine the maximal algebraic
multiplicity of the line at infinity Z = 0.
Because p2(x,y) + qi(x,y) is not identically zero, by a centro-affine
transformation and time rescaling we can make b,, # 0, and more that, b;, = 1.
For the homogenized system (4) we calculate the determinant [E, from the
definition of the algebraic multiplicity. E_ is a polynomial of degree 11 in x,y,Z. We
write it in the form:
Ep = Ao(x,y) + A1 (0, ¥)Z + Ay (x, y)Z% + A3 (x, ) Z° +
+A, (0, Y)Z% + As(x, ) Z° + Ag(x, y)Z° + A; (x,y)Z7 + (6)
+Ag(x, ¥)Z° + Ag(x, ) Z° + Ao (x, ) Z° + Ay4 (x, y)ZM

where A;(x,y),i =0,...,11, are polynomials in x and y.

The algebraic multiplicity of the line at infinity is m,, € N* if m_ is the maximal
number such that Z™=~1 divides E..

The algebraic multiplicity m,, of the line at infinity is at least two if the identity
Ay(x,y) = 0 holds.

The polynomial A, (x,y) looks as: Ay(x,y) = A1 (x,y)A2(x,y) Where

Ap1(x,¥) = —x° + (@10 — by1) x*y + (ay; — byp) X3y + (a1, — byz) x%y° +
+(ay3 — bia)x y* + as,y°®,
Ao (x,y) = (@11 — a1ob11)x® + 2(ay; — a10b12)x°y + (3ays + aipbyy — ayibyp —
=3 ajobi3) x*y? + 2(2 a4 + ay3byy — ay1biz — 2 agobiy) ¥°y° +
+(3 ayabis + ay3° by — ipbi3 — 3 @y b)x?y* +
+2 (@yab1; — a12b14) xy° + (a14b13 — ay3b1a)y°.

As Ay (x,y) £ 0 (see (4)), we require Ay, (x,y) to be identically equal to zero.

The identity Ay, (x, y) = 0 holds if the following conditions
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11 = Qq9 b11, Q12 = 49 b1z, a3 = a0 b13, a14 = a4 by, are satisfied.
The algebraic multiplicity m,, of the line at infinity is at least three if A;(x,y) = 0.
Unde the above conditions we have A, (x,y) = —A;;(x,y)A,,(x,y), where
Ay () =x* + by X3y + b1y X2 y2 + b3 x y* + by y* £ O,

A, (x,y) = (a7 — ayoas — aghyq + afy bs + ayoby11bg — asob;)x® +
+(2ag —2a49 - a; — 2 ag by, + 2 ayg byp bg + 2 a?ob, — 2 a;obg)x>y +
+(3aq — 3a,0ag — a19a7by1 + ag - byy + ay9 agbi; — a; by; — 3 aghys —

—afobizb6 + 3 ayoby3 bs + afy bi1b; + ajobib; + 3 afobg —
—ay9 b11bg — 3 ajobe)x*y? +

+(—4a,0a9 — 2a40agb;; +2a9byy +2a490a6 bis — 2a; by3 —

—4ag by —2af, byizbs + 4 ayobisbg + 2 ajg by by +2af byybg +
+4 a?, by — 2 ayg by1 bo) x3 y3 +
+(= 3 ayoa9by; — ay0agbi; + agbi; + ay9a;b13 — aghyz + 3 ay0a6b1y —
—3 azbys — 3 afobisbg — afy bz by + 3 aqo byy by + afohs, by +
+aiobi3bg + 3 afobi1bg — ajobizbg) X y* +
+(=2 ay9 a9 by + 2 ayg @y b1y — 2 ag byy — 2 a5y byy by + 2a50b14bg +
+2 a?,by,bg)x y° +
+(=010G9 by3 + A19Agh14 — Aob1y — afobiabg + afobi3be + ayg b1y bo) Y°.
If A;, (x,y) = 0 then we obtain the following two series of conditions:

1) ag = ayobs, a7 = ay9 b7, ag = ayo bg, a9 = ayq by;

2) a; = ayob; — ajoa — by, ag = aobg — ajy @ — a0 by —
bip @, a9 = a10by — ajoa — afobyy @ —ayo b @ — biza, by =
—ayo (ajy +afo byy + asobi; + bi3), @ =as0bs —ag a # 0.

In the conditions 1) we have A,(x,y) = —A;,(x,y)A,,(x,y), where

A1 (%, y) = (a4 — 2a40a3 — az byy + 2afy by + ajobi1bs — asoby )x° +

+(2as — 3a49a4 — @19 a3 b1y — 2 azby, + afo byg by + 2 aq9 byp by +
+3 afobs — 2 aqobs) x* y —(4 ajoas + 2a1 @y b1y — as by + ag byy +

+3asz b3 — 3ayobyz by —2afy by by — ayo byp by — 4 afyhs +
+aiob11bs) x° y? —(3a10asbyy + a10@sb1z — A19a3biz + 2a4bi3 + 4 azhy, +
+afy bysbs — 4 ayo bys b3 — af by by — 2 ayg by by — 3 afg byybs) x*y° —

—(2 ajoasby; + asbyz — 2 aygazbyy + 3 asbyy + 2 afobiabs — 3a10by4by —
—2agobibs — ajobizbs) xy* — (ayo asbys — ayo Ay bys + 2 as byy + afy byy by —
—ajy byz bs — 2 asobys bs) y°.

If the identity A,,(x,y) = 0 holds, then the multiplicity m, is at least four. The
identity A,, (x,y) = 0 leads us to the following two series of conditions:

11) az=ajobs, a,=a by, as=aybs;
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12) ay=asobs+ 2a08 + by1f, as = ajobs + 3afof + 2 a;obyif +
bi,B, bis=—aj, (4afy + 3ajo by +2by,), by =ai, Bajy +
2 a0 bi1 +byp), B=az—apbs, B*0;

In the conditions 1.1) we have A;(x,y) = A;1(x, ¥)A3:(x,y), where

A31(x,y) = (3ay ayo— ay —3ajy by + ay by — aqg by by + ayohy) x* +
+(4 a9 ay + 2 ay @y byy — 2afoby byy + 2 a3 by — 2 a50 biby; — 4 afy by)x’y +

+(3 ayg ay byy + aya10b1; + by — afy by by +3 arhyz —3 agg by byz —

—3afy b1y by — @40 by by) - X*y? + (2a100,b15 + 2a,b13 + 4a1byy — 4a50b1bys —
—2afobi2b; — 2a10b13b;) x ¥* + (@10 a3 b1 — @y Qy9 by +3 @y bis + afg by byy —
—afy byz by — 3 ayq by by) y*.

The identity A5 (x,y) = 0 holds if one of the following two sets of conditions is

satisfied:

1.11) a; = a4 by, a, = aq by;

1.1.2) a; = aso by + 3 asoy + by1y, b1z = =3 a0 (2ay +byy), bz =ajy (8a+
3by1), by =—aiy Bay+by), ¥ =0a;—apby, v # 0.

If one of the conditions 1.1.1) or 1.1.2) is satisfied, then the multiplicity m,, > 5.

In the conditions 1.1.1) we have A,(x,y) = 6A1.(x,y) - As1(x,y), Where § =
ao — aq0 by and Ay (x,y) =4a;ox3+ by x3+3a0by x2y +2b, x%y +
2a10bi; xy? +3 bz xy? + aobi3 y* +4 by yP.

If § =0, then deg(gcd(P,Q)) >0 (see (4)). Let § #0 and A, (x,y) =0 =
by, = =4 ayo, by =605, bjz = —4aj, by =afy, then As(x,y)=641(xy)"
As1(x,y), where Ag;(x,y) =3 ajobg x* + byx? + 2a,0b; xy + 2bg x y + a10bg y* +
3byy?2.

The identity As;(x,y) = 0 holds if b, = =3 a;o bs, bg = 3 a?y bs, by = —a3, bs.
In these conditions Ag(x,y) =8 A11(x,y)(2 ajobs x + by x + ajob, vy + 2 bs y) =
0 = b,=-2ay9bs, bs = a?,b; = A,(x,y) = §(aob; + by) - A1 (x,y) =0= b, =
—ay0b; = Ag(x,y) = 4 6%(x — ay0y)° # 0.

Thus, we have obtain E, = Z8(4 x3 — 12a,, x%y + 12 a?, xy? — 4 a3, y3 +
3 bg X2Z — 6 ayobg xyZ + 3 aiybg y*Z + 2 by xZ% + 2 a;obs yZ? + b, Z3)6% and the
algebraic multiplicity m,, = 9.

The quartic system {(3), (4)} takes the form:

X =a0x* —4 a3 x3y +6ad,x?y? —4at, xy3 + ady y* + ayobs x3 — 3 a?ybg - x2y
+3 ajobs xy* — atobey® + aiohs x* — 2 afobs xy + ajob; y* +
+a,obix — a?obyy + ajobg + 6, (7)
y =x*—4a,0x3y + 6 a2y x2y? — 4 a3, x y3 + afoy* + bgx® — 3 a;obgx? y +
+3a?,bgxy? —ad, bgy® + by x> — 2 a;0bs xy + a?y b3 y> + by x — ajob; y + b,.
In the conditions 1.1.2) we have A,(x,y) = A11(x,y) - A41(x,y), Where

A41(x,y) = —4(10 a10 x3 + 4‘ a%O bO x3 - aO b11 x3 + a10 bo b11 x3 + 12 ao a%O xz y -
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—12 a3, by x? y + 3 agaso byy X2y — 3 aZybyby1x? y — 12 ag a3y x y% +
+12 aty by xy? — 3 ag a?y by x y2 + 3 a3y bobyy x V2 + 4 agat, y2 — 4 ajoby v +
+aoaiobyy ¥* — afobg byy ¥* + asobs x* ¥ + byibg x*y — by x* y — 9 afy be x*y vy —
=3 ayoby1be X?y Yy — a0 b, x* yy —2bgx*yy — 6 afo b, x y* y —
—2ay0by1b; x y?y — 3 ayg bg x y*y — by1bg xy?y — 3 by xy? vy — 3 afobs - ¥y —
—ay0b11bg Y°y — 5 ayobe Y3y — 2by1bg ¥y .
The identity A, (x,y) = 0 yields
b; = (—4aya,o + 4aioby — aghyy + ayobobiy + a1obs ¥ + bi1bg ¥) /Y,
bg = a10(8 agayg — 8afoby + 2aghyy — 2a,0bobyy — 5a10bgy — 2byy - bs ¥) /v,
by = afy (—4 agaig + 4 afo by — ag byy + @1 bg byy + 3 ayo bg v + byy be ¥) /Y.
In these conditions As(x,y) = —A11(x,y) - As1(x,y)/y, where
As1(x,y) = 4 a3 a;q x? — 8 aga?yby x2 + 4 a3y b3 x* + a3 by x? —
—2agaygbg by x2+ a2y b by, x* —8aia?yxy+ 16agal,byxy —
—8afob§ xy —2a§ ajobyy xy + 4agafobobys xy —2ajobiby xy +
+4agady y* — 8 agatohy y* + 4 afobg y* + agaiobyy y* — 2 agaiohoby y? +
+afob§byy y* — 4 agasobg x*y + 4 afy bobg x*y — agby1bs x* v + ayoboby b x* v +
+8 ag afy bex y ¥ — 8 afobobg X y ¥ + 2 agaiob11b x y ¥ — 2 afobobiibg x y ¥ —
— 4 agaiobs y* v + 4 atobobs - ¥* v — agaio b1y b y* v + aiy bg byy bs y* v +
+2ay0 b3 x? ¥ + by b3 x? y? = byx?y? —6afo by xyy? —2 a0 by by xyy? —
—2bsxyy®— 3afo by y?y? — aio b1y by y?¥? — 2a10bs y?y? — byy b5 y? v2.
The identity As; = 0 = b, = (4a¢ a;o — 8 ay a?y by + 4 a3, b:+ a3 by, —
—2ay - ayobobyy + afob§ byy — 4agai0bs vy + 4afobo by — agbyibs ¥
+ ayobob11bs ¥ + 2 a1+ b3 y? + byy b3 ¥?) /Y2,
bs = —ayo (4 a§ ayo — 8 ag afy by + 4 aiy b§ + a§ byy — 2agayg - bobyy + afobibyy —
—4aya,0bg ¥ + 4 afobobs ¥ — agby1bg ¥ + a1 bo byy be ¥ +
3ai0bs- y? + by by ¥ /¥ =
A, y) = —(x— a;py)? (x + 3a0y + by y) - Ag1(x,¥)/y?, where
Ag1(x,y) = —4ad a;o x? + 12 a3 a?y by x*> — 12 ay a3y b x*> + 4 aj, b3 x? —
—aj by x2+3a? ajy by byy x> —3 ag a?, b3 by x? + a3, b3 by x* +
+8ad a?y xy — 24a¢ -ad, by xy +24a,aly b xy—8aj, b3 xy +
+2 ag ay9 by Xy — 6 a§ af bo byy xy + 60, - ajy b byy xy — 2aiy by by xy —
—4a3 ajy y* + 12 af afy by y* — 12 apazy bg y* + 4 afy * byy? — agaio byy y* +
+3ag ajy bg by y* — 3ag afy b§ byy y* + a3o bg by y* + 4 af aye+ be x*y —
—8ag aiy by bg X2y + 4ady bE bg x*y + ag by b x*y — 2 ag ayg bg by1 bg X%y +
+afy bg by1be x* v —8agafobgxy vy +16 agajy by bg xy v —
—8afybybexy ¥ —2a5 -ajoby1 bsxy v +4agaiyby by bgxy y—
—2ajo b§ byy b xy v +4af ajy bs y* v — 8ag ato bo b y* v +
+4 afy b§ be y* v + af afo biy be y* v — 2 ag aiy by byy bg y* ¥ +
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+afy bg byy be y* ¥ — 4 ag ayo by x* y* + 4 afy by by x* y* — ag byy by x* y? +
+ay9 bo byy + b3 x*y? +8ag afo by x yy® —8ajs by by xy y? +
+2ag ayo byy by xy v* — afo bg byy - by xy y* — 4 ag ajy by y?y? +
+4 afy by by y* v* — ag afo byy b3 y* v* + afy b b1y by y* y* +3 a0 by x*y3 +
+by byy x*y® — by x?y® —6afo by xyy® —2a;0b by xyy® +2a10 by xy y* +
+3 ajy by y?y® + afy bibyy y?y® — afo byy?y? — 3 x%y* — 18 ajoxy y* —
—6by, yy* — 27 afy y* v* — 18 ayo byy y* v* — 3 bf; yPyH).
The identity A¢, (x,y) = 0 holds if b, = —(a,o by + 3y), b1 = —4ay,.
In these conditions we have A, (x,y) = y(x — a0 y)* (4ag—4 a0 by —bsgy) =0 =
ap = (4aypbo+bsy)/4 = Ag(x,y) =y*(8 b3 —3 b)) (—x + a0 ¥)*/4 = b; =
3b¢/8 = Ag(x,y) = 3y*(—x + a0 y) (16 byx — b x — 16 ayobyy + a;obd y —
64yy)/16 £ 0.
So, E,=-Z°y%(-4x+4a,,y—bsZ)(—48b,x+ 3b3x+48a,,b,y—
3a,0biy—64byZ+4b,bsZ+192yy)/64 and m,, = 10.
In this case the quartic system {(3), (4)} looks as:
x = 8a,9 x* —32a?, x3y + 48a3, x?y? — 32 at, xy® + 8 a3, y* +
+8 a,obg X2 — 24a%, bg x*y + 24 a3, bg xy? — 8 a}y bg v + 3 a,, - bEx? —
—6 az,b? xy + 3a3,biy? + 8 a;ob;x — 8 aZ, byy + 8 a;oby +
+8xy—32a,0yy +2bey)/8, (8)
y=(8x*—32a;,x3y+48a?, x*>y? —32a3,xy® +8aj, y* +
+8 by x3 — 24 a,y bg x*y + 24 aZybg xy?> — 8 a3, bg y> + 3 b2 x* —
— 6 a;obé xy +3a?ybiy*+8b,x—8a,nb;y +8by—24yy)/8.
The transformation of coordinates X =bs+4x—4a,,y, Y = 4(64 b, —
4 b, bg + (48 b, —3 b3)x — (48 a;y by — 3 a,o b + 192 y)y)/3 and time rescaling
t = —1/y reduce the system (8) to the system
X=-X, Y=X*+3Y. €)]
In the conditions 1.2) we have A;(x,y) = —A;,(x,y) - A3.(x,y), where
A3 (x,y) = (=3 aja,0 + a; + 3 afoby — a;byq + ayobibyy — agoby)x* -
—(4 ay0a; + 2 aya50byy — 2a50b1byy + 2a, by, — 2a10biby, — 4 afoby)x3y +
+(12a,a3, — 12a%, b; + 9a,a?y, by; — 3 ajo a, byy — 9a3, byby;, + 5a,a,0b1, —
ay by, — 5 afobiby, +3afoby1 by + ajgbyyby) x*y* —
—(12 ayaf, — 8a3ya, — 12a3,b, + 8a,a3,b,; — 6a,a,by; — 8 afyb by; +
+4 ayafobi, — 2 aq9a;b1, — 4 a3obi by, + 8aty by + 603 byib, + 2af0bsyby)  xy® +
+(3a,a3, — 5aty ap — 3 afoby + 2a,atobyy — 3aioazbyy — 2a30 by by +
+a,a3oby, — afoayb1y — afobibyy + 5 afob, + 3 afoby1 by + aiobi,by)y* +
+ B(aiobs + by1bs — by)x* +
+ B(2 afobg + 2a10b11bg + 2 byp bg — 2 bg) x*y - (9 aiobg + 6 afoby b +
+3 ayg bip bg — afo by — @1g byy by — byp by + ayg bg + by bg + 3 bo)x?y? —
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— B (6 aiob; + 4 afoby1b; + 2 aygbiybs + 2a10bg + 2b11be)xy® -
—B(3 afobg + 2 afy byy bg + aig byy bg + afg bg + ajg by1bg + by bo)y* .
As A;;(x,y) £ 0, we require that A3, (x,y) = 0. The identity Az;(x,y) =0
holds if
a; = 3a,a19 — 3aiob; + a;byy — aiobibyy + asoby — asobef — bi1bg B+ by B,
bg = (—6a,af, + 6a3,by — 3 a;a10byq + 3 afobibyy — arby, + asobiby; +
+3afobs B + 3a19b11bs B + bizbsf — 2a10b,5)/B,
by = —a;o (=6 a,afy + 6ai,b; — 3a;,a10b11 + 3 afobibyy — a;byy + agobibyy +
+4afobsff + 3a10b11bsff + bibsfS — aiob;B)/B.
In these conditions A,(x,y) =0 =
by = —(4 aya,o — 4afoby + agbyy — ayobobyy — ayaiobs + afobibg — aiby b +
+ayobyb11bg + arb; — ayobib; — 2a10bs B — byibsf + ay0beff +
+b11bgB — beb, B + 28%)/B,
bs = (4aoaf, — 4aioby + ag@iobyy — afobobyy — ajafobs + aiohybs — a;a;oby1bg +
+afob,bi1bg + ajasob; — afohib; —3afy - bsff — ajobyibsf + ajobéf +
+ay0b11b¢B — ayobsb, B — 6a108% — 2b11 %),
by, = =3(2aiy + asoby1) = As(x,y) = =411 (x,¥) - As1(x,y)/B, where
Asy = (—4aya,a10 + 4a,aioby + 4agaioby — 4aiobob; — aga byy + aia;obobyq+
+aya;0bibyy — afobobibyy + afasobg — 2a,afobbg + aiobibg + aibyibg —
—2a,a40b1b11bg + afobibi1bs — aib; + 2a; - ajobib; — afobib;)x* + (8 aga;af, —
—8 a,aiyby — 8 agaiyh, + 8 ajobob; + 2 agay ajg by — 2a,afoboby; —
—2aqga?yb by + 2a3,bob by, — 2a?a?,bg + 4a,adyb b — 2aj,b?bg — 2a%a by, b +
+4a,a2yb;by1bg — 2a3,b?b b + 2a2a b, — 4a,a2,b b, + 2a3,b%b,)x y +
+(4a,atyby — 4aga,aiy + 4agatoby — 4ajoboby — aga;aiobiy + a;a3obobyy +
+aoaiob; by — atobobibyy + af aiobg — 2a,atobibg + ajobibs + aiafobyibg —
—2a,a3ob;by1bg + atobibyy - bg — aiaiob; + 2a,ai,bib; — atobib;) y* +
+B (3 agayobs — 3 afobobs — aia10bg + afohy - b — a;by1b¢ + ajobiby1 b +
+agb; — ajobgb; + a;bgh; — aobibgh;)x? + B(6 a3ybybs — 6ayaz,be + 2a,a%,bZ —
—2a3,b;b¢ + 2a,a,yby1 b2 — 2a%, byby1bZ — 2aya,0b, + 2a2,byb, — 2a,a,0bgh, +
+2ajobibgb;) x y + B (3 agaly b — 3 afy by bg — ay a3y bg + afy by b —
—a,afy byq b¢ + aiy by byy bE + aq afy b; — aiy by by + a; afy b by —
—a3y by bg b,)y?* + B2 (3a; — 6 ayg by — by byy + b, + ajg b3 bg + byq by bg —
—b3 b;)x? + B2 (18 aja,9 — 12 a?y by + 6 a;by; — 4 ayob1by1 — 2a,0by —
—2a?, by bg — 2a, by1b3 bg + 2a,9bsb;) *xy + p? (27 a; a?y — 30 a3, b, +
+18 a; a;o byy — 19 a?, by by, + 3 a; b?, — 3 ayg bib?, + a?y b, + a3y b bg +
+afy byy by bg — aiy b3 b;)y* — B>be x* — (10 ayo bg + 6 byy bg— 4 b)) xy —
—p3(13 a?ybg + 12 aygby1bg + 3 b? bg — 4 a;ob;, — 2 byy by)y?.
The identity As(x,y) = 0 holds if
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b, = (—12d3a,, + 36a?a?,b, — 36a,a3,b? + 12at,b3 — 3a3by; + 9aia gbiby; —
9a,a?yb?b,; + 3a3,bibi; + 20aga,a,08 — 20a,a?,byB — 20aya?,b,f +
+20ai,bob, B + 5a0a1by1 8 — 5a1a10boby1 8 — 5a9ay0b1by1f + 5afobobybyyf +
+16a2a,0bgf — 32a,a2,b1bef + 16a3,bZbeff + 4 aZby beff — 8a,a,0b; - by1bef +
+4afobiby1bef — 12a,a10b3% + 12a5,b1b3B? — 3a,by1b3 % + 3a19b1by1bsff% —
+12a0a10bs? + 12a5obobef? — 3agby1bsf? + 3asoboby1bs B? — 4a,a10bif? +
+4afob b - B — arby 1 bgf* + ajobibyb¢f* — 6a,B° + 12a10b, 5% + 2b,by4 B3 +
+4a,0b3bef8® + by1bs - b + 2bsf*)/(28°) and

