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Professor Mihail Popa is a Moldavian mathematician and a remarkable leader of the 

Moldavian school of differential equations, who contributed a lot to the qualitative theory 

of differential equations and to the education of new generations of highly-qualified 

specialists. Professor Mihail Popa is Habilitated Doctor in Mathematical and Physical 

Sciences and Full University Professor. On May 15th 2018, Professor Mihail Popa will 

celebrate his 70th anniversary.  

Mihail Popa was born in the village Vălcineț of the Călărași District, Republic of 

Moldova. In 1963, he graduated from the elementary school of the village Temeleuți, 

Călărași District; in 1966 he finished the secondary school nr.1 of the city Călărași and in 

1971 he graduated from the Faculty of Physics and Mathematics of the State University 

of Chișinău. In 1978, he started his Candidate's Degree (1st PhD equivalent) (at Institute 

of Mathematics and Computer Sciences of the Academy of Sciences of Moldova 

(specialty 01.01.02 – Differential Equations). 

In 1979, Mihail Popa defended his Candidate's Degree thesis in Mathematical and 

Physical Sciences at Gorki State University. He did it under the supervision of the well-

known mathematician Academician Constantin Sibirschi. In 1992, he defended his 

Habilitated Doctor’s degree thesis (2nd PhD thesis) in Kiev at the Institute of Mathematics 

of the Ukrainian Academy of Sciences. 

The professional activity of Professor Mihail Popa took place at the Institute of 

Mathematics and Informatics of the Academy of Sciences of Moldova and it evolved as 

follows: Collaborator of the Laboratory (1975 – 1977), Scientific Researcher (1977 – 

1980), Scientific Secretary (1980 - 1999), Deputy Director (1999 – 2006), Director 

(2006-2010), Scientific Principal Researcher (2010 - present). 

PROFESSOR MIHAIL POPA – 70TH ANNIVERSARY 
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The scientific interests of Professor Popa involve the use of invariant processes in 

the qualitative study of differential equations. A new viewpoint on the qualitative theory 

of differential equations based on the method of algebraic invariants founded by the 

Academician C. Sibirschi was established. This new viewpoint consists in application of 

the Lie algebras of operators of representations of the linear groups in the space of 

coefficients of systems of polynomial differential equations and of the graduate algebras 

of invariants and comitants to the geometry of these systems. This new viewpoint 

extended the scientific domain where it was applied, thus, to comprise methods of group 

analysis. This brought forth the study of the graduate algebras of invariants of differential 

equations with the help of generating functions and of Hilbert series. A sequence of 

generating series and of Hilbert series for diverse graduate algebras of comitants and 

invariants of differential systems was obtained for which it is possible to evaluate their 

Krull dimension.  

A substantial part of the results are about the study of the Lie algebra of operators 

L4 for the center-affine group and its representations in the space of coefficients of 

autonomous systems of polynomial ordinary differential equations (S.O.D.E) of first 

order. Another category of results is connected to the classification of the dimensions of 

orbits of polynomial S.O.D.E with respect to the admissible groups. A new direction in 

the use of Lie algebras and of algebras of invariants is the extension to autonomous 

multidimensional systems of first order differential equations with polynomial right-hand 

sides, which have constant coefficients. 

In his works Professor Popa used Lie L4 algebra and the Sibirsky’s graduate 

algebras of the invariants and thus, a numerical estimation of the maximum margin of the 

maximum number of algebraically independent focal lengths was obtained. Professor 

Popa solved the Problem of the Center and Focal Center formulated by Henri Poincare 

over 130 years ago with help of the above-mentioned results for any two-dimensional 

differential system with polynomial nonlinearities. 

Professor Mihail Popa is the author of over 120 scientific publications, among them 

four monographs on applications of algebras to systems of differential equations, two text 

books for Master’s Degree students on Lie algebras and systems of differential equations 

and three books to popularize science.  

The scientific activity of Professor Mihail Popa was highly appreciated by the 

scholars from many Scientific Centers, as the Université de Limoges (France), the State 

University of Minsk (Belarus), the University of Pitești (România), the Center of 

Research in Mathematics of Montreal (Canada), the University of Lund (Sweden), the 

Institute of Mathematics of the Romanian Academy of Science (București), the State 

University M. Lomonosov of Moscow, etc. 

At Scientific Symposium dedicated to 70-anniversary of Professor Mihail Popa, 

held on 16 May 2018, on this occasion, the following letter was received and signed by 

the scholars of the Department of Mathematics of University of Barcelona, Spain:  
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We are a group of four scholars, J.C. Artes (Universitat Autonoma de Barcelona),          

J. Llibre (Universitat Autonoma de Barcelona), D. Schlomiuk (University de Montreal) 

and N. Vulpe (Institute of Mathematics and Computer Science, Moldova) who know 

personally Professor Popa whom we met either in Chișinău or in Montreal and we all 

value his work in the development of the invariant theory of differential equations, 

founded in Moldova by academician C.S. Sibirschi. 

The four of us work on a long term project based on the results obtained by the 

Moldavian school in the invariant theory of differential equations. 

Professor M. Popa is a brilliant disciple of C.S. Sibirschi and his work introduced a 

new viewpoint in the method of invariant theory, by using Lie algebras and differential 

operators for constructing new invariant polynomials and applying them in the 

qualitative study of differential equations. During the period 1998 - 2014 Professor       

M. Popa has been the scientific advisor of nine young mathematicians who obtained their 

doctorate under his supervision and he continues to form other young mathematicians. 

Thus, he is a leading member of the Moldavian school in mathematics. 