b; = =3(4a,a;9 — 4afoby + a;byy — ayob1byy — 2a10be — b11beB)/(2).
In these conditions A4 (x,y) % 0, therefore m,, = 7.
In the conditions 2) the identity A,(x,y) = 0 leads us to the following conditions
a, = 2a,0a3 + asby; — 2a2,b; — ajoby1bs + a;obs + ajgbga + by bgax — by + a?,
as = 3afoas + 2a19a3by; + asby, — 3ajobs — 2aoby by — ajobiabs + agobs +
+2a?,bgat + 2a,0 - by bga + byybga — ajob,a — bga + 3a a? + by a?,
by = —adybg — aZ,b, — a,obg + 6a%ya + 3a b a + byya,
biz = —ajo(4af, + 3aioby1 + 2by3).
In the above conditions we have: A;(x,y) =0 =
a; = 3a,a10 — 3afob; + arbyy — ajobibyy + ayob; — ajoashg — asbyibg + afobzbs +
+a,ob11b3bg + asb; — a;obsb; — 3aza + 5a,0bsa + by bsa — bya — aobéa —
—by béa + bgb,a — 2bga?,
bs = —4a,oa; — asby; + 3a%,b; + a,obi1b; — ajobs — ajobg — by bgat + bya — 2a?,
bg = —3aiybg — 2a,0b; + 8a,oa + 2b;;a, by, = —3a,0(2a,9 + by1) =
= A,(x,y) = 0= b, = —a,, by = —2a3, b; =3(—a.9bg + @), byy = —4a,0 =
= As(x,y) £ 0, m, = 6.
Thus, the maximal algebraic multiplicity of the line at infinity is not greater than ten
(see the case 1.1.2). In this way we have proved the Theorem.
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CONDITIILE INVARIANTE DE STABILITATE ALE MISCARII PENTRU
UNELE SISTEME DIFERENTIALE PATRUDIMENSIONALE

Rezumat. Au fost obtinute conditiile centroafin invariante de stabilitate a miscarii neperturbate pentru
sistemul diferential patru dimensional patratic de tip Darboux in conditia invariantd nedegenerata.
Cuvinte-cheie: sistemul diferential, miscarea neperturbata, invariant, comitant, algebra Lie, stabilitatea.

1. Introduction

In mathematics, stability theory addresses the stability of solutions of differential
equations and of trajectories of dynamical systems under small perturbations of initial
conditions.

The differential systems with polynomial nonlinearities are important in various
applied problems. For example: the Van der Pol oscillator; the Fitzhugh—Nagumo model
for action potentials of neurons; in seismology to model the two plates in a geological
fault; in studies of phonation to model the right and left vocal fold oscillators as well as
many other applications.

The stability of unperturbed motions using the theory of algebras, of invariants and
of Lie algebras was studied for the first time in [1].

In [2] the center-affine invariant conditions of stability of unperturbed motion,
described by critical two-dimensional differential systems with quadratic nonlinearities
s(1; 2), cubic nonlinearities s(1; 3) and fourth-order nonlinearities s(1; 4), were obtained.

In this paper, the similar investigations are done for some four-dimensional
differential systems with quadratic nonlinearities.

2. Center-affine invariants and mixt comitants for four-dimensional differential
system with quadratic nonlinearities
We consider the system of differential equations

j _ _ . —
%:aix“+a;ﬁx“xﬁzPJ(x,a) (j,a,ﬁ=1,4), (1)
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where a(iﬂ Is @ symmetric tensor in lower indices in which the total convolution is done,
and the group of center-affine transformations GL(4,R) given by formulas

X =ax, det(qf)0; (r.j=14), @
Coefficients and variables in (1) are given over the field of real numbers R . The phase
variables vector x=(x',x*,x°,x*) of system (1), which changes by formulas (2), is usually
called contravariant [3]. Any other vector y:(yl, yz,ys,y“) which changes by formulas

(2), is called cogradient with vector x. The vector u=(u,u,,u;,u,), which changes by

formulas
0, =plug, (rj=14), 3)
where p{g.) =&, is the Kronecker’s symbol, is called covariant. The vector u is also

called contragradient with vector x.

Applying the transformation (2), the system (1) will be brought to the system
ax’
dt

in which the coefficients are linear functions of the coefficients of system (1) and are

rational functions of parameters of transformation (2). We will denote the set of

coefficients of system (1) by a, the set of coefficients of transformed system (4) by a,

and the set of parameters of transformation (2) by q.

—a)x" +a, %%’ (ja,f=14), @)

According to [3], we say that the polynomial k(x,u,a) of the coefficients of system (1)
and of the coordinates of vectors x and u is call mixt comitant of the system (1) with
respect to GL(4,R) group, if the following identity holds

k(x,u,a)=A"-k(x,u,a), (5)
for all g from GL(4,R) and every coordinates of vectors x and u, as well as all the
coefficients a of system (1), where g is an integer number called the weight of comitant.

If the mixt comitant k does not depend on the coordinates of the vector u, then we call it
simply comitant, but if k does not depend on the coordinates of the vector x we call it
contravariant. If k does not depend on x and u, then we will call it invariant of system
(1) with respect to GL(4,R) group.

The following center-affine invariant polynomials of the system (1) are known from [4]:

_aa _ nanf _ aanfay _ n@nfarad
lL,=a,, l,,=aa,, |,,=a’aja;, |,,=asa a;a,

—_ % yb — A%l Y —a%aB a7 o — A% B A7 A0 yH

Pl,4—aaﬂx , P2|4—aﬁaayx , PSA_ayaa ays X, P,,=a;5a) aza, x",

— A% aB AaY A0Aak AV Oy P W T _ a — B
Kes =8y &, @ a8 8 X' XXX € 55, 94 =U, X", S, =a,X"U,,
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— a2l — n%aB a7 o R —Aa%af a7 adgkav pars
S,s=aya xuy, S;,=ajaa;x°u,, Ry, =aja;aza’ajauuuue,

uosa Ty
aSi—14

R6,4 - det[ 8le j ’ K1.4 = agy X"X yazﬂgayo‘ﬂ’ (6)
ij

i,j=L

ﬁ )

li4 (i =1,_4) are invariants, P, (i =1_4) and Kg, are comitants, S, (j =O,_3) are

mixed comitants, Rg, is contravariant, and K, ,is comitant of cogradient vectors x, v,

z [3]. The vectors &,55, and & are four-dimensional unit vector with coordinates 1

when an even permutation of the indices holds, -1 when an odd permutation of the
indices holds and 0 in other cases.
Remark 1. The characteristic equation of the system (1) has the form

p4+L1’4p3+|_2’4,02+L3'4p+L4,4=O, (7)
where the coefficients of equation (7) are invariants of system (1) and have the following
form:

1

La=—l. L2,4:_(|12,4_|2,4)’ L3v4:6(3|1‘4|2'4_2|3‘4_|f4)’

1

L,,=—
24

(8|1,4|3,4—6|4,4—6|f4|2,4+3|§,4+|;}4), @

where 4 (i=1'4) from (6).

3. Invariant conditions of stability of unperturbed motion for system (1) in case
when the roots of the characteristic equation have nonzero real parts

Definition 1. If for any small positive value ¢, however small, one can find a positive

number & such that for all perturbations x!(t,) satisfying the condition

2

> (X)) <5, (9)

=1
2

2 .
the inequality Z(Xj(t)) <g, is valid for any t=>t,, then the unperturbed motion

j=1
x'=0 (jzl,_4) is called stable, otherwise it is called unstable. If the unperturbed

motion is stable and the number & can be found however small such that for any
2

2 -
perturbed motions satisfying (9) the condition !imZ(x‘(t)) =0,is valid, then the
-0 =)

unperturbed motion is called asymptotically stable.
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By means of the Lyapunov theorems on stability of unperturbed motion by the
signs of the roots of the characteristic equation (7) of system (1) and the Hurwitz theorem
on the signs of the roots of an algebraic equation (see, for example, [5]) we have
Theorem 1. Assume that the center-affine invariants (8) of system (1) satisfy inequalities

Li,4 >0 (i :]-1_4) ’ L1,4|-2,4L3,4 - L§,4 - Li4|-4,4 >0.
Then the unperturbed motion x' =0 (j =l,_4) of this system is asymptotically stable.

Theorem 2. If at least one of the center-affine invariant expressions (8) of system (1) is

negative, then the unperturbed motion x’ =0 (j :1,_4) of this system is unstable.

4. Invariant conditions of stability of unperturbed motion for system (1) in case
when the characteristic equation has one zero root in conditions §e,4 =0, KM =0

Lemma 1. [4] If in (6) we have K1,4 =0 then the system (1) takes the form

dx! i . (a1 va\ (i . T

A 2x (al,x) (J,a_1,4). (10)
The system (10) is called four-dimensional differential system of Darboux type.

Remark 2. The expression Kg,=0 from (6) is the invariant partucular GL(4,R)-
integral of system (10).

Remark 3. For any center-affine transformation of the system (6), its quadratic part
retains its form changing only the variables and coefficients. This follows from the fact

that the identity K1,4 =0 is preserved under any center-affine transformation.
From [4] with considering Remark 3 it follows
Lemma 2. If in system (10) we have R, =0, then by the center-affine transformation

gl _ 52 _ 3 _ g4 _
X"=S,,, X°=3,,, X’=5,,, X' =35,,,

the system (10) can be brought to the following form :

Xt = x4+ 2x1(a11ax“), X% = X%+ 2x2 (ailax“), X =x*+2x3 (allax“),
X' ==L, X' — L, x* =L, ,x° — L ,x* +2x° (allax“), (11)
where S, (i =ﬁ) are from (6) and L, (j =1,_4) are from (8).

Definition 2. The differential system (1) will be called a critical system of Lyapunov type
if the characteristic equation of the system has one zero root and all other roots have
negative real parts.

Notice that for system (11) the characteristic equation coincides with equation (7).
Lemma 3. The system (1) or (11) is critical of Lyapunov type if and only if the following
invariant conditions hold:
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L,,=0 L,>0 (i=123), L,L,,-L,>0 (12)
where L, (j :1,_4) are from (8).

The proof of Lemma 3 follows from the Hurwitz theorem on the signs of the roots
of an algebraic equation and from equation (7) (see, for example [5]).

Notice that the system (11) in invariant conditions (12) by the center-affine
transformation

X =L X +L X +L X +x!, x2=x* x°=x°, x'=Xx,
can be brought to the canonical form
x=2x(ax+by+cz+du), y=z+2y(ax+by+cz+du),

z=x-L,,y-L,z—L, ,u+2z(ax+by+cz+du), u=y+2u(ax+by+cz+du). (13)

According to Lyapunov’s theorem [6], we will build the power series by which we can
determine the stability of unperturbed motion of system (13). The first equation in system
(13) is called the critical equation, and the other three are called non-critical equations.
Using the algorithm from Lyapunov’s theorem [6] we examine the equations generated
by right-hand sides of latest three equations of system (13). We have non-critical
equations  z+2y(ax+by+cz+du)=0, x-L,,y-L,z—L,,u+2z(ax+by+cz+du)=0,

y+2u(ax+by+cz+du)=0.
We express x, y and z from non-critical equations in the following way:
y =—2u(ax+by+cz+du), z=-2y(ax+by+cz+du),

u=_ —LZ"‘y—L“z+ 22(
L3,4 L3,4 L3,4 L3,4
We will seek x, y and z as a holomorphic function on x. Then we can write
y(X) = AX+AX* + AX’ +..., 2(X) =Bx+Bx* +Bx*+..., u(x)=Cx+C,x* +C,x*+... (15)
Substituting (15) into (14) we get
AX+AX+AX +...=2(Cx+Cx* +C,x° +..)[ax +b(AX+ AX* + AX® +..) +

+C(B X+ B,X* + B,X® +...) +d (C x + C,x* + C,;x° +...)],

ax+by+cz+du) (14)

B X+ B,X* + ByX® +... = —2(AX+ A X + AX +..)[ax +b(AX+ AX* + AxX® +..) +
+C(B X+ B,X* + B,X* +...) +d(Cx+C,x* + C.x° +...)],
C 2 3 _ X L2,4 2 3 L1,4 2 3
X+C X +CX +...=— ——— (AX+ AX + AX +...) ———(BX+B,Xx" +Bx" +...)+
L. L. s
+2(Bx+B,X* + B,x* +...)[ax +b(AX + AX? + AX® +..) +C(B X+ B,X* + Bx® +...) +
+d (Cx+C,x* +Cx° +..)].
This implies that A =0, B, =0, Cl:l_%' A, =-2C,(a+dC)), B, =0,

4
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_2CL,,(a+dC)
L.

C3 - L3i [Az L1,4 (a + dcl) + bA2C1L2,4 + Cz L2,4 (a + ZdCl)]’

4

C,

A, =-2[bAC,+C,(a+2dC))], B,=-2A(a+dC),

A, =-2[C (bA, +¢cB;)+C,(bA, +dC,)+C,(a+2dC,))], B,=-2[A(a+dC)+ A (bA, +dC,)],

C,= i[(Bs + AL )(@+dC) + (AL, +C,L, )(BA, +dC,y) +CiL, , (bA, +CB;) +

4
+C;L,,(a+2dC))],... (16)
Substituting (15) into right-hand side of the critical equation (13) we get
2x(ax+by +cz+du)=Dx+ D,x* + D,x° +...,
or in expanded form we get
2x[ax +b(AX+ AX? + AX® +...) +c(BX+B,x* + B,x* +..) +d (Cx +C,x* +C,x° +...)] =
= DX+ D,x* + D,X° +...,
This implies that
D, =0, D,=2(a+dC)), D,=2(bA,+dC,), D, =2(bA, +cB,+dC,),

D, =2(bA, +¢B, +dC,), D, =2(bA, +cB, +dC,), D, =2(bA, +cB,+dC,),...  (17)
Using the Lyapunov’s theorem, in [7] was obtained
Lemma 4. The stability of the unperturbed motion corresponding to system (13) is

described by one of the following two possible cases:
1) L,,a+d =0, then the unperturbed motion is unstable ;

2) L,,a+d =0, then the unperturbed motion is stable.

In the latter case the unperturbed motion belongs to some continuous series of stabilized
motions, and moreover, if perturbations are small enough then perturbed motion will tend
Asymptotically to one of stabilized motions.

Proof. According to Lyapunov’s theorem on stability of unperturbed motion in critical
case [6], we examine the coefficients D, from (17) taking into account (16). If D, =0,

then we have first case from Lemma 4. If D, =0, then we obtain A =B, =C, =0 (i>2)
from (16), therefore D, =0,i=123,.... According to Lyapunov’s theorem we have the
second case of this lemma. Lemma 4 is proved.