On the occasion of his 70th birthday we congratulate Professor M. Popa on his 

achievements and we wish him good health and many more contributions in mathematics. 

The contribution of Professor Mihail Popa to the education of new generations of 

highly-qualified mathematicians is enormous. From the year 1996 he works fruitfully at 

Tiraspol State University, where he won by competition the position of Full Professor 

and holds lectures for students, master students and PhD students. He was appointed as a 

scientific adviser of thesis for several university’s graduates and master degree students. 

He is an exemplary figure and exceptional teacher who is inspiring his colleagues and 

former students in the best possible way in math and in real life.  

It is one of the founders of the Seminar on Differential Equations and Algebras at 

Tiraspol State University, which works on regular basis since 2002 and it is designed for 

students, Master degree students, PhD students and scientific researches.              

Professor Mihail Popa has been a supervisor for ten defended PhD thesis; eight PhD 

graduates studied at Tiraspol State University (in Chișinău). 

From February to June 2001, Mihail Popa was Invited Professor at the Université de 

Limoges (France), where he gave courses and seminars for students and professors.  

Professor Mihail Popa was a director for many scientific projects, in particular:  the 

Workshop” Qualitative Study of Differential Equations” (Chișinău, February 14-15, 

2003), Second Conference of the Mathematical Society of Moldova, (Chișinău, August 

17-19, 2004), International Conference „Algebraic Systems and their Applications to 

Differential Equations and to other mathematical domains” (Chișinău, August 21-23, 

2007). He is a member of the Scientific Committee of the Institute of Mathematics and 

Informatics, a member of the Commission of Experts of the National Council of 

Accreditations and Attestation of the Republic of Moldova, a member of the Editorial 
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Boards of the Bulletin of the Academy of Sciences in Mathematics (Moldova) and of 

ROMAI Journal (Romania). 

Professor Mihail Popa was awarded of Doctor Honorius Causa Degree of Tiraspol 

State University (2013), the Academy of Sciences of Moldova Award (2003), the 

”Academician Constantin Sibirschi” Award (2004).  

At the age of 70, full of vigor and optimism, Professor Mihail Popa is very active in 

the academic community of the Republic of Moldova. We wish him a good health, 

prosperity and new accomplishments in his scientific and didactic activities: 

”Happy Birthday to You, Many Happy returns of the Day”. 

The present volume is dedicated to Professor Mihail Popa and contains a part of 

communications presented at the Scientific Symposium dedicated to 70-anniversary of 

Professor Mihail Popa, held on 16 May 2018.  

The more complete description of the life of Professor Mihail Popa and his 

scientific works can be found in the following publications: 

1. M. Ciobanu, T. Rotaru. 130 years of the effort in the solving of the Poincaré center-

focus problem. Akademos 2013, no. 3, 13-21. (in Romanian) 

2. M. Popa. My way in mathematics. Academy of Scenice of Moldova. Chișinău, 

2018, 343 p. (in Romanian) 

3. M.N. Popa, V.V. Pricop. The center-focus problem: algebraic solutions and 

hypotheses. Academy of Scenice of Moldova. Chișinău, 2018, 240 p. (in Russian) 

4. M. Popa, V. Repeșco. Lie algebras and dynamical systems in the plane. Tiraspol 

State University. Chișinău, 2016, 237 p. (in Romanian) 

5. M.N. Popa. Invariant processes to differential systems and their applications in the 

qualitative theory. Academy of Scenice of Moldova, 2014, 223 p. (in Russian) 

6. M. Popa and T. Rotaru editors. Academician Vladimir Andrunachievici. Academy 

of Scenice of Moldova, 2009, 269 p. (in Romanian)  

7. M.N. Popa. Lie algebras and differential systems. Academy of Scenice of Moldova, 

2008, 163 p. (in Romanian) 

8. M. Popa and T. Rotaru editors. Institute of Mathematics and Informatics. Academy 

of Scenice of Moldova, 2004, 454 p. (in Romanian)  

9. M.N. Popa. Algebraic methods for differential systems. Flower Power edition. 

University of Pitești, Applied and Industrial Mathematical series, no. 15, 2004, 340 

p. (in Romanian) 

10. M.N. Popa. Applications of algebras to differential systems. Academy of Science of 

Moldova, Chișinău, 2001, 224 p. (in Russian) 

Mitrofan CIOBAN 

Academician of ASM, Professor, Doctor Habilitatus of Sciences 

President of the Mathematical Society of the Republic of Moldova 

Dumitru COZMA 

Professor, Doctor Habilitatus of Sciences 
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Tiraspol State University

Summary . It is well known that many mathematical models use differential equation systems and apply the

qualitative theory of differential equations, introduced by Poincaré and Liapunoff. One of the problems that

persists in order to control the behavior of systems of this type, is to distinguish between a focus or a center

(the Center-Focus Problem). The solving of this problem goes through the computation of the Poincaré–

Liapunoff quantities. The problem of estimating the maximal number of algebraically independent essential

constants is called the Generalized Center-Focus Problem. The present article contains: some moments

related to the history of the Center-Focus Problem; the contribution of the Academician C. Sibirschi’s

school in the solving of the Center-Focus Problem; methodological aspects of the M. N. Popa and V. V.

Pricop solution of the Generalized Center-Focus Problem.

Key words: Poincaré-Liapunoff quantities, center-focus problem, generalized center-focus problem, Krull

dimension, sober spaces.