Theorem 3. Let for differential system of the perturbed motion (1) the invariant
conditions R;, =0, KH =0 Dbe satisfied. Then in conditions (12) the stability of
unperturbed motion corresponding to this system is described by one of the following
two possible cases:

1) 4(0%,R, -31,,1,,P,+21,,R,)-15(1%P,, ~1,,P,, —2I,,P,, +2P,,) =0, then the

14

unperturbed motion is unstable;
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1) 4(1:,R,-31,,1,,R,+21,,R,)-15(1%R,, —1,,P,, —21,,P,,+2P,,)=0, then the

unperturbed motion is stable.
In the latter case the unperturbed motion belongs to some continuous series of stabilized
motions, and moreover, if perturbations are small enough then perturbed motion will tend

Asymptotically to one of stabilized motions. The invariant polynomials I, (i =1,4) and
P., (j=14) aregiven in (6).

Proof. Using the system (13), obtained as a result of center-affine transformation in
conditions R;,#0, K ,=0 and (12) with the help of the invariant polynomials
., (i=14) and P, (j=14) from (6), we obtain

4('1?,)4P1,4 _3|1,4|2,4Pl,4 +2|3,4Pl,4) _15(|12,4P2,4 - |2,4P2,4 _2|1,4P3,4 + 2P4,4) = 30(L3,4a+d)x.

Consequently taking into account Lemma 4 we obtain truth of this theorem. Theorem 3 is
proved.

5. Invariant conditions of stability of unperturbed motion for system (1) in case
when the characteristic equation (7) has two pure imaginary roots in conditions

|§6’4 #0, K1,4 =0

Lemma 5. The characteristic equation (7) has two pure imaginary roots A+—1 and

—JJ-1 and the other two real and negative if and only if the following invariant
conditions

Le>0 Ly>0 Ll —L,>0 L,L,+L5,-L,L,L,=0 (18
hold, where L, (i=14) are from (8).
Proof. Denote by o (i =1,_4) the roots of characteristic equation (7). According to
Vieta's theorem we have

PP+t ==La 00+ 00+ PP+ PP+ PaPs+ PiPs = Lo
PPPs+ PPy + PiPsPs+ PoPsPs =—Lsar PP2PsPy = Ly s (19)

Let us suppose that p, =i and p, =—Ai (i*=-1), where A =0 is real number. From
(19) we obtain

pst+py=—L,, A2 + 00 =Ly, 22 (Ps+ps) = L. 12,03,04 =L, (20)
From the first and third equalities (20) we get
Y

A=+ [ (L.L,>0). (21)
4

Taking into account the first and second equalities from (20) we obtain



L :
'01'2+L1,4pj+|—2,4__’4:0 (1=34). (22)
Lya
Using the Hurwitz theorem on the signs of the roots of an algebraic equation [5] and the

inequality (21) we get first three conditions from (18). Substituting p,p, from second
equality (20) into last equality (20) we obtain equality from (18). Lemma 5 is proved.
Lemma 6. The characteristic equation (7) has two pure imaginary roots Av—1 and
—AJ-1 of multiplicity 2 if and only if the following invariant conditions

L,>0 L,=L,=1,-4L,,=0 (23)
hold, where L,, (i=14) are from (8).

Proof. Let us suppose that

p=p, =AM, py=p,=-A, (24)
where A =0 is real number. From (19) we obtain
L.=L,=0 24% = Lo s At = Lyse (25)

Because A =0 is real number, from (25) we get

p=t L, (L.>0) (26)

L§,4 -4L,,=0. (27)

The conditions (25)-(27) coincide with (23). Lemma 6 is proved.
Theorem 4. Let for differential system of the perturbed motion (1) the invariant

and

conditions R, #0, KM =0 be satisfied. Then this system by center-affine
transformation can be reduced to the form (x=x', y=x%, z=x% u=x")
a) in conditions (18):
X=—Ay+2X-w =P, y=AX+2y-w=Q, Z=u+2z-y =R, (28)
U=y+(*-L,,)z-L u+2u-y =S,
where A is from (21), L, is from (8) and y = Ax+By+Cz+Du with A B, C, D real

constants.
b) in conditions (23):
X=—AY+2X-y, Y=AX+2y-w, Z=u+2z-y, U=y-A°z2+2u-y, (29)
where A is from (26), L, is from (8) and y = Ax+By+Cz+Du with A B, C, D real

constants.
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Proof. a) As shown in the Lemmas 1 and 2 in conditions R, #0, KM =0 the system
(1) by the center affine transformation is reduced to the form (11). In the case (18) the
system (11) has the form (x=x', y=x*,z=x},u=x* a;, =@, a, =, a, =7, al, =9)

2
X=y+2X-®, y=z+2y-®, 2=u+2z-D, U:b;?Cdx+by+cz+du+2u-CD, (30)

where
b=-L, c=-L,, d=-L, ®=ax+py+yz+du (a,B,7,6€R). (31)
Let’s consider the transformation
X =—(C+A)y—dz+u, Y =—A(Cc+A)x—dAy+1z, Z=1x, U =1y, (32)

b
where according to (21) and (31) we have 4° = q and determinant A =—1°#0.

Making the transformation (32) in the system (30)-(31) we obtain for it the form (28).
b) In the case (23) the system (11) has the form
X=y+2X- D, y=7+2y-®, 2=u+2z2-®, Ui=—A*'x—21%2+2u-D, (33)
where

®=ax+by+cz+du, A=+ L“ , L,=L,=0 L, =4L,,. (34)

Let’s consider the transformation
X =22y+u, Y =X+ Az, Z=x, U = 1y. (35)
According to (16) the determinant of transformation (35) is A=-A4°=0.

Making the transformation (35) in the system (33)-(34) we obtain for it the form (29).
Theorem 4 is proved.

6. The theorem on the integrating factor for a four-dimensional differential system
Let's suppose that the system (1) admits the (n—1) - dimensional commutative Lie
algebra with operators

(x)— (i=14 a=13), (36)

and
A=Pi(xa)-2 (i=14) (37)
ox’

Let’s consider the determinant constructed on coordinates of operators (36)-(37)
& & & &
1 2 3 4
a2 2 2o 9
S & S %
Pl PZ P3 P4
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Theorem 5. [4] If the four-dimensional differential system (1) admits three-dimensional
commutative Lie algebra of operators (36), then the function y:% where A=0 from

(38) is the integrating factor for Pfaff equations

& & & & & & &L & & : & &
& & SI-|g & GlaHg & &g & &|d =0,
P2 P3 P4 Pl P3 P4 Pl P2 P4 Pl P2 P3
& & & & & & & & & & &
& & SI-|g & Gd+E & &g & &d =0,
P2 PS P4 Pl P3 P4 Pl P2 P4 Pl PZ PS
& & & & & & & & & & & &
& & Glik-|g & GG & Gldd g & &dx' =0, (39)
P2 P3 P4 Pl P3 P4 Pl P2 P4 Pl PZ P3

that determine the general integral of system (1).

7. The Lie algebra of operators admitted by the system (28). Some particular
integrals and one first integral of Darboux type
Lemma 7. The Lie algebra of operators admitted by the system (28) has the form

X, =[(Bd —=D)A(C+ A%)x+ AdA(C+ A%)y — 20,X* + 20,,XZ + 2C¢2XU]§+
+H-AdA(c+ A%)x+(Bd — D)A(C+ A%)y — 20Xy + 200,00, yZ + 2C<p2yu]§+
HAC+A?)Y+(C+A%)p,2— 20,2+ 20,0,2° + ZC(pzzu]§+
HAA(C+A%)X+(C+ A*)@,u— 20, XU + 20,0,2U + 2C(p2u2]%,

X, =[A(C+A%)p X+ AL(C+ A°)(C+2A%)Y — 20,X* + 2,0, XZ + 2C/1(o6xu]§ +
H=AL(C+ A%)(C+2A%)X+ A(C+ A% @Y — 200,XY + 2 A0, YZ + 2C A, yu]%+
HAA(C+A%)X+ A(C+ A%) 0,2 — 20, X2 + 2A,0,2° + 2C/1¢62u]§ +
H=AL?(C+A%)y + A(C+ A7) U — 20, XU + 21 0,0,2U + ZCM)GUZ]%,

X, =[-BA(C+A%)X— AA(C+ A%) Y + 20, X* + 200, X7 + 2¢9xu]§+

HAA(C+A?)X—BA(C+A?)Y + 20Xy + 2, yZ + 2¢9yu]§+
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H-BA(C+A%)Z+ A(C+ A*)U+2¢,X2 + 2, 2° + 2¢gzu]§+
HAC+A?)Y+AC+A%)’z+(Ad = BA)(C+ A*)U + 20, XU + 2¢9,2U + Z(pguz]%,
X, =[Ac+A%)Xx=2(p, — BA?)X* + 2A(C+ A*) Xy — 21, X2 +20/Ixu]§+
HA(C+ A%y —2(p, —BA*)xy +2A(C+ A%)y* —2A¢,, Yz + 2Ciyu]%+
HA(C+A%)2—2(p, —BA®)xz +2A(C+ A%)yz — 24, 2° + ZC/izu]%Jr

HA(C+A%)U—2(p, — BA*)xu +2A(C+A*)yu —2A¢,,2u + ZCluz]a%, (40)
where
@, = (A% +B?)cd — BCd — BDc+CD — ACA + (A%d + B2d — BD)A?,
@, = Ac+(Bd —D)A+2A1%, ¢@,=-Cd+(c+A%)D,
@, =—2BCc+C2 + A(Cd — DC) A +3(A%C + B2 — BC) A2 — ADA® + (A% + B?)(c +24%),
@, =B(C+24%)—C, ¢, =B(c+24°)—-C—AdA, ¢, =(A’+B?)(c+A1%)—BC,
@, = AC(C+42)+B(Cd —Dc)A—BDA®, ¢, = AD(c+4%)—BCA, ¢,=Cd—cD—DA% (41)

Proof. Writing the operators (36) in a general form X :gj(x)£ and solving the

determining equations
P +ELP P+ EL P =PI+ E°PL + EPL+E'PL, (j=1,4)
we obtain that the system (28) admits the operators (40)-(41).
The operators X, (i=1,2,3,4) are linearly independent, since the determinant of fourth
order constructed on coordinates of these operators is different from zero. Notice that
commutators  [X;, X;1=0, (i, ] =1,4). Therefore operators X, (i=14) form a four-
dimensional Lie algebra. Further, using the theorem 5 on integrating factor we calculate
determinant x which is constructed on the coordinates of three operators X, (i=1,2,3,4)
and on the right-hand sides of the system (28), we obtain
Fagy = Moy =0, fhyy = A'BAC+A") 616,65, fhpy =—AAUC+A") 6,656,
where
G, =X +Y’, ¢,=2°+cA-2(Bc—C+BA*)x+2A(c+A%)y+2A(-Cd +cD+DA?)z +2CAu,
¢, = A°X2 +dAxy +cdAxz + A(2c+d* +4A%)xu—(C+ A?)y* —[2¢® +(6C +d?)A* +4A%]yz —
—cdyu —[c® +c(5¢c+d?*) A% + (8c+d*)A* +44°]2° —[¢® + (4c +d?) A% + 44| (dzu —u?). (42)

We denote the operator of system (28) by A = P§+Q%+ R§+ S i. Then we obtain

0z ou
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Ag) =4qy, M) =26y, Ag)=c(d+4w), Alss))=2Qa+p)sisiv,
where y = Ax+ By +Cz+Du.
From the last equalities we get
Theorem 6. The functions ¢, ¢,, ¢, from (42) are particular integrals of the system (28)
and the function F =¢,g,” is a first integral of Darboux type for this system.
Remark 4. The comitant K., from (6) for the system (28) has the form K, =Acg;,
where 4 from (21) and ¢,, ¢, are from (42).

8. The Lie algebra of operators admitted by the system (29). Some particular
integrals and one first integral of Darboux type
Lemma 8. The Lie algebra of operators admitted by the system (28) has the form

Y, =[A°Xx=2(C + BA®)X* + 2AA°xy + 2DA°xz — 2C/1xu]§+
A%y —2(C+BA*)xy + 2A1%y* +2DA%yz — ZC/lyu]% +
+[A%2-2(C +BA*)xz +2A1%yz +2DA%2° — ZClzu]g +
2% —2(C +BA%)xu+2A1%yu +2DA%zu — ZCZUZ]%,

Y, =[-DA*x+2(CD - ACA+BDA*)x* —2D’A°xz + 2CD/1XU]§ +
+[-DA%y +2(CD — ACA + BDA?)xy — 2D?A%yz +2CD/1yu]%+
A1’y —DA%’z+2(CD - ACA+BDA*)xz—2D*2%2% + 2CDAZU]§ +
+[A2*x— DA% +2(CD — ACA + BDA)xu — 2D%A%2u + ZCDxluz]a%,

Y, =[-BA*X— AA%y + 2EX? + 24%(AC — BDA)xz + 24(BC + ADz)xu]§+
+HAL’x—BA’y + 2Exy + 24*(AC —BDA)yz + 2A(BC + AD/”t)yu]%Jr
+[-BA%Z + Ad2U + 2Exz + 242(AC — BDA)z? + 2A(BC + AD&)ZU]% +
+AL%y — A1*z —BA’u+2Exu + 24°(AC —BDA)zu + 2A(BC + AD/l)uz]%,
Y, =[-A*(C+BA%)x— A2’y + 2HX* — 2A°Fxz + ZZGxu]g +

HALXx—A%(C +BA?)y + 2Hxy — 21°Fyz + ZﬂGyu]%Jr
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AL Xx—2%(C+BA*)z+ AL'u+2Hxz — 2A°Fz% + 2/1qu]§+
z

+—Mﬁz—/13(C+B/12)u+2qu—2&3qu+MGuz]§, (43)
u

where E =BC+ (A +B?*)A%, F =CD-ACA+BDA?, G=C*+BCA*+ADA?,
H =C?+BCA® + ADA® +(A* + B) A"
The proof of Lemma 8 is similarly with the proof of Lemma 7.
The operators VY, (i=1,2,3,4) are linearly independent, since the determinant of fourth
order constructed on coordinates of these operators is different from zero. Notice that
commutators  [Y,,Y;1=0, (i, ] —1,4). Therefore operators Y, (i=1,4) form a four-
dimensional Lie algebra. Further, using the theorem 5 on integrating factor we calculate
determinant x which is constructed on the coordinates of three operators Y, (i=12,3,4)
and on the right-hand sides of the system (29), we obtain
Loy =tz =0, fhy, = _A22'7(02¢7 Hozy = ~-A’ Bl7§92¢,

where

p=xX+Yy*, ¢=2>-2(C+BA*)x+2A1%y+2DA%z—2CAu, (44)
Direct calculation of the operator A for the system (29) gives

Ao)=4py, Ag)=20y, Ag"¢")=2Qa+pe ¢y,
where y = Ax+ By +Cz + Du.

From the last equalities we get
Theorem 7. The functions ¢ and ¢ from (44) are particular integrals of the system (29)

and the function F =g is a first integral of Darboux type for this system.
Remark 5. The comitant K., from (6) for the system (29) has the form K, =A%,
where 4 from (26) and ¢ are from (44).
Remark 6. The first integral F =¢¢,” of the system (28) is the holomorphic integral of
Lyapunov type, i.e. this integral can be written in the form F =x*+y?+F(x,y,zu),
where F(x,y,z,u) is the polynomial of the order more than two.

From [4] it is known the comitant of system (1) in the form

4
CI)4,4 = L4,4 o 2(5 L3,4 P1,4 + L2,4P2,4 + L1,4 Ps,4 + P4,4j’ (45)
where P, (j=14) are from (6) and L, (i=14) are from (8).

Remark 7. The comitant @, , for the system (28) has the form ®,, =—A4¢,, where &, is

from (42).
Using the Lyapunov’s theorem [6], the theorems 6-7 and remarks 6-7, we obtain
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Theorem 7. [8] Assume for the system (1) with K, =0 and R, =0 under center-affine

invariant conditions (18), the comitant (45) is not identically zero. Then the system has a
periodic solution containing an arbitrary constant, and varying this constant one can
obtain a continuous sequence of periodic motions, which comprises the studied
unperturbed motion. This motion is stable and any perturbed motion, sufficiently close to
the unperturbed motion, will tend asymptotically to one of the periodic motions.
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PROIECTIVITATEA FASCICOLELOR DE SECTIUNI CONICE

Abstract. In aceasti lucrare sunt discutate cateva rezultate care vor fi de ajutor in viitor, de a clasifica si
de a demonstra anumite teoreme ale curbelor cubice in planul proiectiv.

Cuvinte cheie: plan proiectiv, sectiuni conice, serii proiective, fascicole de sectiuni conice.

We are working in the projective plane.
Definition 1. A series (or range) is a bijective function which has as an image a line from
the plane.
Definition 2. Let f, g be two series and ra bijective function, such that
Dom(r) = Dom(g) and Im(r) = Dom(r). Then we define the series f and g (in this
order) to be r - projective, written simply as f A, g, if and only if for any distinct points
{A B,C,D}c Im(9g);
(A,B;C,D) = (frg™*(A), frg™(B); frg™*(C), frg (D)) - as cross-ratios [1, p. 33].
Because of bijectivity if the above equality is true, then also
(A, B;C,D) = (grf *(A), grf 7(B); grf 7(C), grf (D))
is true. Hence f A, g > g A, f. Similarly g, f —> f A, g. Therefore the order does
not matter, and we will simply denote f A, g—>gAa, f to mean that f and g are
I - projective.
Definition 3. Let A B,C,D be four distinct any three non-collinear points in the
projective plane. P, is the set that contains all the conics that pass through A B,C

and D also named a pencil of conics. Let x be a line that passes through only one of the
points A, B,C or D. Suppose it passes through A (the same procedure is undertaken for

the other points). Then any conic from the pencil P, intersects the line x in another

second point, let it be X. X is different from A in all cases except the case when the
conic is tangent x, and A= X will be a double point. Now, for any X e x there is,

respectively, the conic XABCDeP,.,, the conic that passes through the points
X,A,B,C and D when X = A it will be the conic from the pencil tangent to x.
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This establishes a bijective correspondence between points X € x and conics from
Puwco. IN particular a function f :P,., — X. This series will be denoted by s, ,, ., or
simply s,, when there is no confusion.

Before going forward with the main theorem, we need a lemma, which is a
well-known result in projective plane geometry.
Lemma 1. Let A and B be two points, a, and b, will represent lines passing through A
and respectively B, ieN.

1. If (a,,a,;8,,a8,)=(b,,b;b,,b,) (this is the cross-ratio of lines), (a,,a;a,,a,)=
= (b,,b;b,.b), (3,3:a,,8)=(b,,b;b,,b) and finally (a,,a;a,,a,)=(h,b;:b,.b,),
then (a,,a,;a;,a,) = (b,,b,;b,,b,).