2010 Mathematics Subject Classification: 34C05, 34C07

REFLECŢII ASUPRA PROBLEMEI LUI POINCARÉ
DESPRE CENTRU ŞI FOCAR

Rezumat. Multe modele matematice folosesc sisteme de ecuaţii diferenţiale şi aplică teoria calitativă a

ecuaţiilor diferenţiale, elaborată de Poincaré şi Liapunoff. Una din probleme ce persistă ı̂n studiul acestor

sisteme constă ı̂n determinarea condiţiilor care asigură că punctul singular este un centru (Problema Cen-

trului şi Focarului). Problema Generalizată a Centrului şi Focarului constă ı̂n estimarea de sus a numarului

de elemete algebric independente din careva sistem complet de condiţii esenţiale. Problema Generalizată a

Centrului şi Focarului a fost rezolvată de M. N.Popa şi V. V. Pricop. În articolul prezent: se expun unele

momente din istoria rezolvării Problemei Centrului si Focarului; se mentionează contribuţia şcolii acad. C.

Sibirschi la rezolvarea Problemei Centrului şi Focarului; se analizează aspectele metodologice ale soluţiei

propusă de M. N.Popa şi V. V. Pricop.

Cuvinte-cheie: constantele Poincaré-Liapunoff, Problema Centrului şi Focarului, Problema Generalizată a

Centrului şi Focarului, dimensiunea Krull, spaţiu sobru.

1. Introduction

Mathematical research has helped to solve a number of problems that have sprouted the

scientists’ minds for almost 2500 years, starting with Plato, Aristotle, Euclid, Archimedes.

The nineteenth century brought to human civilization several surprising discoveries. Much

of them is the result of the logical analysis and, in general, of the mathematical analysis of

phenomena: Gauss discovered through calculus the asteroids Ceres, Palass, Vesta, Iunona;

Galle also, based on the calculations, identified the planet Neptune; Mendeleev, starting

from the atomic table, systematized the chemical elements and anticipated the existence of

many new ones; Schliemann, based on Homer’s descriptions, determined the place of Troy’s

placement, etc. At the end of the nineteenth century, the genius French mathematician

Jules Henri Poincaré (1854 – 1912) created new areas of research such as topology, qualitative

theory of dynamic systems, etc. We mention that by the quantitative methods, the Romanian

mathematician Spiru Haret (1851 – 1912) demonstrated in 1878 the instability of the Solar

System. He made a fundamental contribution to the n-body problem in celestial mechanics.

Haret’s major scientific contribution was made in 1878, in his Ph.D. thesis ”Sur linvariabilité

des grandes axes des orbites planétaires”. At the time it was known that planets disturb each

others orbits, thus deviating from the elliptic motion described by Johannes Kepler’s First

E CENTER-FOCUS PROBLEMAROUND THE POINCAR´

Mitrofan M. CIOBAN, Academician
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Law. Pierre Laplace (in 1773) and Joseph Louis Lagrange (in 1776) had already studied

the problem, both of them showing that the major axes of the orbits are stable, by using

a first degree approximation of the perturbing forces. In 1808 Siméon Denis Poisson had

proved that the stability also holds when using second degree approximations. In his thesis,

Haret proved by using third degree approximations that the axes are not stable as previously

believed, but instead feature a time variability, which he called secular perturbations. This

result implies that planetary motion is not absolutely stable. Henri Poincaré considered

this result a great surprise and continued Haret’s research, which eventually led him to the

creation of chaos theory and qualitative theory of dynamic systems [10, 19].

Henri Poincaré formulated a series of important problems, the solution of which deter-

mines the further development of mathematical sciences. One of them is the the Poincaré

conjecture about the characterization of the 3-sphere, which is the hypersphere that bounds

the unit ball in four-dimensional space. In 2000, it was named one of the seven Millennium

Prize Problems, for which the Clay Mathematics Institute offered one million dollars prize for

the first correct solution. The enigmatic Russian mathematician Grigori Perelman presented

a proof of the conjecture in three papers made available in 2002 and 2003 on arXiv. On 22

December 2006, the scientific journal Science recognized Perelman’s proof of the Poincaré

conjecture as the scientific ”Breakthrough of the Year”, the first such recognition in the area

of mathematics.

One of the famous problems of the qualitative theory of differential equations is the

Center-Focus Problem, formulated by Poincaré about 135 years ago, in period 1881-1885

[10]. The Center-Focus Problem consists in distinguishing when a monodromic singular

point is either a center or a focus. The Center-Focus Problem arises many open questions

and it has deep links with Hilbert’s 16th Problem.

Hilbert’s 16th problem was posed by David Hilbert (1862 – 1943) at the Paris Interna-

tional Congress of Mathematicians in 1900, as part of his list of 23 problems in mathematics

(see [4, 1, 6]). The original problem was posed as the Problem of the topology of algebraic

curves and surfaces. Actually the problem consists of two similar problems in different fields

of mathematics:

1. An investigation of the relative positions of the branches of real algebraic curves of

degree n.

2. The determination of the upper bound for the number of limit cycles in two-

dimensional polynomial vector fields of degree n and an investigation of their relative posi-

tions.

In 1976, Academician Constantin Sibirschi (Sibirsky) (1928 – 1990), Head of Labora-

tory at the Institute of Mathematics and Computer Science of the Academy of Sciences of

Moldova, founder of the scientific school of differential equations in the Republic of Moldova,

published the monograph ”Algebraic Invariants of Differential Equations and Matrices” (see

[16, 15]), which had a great resonance in the world of mathematicians. Over three years

in 1979, Professor C.S. Coleman has published a review of this scientific paper, in which

he stated that it is written in the spirit of the research of Norwegian mathematician Mar-

ius Sophus Lie (1842 – 1899). Marius Sophus Lie obtained his PhD at the University of
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Christiania (present day Oslo) in 1871 with the thesis entitled ”Over en Classe Geometriske

Transformationer”. He created the theory of continuous symmetry, introducing the con-

cept of algebra, those bearing his name today, and applied it to the study of geometry and

differential equations. It would be described by Darboux as ”one of the most handsome

discoveries of Modern Geometry”.

The mathematician Mihail Popa, who was a student of the Professor C. Sibirschi, went

his own way, starting from establishing the link between the Lie algebras and the graduated

algebra of Sibirschi invariants – a tool for further researches. M. Popa took as a basis the

Generalized Center-Focus Problem for Polynomial Differential Systems, avoiding calculating

Poincaré–Lyapunoff quantities for each system. Poincaré–Lyapunoff’s quantities was sub-

stituted by a sequence of Lie algebras and a sequence of linear subspaces of the graduate

algebra of Sibirsky’s invariants (see [17, 13, 14]). When estimating the maximum number

of algebraically independent focal constants, he applied these algebras. As a result, a finite

numerical estimation was obtained for independent algebraic focal quantities, participating

in the solving of the generalized Center–Focus Problem for any polynomial differential sys-

tem (see Theorem 1). Currently, Professor Mihail Popa, along with his disciples, continues

his research in the theory of polynomial differential systems, successfully using Lie algebras.

An analysis of the activity of Professor Mihail Popa is contained in article [2].

2. The Center-Focus Problem

Consider the differential system

dx/dt = P (x, y), dy/dt = Q(x, y), (1)

where P (x, y) and Q(x, y) are polynomials that contain the linear part and satisfy the con-

ditions P (0, 0) = Q(0, 0) = 0. The coefficients of polynomials P (x, y), Q(x, y) and variables

from the system (1) takes values from the field of the real numbers R. It is known [7, 10] that

the conditions which distinguish center from focus for the system (1) consist in study of an

infinite sequence of polynomials (focal quantities, Lyapunoff constants, Poincaré–Lyapunoff

quantities (constants))
L1, L2, ..., Lk, ... (2)

in the coefficients of the polynomials from the right side of the system (1).

It was shown that if the focal quantities (2) are equal to zero then the origin of coor-

dinates for the system (1) is a center, i.e. the trajectories near this point are closed. On the

contrary the origin of coordinates is a focus and the trajectories are spirals.

We can assume that P (x, y) = Σ{Pmi
: i ∈ {0, 1, 2, ...l}} and Q(x, y) = Σ{Qmi

: i ∈
{0, 1, 2, ...l}}, where Pmi

and Qmi
are homogeneous polynomials of degree mi ≥ 1 in x and

y, m0 = 1. In this case we denote the system (1) by s(1,m1,m2, ...,ml)

It is known that if the roots of characteristic equation of the singular point O(0, 0) of

the system (1) are imaginary, then the singular point O is a center or a focus. In this case

the origin of coordinates is a singular point of the second type.

The Center-Focus Problem can be formulated as follows: Let for the system

s(1,m1,m2, ...,ml) the origin of coordinates be a singular point of the second type (center or

focus). Find the conditions which distinguish center from focus. This problem was posed by

H. Poincaré [10]. The basic results were obtained by A. M. Lyapunoff (1857 – 1918) [7].

13



It is well known that, from the Hilbert’s theorem on the finiteness of basis of polynomial

ideals, for any concrete system s(1,m1,m2, ...,ml) the set

PL(1,m1,m2, ...,ml) = {i ∈ N = {1, 2, ...} : Li 6= 0} (3)
is finite. Assume that

PL(1,m1,m2, ...,ml) = {n1, n2, ..., nβ} (4)

and nα = n1 < n2 < ... < nβ. (5)

The Poincaré’s Center-Focus Problem determines the following problems:

P1. The problem of finding the number nα or obtaining for it an argued numerical upper

bound.

P2. The problem of finding the number nβ or obtaining for it an argued numerical upper

bound.

P3. The problem of finding the number β or obtaining for it an argued numerical upper

bound.

Problems P1 and P2 are open. Solution of the Problem P1 contains a solution of the

Center-Focus Problem. Positive solution of Problem P2 contains the solution of Problem

P1. Hence Problem P2 is the strong Center-Focus Problem. Problem P3 is the weakly

Center-Focus Problem.

Denote by D the set of all systems (1). Since the Center-Focus Problem is very compli-

cated, it presents interest the following problem: Finding the subsets H of the set D for which

Problems P1–P3 (or some of them) are positive solutions. Monographs [16, 18, 11, 14, 12, 3]

contain some results of that kind. The Center-Focus Problem is solved for the class QS of

all quadratic systems (see [16, 18, 17, 15]). Using global geometric concepts, was completely

studied the class QW3 of quadratic systems with a third order weak focus (see [15]). The

class QW2 of all quadratic differential systems with a weak focus of second order is important

for Hilbert’s 16th problem (see [15, 1, 6]). Are important (see [3, 15]) the classes:

- the class of dynamical systems with special invariant algebraic curves;

- the class of dynamical systems with a Darboux first integral or a Darboux integrating

factor.

3. Sibirschi graded algebras

C. S. Sibirschi (see [13, 11, 14]), for any system s(1,m1,m2, ...,ml), were introduced

the graded algebra SI = SI(1,m1,m2, ...,ml) of unimodular invariants and the graded al-

gebra S = S(1,m1,m2, ...,ml) of comitants of the system s(1,m1,m2, ...,ml). Obviously

SI(1,m1,m2, ...,ml) ⊂ S(1,m1,m2, ...,ml).