2. In this part every line passes through A If (a,a’;n,m)=(b,b;n,m)=
=(c,c’;n,m)=(d,d’;n,m) then (a,b;c,d)=(a’,b’;c’,d").

Theorem 1. Let A B,C, D be four distinct non-collinear points in the projective plane,
see Figure 1. Let x,y be lines that pass through only one of the points A,B,C or D.
Then s, A,y s, where id is the identity function on P,..,.

Proof.

Let X ex and Y = XABCDANy, where Y is the second point of intersection on
line y. There are two cases, either the lines pass through the same point or through two

different points.
First case. Suppose, without loss of generality, that xny = A Then

A(X,Y;D,C)=B(X,Y;D,C)
by the conic's general properties. As X varies on X, the cross-ratio of A(X,Y;D,C) is
constant, as the lines x, y are fixed, results that the cross-ratio of B(X,Y;D,C) also must
be constant. So as X varies on x, Y moves accordingly on y. Because B(X,Y;D,C) is
constant for any X € x, by the lemma (here n=BD, m = BC) from above, we have for
X,, X,, X,, X, (distinct points on x) and their corresponding Y,,Y,,Y,,Y, on y, that
B(X,, X,; X,,X,)=B(Y,,Y,;Y,,Y,)
which means exactly
(X, X, X5, X)) = (Y, Y,5 Y, Y,)
therefore s, A, s, .

93



y A
2 A
P s
_.;-’ -~ f
P N !
., i “ '
" p _ \A P Ili‘D
, D s
A ¢ « \
= '
A N ! e
I , ! ™
[+] A
! w0 B ! “
B S — ~ C
/ ~._C ! .,
s e

Figure 1. The two cases
Second case. Suppose, without loss of generality, that Ae x, B e y. Then
A(X,Y;D,C)=B(X,Y;D,C).
Furthermore, the cross-ratio of A(X,Y;D,C), depends only on Y, as the lines
AX, AD, AC are fixed. Same way, the cross-ratio of B(X,Y;D,C) depends only on
X. Soas X isvarieson x, Y moves accordingly on y. By the cross-ratio properties, we
have also that
A(D,C; X,Y)=B(X,Y;D,C).
By the lemma (here a, = AD, a, = AC, a, = AX and b, =BC, b, =BD, b, =BY),
we have for X, X,, X,, X, (distinct points on x) and their corresponding Y,,Y,,Y,.,Y,
on vy, that
A(X,, X, X4, X,)=B(Y,,Y,:Y,,Y,)
which means exactly
(X, X, X5, X,)=(Y,,Y,; Y, Y,)
therefore s, A, s, .
This theorem shows that it does not matter which line x (as in the theorem) is

chosen, the series is projectively "invariant”. In conclusion, any pencil of conics gives a
unique projective series.
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SISTEMELE DIFERENTIALE CUBICE CU DREPTE INVARIANTE AFINE
REALE DE MULTIPLICITATE PARALELA TOTALA SASE SI DE
CONFIGURATIA (3(m),1,1,1)

Rezumat. Sunt clasificate sistemele diferentiale cubice cu exact gsase drepte afine reale invariante (tinandu-
se cont de multiplicitatea paraleld) de patru pante. O dreaptd de prima panta are multiplicitatea paralela
m, m = 1,2, 3. Se arati ci exista cinci clase distincte de astfel de sisteme. Fiecare clasa este studiatd din

punct de vedere calitativ gi pe discul Poincaré sunt construite portretele de faza.

Cuvinte-cheie: Sistem diferential cubic, dreapté invariantd, portret de faza.

1. Introduction and statement of main results

We consider the real polynomial system of differential equations

dz B dy B B
and the vector field 5 5

ox oy

associated to system (1).

Denote n = max { deg(P),deg(Q)}. If n = 2 (n = 3) then system (1) is called
quadratic (cubic).

An algebraic curve f(z,y) =0, f € Clz,y] (a function f = exp({), g,h € Clz,y]) is
called invariant algebraic curve (exponential factor) of the system (1) if there exists a polyno-
mial
K; € Clz,y], deg(K;) < n — 1 such that the identity X(f) = f(z,y)Ks(z,y), (z,y) € R?
holds. In particular, a straight line | = ax + By + v =0, «, 3,7 € C is invariant for (1) if
there exists a polynomial K; € Clz, y] such that the identity

aP(z,y) + BQ(z,y) = (ax + By + 7 Ki(z,y), (z,y) € R’ (3)

holds. The polynomial K¢(z,y) is called cofactor of the invariant algebraic curve (exponential
factor) f. If m is the greatest natural number such that I divides X() then we say that [
has parallel multiplicity m. In the case of cubic systems we have m € {1,2,3}. If [ has the

parallel multiplicity m, then f; = exp(%), T exp(lm%l) are exponential factors.
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Let fi,..., [, (fr—i—l = exp(gry1/hrs1)s -y fs = exp(gs/hs)) are invariant algebraic
curves (exponential factors) of (1) with cofactors Ky, (z,y), ..., Ky, (x,y), respectively. The

system (1) is called Darboux integrable if there exists a non-constant function of the form F' =

al--: a‘s
1 s

a; € C,j = 1,s, such that either F' is a first integral or F' is an integrating factor for
(1) (about the theory of Darboux, presented in the context of planar polynomial differential

systems on the affine plane, see [23]). The function of the form

R (4)

where o; € C, |ag| 4+ -+ + |as| # 0, is a first integral (an integrating factor) for (1) if and
only if in z and y the identity

0K (2,9) + 02K (,9) + o+ K, (2,9) = 0 o)
(Z k(o) = - 20 S y>> ()

holds.

By present a great number of works have been dedicated to the investigation of poly-
nomial differential systems with invariant straight lines.

The problem of estimating the number of invariant straight lines which a polynomial
differential system can have was considered in [2]; the problem of coexistence of the invariant
straight lines and limit cycles was examined in {[22] : n = 2}, {[11], n = 3}, [10].

The classification of all cubic systems with the maximum number of invariant straight
lines, including the line at infinity, and taking into account their geometric multiplicities, is
given in [13].

In [2] it was proved that the non-degenerate cubic system (1) can have at most eight
affine invariant straight lines. The cubic systems with exactly eight and exactly seven distinct
affine invariant straight lines have been studied in [13], [15]; with invariant straight lines of
total geometric (parallel) multiplicity eight (seven) - in (3], [4], [5] ([19], [30]), and with six
real invariant straight lines along two (three) directions - in [17], [18]. The cubic systems
with degenerate infinity and invariant straight lines of total parallel multiplicity six and
total parallel multiplicity five were investigated in [20], [27], [28]. In [31] it was shown that
in the class of cubic differential systems the maximal (algebraic, geometric, integrable or
infinitesimal, see [6]) multiplicity of an affine real straight line (of the line at infinity) is
seven. In [32] the cubic systems with two affine real non-parallel invariant straight lines of
maximal multiplicity are classified.

In this paper a qualitative investigation of real cubic systems of the form

y = QO + Ql(x7y) + QQ(xay) + Q3(£L',y) = Q(l‘;y), ng<P7 Q) = 17 <7)

where P, = . ajaial, Q= Y. byzizl (k=0,3) and |P3(x,y)| + |Qs(x,y)| # 0, with
=k j+I=k
affine real invariant straight lines of total parallel multiplicity six and of four distinct slopes,

{ 9'5:Pg—i—Pl(:c,y)+P2(x,y)+P3($,y) Ep(x>y)a
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is given. Only one invariant straight line from these lines can have the parallel multiplicity
greater or equal two. Our main result is the following one:

Theorem 1.1. Assuming that a cubic system (7) possesses affine real invariant straight
lines of total parallel multiplicity sixz with four distinct directions and at least three of these
lines have multiplicity one. Then via an affine transformation and time rescaling this sys-
tem can be brought to one of the five systems (8)—(12) given in Table 1.1. Also, in this
table for each system (8)—(12) the invariant straight lines, Darboux first integral F(z,y)

(07" integrating factor u(zx, y)) and phase portrait in the Poincaré disk are given.

Table 1.1. Canonical forms and qualitative investigation of the cubic systems with
invariant straight lines of configurations (3,1,1,1), (3(2),1,1,1) and (3(3),1,1,1)

P Y ) Y Y

Fig./
Systems, invariant straight lines [;, first integral (F) or integrating factor () Tab.
Configuration (3,1,1,1).
t=z(x+1)(x—a),
(8) y=(y—1)(ay+ (1 =0b)z? + (a — 1)bxy + aby?), 1.1/
(b—1)(a+b+ab)(1+b+ab) #0, a>0,beR,
4.1
h=z =2+l ls=z—-aly=y-1L5=x—ay ls=2+y;
pla,y) = 2 (x 4+ 1)%(x — a)®(y — 1) (z — ay)*(z +y)*
1-0
where Qy = (1 — b)a1 = T, Qg = alvg = —ﬁ, a5 = (&+ b+ ab)ag,
Nz —
ag = (14+b+ab)as if b#0; Fi(z,y) = (r+ Diw — ay) if b=0;
z(y —1)
Configuration (3,1,1,1).
t=z(x+1)(r—a), -1<a<1l,a#0, b>0, c€ R
y=y(—a+(1—a)z+(1—bc)z*+ (b— ey + cy?), 1.2/
9) (la4+0b+abl +|ac— (a+1)?) (1 +a+ab] +|c—a]) #0, if —1<a<0,
and (|b—a| + ac — 1])(Jc —a| + |ab—1]|) #0, if 0 <a <1, 4.2
llzxa l2:$+1713:I—CL, l4:y7 l5:y—$, 16:y+bxa
Fy(z,y) = (x+ 1) ot (z—a)" oty @D (y —2)(y + bo);
Configuration (3(2),1,1,1).
T =a*(r+1),
(10) Y= y(x + (1 = be)a? + (b— 1)cay + cyz), 13
beRL, ceR",
hp=z,ls=2+1 =y ls=y—wls=y+ bz
Fy(z,y) = (z+ 1)~ Oy~ (y — 2)(y 4 br);
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Table 1.1 (continued)

Fig./
Systems, invariant straight lines [;, first integral (F) or integrating factor () Tab

Configuration (3(2),1,1,1).

T =z%*(z+1),
(11) y=y(—bc—2bcx+ (b—1)cy + (1 —be)z? + (b — 1)czy + cy?),

1.4
beRY, ce R,
117221‘, l3:$—|—1, l4:y, l5:y—x—1, l6:y+b(:n—|—1),
F4(I,y) _ x_(b+1)b06(b+1)b6/xy_(b+1)(y —r— 1>b(y + b(x + 1))’
Configuration (3(3),1,1,1).
T = a3,
(12) y=y((1—bc)z? + (b—1)cay + cy?), 15
cbe—1)(bc+c+1)(* +bc+1)#0, b>0, c € R,

hos=a,lu=y,ls=y—z, lsg =y + bx;
Fy(z,y) = o~ Oy~ (g — )b (y + br).

Fig. 1.1. Phase portraits of the system (8)
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o

)
Fig. 1.2. Phase portraits of the system (9)

e

1) 1) 2)
Fig. 1.3. Phase portraits of the system (10)  Fig. 1.4. Phase portraits of the system (11)

ke

Fig. 1.5. Phase portraits of the system (12)

2. Some properties of the cubic systems with invariant straight lines

By a straight lines configuration of invariant straight lines of a cubic system we un-
derstand the set of all its invariant affine straight lines, each endowed with its own parallel
multiplicity.

The goal of this section is to enumerate such properties for invariant straight lines that
will allow the construction of configurations of straight lines realizable for (7). Some of these
properties are obvious or easy to prove and others were proved in [29].

Properties:

2.1) In the finite part of the phase plane each system (7) has at most nine singular
POINts.

2.2) In the finite part of the phase plane, on any straight line there are at most three
singular points of the system (7).

2.3) The system (7) has no more than eight affine invariant straight lines ([2]).

2.4) At infinity the system (7) has alt most four distinct singular points if
yPs(x,y) — xQs3(x,y) #£ 0. In the case yPs(x,y) — xQs(x,y) = 0 the infinity is degener-
ate, i.e. consists only of singular points.
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2.5) If yPs(z,y) — zQs(x,y) # 0, then the infinity represents for (7) a non-singular
invariant straight line, i.e. a line that is not filled up with singularities.

2.6) Through one point cannot pass more than four distinct invariant straight lines of
the system (7).

We say that the straight lines [; = oz + By +; € Clz,yl, (a5, 8;) # (0,0),5 = 1,2,
are parallel if a1 By — s 87 = 0. Otherwise the straight lines are called concurrent. If an affine
invariant straight line [ has the parallel multiplicity equal to m, then we will consider that
we have m parallel invariant straight lines identical with /.

2.7) The intersection point (xg,yo) of two concurrent invariant straight lines l; and Iy
of the system (7) is a singular point for this system.

By a triplet of parallel affine invariant straight lines we shall mean a set of parallel
affine invariant straight lines of total parallel multiplicity 3.

2.8) If the cubic system (7) has a triplet of parallel affine invariant straight lines, then
all its finite singular points lie on these straight lines.

2.9) The parallel multiplicity of an affine invariant straight line of the cubic system
(7) is at most three.

2.10) If the cubic system (7) has two concurrent affine invariant straight lines ly, Iy
and ly has the parallel multiplicity equal to m, 1 < m < 3, then this system cannot have more
than 3 —m singular points on ly \ 1.

We say that three affine straight lines are in generic position if no pair of these lines
are parallel and no more that two lines are passing through the same point.

2.11) For the cubic system (7) the total parallel multiplicity of three affine invariant
straight lines in generic position is at most four.

Proposition 2.1. Ifi=ax+ fy+v =0, a #0 (5 #0) is a real invariant straight line of
the system (7) then the transformation X = ax+By+7, Y =y (X =ax+ By +7, Y =x)
reduce (7) to a system of the form

X = X(ao+ a1 X 4+ asY + asX? + ay XY + asY?),
Y =by+ 01X +boY + by X2+ by XY + by Y2+ (13)
+b6 X3 4+ b X2V 4 by X Y2 4 byY3.

Indeed, in the case a # 0 (5 # 0), from (7) and (3), we have:

X =i+ 8y = (ax + By + ) Ki(z,y) = X - K (X = Y —v)/a, Y),
Y =y =0Q(z,9) = Q((X - Y —7)/a,Y)

( X = ai + By = (az + By + ) Ki(z,y) = X - KoY, (X — oY —7)/8), )

Y =5 =Q(z,y) = Q(Y, (X —aY —7)/8) '
Denote that the polynomial K;(z,y) has degree less or equal to two and, consequently,

K ((X = BY —v)/c, Y) has the same degree. [J

Proposition 2.2. Ifl; = aje+ By +7 =0, 5 = 1,2, A = a1ffs — i # 0 are two

real invariant straight lines of the system (7) then the transformation X = cix + 1y + 71,
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Y = asx + Boy + 2 reduce (7) to a system of the form

(14)

X = X(ag+ a1 X + asY + asX? + ay XY + a5Y?),
Y =Y (b + b X +bY + b3 X2+ 0, XY + b;Y?).

Indeed,

X =i+ 51y = (uz+ by +7)K,(x,y) =
=X K ((52X — B1Y + Biva — Bonn) /A, (e X + oY + apyy — 041’72)/A)7
Y = o + o) = (a0 + Bay + 72) Ky (w,y) =
=Y - K, ((52X = B1Y + Biye — Bon) /A, (e X + oY + oy — 04172)/A)- U

3. Canonical forms

Let the system (7) hase a triplet {l;, ls, I3} of parallel invariant straight lines. Then:

3.1) l;, j = 1,2,3 are distinct and [y || Iy || I3, or

3.2) l; has parallel multiplicity two, Iy =11 #Z I3 and [ || I3, or

3.3) l; = ly = I3 and [; has parallel multiplicity three.

Along four directions there are only three possible configurations of six invariant
straight lines, three of which form a triplet of parallel invariant straight lines:

1)(3,1,1,1), 2) (3(2),1,1,1), 3) (3(3),1,1,1).

Notation (3,1,1,1) means that there are six distinct real invariant straight lines of
four directions and three of these lines form a triplet of parallel straight lines (the case
3.1)). Configurations (3(2), 1,1, 1) and (3(3), 1,1, 1) correspond to the cases 3.2) and 3.3),
respectively.

3.1. Configuration (3,1, 1,1). Without loss of generality we can consider that one straight

line of these six is parallel with to Ox axis and the straight lines from triplet are parallel
with to Oy axis of coordinates. Taking into account the properties 2.2), 2.7) and 2.8)
from Section 2, the straight lines can have (up to some affine transformations) one of the

following three positions given in Fig. 3.1.

1, 11| I 15 ; L, 1 L, 1,
6
14
Ly
1
Is

a) b) c)
Fig. 3.1. Configurations of the type (3,1,1,1)

L1 Is

L

}\16

It is clear that the set of cubic systems which have the invariant straight lines of

configuration (3,1,1,1) is a subset of the set of all cubic systems which have invariant
straight lines of configuration (3,1).

In the case a) of Fig. 3.1 we can consider Iy = =, [; Nl Nlg = (0,0),ls = x + 1,
l3=x—a,a >0, ly =y — 1. Then, using an affine transformation and time rescaling, the

cubic system for which (0,0) is a singular point and [;, j = 1,2, 3,4 are invariant straight
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lines can be written in the form

{ t==xz(x+1)(x —a) = P(x,y), a >0,

. (15)
v = (y — 1)(biw + byy + bsx® + byxy + bsy?) = Q(x,y), ged(P,Q) = 1.

Note that the straight line | = y — Ar — B =0, A, B € R is invariant for polynomial

differential system (1) if and only if the polynomial in z:
U)(z) =Q(x,Ax + B) — A- P(z, Az + B)

is identically zero. According to [16] if the straight line l =y — Ax — B =0, A,B € R is

invariant for (1) then [ divides

EX)=P-X(@Q) - Q- -X(P),i.e
E(X)IP(Q?,Z])(P( y>8Q z,Y) +Q(Q3 y>8Q(JJy)> Q(:C y)(P(:c y) xy)—i-Q(QZ y)@P(my))I

The polynomial F(X) has in x and y the degree 3(n — 1) + 2. In particular, in the case
of cubic systems we have deg (E(X)) = 8. Let Iy, ..., be the invariant straight lines of
(1) and | = y — Ax — B. Suppose that the lines [, [;, j = 1,...,6 are distinct. Denote
Ey(z) = (E(X)/(ly--lg))|y=az+p- The straight line | = y — Az — B is invariant for (1) if
and only if in the same time the identities ¥;(z) = 0 and E;(x) = 0 take place.