The maximal number of algebraically independent elements of the Sibirsky graded

algebra S is denoted by ρ(S).

Let R be a finitely generated algebra over a field K. By the virtue of Krull’s theorem

the maximum number of elements of R that are algebraically independent over K is the same

as the Krull dimension of R. Hence ρ(S) is the Krull dimension of the Sibirschi algebra S.

A natural question is of course: Which properties of s(1,m1,m2, ...,ml) are described

in SI(1,m1,m2, ...,ml) and S(1,m1,m2, ...,ml)? In particular, the following problem may

be considered as the generalized Poincaré Center-Focus Problem (see [13, 2, 14]):

14



P4. The problem of finding the number ρ(S(1,m1,m2, ...,ml)).

In [13, 14] was proved the following unexpected assertion.

Theorem 1. ρ(S(1,m1,m2, ...,ml)) = 2(Σ{mi : 1 ≤ i ≤ l} + l) + 3 for any system

s(1,m1,m2, ...,ml).

In this context, in [13] was formulated the following

Conjecture. β ≤ 2(Σ{mi : 1 ≤ i ≤ l}+ l) + 3 for any system s(1,m1,m2, ...,ml).

Present interest the following open question

P5. For which n there exist two polynomials P (x, y) = Σ{Pmi
: i ∈ {0, 1, 2, ...l}} and Q(x, y)

= Σ{Qmi
: i ∈ {0, 1, 2, ...l}} for which:

- P (x, y) is a polynomial of degree n1, Q(x, y) is a polynomial of degree n2 and n =

maximum{n1, n2};
- β = 2(Σ{mi : 1 ≤ i ≤ l}+ l) + 3.

4. Krull’s dimension of spaces

Any space X is considered to be a Kolmogorov space, i.e. for any two distinct points

x, y ∈ X there exists an open subset U of X for which the intersection U ∩ {x, y} is a

singleton set.

A subset F of a space X is called an irreducible subset if for any two closed subsets

F1, F2 of X for which F ⊂ F1∪F2 we have F ⊂ Fi for some i ∈ {1, 2}. The closure clX{x} of

the singleton set {x} is irreducible. A sober space is a topological space X such that every

non-empty irreducible closed subset of X is the closure of one point of X. If F = clX{x},
then x is a generic point of the set F . A non-empty irreducible subset has a unique generic

point.

Denote by |L| the cardinality of a set L.

The following assertion is obvious.

Proposition 1. A subset L of a space X is irreducible if and only if the its closure clXL is

irreducible.

Example 1. Let X = {1, 2, 3} with the topology {∅, X, {2}, {1, 2}, {2, 3}}. Then X is a

sober irreducible space and the closed subspace Y = {1, 3} is discrete and not irreducible.

A closed subspace of a sober space is a sober space.

Example 2. Let ω = {0, 1, 2, ..., n, ...} and X = {0, 1, 2, ..., n, ..., ω} with the topology

{∅, X} ∪ {X \ F : F is a finite subset of ω}. Then X is a sobre irreducible space and the

subspace Y = {0, 1, 2, ..., n, ...} is irreducible and not sober.

Define the Krull dimension dk(X) of a space X to be the maximum n such that there

exists a chain of pairwise distinct non-empty irreducible closed sets F0, F1, F2 ..., Fn such that

F0 ⊂ F1 ⊂ F2 ⊂ ... ⊂ Fn. If Y is an irreducible closed subset of X the Krull co-dimension

co-dkX(Y ) of Y in X is the supremum over all n such that there is a chain of pairwise distinct

non-empty irreducible closed sets F0, F1, F2 ..., Fn such that Y ⊂ F0 ⊂ F1 ⊂ F2 ⊂ ... ⊂ Fn.

We observe that dk(X) = co-dkX(∅). We can assume that dk(X) = -1 for X = ∅.

From Proposition 1 it follows that dk(Y ) ≤ dk(X) for any subspace Y of a space X.

If {Xi : i ∈ Nn = {1, 2, ..., n}} is a finite family of closed subspaces of a space X, n ≥ 2

and X = ∪{Xi : i ∈ Nn}, then dk(X) = supremum{dk(Xi) : i ∈ Nn}. This fact follows
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from Claim 1 in the proof of the following proposition.

Proposition 2. Let {Xi : i ∈ Nn} be a finite family of subspaces of a space X, n ≥ 2 and

X = ∪{Xi : i ∈ Nn}. Then:

1. If F is a closed irreducible subset of X, then there exists i ∈ Nn such that Fi =

F ∩Xi is an irreducible subset of the spaces Xi and X, and F = clXFi.

2. If F is a closed irreducible subset of X, i ∈ Nn, Fi = F ∩Xi and F = clXFi, then

Fi is an irreducible subset of the spaces Xi and X.

3. dk(X) = Σ{dk(Xi) : i ∈ Nn}.
Proof. In the first we prove the following assertion.

Clam 1. Let F be an irreducible subset of the space X, γ is a finite family of closed subsets

of X and F ⊂ ∪γ. Then F ⊂ Y for some Y ∈ γ.

The assertion follows from the definition for |γ| ≤ 2. Assume that k > 2 and the

assertion is true provided |γ| < k. Fix a collection γ of closed subsets of X for which |γ| = k

and F ⊂ ∪γ. Now fix Y ∈ γ and put γ1 = γ \ {Y }. We have two possible cases.

Case 1. F ⊂ ∪γ1.
Since γ1| = k − 1 < k, there exists Z ∈ γ1 such that F ⊂ Z.

Case 2. F 6⊂ ∪γ1.
We put Z = ∪γ1. Then F ⊂ Z ∪ Y and F 6⊂ Z. Hence F ⊂ Y ∈ γ. The proof of

Claim 1 is complete.

Clam 2. If F is a closed irreducible subset of X, then there exists i ∈ Nn such that F =

clX(F ∩Xi).

We put Fi = F ∩ Xi and Φi = clXFi. Then γ = {Φi : i ∈ Nn} is a finite family of

closed subsets of X and F ⊂ ∪γ. Thus F ⊂ Φi for some i ∈ Nn. Claim is proved.

Assertion 2 follows from Proposition 1.

Fix a chain of pairwise distinct non-empty irreducible closed sets F0, F1, F2 ..., Fm

of the space X such that F0 ⊂ F1 ⊂ F2 ⊂ ... ⊂ Fn. We put Fij = Fj ∩ Xi. Let Ai =

{j : 0 ≤ j ≤ m,F = clXFij} and mi = |Ai|. Then mi ≤ dk(Xi) and, by virtue of assertions

1 and 2, we have m ≤ Σ{mi : i ∈ Nn} ≤ Σ{dk(Xi) : i ∈ Nn}. Assertion 3 is proved. The

proof is complete.

Proposition 3. Let {Xi : i ∈ Nn} be a finite family of sober subspaces of a space X, n ≥ 2

and X = ∪{Xi : i ∈ Nn}. Then:

1. If F is a closed irreducible subset of X, i ∈ Nn, Fi = F ∩Xi and F = clXFi, then

Fi is an irreducible subset of Xi and the generic point x ∈ Xi of Fi in Xi is a generic point

of F in X.

2. X is a sober space.

Proof. Assertion 1 follows from Proposition 1. Assertion 2 follows from assertions 1 and

Proposition 2.

5. Spectrum of a ring

Let R be a commutative ring [9, 5]. A subset I of R is called an ideal of R if:

1. (I,+) is a subgroup of the group (R,+).

2. R · I ⊂ I.
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3. If R is an algebra over field K, then K · I ⊂ I for any ideal I of R.

An ideal I of R is said to be prime ideal if x, y ∈ R and x ·y ∈ I implies I ∩{x, y} 6= ∅.

The set of all prime ideal of R, is denoted by Spec(R), is called spectrum of the ring

R. Let A be an ideal of R and let V (A) be the collection of all prime ideal contains A. The

collection of all V (A) satisfies the axioms of closed subsets of a topology for Spec(R), called

the Zariski topology for Spec(R). The space Spec(R) is a compact Kolmogorov space.

For any commutative ring R and m ∈ N the following assertions are equivalent:

1. dk(Spec(R) = m.

2. If I0 ⊂ I1 ⊂ ... ⊂ In is a chain of distinct prime ideals of R, then n ≤ m.

From Theorem 1 it follows that dk(S(1,m1,m2, ...,ml)) = 2(Σ{mi : 1 ≤ i ≤ l}+ l) + 3

for any system s(1,m1,m2, ...,ml).

6. Representation of a class of problems

The problem of determining the finite numbers nα, nβ and β (see (5) in Section 2), or

obtaining for them some numerical boundaries from the top, is important for the complete

solution of the Center-Focus Problem. Obviously the Center-Focus Problem is a difficult one.

So far, no general methods have been found for studying the Poincaré-Liapunoff quantities

(2). In particular, there is no a general strategy to solve. Another impediment is the

enormous calculations that can not be overcome by the modern supercomputers, even for

the system s(1, 2, 3), not to mention more complicated systems. From a psychological point

of view, there are also impediments to the human conservatism to explore the problems

traditionally, classically. History confirms that new, unusual methods with great difficulty are

approved and valued at their fair value. However, according to Kurt Gödel’s incompleteness

theorem, as a rule, the resources created up to now are not sufficient for further studies.

Therefore, it is undeniable that the successes of the future depend to a large extent on the

newly created tools.

The study of a new problem or an unsolved problem, applying the methods of solving

the known problem is done by various methods: the method of substitution of the variables;

the method of crossing on limit, etc. Some of them have been well-known since ancient times

and have generated new methods, appropriate to the mathematical concepts of the respective

period. For example, with the method of crossing on limit, Hopf has solved the quasi-linear

equations. In [8] the method of substitution of algebraic operations was successfully used in

the solving of some problems of the theory of differential equations.

The principle of contrast revealed in ”matter and anti-matter”, ”parallel spaces”,

”world and anti-world” penetrates into the essence of the universe, thus constituting amaz-

ing ”symmetries” in the world of known phenomena. From a mathematical point of view

such ”symmetries” are built based on the duality principle. To build a duality means to

determine a correspondence between certain types of objects, where each property of the

original object corresponds to a particular property of that object in that correspondence.

In any duality, their ”objects” and ”properties” have dual ”objects” and ”properties”. Any

concrete duality is a valuable event for these theories. The dualities in the projective ge-

ometry, the duality of Pontryagin in the theory of the local compact Abelian groups, the
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Kolmogorov–Gelfand duality of compact spaces and functional Banach algebras, the duali-

ties of Serre and Alexander in the topology, the duality of Radu Miron of the Cartan spaces

and the Finsler spaces, the duality of De Morgan in the theory of sets, the Stone duality

between zero-dimensional compact spaces and Boolean rings, wave-particle duality in quan-

tum mechanics, Kramers–Wannier dualism in statistical physics, etc. This method, which

is also an ”anti-analogy reasoning”, determines from the point of view of formal logic that

many objects different in form and content are built in a similar way.