The straight line I; (I) passes through the singular points (0,0) and (a,1) ((—1,1)),
therefore it is described by equation z —ay = 0 (x+y = 0). The lines l5 and lg are invariant
if

Uy, (z) = z(a — z)(a(by — aby — a) + (bs + abs + a*bs — a*)z) =0,
{ Uy (z) = z(x + 1)(62 —by—a+ (1 —bs+by— b5)x) =0,

i.e. if the following series of conditions is satisfied: b = 0, by = a, by = b(a — 1), by = ab,

where b = 1 — bs. In these conditions the system (15) looks as

{x':x(x+1)($—a)zp($ay)’ a>0, (16)

y=(y—1)(ay+ (1 = b)a*+ (a — 1)bzy + aby®) = Q(x,y), ged(P, Q) =1,

i.e. we obtain the system (8) from Table 1.1.
Let | =y — Az — B. For (16) we have

Ei(z) = —(a(1+bB)(2 — 2b+ 3bB) + b(a — 1 + 5aA + b — ab — 2aAb — 2bB + 2abB+
+6aAbB)x + b(1 — b — 24b + 2aAb + 3aA?b)x?),

U)(x) =aB(B—1)(1+bB)+ B(2aA+b—ab — 2aAb— bB + abB + 3aAbB)x+
+((1=0)(1+ A)(aA — 1) + B(1 — b — 24b + 2aAb + 3aA%b))z*+
+bA(1 + A)(aA —1)z?

In conditions a > 0 and deg (ged(P, Q)) = 0 the identities {¥;(z) = 0, Ey(x) = 0} hold if
(b—1)(a+bla+1))(1+b(a+1)) = 0. In this case (15) has more than six 1nvar1ant straight
lines. Indeed, in the case b =1 (respectively, a + b(a + 1) = 0; 1+ b(a+ 1) = 0) the system
(15) has the invariant straight line l; = y (respectively, l; =x—ay+a+1; 1, =1 +b(:1:—|—y)).

In the case b) and ¢) of Fig. 3.1 we can consider l; = z,ly = x+1, I3 =xr—aand [y = y.
It is clear that in the case b) (c)) of Fig. 3.1 we have —1 < a <0 (a > 0). Moreover,
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in the case ¢) we can consider 0 < a < 1. The cubic system for which [;, j = 1,2, 3,4 are

invariant straight lines looks as

{j;:x(x+1)(x—a),(—1<6L<00r0<a§1), (17)

= y(bo + b1 + bay + bsx® 4 bazy + bsy?).
The straight lines /5 pass through the singular point (0,0). Therefore, they are described

by an equation of the form y — bx = 0, b € R\ {0}. Using the transformation = — z, y —
ay, a > 0 we can choose l5 = y—x. Then, I = y+bx, b > 0. Solving the system of identities

U, (z) = x(a+by+ (b + by +a— 1)z + (bs + by + b5 — 1)2?) = 0,
Uiy (w) = ~bw(a+ by — (b-by — b1 —a+ )z + (B by —b-by+ by — 1)2%) = 0

we obtain that the straight lines l5 ¢ are invariant for (17) if by = —a, by = 1 —a, by = 0,

by =1 —be, by = c(b— 1), where ¢ = b3, i.e. if the system (17) has the form

t=xz(x+1)(x —a)=Plx,y), -1 <a<1l,a#0,b>0, (18)
y=y[—a+ (1 —a)z+(1—bc)a? +c(b— Dy + cy?] = Q(w,y).
Let | =y — Ax — B. For (18) we have

El(.%')
\I/l(l')

c(3(cB* —a) +2(1 —a — ¢B + 3cAB + bcB)x + (1 — 2cA + 3¢A? — be + 2cAb)z?),
B(B%*c—a)+B(1 —a—cB+3cAB+bcB)x + B(1 — 2cA + 3cA? — be + 20cA)z*+
+cA(A —1)(A+b)z>.

If ¢ =0, then (18) is degenerate, i.e. deg (gcd(P, Q)) > 0. Let ¢ # 0. Then, the system
of identities { Ej(z) = 0, ¥;(z) = 0} is equivalent to the system of equalities { A(A—1)(A+
b)=0,cB>—a=0,1—a—cB+3cAB+bcB =0, 1 —2cA + 3cA* — bc + 2cAb = 0}.

In the case A = 0 we obtain b—a=ac—1=0, B=1/aorc—a=ab—1=0, B=—1.
Therefore, if 0 < a < 1 then the system (18) has the seventh invariant straight line l; =
y—a=0ifb—a=ac—1=0,B=1/aandl; =y+1=0ifc—a=ab—1=0, B=—1. Let
(|b—a|+]ac—1])(Jc—a|+|ab—1]) #0 and A=1. Then {c—a=ab+a+1=0, B=1}
= —1 < a < 0 and we have the invariant straight line l; = y — x — 1 = 0. At last, if
A= —bthen a+bla+1) =ac— (a+1)>=0,A = B = a/(a + 1). Taking into account
that b > 0 these equalities imply —1 < a < 0. Thus, if —1 < a < 0 then the system
(18) has exactly six distinct invariant straight lines if and only if the following inequality
(lc = al + |ab+ a+ 1]) (la + bla + 1)| + |ac — (a + 1)?]) # 0 holds.

The above description leads us to the system (9) from Table 1.1 and to the inequalities
associated with it.

3.2. Configuration (3(2),1,1,1). Let the system (7) have six invariant straight lines of

the considered configuration of which /; has parallel multiplicity two, Iy =1 —1, and I3 || [ .
Taking into account Properties 2.8) and 2.10) the invariant straight lines {;, 7 = 1,...,6

have (up to some affine transformations) one of the following two positions given in Fig. 3.2.
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G /Jf/ lj \\\I///a \\\\ ////
/// \\1\\1614 /’// \\\{6 Rd // \\2\
b) a) c)
Fig. 3.2. Configuration (3(2),1,1,1) Fig. 3.3. Configuration (3(3),1,1,1)

Without loss of generality we can consider that ;o = z, I3 = v +1, l4 = y. The cubic system

for which these lines are invariant looks as

{ t=2*(r+1) = P(x,y),

19
5= b+ bz + by + bt + by + boy?) = Qs y), sed(P.Q) =1, 1Y

In the case a) (b)) of Fig. 3.2 via the transformation x — z, y — vy, v # 0 we make
the line /5 to be described by the equation y —z =0 (y —x —1 = 0). The equation of s has
the form y = —bx (y = —bx — b), b > 0. In this case, i.e. a) (b)) of Fig. 3.2, the straight

lines I5 ¢ are invariant for (19) if the identities hold:

\1115 :$[b0+(b1—|—b2—1)$+(b3—|—b4+b5—1)$2:| EO,
\Ijlg :bx[—b0+(bbz—b1+1)$+(bb4—b2b5—b3+1)l‘2} =0

\I’l5 :bo+b2+b5+(bo+bl+2b2+b4+3b5)$+(b1+62+53+254+3b5—1)$2+
+(b3 + b4 + b5 — 1)1’3 = O,
U, = b[ — by — b?bs + bby + (—3b%b5 + 2bby + bby — by — by)x + (—3b*b5 + bby+
+2bby — by — b3 + 1)262 + (—beg) + bby — b3 + 1)333:| =0
These identities give us
b(]:bg:O, 61:1, b3:1—bc, b4:C(b—1)
(bo = —bC, b1 = —QbC, bg = b4 = C(b - 1)7 bg =1- bC),
where ¢ = b;. We obtained the system (10) ((11)) from Table 1.1. For both systems the

equality ¢ = 0 is in contradiction with the condition ged(P, Q) = 1.
3.3. Configuration (3(3), 1,1, 1). For the first step, without loss of generality, we consider

{ b =2, (20)

the system

g = y(bo + b1z + by + bsa? + byxy + bsy?).
The system (20) has the invariant straight lines: I, 23 = x and [; = y. The other invariant
straight lines [5 and lg of (20) (if exist) must pass through singular point (0,0). Moreover,
we can consider that [5 (lg) is described by the equation y —z =0 (y+bx =0, b > 0). The

identities
\Ifls = Qf[bo + (bl + bg)ﬂf + (bg -+ b4 + b5 — 1)%2] = 0,
\1116 = —bx [bo + (bl — bbg)l‘ + (b2b5 - bb4 —+ bg — 1)1’2] =0

have the solution

bo=0b1=0,=0, bg=1—"bc, by =c(b—1), (21)
where ¢ = bs.
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In the conditions {(21),b5 = c} the straight lines 5 are invariant for the system (20).
The cofactors of lines Iy, l5, I are respectively: Ky(z,y) = (1 — be)z? + c(b — 1)xy + cy?,
Ks(z,y) = 22 + bexy + cy® and Kg(z,y) = 2* — cxy + cy®. From these, K4(z,0) = (1 —bc)x?,
Ks(x,z) = (bc+ ¢ + 1)x? and Kg(x, —bx) = (b?c + be + 1)x?. Therefore, if (be — 1)(bc + ¢ +
1)(b?c + bc + 1) = 0 then at least one of the invariant straight lines has parallel multiplicity
greater than one but this is not allowed in the examined configuration. If in the system
{(21), (21),b5 = ¢} the parameter ¢ vanishes then the condition ged(P, Q) = 1 is not met.
Thus, the system (12) from Table 1.1 of Theorem 1.1 and its associated conditions are

obtained.

4. Darboux integrability
In this section we construct the first integrals (F') or the integrating factors (u) for
systems (8)—(12).
4.1. Integrability of the system (8):
t=z(z+1)(x—a) = P(x,y),
y=(y—1)(ay+ (1 —b)z*+ (a — 1)bzy + aby?) = Q(z,y),
b—1)(a+b+ab)(l+b+ab) #0, a>0,beR.
The cofactors of the invariant straight lines: [y = x, lp = x+ 1, [3 =2 —a, Iy =y — 1,
ls =x — ay, lg = v + y of this system are, respectively:
Ky (z,y) = (x +1)(z — a), Ky(z,y) = 2(z — a), Ki,(z,y) = z(x+ 1),
K, (z,y) = ay + (1 — b)x® + (a — 1)bxy + aby?,
K (v,y) = —a+ (1 — ab)z + a(1 — b)y + 2* + abzy + aby?,
Ki(z,y) = —a+ (b—a)x + a(l — by + 2* — bry + aby®.

Putting s = 6, f = and K, (x,y), j = 1,6 in (6) and identifying the coefficients near
the same powers of x and y, we get the system
(ay + a5 + a5 = —2,
(1—-a)a; —acs +asz+ (1 —ab)as + (b —a)ag = (a — 1)(b+ 2),
ag+ (1 =b)(as +ag) =2(b—1),
a;+as+az+ (1 —b)ay+ a5 +ag =b—4,
b(2a —2+4 (a—1)ay + aas — 046) =0,
[ b(3+ au + a5 +ag) = 0.

If b # 0 then this system has the following solution in ay, ..., ag :

a 1 _1-b a+(a+1)b 14+ (a+1)b

(ar D)o’ @7 T ST T a0y T T a1

1
041257 Qg = —

Therefore,

_a+(a+1)b _1+(a+1)b

(z,y) = 2t (z+ 1) @ (¢ — @) @ (y — 1)F (2 — ay)” @0 (g 4 y) @i

is a Darboux integrating factor of the system (8) (see, (4)).
For these cofactors in the case b # 0, the identity (5) takes place if and only if oy =
0,...,a5 = 0. If b = 0, then the identity (5) is equivalent to the system
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ay + as + ag =0, ay = —(as + ag),

(1—a)a1—aa2+a3+a5+aa6=0,(:) Qg = as,

Qg+ as 4+ ag =0, a3 = O,
041+062+CY3+C¥4+015+046:0; 044:—(015+046).
This system has the solution ay = ay = —ag = —a5 = —1. Thus,
x4+ 1)(z — ay)
Pla,y) = &N
z(y — 1)

is a first integral of the system {(8), b=0}.
4.2. Integrability of the system (9):

t=z(zr+1)(x—a), a>-1, b>0, ce R,

y=y(—a+ (1 —a)z+ (1-bc)z*+ (b—1)cxy + cy?),

(Ja+b+abl + |ac— (a+1)?)) (|1 +a+abl+|c—a]) #0, if —1<a<0,

and (|b—a| + |ac —1])(Jc—a| + |ab—1]|) #0, if 0 <a < 1.
The invariant straight lines: [y =x, b=+ 1, l3=2—a,ly =y, l5s =y —z, ls = y + bx of
(9) have the cofactors, respectively:

K, (x,y) = (x+ 1)(x —a), Ki,(z,y) = x(x — a), Kj;(x,y) = z(x + 1),
K, (z,y) = —a+ (1 —a)z + (1 — be)x? + (b — Vexy + e,
K (z,y) = —a+ (1 — a)x + 2 + bexy + ¢y, K (2,y) = —a+ (1 —a)z + 2% — coy + cy®.
'Putting K, (z,y), i = 1,6 in the identity (5) we ob(tain in o, i = 1,6 the system:

a4+ a4 + a4+ ag =0, ap =0,

(1 —a)(oqg +ay+ as + ag) — acg + ag = 0, as = —(b+ 1)bcag/(a + 1),
ap+ast+az+(l—bo)ay+as+as=0, & ¢ ag=—(b+ 1)abcag/(a+ 1),
(b—1)ay + bas —ag =0, ag=—(b+1)as,

ay + a5 4+ ag = 0; \ag,:baﬁ.

\
Considering g = 1, the solution of this system gives us the following first integral of (9):

_ (b+1)be _ (b+l)abe

Flz,y)=(x+1)" o (x—a)" o y O (y—2)’(y + ba).

4.3. Integrability of the systems (10)—(12).

Similarly to subsections 4.1 and 4.2 for each system (10)—(12) we calculate the cofac-
tors Ky, (z,y), j = 1,6 (see, (3) ) of invariant straight lines and the exponents a;, j = 1,6
(see, (5)) of the first integrals F(z,y) of the form (4). The obtained results are given in
Table 4.1.

Table 4.1. First integrals of systems (10) — (12)

Systl [;,1=1,6 Ki(z,y),i=1,6 a;, 1 =1,6 F
Iy =, K, =z(z+1),
1 ] = 0,
ly =el/®, K, =—x—1,
2 O{Q = 07 F3
(10) l3:£13+1, Klsz.I,
asz = —(b+ 1)bcag,
ly =y, K, =x+ (1 =0be)x* + (b — 1)czy + cy?,
) ) ay = —(b+ 1)ag,
ls=y—ux, K, = x4+ x° + bexy + cy”,
as = bag;
l¢ =y +bx, K, = o+ 2* — cxy + cy?,
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Table 4.1 (continued)

Systl 1;,i=1,6 Ki(z,y),i=1,6 a;,i=1,6 F
I = Kll - .ZC(.]? + 1)7
ll _ :BI’/J: Klz = —T— 17 Q= _<b+ 1)bCOé67
(11) 2= ’ Kl3 = l’z, Qg = (b+ 1)b006, F4
ngQT—i—l, ) —0
[, — K,=bly—2v—1)—cy+ (1 —be)z*+ |B=Y
Y +(b — Vewy + cy?, ay = —(b+1)ag,
ls=y—x—1, ) , b
K. = bey + x* + bexy + cy”, a5 = bag;

le=y+br+b| b
6=V K, = —cy + 2* — cxy + cy?,

l - 5 = 2

1 xl/x By =% a3 = —(b+ 1)beag,

l2 = e s Klg — —13, _0 F
12 I :61/$2 _ Qg = U, 5
( ) 3 ? Klg 27 CY3:0

li=1y, K;, = (1 —bc)z? + (b — 1)cay + cy?, ’

l4_ . Kl4_(2 b) (2 ) Yy Y 064:—(b+1)()é6,

YT s = @+ bexy + ey s = bog,

le =y + b, Ky, = 2% — cxy + cy?,

5. Qualitative investigation of the systems (8)—(12)
In this section, the qualitative study of the systems (8)—(12) from Theorem 1.1 will

be done. For this purpose, in order to determine the topological behavior of trajectories,
the singular points in the finite and infinite part of the phase plane will be examined. This
information and the information provided by the existence of invariant straight lines will be
taken into account when the phase portraits of the system (8)—(12) on the Poincaré disk
will be constructed.

We set the abbrevation SP for a singular point and use here the following notations:
A1 and Ag for eigenvalues of SP; S for a saddle (A Ay < 0); N® for a stable node (Ay, Ay < 0);
N* for a unstable node (A, Ay > 0); S — N*® for a saddle-node with a stable (unstable)
parabolic sector, P*" for a stable (unstable) parabolic sector, H for a hyperbolic sector.
5.1. System (8) (conﬁguration (3,1,1,1)), i.e. the system

& =z(r+1)(z —a) = P(z,y),
y=(y—1)(ay+ (1 —b)z*+ (a — 1)bzy + aby?) = Q(z,y),
b—1(a+b+ab)(1+b+ab) #0, a>0,beR,

which has the invariant straight lines: [y =z, b =2+ 1, l3=2x—a,ly=y—1,l5=x—ay
and lg = x + y. This system has in the finite part of the phase plane nine singular points if
b # 0 and six if b = 0. The semi-plane of parameters a,b; a > 0 is divided in thirteen sectors
I; by straight lines a = 0, b = 0, b = %1 and the hyperbolas (a + 1)b = 1, (a + 1)b = +a
(see, Fig. 5.1).
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Fig. 5.1. Bifurcation diagram of the system (8)

In each of these sectors we calculate the eigenvalues of singular points and bring them in
Table 5.1. In Table 5.1 we used the notations: &« =a+ 1 and § = a(b+ 1).

Taking into account that a > 0, from Table 5.1 it is easy to see that the singular points
O, and Oj; (respectively, point Oj) of the system (8) are unstable nodes (is a stable nod). If
b < —1or b >0 then the Oy is a saddle, and if —1 < b < 0 then Oy is a stable node and so
on.

Further we will study non-hyperbolic singular points of the system (8): Oy in the sector
I11; Oy4 in the sectors I,—1Ig and Og in Iy, I5 and Ig. In the other cases the singular points

are hyperbolic.
Table 5.1. System (8): singular points, eigenvalues and types of SP

SP A1; Ao L1/ 13 Li/15/1g I;/Is/1y | Lo/In/The | Iis
O1(—1,1) @ o N
0(0,1) “a: B S 5 S [9/S—N N[ S
Os(a, 1) aq; ao N
Os(—1,-1)| a; d22=0) N S—N S S S
05(0,0) —a; —a N*®
Os(a, —a) G INYS_NYS|S/S—NYNU| NYS—Ni/S S S
ac(ab—1)
O7(—1,2)| a; =22 S — N S —
Os(a, ) | ao; =292 | §/—/N" Nv/—/S S/—/N* S —
Oo(0,—3) —a; 2 S S S N3 /—/S | —
Fig. 1.1 1)/2)/3) | 4)/5)/2) | 3)/4)/6) | 7)/8)/9) |10)

1) Singular point O5(0, 1). Sector I1; is the semi-straight line of the semi-plane bOa, a >
0 given by equation b = —1. On [; the eigenvalues of Oy are Ay = —a and Ay = 0, therefore
it is a semi-hyperbolic singular point. The transformation (x,y) — (z,y — 1) translate O, in
the origin of the system of coordinates xOy. Then, changing x by y and y by z, i.e. z =Y,
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y = X and rescaling the time 7 = —at, the system {(8), b= —1} takes the form
X=1X(aX+(a—1)Y +aX?+(a—1)XY —2Y) = P(X,Y),

V=Y -Lay2_1ly3 =y 4+ Q(X,Y).