From this point of view, represent interest some correspondences of concrete class of

objects of one theory into other theory. Let A and B be two theories, P be a class of problems

of the theory A and S(P ) be a set of solution of the problem P ∈ P. A correspondence

Ψ : P −→ B is a representation of the class of problems P in the theory B if:

- Ψ(P ) is a problem of the theory B for any problem P ∈ P;

- if P ∈ P and Ω ∈ S(P ) is a given solution of the problem P , then Ψ(Ω) is a solution

of the problem Ψ(P ).

In this case the problem Ψ(P ) is a generalized form of the initial problem P ∈ P.

Solving generalized forms is important if for a long time there is no solution for the initial

problem. Moreover, the solutions of the generalized problem propose strategies and hypothe-

ses to solve the initial problem. Some estimates in the generalized problem solution can serve

as working hypotheses for the initial problem. Furthermore, the solution to the generalized

problem reflects possible ways of examining some particular cases.

Denote by E the theory of polynomial differential systems (1), by R the theory of com-

mutative algebras and by T the theory of topological spaces. For any problem s(1,m1,m2, ...,

ml) is determined the number {β} as the set of solutions S(s(1,m1,m2, ...,ml)).

The correspondence ΨA : D −→ R, where ΨA(s(1,m1,m2, ...,ml)) = S(s(1,m1,m2, ...,

ml) and D is the set of all equations (1), is a representation of the class of problems D in

the theory R. We have ΨA(β) = dk(S(1,m1,m2, ...,ml)) for any problem s(1,m1,m2, ...,ml)

(Theorem 1).

The correspondence ΨT : D −→ T, where

ΨT (s(1,m1,m2, ...,ml)) = Spec(S(1,m1,m2, ...,ml))

is a representation of the class of problems D in the theory T. We have

Ψa(β) = dk(Spec(S(1,m1,m2, ...,ml)))

for any problem s(1,m1,m2, ...,ml) (Theorem 1).

Therefore the number dk(S(1,m1,m2, ...,ml)) = dk(Spec(S(1,m1,m2, ...,ml))) is a

generalized solution of the Center-Focus Problem of the system s(1,m1,m2, ...,ml).
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and Computer Sciences, ASM, Chişinau, 2001, 224 p. (in Russian).

12. Popa M. N. Algebraic methods for differential systems. Editura the Flower Power, Uni-
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MEDIEREA ÎN SISTEMELE DE MULTIFRECVENȚĂ  

CU ARGUMENTE LINIAR TRANSFORMATE ȘI CU PUNCT  

ȘI CONDIȚIILE DE INTEGRARE 

Rezumat. În această lucrare se prezintă o sinteză a rezultatelor ce țin de solvabilitatea sistemelor 

diferențiale de multifrecvență cu argumente liniar transformate și multipunct și condițiile de integrare. 

Este introdusă condiția de rezonanță a oscilației, care depinde de întârzierea în variabilele rapide. Se 

consideră problema de existență și unicitate a soluției și se justifică metoda de mediere pe variabile 

rapide. Sunt obținute cele mai bune estimări ale metodei de mediere, care, evident, depind de un 

parametru mic. 

Cuvinte-cheie: metoda de mediere, sisteme de multifrecvență, argument liniar transformat, condiții de 

frontieră, problema Noether. 

 

Introduction  

Numerous oscillation processes in mechanics, physics, ecology, etc. are described 

with multifrequency nonlinear systems in the form [1] 
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where a  and   are n  and m dimensional vectors, respectively, t   is slow time, 

0  – small parameter, X , Y  and vector of frequency   belong to certain classes of 

smooth functions 2 periodic in  .  
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As the system of equation (1) is complex both for research and for solution finding, 

then, in the times of Lagrange and Laplace, the procedure of averaging over fast variables 

  is used. Much simpler system of equation is obtained 
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The main problem in investigation of system (1), where 2m , is the problem of 

resonances. Here, the resonance case is understood as the case where the scalar product 

of the vector ),(  a  and a nonzero vector with integer-valued coordinates turns into zero 

or becomes close to zero for certain values of a  and  . 

The system (1) could remain in the neighborhood of the resonance quite long, and 

then deviation of the solutions could be 

)1(),(),( OLaLa        for    ),0(),0(  aa  . 

For two-frequency system ( 2m ) when )(a   averaging method was justified 

in the work of V. Arnold [2] and estimate  2ln),(),( ctata   was obtained for 

10 0    and 10  Lt . 

Multifrequency systems (1) were investigated by E. Grebenikov [3], M. Khapaev 

[4], A. Neishtadt [5] and others. 

Significant progress in investigation of multifrequency systems is achieved in the 

works of A. Samoilenko and R. Petryshyn. Such systems both with initial and with 

multipoint and integral conditions are investigated in [1]. 

The works of Ya. Bihun [6] and others are devoted to multifrequency systems with 

constant and variable delay. In particular, systems with integral conditions are 

investigated in [7]. Multifrequency systems with Noether boundary conditions are 

investigated by I. Krasnokutska [8]. Some new results for multifrequency systems with 

many linearly transformed arguments and with multipoint and/or integral conditions are 

also shown in [9]. 

 

Methods and materials used 

Oscillation integrals, suggested in [1, 10], are used for averaging method justification. 

For system (1), when )(   the oscillation integral takes a form 

dydzzk
i

yfttI
t

t

y

t

k  
















 ))(,(exp)(),,,( ,     (4) 

where ],0[ L , R, tt , 
mZk , 0k , 

mm
kkk   ...),(

11
. 