The function Y = p(X) =3, ¢; X" is an analitic solution of equation Y +Q(X,Y) =
0 if and only if it vanishes Y = go(E() = 0. Putting Y = 0 in P(X,Y) we obtain ¢(X) =
X? 4+ X3, According to [1] the singular point O5(0,1) is a stable saddle-node.

2) Singular point 04( -1, —l). In this case the sectors Iy, I5 and I are placed on the

a

hyperbola a — (1 +a)b =0, i.e. b= -4, where a > 0. The eigenvalues of Oy are A\; =1+ a
and Ay = 0, therefore O, is a semi-hyperbolic singular point. Translating O, in the origin

((z,y) = (x+ 1,y + 1/a)) and putting b = —7 in (8) we obtain

i=z(z—1)(z—a—-1), = (ay —a—1)( = (a+ )z +2° + ala — Vzy + a’y*) /(a® + a).

The nondegenerate transformation (x,y) — (Y, X+Y/ a) and the time rescaling 7 = (a+1)t

reduce the last system to the form

X = X (aX + (a+2)Y - X0 - Xy 2y = P(X,Y),

Y=V —s2yrL Lys_y L QX,Y).
From the equation Y + Q(X,Y) =0 we find Y = p(X) = 0. Putting Y =0 in P(X,Y) we
obtain (X)) = —a;:lXQ + (afl)Q X3. According to [1], the singular point O4( — 1, —1) is an
unstable saddle-node.

3) Singular point Og(a, —a), a > 0. The sectors I, I5 and I are placed on the hyperbola
(a+1)b=1,ie b= GLH The eigenvalues of Og are A\; = (1 + a)a and Ay = 0, thus the
singular point Og is semi-hyperbolic. Proceeding in the same way as in the case 2) for Og we
obtain ¢ (X) = — =5 X + (a+11)2X3' According to [1] the point Op is of saddle-node type.
Proposition 5.1. At infinity the system (8) has the following singular points:

a) X15(1,0,0) — saddle; Xa0(1,—1,0), X35(1, £,0) — stable nodes and Y (0, 1,0) —
unstable node, if b < 0;

b) X1s0(1,0,0) — stable node; Xon (1, —1,0), X35(1,2,0) — saddles and Y (0, 1,0) —
stable node, if b > 0;

¢) if b = 0 then the infinity is degenerate for (8), i.e. consists only of singular points.

The singular points situated at the ends of the Oy axis are nodes. Through each of every
other singular point at the infinity passes only one trajectory.
Proof. In the case b # 0 (b = 0) the first Poincaré transformation z = 1/z, y = u/z

and the time rescaling 7 = t/2? (1 = t/2) reduce (8) to the system
i=z(z+1)(az —1), @ = (u+1)(au—1)(bu+ (1 —b)z)
(2= (z+1)(az - 1), &= (u+1)(au — 1)),
and the second transformation: x = v/z, y = 1/z and 7 = t/2* (7 = zt) give us
b=v(w+1)(v—a)(b+(1=-0)z), 2=2z2(z—1)(ab+ (a — 1)bv + az + (1 — b)v?)
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(0 =v(v+1)(v—a), 2= (2—1)(az +1%)).

Putting z = 0 in the right-hand sides of these systems and equaling them with zero
we obtain the following singular points, respectively: X;_(1,0,0) : {\y = —1,\y = —b},
X, (1,-1,0) : (M = 1,
Ao = bla+ 1)}, Xa (1,4,0) 0 L = =1, = %Y and Y(0,1,0) : {\ = Ay = —ab}
(Yoo (0,1,0) : {A1 = Xy = —a}). The types of these singular points are completely determined
by their eigenvalues: A\; and \p. [

In Fig. 5.2 are illustrated the singular points from Proposition 5.1.

a)b<0 b)b>0 c)b=0
Fig. 5.2. Singular points at the infinity of the system (8)

The qualitative study in the finite part of phase plane and at the infinity leads us to
the portraits given in Fig. 1.1.
5.2. System (9) (configuration (3,1,1,1)):

t=z(x+1)(x—a), a>-1, b>0, ce R,

y=y(—a+ (1 —a)z+(1-bc)z*+ (b—1)cxy + cy?),

(la+0b+ab| +|ac — (a+1)?) (1 + a+ab] +|c—a]) #0, if —1<a<0,
and (|b —al + |ac — 1]) (je —a| + [ab—1]) #£0, if 0 <a < 1.

For this system the straight lines: [y =z, b =x+1,ls=x—a, 4y =y, s =y—2x,l¢ =y+bx
are invariant. At the infinity it has four singular points and in the finite part of the phase
plan it has nine (seven). All singular point are hyperbolic. Their eigenvalues and their types
are given in Table 5.2. The information from the Table 5.2 are sufficiently to sketch phase
portraits (see Fig. 1.2).

In the Table 5.2 we used the notations: « =a+ 1 and =0+ 1.

110



Table 5.2. System (9): singular points, eigenvalues and types of SP

—1<a<0 0<a<l
5P AL A2 c<0 c>0 c<0 c>0
0:(-1,0) a; —be Nt S N? S
0,(0,0) —a; —a N? N N N
Os(a,0) ac; —abe S N*® N S
O4(—1,-1) a; cf S Nt S N?
Os(a,a) ac; a’cf N S S Ni
Os(—1,b) a; bep S N? S N?
Oz (a, —ab) ac; a*bef N# S S N
Osyp (0, £4/%) —a; 2a S — — S
X1_(1,0,0) —1; —be S N* S NE
X, (1,1,0) —1; ¢ N* S NE S
X3 (1,-b,0) —1; bep N S N+ S
Y5 (0,1,0) —c; —c N? N*® N? N*®
see Fig. 1.2: 1) 2) 3) 4)
5.3. System (10) (configuration (3(2),1,1,1)):

T =x%(x+1),

y=y(z+ (1 —bc)z® + (b— 1)cxy + cy?),

beRL, ceR".

The straight lines: 1o =2, l3 =2+ 1,y =y, [5 =y —x si l[s = y + bx are invariant for (10).

The lines [y, l5, l4 and lg divide the neighborhood of O(0,0) in eight sectors. We enu-
merate these sectors from positive Ox semi-axis in counterclockwise direction. The notation
P*HAP®H P" means that the first sector is unstable parabolic, the second sector is of hy-
perbolic type, the 3,4,5,6 sectors are stable parabolic, the 7 sector is hyperbolic and the 8
sector is unstable parabolic.
Proposition 5.2. In the finite part of the phase plane the system (10) has the following
singular points:

1) 041(0,0) — P*HAP*HP" if ¢ < 0, and 2P*H2P*H2P", if ¢ > 0;

2) O9(—1,0) — unstable node if ¢ < 0, and saddle if ¢ > 0;

3) O34(—1,—1) — saddle if ¢ < 0, and unstable node if ¢ > 0.

Proof. We will examine separately every singular point O;—0j.
a) Singular point O1(0,0). Both eigenvalues of the point O; are null. We will study
the behavior of the trajectories in a neighborhood of this point using blow-up method. First

we apply in (10) the transformation z = X, y = XY

X=i=a*z+1)=X*X+1),
Y =y/z —yi/x? =bX2Y (Y — 1)(Y +a).
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Then, rescaling the time 7 = X?¢ and using the substitution (X,Y) — (X +1,Y), the
last system takes the form:

X=X, Y=Y -1)(Y +a). (22)

The singular points of the system (22) and their eigenvalues are:

{Ml(O, 0): N\ =1,\= —bc} — unstable node if ¢ < 0, and saddle if ¢ > 0;

{MQ(O, D:x=LXx=(0b+ 1)0} — saddle if ¢ < 0, and unstable node if ¢ > 0;

{M5(0,=b) : \y =1,y = (b+ 1)bc} — saddle if ¢ < 0, and unstable node if ¢ > 0.

The behavior of the trajectories near the points: Mj, My, and (0,0) is illustrated in
Fig.5.3a (Fig.5.3b) if ¢ <0 (¢ > 0).

Y Y
/4=
H H
M,
P* P’

M; x M,; X

M; P
a)c<0 b)ec>0

Fig. 5.3. System (10): the type of the singular point (0, 0)

b) Singular points Os(—1,0), O3(—1,—1) and O4(—1,0). These points have the eigen-
values respectively:

Oy: A2+ (be — DA —bc = 0; Ay = 1; Xy = —bc;

O3: =14+ b+ 1D)A+(b+1)e=0; N =1; Ay = (b+ 1)g;

Op: X2 —(1+ b+ 1Dbe)A+ (b+1)bc=0; Ay = 1; Ay = (b+ 1)be.

Each of the point Oy, O3 and O, are hyperbolic and is not difficult to determine their
types. [

Because the cubic nonlinearities of (9) and (10) coincide, these systems have the same
singular points at the infinity: X;_(1,0,0), X5 _(1,1,0), X3_(1,—=b,0), Yoo (0,1,0). More-
over, for both systems the eigenvalues A\, Ay are the same, respectively, and their types are
completely determined by the value of parameter ¢ (see, Tab. 5.2).

The arguments outlined above are enough to be able to draw the phases portraits of the
system (10)
(see, Fig. 1.3,1) if ¢ < 0 and Fig. 1.3,2) if ¢ > 0.)

5.4. System (11) (conﬁguration (3(2),1,1,1)):

i =2z +1),
y=y(—bc—2bcx+ (b—1)cy + (1 — bc)a? + (b — L)y + cy?),
beR;, ceR".

For the system (11) the straight lines: l1o =z, s =2+ 1, Iy =y, 5 =y — 2 — 1 and
l¢ =y + b(x + 1) are invariant.
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Proposition 5.3. If ¢ < 0 (¢ > 0), then the system (11) has in the finite parte of the phase
plane the following six (four) singular points:

1) 01(0,0), O2(0,1), O3(0, —b) — saddle-nodes;

2) O4(—1,0) — unstable node;

3) Os (—1, iﬁ) — saddles.
Proof. a) Singular point O1(0,0). This point has the eigenvalues: A\; = 0 and Ay = —be.
Therefore, Oy is a semi-hyperbolic. Rescaling in (11) the time 7 = —bct we obtain the system
= —b—ca: 2z +1) = P(z,y),

y=y— Sy + 2zy 4+ Bla?y + Llay? — 1y =y + Q(z,y).

The equation {y + Q(z,y) = 0, y(0) = 0} has the solution y = 0. Putting y = 0 in
P(z,y) we have ¢(x) = P(x,0) = —bi(x —i—:z: 3). According to [1], the singular point Oy (0, 0)
is of saddle-node type.

b) Singular point O3(0,1) has the eigenvalues: A\; = 0 and Ay = (b+ 1)c, i.e. Oq is
semi-hyperbolic. At the beginning, via substitution (z,y) — (z,y — 1) we translate O, in

origin, then rescaling in (11) the time 7 = (b + 1)ct, we obtain the system

=y + gt (L — o) + 2oy + By (v + 1) + ety + 750° =y + Qo).

The solution y = gp(x) = Zi21 c;iz' of the equation y + Q(z,y) = 0 has the form

o(r) = (b+21) z? + (b+1)c 3 4+ . ... Putting p(x) in P(z,p(x)) we come to the function
(x) = (b+11)0<x + 23). Therefore, the singular point O5(0,1) is of saddle-node type (see,

[1]).

¢) Singular point O3(0,—b). Similarly as in b), for O3(0, —b) we get p = ﬁlﬁ +---
and ¢(x) = (b+11)bc(:v2 + 23). Thus, Oj is of saddle-node type ([1]).

d) Singular points O4(—1,0) and Os¢(0,£1/y/—c). The eigenvalues of Oy (O34) are
A =X =1 (A =—2and \y = 1). Therefore, Oy (Osg) is (are) unstable node (saddles). [J

Because the systems (9) and (11) have the same cubic non-linearities, their singular

points at the infinity coincide. The qualitative characteristics of these points are given in
Tab. 5.2.

The investigations allowed us to draw the phase portraits of the system (11) (see, Fig.
1.4).
5.5. System (12) (configuration (3(3),1,1,1)):

T = a3,
g =y((1—be)a? + (b—1)eay + cy?),

clbe=1)((b+1)c+1)((b+1)bc+1) #£0, b>0, bc € R.

This system has the following invariant straight lines: l123 = @, lu = y, 5 = y — x and
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Proposition 5.4. Ifc <0 (c > 0) then in the finite parte of the phase plane the system (12)

has only one singular point (0,0) which is of the type P*2H2P"2H P" (unstable topological
node) if ¢ <0 (c>0).

Proof. Both eigenvalues of the singular point O(0,0) are null. Therefore, O(0,0) is
nilpotent. We will study the behavior of the trajectories in a neighborhood of this point
using blow-up method. In the polar coordinates z = pcosf, y = psinf the system (12) takes
the form:

Z—ﬁ = p(cos 6 + bsin® 0 + (1 — be) sin® 6 cos® § + ¢(b — 1) sin® 6 cos b)),

(23)

9 — csinfcosH(sinf — cos ) (sinf + beosh),

where 7 = p*t. Taking into account that the system (12) is symmetric with respect to the

origin, it is sufficient to consider 6 € [0, 7). The singular points of the system (23) with first

coordinate p = 0 and the second # € [0, 7), their eigenvalues and types respectively are:
M;(0,0): {\ =1,y = —bc}— unstable node, if ¢ < 0, and saddle, if ¢ > 0;
My(0,7/2): {\12 = £c}— saddle;

1 1
M;5(0,7/4): {)\1 =5 Ay = (bz >C}— saddle, if ¢ < 0, and unstable node, if ¢ > 0;
1 b+ 1)b
M,(0, —arctg b): {)\1 = s 1,)\2 = (bj——i—>1c}_ saddle, if ¢ < 0, and unstable node, if

c>0.
We obtain Fig. 5.4a), if ¢ < 0, and Fig. 5.4b), if ¢ > 0. In the case ¢ < 0 we have the
following partition in sectors of the neighborhood of the origin: P*2H2P“2H P" and in the

case ¢ > (0 the neighborhood of the origin is an unstable topological node. [

a) c<0 b) e¢>0
Fig. 5.4. System (12): the type of the singular point (0, 0)

The systems (9) and (12) have the same qualitative characteristic at the infinity.
The phase portraits of the system (12) are given in Fig. 1.5.
The results obtained in the Sections 3 — 5 prove the Theorem 1.1.
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ASUPRA COMPACTICITATII UNOR OPERATORI INTEGRALI
CU NUCLEE DE TIP CAUCHY

Rezumat. In lucrare se demonstreaza ci operatorul integral singular S” — S este compact in cazul in care
conturul de integrare este de tip Lyapunov. Se construieste un exemplu care arata ca aceasta proprietate a

operatorului S” —S devine falsa daca conturul are puncte unghiulare.
Cuvinte-cheie: operator integral singular, operator compact, contur Lyapunov pe portiuni.

1. Introducere
Fie I' un contur compus pe planul complex & si S operatorul integral singular cu
nucleul Cauchy

(sgo)(t):%j@dr, tel. (1.1)

r

In lucrare se demonstreazi ci in cazul in care conturul I' este de tip Lyapunov atunci
operatorul S-S este compact in spatiul L (T,p), unde

n P
p)=T]t-t| » -1<B. <p-1, k=12,..,n. (1.2)
k=1

Se construieste si se analizeaza un exemplu care demonstreaza ca daca conturul I’
are puncte unghiulare, atunci operatorul S—S" inceteaza a mai fi compact. Din faptul ca
proprietatea operatorului S-S de a fi compact depinde de netezimea conturului de

. . . 1 :
integrare rezulta ca normele esentiale ale operatorilor S,P=§(I +S) si Pzé(l -S)

depind de marimile unghiurilor formate de contur in punctele sale unghiulare. Astfel, in
consecintd, metodele de cercetare elaborate de catre matematicianul I. Simonenko in cazul
ecuatiilor integrale singulare pe contururi cu puncte unghiulare necesita unele precizari si

modificari.
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2. Operatorul S”
Vom stabili cateva proprietati ale operatorului S incepand cu determinarea formei

explicite al acestui operator (a se vedea [1] si [2]). Fie pe L (T,p) si w € Lq(l“,,ol‘q ), unde

p~+q* =1atunci

f o(0) P(o)ldt|| = j o) P (t) P(O)p~ P (t)ldtl| <

r r

(It o (0 [at]) (| \a(t)\p‘%(t)mq)% =[el. o el or ey -

Din teorema lui Riesz despre forma generala a operatorului liniar si marginit in spatiul
L,(T") rezultd urmatoarea afirmatie.

Spatiul conjugat al spatiului L (T,p) este spatiul L (T,p%),p™" +q~ =1.

In mod obisnuit aceasta inseamnd ci toate functionalele liniare si continue din

L,(T,p) au urmatoarea forma
¥(p)=[o(t)p(t)]dt| (peLy(T.p)),

unde y e L,(T',p)si, in plus,

”\P”L*p(r,p) = ”l//”Lq(F.pl_q) )

n B
Mentionam ca daca ponderea p(t) =] [ft—t,| verifica conditiile

k=1
-1< B, <p-1, k=12,.,n, (2.1)
" (1-0),
atunci ponderea o (t)=]]t-t,| verificd conditiile
k=1
-1<(1-9)p <q-1. (2.2)

Asadar, daca conditiile (2.1) si (2.2) sunt verificate, atunci din teorema lui B. Hvedelidze
[3] rezulta cd operatorul S este marginit si in spatiul L (T, P70,
Fie teTI. Se vede usor cd are loc egalitatea
dt = h(t)|dt|,

unde h(t)=exp(if(t)), iar o(t) este unghiul format de tangenta la curba I" cu semiaxa
pozitiva reald. Functia h(t) este definitd in orice punct nesingular si este marginitd si
continua pe portiuni.

Teorema 2.1. Fie T' un contur compus §i pentru functia p(t) sunt verificate conditiile

(2.1). In spatiul Lq(F,pl‘q) operatorul S” este legat de operatorul S prin relatia
S" =—HSH, (2.3)
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unde operatorul H este definit de egalitatea
(Ho)(t)=h(t)ep(t).

Demonstratie. Fie ¢ si y functii rationale pe conturul I'. In integrala iterata
L =140 £ 209)
So,w)=— t)|dt dr,
(Spw) m!w( )| Ilr_t

in care o integrald este obisnuita iar alta singulara, avem dreptul [3] sd schimbam ordinea

de integrare. Obtinem

(sow)=— [ atona L ge - HsHy)
7l T r—t

Prin urmare S” =—HSH. Teorema este demonstrata.
Consideram  cateva exemple. Fie T un arc de cerc, atunci

r=t,+Re”,dr=Re"ido=i(7-t, )|dz|. Prin urmare, h(z)=i(z-t,). In acest caz are loc

egalitatea

o mL pirt)p(r) 1 pp(r)dr _
(5 (p)(t)_ﬁ(t—to)! RZ(;—t) dr_ﬂi‘! -t =(Se)(0):

in mod similar, dacd I'=[a,b], atunci |[dz|=dz,h(t)=1 si S =S. Vom arita c4, intr-un
anumit sens, cu aceste exemple au fost epuizate toate curbele in care operatorul S este
autoadjunct in spatiul L,(T"). Are loc urmatoarea teorema.

Teorema 2.2. Daca operatorul S este autoadjunct in spatiul L,(T') , atunci T este un
cerc, un arc de cerc, sau o parte a unei drepte.

Demonstratie. Fie S =S, atunci pentru orice functie ¢ din L,(T) are loc egalitatea

2= o gar = (5= )p)) =0,

iy -t
Din aceasta relatie rezulta ca
(r=t)h(t)h(z)=7r-t. (2.4)
Fie s abscisa de arc si t =t(s)—ecuatia (naturald) a curbei I'. Asa cum dt=h(t)ds,
atunci h(t(s))=t'(s) si egalitatea (2.4) poate fi transcrisa sub forma
t(s)(s, )= )5 (2.5)
t(s)-t(s,)
Din aceasta egalitate rezulta existenta derivatei de orice ordin a functiei t(s). Derivand
ambele parti ale egalitatii

(1() =15 DT(S)L'(5y) =t(5) = 1(s,)

odata in raport cu S, apoi in raport cu s,, obtinem

(T(S)(S)'(s) )= (t(s, ) —t(s)t"(s)t'(s,) =t'(s)

si
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(E(56 (SIS )+ (H(5, ) —t(S (8 )t"(S,) =t'(S,)-
Tinand cont de egalitatea t'(s)t'(s)=1 atunci din ultimele doua relatii obtinem
(t(5,)=t(8))(E($)t"(5,)=t"(s)t'(s,) =0.

Din egalitatea

t"(s)/ (t'(s)=t"(s,)/t'(s,) (2.6)
si din faptul ca functia t =t(s) nu poate fi constanta obtinem ca raportul t"(s)/(t'(s) este
constant =k ). De aici, pentru k=0 rezultd ca t(s)=ce* +c,. Deoarece [t'(s)|=1,atunci
Rek = 0 ceea ce Inseamna ca functia t=t(s) reprezinta ecuatia unui Cerc, sau a unui arc
de cerc. Pentru k =0 solutia ecuatiei (2.6) este functia t=cs+c,, in care |c|=1.

Teorema este demonstrata.

Mentionam ca din cele demonstrate mai sus operatorul S este autoadjunct in spatiul

L,(T") siin cazul in care ' este orice dreapta sau o parte a unei drepte.

3. Compacticitatea operatorului S —S

In caz general operatorii S si S™ nu coincid, insd pentru o clasi vasti de curbe acesti
operatori diferd printr-un termen compact. Aceastd afirmatie se contine In urmatoarea
teorema.
Teorema 3.1. Fie I"un contur compus de tip Lyapunov si S* conjugatul operatorului S
care actioneazd in spatiul L (T,p). Atunci operatorul S”—S este compact in spatiul

1—
L(T,p7).
Demonstratie. Pentru inceput consideram I' un contur simplu inchis de tip Lyapunov.

Notam cu I, cercul unitate, iar prin t= £(z) functia lui Riemann care transforma conform

discul unitate in domeniul G*, marginit de I'. Operatorul S poate fi (a se vedea [2])
exprimat sub forma

S=B7'S,B+T,, (3.1)
unde
1 (<)
(S°“”)(Z)=E£Ed‘f’ ZeT,, (3.2)
M=~ [( L) Lo penae (3.3)

Al BE)-Bz) -1
(Bp)(2)=o(f(2)), (B )(t)=p( (1)),

lar z=w(t) este functia inversa functiei t= £#(z). Nucleul operatorului integral (3.3) are
singularitati slabe pe conturul I} si, prin urmare [4], este compact in spatil L (T, P7).

Determinim operatorii B si (B™) . Fie ¢ si w functii rationale pe conturul T}, atunci
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(B )= [ ol AW = [ ()i 0= (0| 22154,

Din aceasta egalitate rezulta ca
B _‘— B si (B™) _‘d'g‘B
dz

Operatorul S|8'(t)|—|A'(t)|S, este compact, aceasta rezultd din teorema 4.3 din
lucrarea [2]. Deoarece S;—S, este compact, atunci
S"—S =|a/(1)|B'S,|B(1)|B+T, —BS,B-T, =
| (1)]|8'(eX1)) B7S,B~B'S,B+T,=T,,
unde T, este un operator compact. Vom considera acum cazul in care conturul T este un

arc simplu deschis. Fie I un contur simplu inchis care contine arcul I'. Notim cu y(t)

functia caracteristicd al arcului T":
1, tel
2 = {0 te M\l

Spatiul L (T',p) in mod obisnuit poate fi identificat cu subspatiul functiilor N de forma

X9 (pEL, (T, p). Subspatiul N este invariant in raport cu operatorul A = ySyI,unde
W@ = j5@)  zef,

iar restrictia acestui operator pe spatiul Lp(F, p) coincide cu operatorul S. in baza celor

demonstrate, avem A* = yS*yI = x(S + T)xI, unde T este un operator compact. De aici
rezulta ca operatorul S” —S este compact.
Consideram acum cazul general in care I' este alcatuit dintr-un numar finit de arce si

curbe inchise I;,I;,...,I,. Fie y,(t) functia caracteristicd a curbei I'; si R, operatorul

n
definit in spatiul L (T,p) prin relatia R;=y;l. Atunci S= Z R;SR,. Operatorii
i k=1
R;SR.(j #k) sunt operatori integrali cu nuclee continue (amintim ca curbele [ si Iy (j #
k) nu au puncte comune), prin urmare sunt compacti. Restrictia operatorilor R;SR, pe
spatiul L (T;,p)(=R,L,(T',p)) coincide cu operatorul S. In baza celor deja demonstrate
avem (R;SR; ) = R;SR; +T,, unde T, sunt operatori compacti. De aici rezulta ca S” —S este

compact. Teorema este demonstrata.
Teorema 3.1 devine falsa daca cel putin intr-un punct al conturului T' nu este
indeplinita conditia lui Lyapunov. Presupunem, de exemplu, ca I'=T, UT,, unde I si [,

sunt segmente de dreapti care unesc punctul z=0 cu z =1 si, respectiv z=0 cU z=i. In

punctul z=0€T conturul formeaza un unghi de masura 7/2. Vom ardta ca in acest caz

operatorul S —S nu este compact in spatiul L,(T).
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Fie tel. Asa cum |dt|=dt pentru tel] si dt=i|dt| pentru teT,, atunci h(t)=1
pentru te T si h(t)=ipentru teT,. In baza teoremei 2.1 avem S” =—HSH.
Admitem cid operatorul S-S este compact, atunci operatorul T = X(HSH + S), unde

X este functia caracteristicd a lui T,, de asemenea este compact. In spatiul L,(I')
considerdm sirul {p, (t)} normat de functii definit prin relatiile

«/ﬁ, pentru te{o,l} ;
n
o, (t)= 1 neN,
0, pentru te F\[O; ﬂ :

si vom arita ca din sirul y, =T¢, Nnu se poate extrage nici un subsir convergent. in baza
definitiei operatorului T avem

(To.) ()= X(1)(S + HsH ) g, = X T(T:_ 1_de:

7—1

. 1
sl y,==U,+V,.

12,v(t) X()\/_arctg|| 5

n*]

Fie u,(t)=X(t)In(1+

Din relatiile

”un”l’_)p(r) - np/zjln

p 1 .dy =2t 1 ez
0?2 [InP(1+ =) <n * [In°(L+ 5 )dy=cn
0 y n 0 y

1 n 1 pdy
L(r) Iarctg pdx=np/2_[[arctg§] FS

0

P2 1 P p-2
nP arctg—J dy=c,n®
![ y 2

rezultd cd lim|Te,| ., =0, pentru 1<p<2.

Lo(1)
Astfel, daca sirul y, =T(on(e I_Z(F)) ar confine un subsir convergent, atunci acest

subsir in mod necesar ar converge la zero. Deoarece |y, (t)|=v,(t), atunci

0 1 ( 1
', ||L2(r) > |v, ||L2m =_|'arctg2 ;dy > Iarctgz ;dy > 0.
0 0
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De aici rezultd cd {i,} nu contine nici un subsir convergent in spatiul L,(I'). Asadar,

operatorul T nu este compact in spatiul L,(T).

Bibliografie

1. UuxoBuu WN.A. HUurerpanst tuna Komu kak omepaTtopsl B THIBOEPTOBOM
MIpOCTpaHCTBE. YueHsble 3anucku KummHeBckoro rocynusepcurera, 1952, tom V, C.
37-41.

2. Gohberg 1., Krupnik N. One-dimensional Linear Singular Integral Equations. vol. 1.
Operator Theory 53, Birkhduser, Basel-Boston, 1992.

3. Hvedelidze B.V. Linear discontinuous boundary problems of the theory of singular
integral equations and some applications of them. Trudy Tbilisk. Mat. Inst. Akad.
Nauk Gruz. SSR, 1956, 23, c. 3-158, (Russian).

4. Kpacnocenbckuit M.A. HTerpaibabie onepaTopsl B IPOCTPAHCTBAX CYMMHPYEMBIX
¢bynkuuii. M.: “Hayka”, 1966.

123



Acta et Commentationes, Exact and Natural Sciences, nr. 2(6)2018 ISSN 2537-6284
Vadim Repesco, p. 124-132

CANONICAL FORMS OF CUBIC DIFFERENTIAL SYSTEMS WITH REAL
INVARIANT STRAIGHT LINES OF TOTAL MULTIPLICITY SEVEN
ALONG ONE DIRECTION
Vadim REPESCO, dr., conf. univ. inter.

AMED Department, Tiraspol State University
Abstract. Consider the general cubic differential system X=P(x,y), y=0Q(X,y), where

P.QeR[x,y], max{degP,degQ}=3,GCD(P,Q)=1. If this system has enough invariant straight

lines considered with their multiplicities, then, according to [1], we can construct a Darboux first integral.
In this paper we obtain 26 canonical forms for cubic differential systems which possess real invariant
straight lines along one direction of total multiplicity seven including the straight line at the infinity.
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FORMELE CANONICE ALE SISTEMELOR DIFERENTIALE CUBICE CE
POSEDA DREPTE INVARIANTE REALE DE-A LUNGUL UNEI DIRECTII A
CAROR MULTIPLICITATE TOTALA ESTE EGALA CU SAPTE
Rezumat. Fie sistemul diferential cubic general X = P(X, y) , Y= Q(X, y) , unde P,Qe R[X, y] ,

max{deg P,deg Q} =3, GCD(P,Q) =1. Conform [1], pentru un sistem diferential cubic se poate de

construit o integrala prima de tip Darboux, daca sistemul dat poseda un numar suficient de drepte
invariante considerate cu multiplicititile lor. in aceastd lucrare se obtin 26 sisteme ce reprezinti formele
canonice ale sistemelor diferentiale cubice ce poseda drepte invariante reale de-a lungul unei directii si a
caror multiplicitate totald este egala cu sapte impreuna cu dreapta de la infinit.

Cuvinte cheie: sistem diferential cubic, dreapta invariantd, integrabilitate Darboux.

1. Introduction
We consider the real polynomial system of differential equations

% =P(x,y)
dy , GCD(P,Q)=1 (1)
dat :Q(Xv Y)
and the vector field
0 0
X=P(x, y)&+Q(x,y)5 (2)

associated to system (1). Denote n=max{deg(P),deg(Q)}. If n=2 (n=3), then the
system (1) is called a quadratic (cubic) system.
Definition 1. An algebraic curve f(x,y)=0, feC[xy], is called invariant algebraic

curve for the system (1), if there exists a polynomial K, e C[x,y], such that the identity

X(f)=f(xy)K,(xy) (3)
holds.
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The invariant algebraic curves f(x,y)=ax+pgy+y of the order one of system (1)

are called invariant straight lines of the system (1).
System (1) is called Darboux integrable if there exists a non-constant function of
the form F=f%.f....f*, where f, is an invariant algebraic curve and 4;eC,

j=1s, such that F is a first integral or F is an integrating factor for (1). The function
F=f~ f...f* iscalled a Darboux first integral. If a polynomial differential system

has enough invariant straight lines (including their multiplicity), then, according to [1], a
Darboux first integral can be constructed for this system.

In the theory of dynamic systems, the investigation of polynomial differential
systems with invariant straight lines is done using different types of multiplicities of these
invariant straight lines, for example: parallel multiplicity, geometric multiplicity;
algebraic multiplicity; etc [2]. In this paper we will use the notion of algebraic
multiplicity of an invariant straight line.

Definition 2. Let C_[x] be the C-vector space of polynomials in C[x] of degree at

most m. Then it has dimension R=C"

n+m *

Let v,,v,,..,v, be abase of C [x].If k is

the greatest positive integer such that the k -th power of f(x,y) divides detM,, where

X (v) XFY(v,) o XFY(v)
then the invariant algebraic curve f of degree mof the vector field X has algebraic
multiplicity k.
In the above definition, the expression X**(v,) means that the operator X is

applied R-1 timeson vector v,,i.e. X*!(v)=X(X*(v)).

There are a great number of articles dedicated to the investigation of polynomial
differential systems with invariant straight lines. In [3] the authors estimate the number of
invariant straight lines that a polynomial differential system can have. The problem of
coexistence of invariant straight lines and limit cycles has been studied in [4,5], and the
problem of coexistence of invariant straight lines and singular points of the center type
for cubic system has been studied in [6,7]. The classification of all cubic systems which
have the maximum number of invariant straight lines including their multiplicities was
performed in [8,9]. In [10] were studied the cubic systems with exactly eight invariant
straight lines. The cubic systems with six real invariant straight lines along two and three
directions were studied in [11,12].
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In this paper we obtain all canonical forms of cubic differential systems with real
invariants straight lines along one direction with their total multiplicity equal to seven
including the multiplicity of the invariant straight line at the infinity.

2. The algebraic multiplicity of invariant straight lines
We will study the following cubic differential system

{X=a0+Pl(x,y)+ P,(x,y)+PR(xY),
y=b0+Q1(X’ y)+Qz(X7Y)+Q3(XI y),

where P(x,y),Q(xy),i=13 are homogenous polynomials of degree i, and the coeffi-

(4)

cients are arbitrary parameters P (x,y)=>a_; ,x 'y, Q(xy)=> b x'y', i=13.
i=0 i=0

When the system (4) has an invariant straight line of the form ax+ B8y+y =0, we

can bring this straight line to the form x=0 using the affine transformation
x=ax+By+y,y=y. It is obvious that the conditions for the existence of invariant
straight line x=0 for system (4) are simpler than the conditions for the existence of
invariant straight line ax+ By+y =0 for the same system.

Besides the existence of invariant straight lines, we are interested the invariant
straight lines to have a certain algebraic multiplicity. According to Definition 2, for the
cubic differential system with invariant straight lines we have R=C? =3. As the basis of

the vector space of polynomials C,[x] we can choose v,=1v,=X,v,=Yy. Then the

matrix M, has the form

1 X y
Mg=|0 P(xy) Q(xy)]-
0 X(P) X(Q)

In this case, the polynomial detM, looks detM,=PX(Q)—-QX(P) and is a polynomial

of degree 8 with respectto x and y. According to Definition 2, the straight line x=0
7
is invariant if and only if the polynomial detM, can be written as detM, =x> A (y)x',
i=0
where deg{A(y)}=7-i. Moreover, if the polynomials A,(y),A(Y)...A(y), k<06,
are identically zero, then the straight line x=0 has the algebraic multiplicity k+2.
To study the multiplicity of an invariant straight line at infinity we carry out the

Poincaré transformation x:i, y=¥. The multiplicity of an invariant straight line at
X X
infinity is equal to the multiplicity of the invariant straight line x=0 of the following

system
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X WP(%,
X

~xp( 1.
X X

<l

N—

3. Obtaining the canonical forms of cubic differential systems

We emphasize that the calculations used in determination of canonical forms are
quite large, so we will show in detail only formulas used for obtaining a single canonical
form, and the rest will be omitted. Let us note by (d,(m,)+d,(m,)+d,) a configuration

of invariant straight lines, where d, is the number of straight lines, and m, is their
corresponding multiplicity. If m. =1, then m, is not written. For example, the notation

(1(4)+2) indicates that there are three parallel invariant straight lines, where one of them
has the multiplicity equal to four and the other two have the multiplicity equal to one.
Depending on the multiplicity of the invariant straight lines at infinity, we divide the
Investigation into seven cases.
Case 1: The straight line at infinity has multiplicity equal to 1. The real invariant
straight lines from the finite plane can have the following configurations: a) (1(6));
b) (1(4)+2); c) (1(4)+1(2)); d) (1(3)+1(3)); e) (1(3)+1(2)+1); f) (1(2)+1(2)+1(2)).
1.a) (1(6)) Conditioning the system (4) to have the invariant straight line x=0 and
applying Definition 1, we obtain the following conditions on the parameters of the
system (4):
a00:();‘5101:();6‘()2:0;6‘03:0-

According to Definition 2, the condition for the invariant straight line x=0 to

have algebraic multiplicity equal to two is equivalent with the condition A)(y)=0, i.e.

the following system of equations hold

Bio (@40 + 400 — B0y, ) = 0;

—2a,,a,,0,, — 28,0y, — ay,° by, — @300y, + a4Py,” + 28,00y, = 0;

—a,, 20y, — 28,,8,,0,, — 2a,08,,05, —38,,05,0y; — &,°By, +38,,0,,0,, + 38,0405 = O;

—2a,,8,,0,, — 8,70y, — 2a,48,,by, — 8,,by,° — 28,8,0y, — 28,090y, + 84;06,04, +28,005,° — 8y Bys + 4,Be04s + 42,040 = 0;
—a,,’by, —2a,,a,0,, —a,,°by, — 2a,,8,,0,, — &,,0,,8,, + 8,05, — 28,08,05; — 8,,0peBys + 28, 0y,0ps + 58,050y = 0;

—a,,’by, —2a,,8,,by, —a,,°by; — 28,53, + 38,0505 +33,)0,,> = O;

(@uz = byg ) (4bo, +28,05) = 0;

a,b5 (8, —by; ) = 0.

By solving this system, we get four sets of conditions, i.e. the system (4) with the
invariant straight line x=0 implies four cubic differential systems which have this
invariant straight line of algebraic multiplicity equal to two.

By asking the invariant straight line x=0 of the system (4) to have algebraic

multiplicity equal to three, i.e. the condition A(y)=0 must hold for each one of those

four systems, we obtain eight differential systems.
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By asking the invariant straight line x=0 of the system (4) to have algebraic
multiplicity equal to four, i.e. the condition A,(y)=0 to be realized for each one of
those eight systems, we obtain 11 cubic differential systems.

By asking the invariant straight line x=0 of the system (4) to have algebraic
multiplicity equal to five, i.e. the condition A;(y)=0 must hold for each one of those 11
systems, we obtain two differential systems.

Finally, by conditioning the invariant straight line x=0 to have multiplicity equal
to six for the system (4), we obtain one set of conditions, i.e. the system satisfying these
conditions has the form

X =a,,x%,by, %0,
{y = by, + b X+ b, X2 + by X° + 38, X%Y.

_bSOX + 2b20y N b20 , t= L and us'ng
2a30b00b20 3a‘30 aGO
the notation b, =ab,,, we obtain the canonical form of the cubic differential system with

Carrying out the transformations x — x,y —

Invariant straight lines of total algebraic multiplicity equal to seven including the straight
line at infinity:
x=x,a>0,
X=X (s1)
y =1+ax+3x%y,
where a>0, as the transformation x ——x,a——a doesn’t change the system (S1).
1.b) (1(4)+2) There are 11 systems with the invariant straight line x=0 of total
multiplicity equal to 4, but only one of them can have the invariant straight lines x+1=0
and x—a=0. This system can be brought to the form:
X=X(x+1)(x—a),a=1,
(x+1)(x-2) )
y=-ay+(1-a)xy+ x> +x%.
1.c) (1(4)+1(2)) We have established that 11 systems have the invariant straight line
x=0 with total multiplicity equal to 4. Asking that the straight line x+1=0 to be
invariant with multiplicity equal to 2, we obtain only one system, which can be brought
to the form:
x=x*(x+1),acR,
(x+1),ae (3)
y =1+ax® +2xy +3x%y.
1.d) (1(3)+1(3)) There are 8 systems that have the invariant straight line x=0 with
algebraic multiplicity equal to 3. Asking that the straight line x+1=0 to be invariant
with multiplicity equal to 3, we obtain only one system, which can be brought to the
form:
{)‘(:x(x+1)2,aeR\{l}, )

y=y+ax®+2xy + x>+ x7y.

128



1.e) (1(3)+1(2)+1) There are 8 systems that have the invariant straight line x=0 with
multiplicity equal to 3. Asking that the straight line x+1=0 to be invariant with
multiplicity equal to 2 and the straight line x—a=0 to be invariant, we obtain only one
system, which can be brought to the form:
{)’(:X(X+1)(X—a),ae R\{-10}, (s5)
y=-ay+(a+1)x*+(1-a)xy+(a+1)x’y.
1.1) (1(2)+1(2)+1(2)) There are 4 systems that have the invariant straight line x=0 with
multiplicity equal to 2. Asking that the straight lines x+1=0 and x—-a=0 to be
invariant with multiplicity equal to 2, we obtain only one differential system that can be
brought to the form:
{x=x(x+1)(x—a),a>1,beR, (s6)
y =bx—ay+x*+2(1-a)xy+3x%y.
Case 2: The straight line at infinity has multiplicity equal to 2. Asking that the
invariant straight line at infinity of the system (4) to have multiplicity equal to two, we
obtain 5 sets of conditions, i.e. there are 5 cubic differential systems that satisfy this
condition. For the total algebraic multiplicity to be equal to 7, we must search for real
planar invariant straight lines with total multiplicity equal to 5. The planar invariant
straight lines can have the following configurations: a) (1(5)); b) (1(4)+1); ¢) (1(3)+1(2));
d) (1(3)+1+1); e) (1(2)+1(2)+1).
2.a) (1(5)) For the five differential systems which have the invariant straight line at
infinity with multiplicity equal to two we require that the invariant straight line x=0 to
be invariant with multiplicity five. As a result, we obtain the following system:
x=x%a=#0,
{y =a+Xx—x’,

(s7)

2.b) (1(4)+1) In this case we obtain two differential systems:
X =X(x+1), X = X* 1),a =0,
(x+1) (s8) Xx=x*(x+1),a# (s9)
y=y+xy+x’. Y =a+ x> +2xy.

2.¢) (1(3)+1(2)) In this case we obtain three differential systems:

X =Xx(x+1), x =x*(x+1),a eR, (= ?
{ ( 2)  (s10) x=x’(x+1),ae (s11) x=x(x+1)",aeR, (s12)
y=y+ax’ +xy—xy. y=1+ax’*—xy. Y = y+axt+2xy.
2.d) (1(3)+1+1) This configuration corresponds to the system
X=Xx(x+1)(a—x),|la|>1,
(c+) (=) 19
y=ay+x"+(a—1)xy.
2.) (1(2)+1(2)+1) In this case we obtain the system
X=X(x+1)(a—x),ae(-L+»)\{0},beR,
(c+)(a=0)ac (L)) [0} be 14
y =bx+ay+x*+(1+2a)xy.
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Case 3: The straight line at the infinity has multiplicity equal to 3. There are 10 cubic
differential systems that have the invariant straight line at infinity with the multiplicity
equal to 3. It follows that the real invariant straight lines must have total algebraic
multiplicity equal with four, therefore we can have the following configurations:

a) (1(4)); b) (1(3)+1); ¢) (1(2)+1(2)); d) (1(2)+1+1).

3.a) (1(4)) Asking the straight line x=0 to be invariant with algebraic multiplicity
equal to four, we establish that only one of those 10 systems satisfies this condition and it
can be brought to the form

{X=x2,a¢0, (s15)
y=a+Xx +2xy+x°.
3.b) (1(3)+1) In this case we obtain the system
{)’(:x(x+1),aeR, (516)
y=y+ax’+xy+x’.

3.¢) (1(2)+1(2)) By solving the remaining system of algebraic equations, we will obtain
several sets of condition. By performing affine transformations and time rescaling, we
can bring the obtained systems to one of the following two canonical forms:

{XZX(X+1),aER, (s17) {)‘(:x(x+l)2, (s18)

y=ax+y+2xy+Xx°. V=X+Y.
3.d) (1(2)+1+1) In this case we obtain the following canonical form:
{)’(:x(x+1)(a—x), (519)
y=Xx+ay,a>1.

Case 4: The straight line at infinity has multiplicity equal to 4. By asking the
invariant straight line at infinity of the system (4) to have multiplicity equal to four, we
obtain 13 cubic differential systems. Therefore, the real planar invariant straight lines
must have total multiplicity equal to three, so they can have the following configurations:
a) (1(3)); b) (1(2)+1); c) (1+1+1).
4.a) (1(3)) By asking the straight line x=0 to be invariant with multiplicity equal to
three, we obtain the following two systems:
{XZXZ’”O’S (s20) {)f:x’ o (s21)
y=a-—-xy+Xx. y=y+X +X.
4.b) (1(2)+1) If the straight line x=0 is invariant with multiplicity equal to two and the
straight line x+1=0 is invariant, then only one system from those 13 systems satisfies
these conditions, and he can be brought it to the following form:
{)‘(:x(x+1),ae R,

(s22)
y=ax+y—xy+x’.
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4.c) (1+1+1) In this case, for each one of these 13 systems we determine three invariant
straight lines of the form x=0, x+1=0 and x—a=0,a>1. Only one system satisfy

these conditions and it can be brought to the form:

{x=x(x+1)(a—x), (23)
y=lLa>1.
Case 5: The straight line at infinity has multiplicity equal to 5. In this case we have
seven cubic differential systems. It follows that the real planar invariant straight lines
must have total algebraic multiplicity equal to two, therefore they can have one of the
following two configurations: a) (1(2)); b) (1+1).
5.a) (1(2)) For these 7 systems, we obtain that only one system can be brought to the
canonical form:
X=X,aeR,
y=ax+y+Xx +Xx°.
5.b) (1+1) By asking the straight lines x=0 and x+1=0 to be invariant for the cubic
differential systems with an invariant straight line at infinity which have algebraic
multiplicity equal to five, we obtain that there are no parameter values satisfying these
conditions. Therefore, there are no cubic differential systems of such configuration.
Case 6: The straight line at infinity has multiplicity equal to 6. By asking the
invariant straight line at infinity of the system (4) to have multiplicity equal to six, we
obtain three cubic differential systems. We can have only one real planar invariant
straight line. Therefore, for each of these systems we condition the straight line x=0 to
be invariant. Thus, we obtain a single system, which can be brought to the following

form:
X=X,
y=-2y+x+x%. (25)

Case 7: The straight line at infinity has multiplicity equal to 7. By asking the
invariant straight line at infinity of the system (4) to have multiplicity equal to seven, we
get the system:
x=laeR,
{y:x(a+x2). (526)
According to the above obtained results, we have proved the following theorem:
Theorem. Any cubic differential system with real invariant straight lines along one
direction with total algebraic multiplicity equal to seven, including the invariant straight
line at the infinity, by an affine transformation and time rescaling can be brought to one
of the systems (s1) — (s26).
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PRODUSUL CARTEZIAN A DOUA SUBCATEGORII

Rezumat. Se examineazi o constructie categoriald care permite de a obtine noi subcategorii reflective cu
anumite proprietati.
Cuvinte-cheie: Subcategorii reflective, perechi de subcategorii conjugate, produsul de dreapta a doui

subcategorii.

Let K be a coreflective subcategory, and R a reflective subcategory of the category of
locally convex topological vector Hausdorff spaces CoV with respective functors k : CoV — K
and 7 : GV — R.

Concerning the terminology and notation see [1]. Note by puk = {m € Mono |
k(m) € Zso}, eR = {e € Epi | r(e) € Zso}. Further for an arbitrary object X of the
category C;)V we examine the following construction: let k¥ : kX — X is K-coreplique,
and 7% : kX — rkX-replique of the respective objects. On the morphisms &% and r*¥

we construct the cocartesian square

7 BN =R (1)

Definition 1. 1. The full subcategory of all isomorphic objects with the type of objects is
called vX cartesian product of the subcategories KK and R, noted by v = IC x4. R.

2.The diagram of cartesian product is called the diagram of cartesian product of the pair of
conjugate subcategories (IC,R) (Diagram (RCP)).

kX £ kX

Diagram (RCP)
Reciprocally. Let R be a reflective subcategory, and K be a coreflective subcategory of the
category CoV. Let X be an object of the category CoV, ¥ : X — rX-R-replique and
E™X . krX — rX be K-coreplique of the respective objects. On the morphisms 7% and k™

we construct the cartesian product
s = X (2)

Definition 2. 1. The full subcategory of all isomorphic objects with the objects of type v.X
15 called cartesian product of the subcategories IC and R, noted W =K #,. R.
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2. The diagram of the cartesian square (2) is called the diagram of the left cartesian product
of the pair of conjugate subcategories (K, R) (Diagram (LCP)).

tX
wX — — +— — krX
w’J KX
i X
X r X

Diagram (LCP)

Lemma 1. R C K x4 R.
Proof. Let | A|€| R | and k* : kA — A be K-coreplique, r*4 : kA — rkA, R-replique of
the respective objects. Then k4 = f-r*4 for an morphism f. It is obvious that f-r*4 = 1.k4

is cocartesian square construct on the morphisms k* and r*4. So 74 = 1.

kA
MM— — D — — kA

|
KA f
|

A
A 1"0 A

Theorem 1. The application X — vX define a functor
UZCQV—)’C*dCR.

Proof. We define the functor v on the morphism. Let f: X — Y € C3V. We examine the
diagram (RCP) constructed for the objects X and Y.

kX

— kX

kX —
o 5
Yoox \\fz

X \—Y  .5x \
Yy Ny

Y \ 4
\ &
\

\
£\

<
~

Y

For the morphism f - k¥ exists one single morphism f; : kX — kY so that
fEE =k A (3)

The same for the morphism r*¥ - f; exists one single morphism f, : kX — rkY. It
follows that
Tky'lefz'TkX- (4)
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Then we have
7 f kY = (from3) =7 - kY - fi = (froml) = u¥ - r*Y - fy = (fromd) = uY - fy ™
or
@ - f)- KX = (" fo) - (5)

From equality (5) concerning that (3) is cocartesian square, it results the existence of

a single morphism g, such that

v f=g-7%, (6)

u’ - fo=g-ur (7)

Define g = t(f). In equality (6) ¥ is an epimorphism. Thus, we deduce that the
morphism ¢ verifing equality (6), is unique. And here we come out with the result 7(1) = 1
and v(f - h) =v(f) - v(h).

Concerning the functor v : CoV — K *4. R appears the following problem: When 7 is
a reflector functor?

We examine the following condition:

(RCP) For any object X of the category CoV in the diagram (RCP) the morphism u*
belongs to the class pkC.
Theorem 2. Let it be a pairs of the subcategories (IC, R) verify the condition (RCP). Then
v it is a reflector functor.
Proof. We examine the diagram (RCP) constructed for objects X and Y of the category
CoV. Let f: X — wY. Since u¥ € pk, it follows that

R =u g (8)
for a morphism g. Further, 7*¥% is R-replique of object kX . So
g=h-rt (9)
for a morphism h. We have
kX = (from8) =u" - g = (from9) =u" - h-r**

or

kX =@ n) o™ (10)

I mean that square (1) is cocartesian, we deduce that:

f:w.@X, (11)
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So morphism f extends through morphism 7. The uniqueness of this extension results
from the fact that ¥ it is like 7*X an epimorphism.

Theorem 3. Let K be a coreflective subcategory, but R is a reflective subcategory of the
category CoV, M - the subcategory of the spaces with Mackey topology, S is the subcategory
of the spaces with weak topology. If K C ./T/l/, but S C R, then the pair of subcategories
(KX, R) werify condition (RCP) the cartesian product is a reflective subcategory.

Proof. Since § C R, it follows that eR C e§ =&, N M, = ,u/T/l/ C uKC. We examine the
diagram (RCP) for an arbitrary object X of the category C;V. We have r*X € eR. So, and
7% € eR. Thus v¥, k¥ € uK. On the other hand v¥ - kX € uk. In equality

XX = X kX

where r
Thus uX € pk.

Example. 1. For any coreflective subcategory IC we have IC x4, I1 = 11, 1I-reflective subcat-

kX kX 9% are bijective application. In other words u® is a bijective application.

egory of the complete space with weak topology.

2. For any coreflective subcategory IC we have K x4, S = S, S-reflective subcategory of the
space with weak topology.

Proof. We construct the (RCP) diagram for an arbitrary object X of the category C;V in
relation to the pair of subcategories (K, IT). We represent the reflector functor 7w : C,V — 11
as a composition

m™=4do-"S.

So either s*X : kX — skX S-replique of the object kX, but gs** : skX — goskX is a
['g-replique of the object skX, where I'y is subcategory of the complete space.
Thus g5 - s*Xis a replique of the object kX. We construct the cocartesian square on

the morphism &% and s*¥:

on the morphisms u;* and g3*~:

=X X _ X | _skX
Ug Uy =Uy "Go -

Then
(O1x - 03 ) - kY = ug - (gg"™ - 8*)

is a cocartesian square construct on morphisms k% and g3** - s*X or morphisms k¥ and 7*¥.
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kX s skX goskX=mkX
| |
X ui ¥
} }
7 X EX -
X ﬁ] X — 72 —_— 772 X

Since k¥ is an epimorphism it results as well u{* and u3 are epimorphisms. Therefore u3 is

retractable, but Ty €| IT |. Further gi** € eTy. So vy € eIy, but o €| S |. Thus we have
proved that IC x4, I = II and K *4. S = S.

Return to previous diagram. If for any object X €| CoV | we have uz’ € ukC, then uz
is an isomorphism, and from equality

skX kX _ / X\—1 —X —X 1.X
9o S —(u2) vy -y ok

it results that k% € M,, and Mc K.

Remark. 1. May it be M ¢ K. Then the pair (IC,II) do not check the condition (RCP),
but I x4, IT = II. So the condition (RCP) is sufficient, but not necessary that the respective
product is a reflective subcategory.

2. Lemma 1 indicates inclusion R C K #%4. R, and the preceding examples indicate the
equality of these subcategories.

Definition 3 (see [1]). Let K a coreflective subcategory and L a reflective subcategory of the
category CoV with those functors k : Co¥V — K and [ : CoV — L. Pair (K, L) is called a

pair of conjugate subcategories if
pwiC =¢eL.

Theorem 4. Let (K, L) a pair of conjugate subcategories, and R a reflective subcategory of
the category CoV. Then:

1. Kxge R = Q.£(R), where Q.(R) is the full subcategory of all eL-factorobjects of
objects of the subcategory R.

2. K xq. R is a reflective subcategory of the category Co) .

3. The subcategory IC 4. R is closed in relation to eL-factorobjects.

4. v-k=r-k.

5. If r(KC) C K, then the coreflector functor k : CoV — K and the reflector v : C3)V —
IC 4. R commute: k-v=17-k.
Proof. 1. In the (RCP) diagram kX € ukC =eL. So k™ € eL = uK. Thus Kx4. R C Q.£(R).
Reciprocally: Let b: A — X € eL and A €| R |. Then b-k? : kA — X is K-coreplique
of the object X, and

kA= f ot (13)
is an cocartesian square construct on the morphisms k% and r**. So X €] K *4. R |.
KX=kA——0 L kA= rkX
WA |f
KX\ 4 1 A
b [b
X X
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2. Result from 1. and the Theorem 2.
3. Result from 1.
4. For an object of form kX, diagram (RCP) is the next one

kX
kkX=kX r rkX
1 1

kX
kX ¥ rkX

Thus vkX =rkX.

5. Examine the diagram (RCP) construct for an arbitrary object X of the category
CyV. Then k™ it is also V-replique of the object kX. Further, u* € uK and kX €| K |,
according to the hypothesis r(K) C K. So

ko X =rkX = vkX
or
kE-v=v-k.
In the paper [2] was introduced the right product of the product xR of the coreflective
subcategory K and of the reflective subcategory R, the properties of this product have been
examined and examples have been construct.

Theorem 5. Let IC (respective R) a coreflective subcategory (respective: reflective)of the
category CoV, those functors k : CoV — K and r : CoV — R commute: k-r =r-k. Then

K*ch:K*dR.

Proof. Let’s examine the diagram of the right product constructed for an arbitrary object

X of the category C;V in relation to the subcategories K and L.

kX k(rX) krX=rkX
gX=kX”
< X
kX X////’UX \\\\uX k
//// X \\\
X ! X

Because functors k and r commute, be sure to verify that k(r*) = r*¥X. Thus, the right
product is obtained by constructing the cocartesian square on morphisms k% and k(r¥),
and the right cocartesian product is obtained by constructing the cocartesian square on

morphisms &% and 7%%. So these products coincide.
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