21



The proving of existence and uniqueness of the solution is based on the Banach fixed-

point theorem [11]. 

 

Obtained results and discussion 

1. Multifrequency system of ODE 

By )(tW
p

 and )(tW T

p
 we denote the matrix   pm

j

j t
,

1,

)1( )(




  and its transpose, 

respectively. 

Theorem 1 [1]. Let )())()(( 1 tWtWtW T

pp

T

p

  be uniformly bounded and let the functions 

)()1( tj

 , m,...,1 , pj ,...,1  be uniformly continuous for Rt . Then one can 

indicate constants 01   and 1 0c   independent of ,,, ttk ,  and such that the 

following estimate holds for all 0k , Rt , Rt  , ],0[ L , and ],0( 1  : 

1
(1)

1
[ , ] [ , ]

1
( , , , ) max ( ) max ( )p

k
t t L t t L

I t t c f y f y
k

  
 

 
  

 
. 

Remark 1. If mp   then 2))((det))()((det tWtWtW mm

T

m  . Therefore, in this case, the 

condition that the Wronskian determinant of the functions )(),...(1  m  is nonzero on 

],0[ L  is a sufficient condition for finding an efficient estimate for the oscillation integral 

),( 
k

I . 

Let us consider the nonlinear multifrequency system (1), where )(  , 

],0[ L . Let ],0[ LC l , 1ml , ],[: YXF  , )(, GC
a

FF l









, )(1 GC

F l





. 

Theorem 2 [1]. Let us suppose that the following conditions are satisfied: 

1)   0)()(det 
p

T

p
WW  ],0[ L  for certain minimal 1 lpm ; 

2) X , Y  and   belong to certain classes of smooth functions; 

3) for all ],0[ L , DDy 
1

 and ],0(
0
   the curve ),,(  yaa  , yya ),,0(  , 

lies in D  together with its  neighborhood. 

Then one can find the constant 2 0c   independent on   and such that, for 

sufficiently small 02   and for every ],0[ L , 
1

Dy , DDy 
1

 and mR , and 

],0( 2   the following estimate holds: 

1

2( , , , ) ( , , ) ( , , , ) ( , , , ) pa y a y y y c                 ,  (5) 

where yyaya  ),,0(),,,0(  ,   ),,,0(),,,0( yy . 

Theorem 2 is generalized for multifrequency systems with oscillation vector 

),( a   and higher approximation systems. Result of theorem 2 is applied for the 

problem of existence of the solution and justification of averaging method for system (1) 

with boundary conditions of the form [1] 
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  0,,,, 00    LLaaF        (6) 

and multipoint conditions, boundary-value problems with parameters. 

 

2. Multifrequency Systems of Equations with Linearly Transformed Arguments 

Let us suppose that i  and j  are numbers from semi-interval ]1,0( ,   

1...0 1  r , 1...0 1  r , )()(  iaa
i

 , )()(  jj
 , 

),...,(
1 r

aaa  , ),...,(
1 r   . 

The system of equations is considered 

),,(
)(

),,,(   










aY

d

d
aX

d

da
,    (7) 

where nRDa  , mR , 1m , ],0[ L , ],0(
0
  . 

In [12] the problem of existence of the solution of the system of equations (7), 

which satisfies integral conditions 

 

















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L s

j
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L
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ddaf

j

0

2
1

0

,1

,))(),(,()())(,(

))(),(,(







    (8) 

is solved. Here vector-functions , ,f g X  and Y  are 2 periodic in variables 
j

 , 

nRd 1 , mRd 2 . 

In the problem (7), (8) both system (7) and vector-functions f  and g  in conditions 

(8) are averaged over fast variables. The averaged system takes the form 

  













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L s

j
j

L

ddagabddaf

aY
d

d
aX

d

ad

j

0

2
1

0

0

,10

00

.))(,()())(,())(,(

),,(
)(

),,(

















 (9) 

The oscillation resonance condition in point  , which depends on delay in fast 

variables in contradistinction to condition 0),( k  [13, 14], and takes the form 

 
 


s

j

s

j
j

m

jjjj kZkk
1 1

,0,,0))(,(      (10) 

is found. 

The existence of the solution of the problem (7), (8), is proved and the estimate of 

error of averaging method for slow variables is obtained 

3( , , , ) ( , , ) ,a y a y c             

where ,)(0 1 ms yya ),,0(  , 4c   , 
1

5c    . 
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If )(jj bb  , sj ,...,1 , then the solution of the problem (7), (8) exists and is 

unique. 

In the work [9] there is investigated the system of equation (7), when for slow 

variables (amplitudes) the value 

0 0 0( ) , 0 ,a a L     

or linear combination of values, is set, and integral conditions have the form 

  










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1
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
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j
j j
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1 2

1

( , ) : ( , ( , )) ,
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j

j

S b a y d
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

    



  

0

0
0

1 0

( , )(( , ( , ))
( ) : .j

j

r

j

a yX a y
S I d

a y






 
 




 

 
  

Theorem 3. Let us suppose that the following conditions are satisfied: 

1) vector-fuctions , , , ,X Y f g  and matrix functions jb  belong to certain classes of 

smooth functions; 

2) the Wronskian determinant of ms  order of the functions  )(),...,( s1   is not zero 

for ],0[ L ; 

3) the unique solution of averaged problem (9) for slow variables, which lies in D  

together with its  neighborhood, exists; 

4) the matrixes ),( 21 S  and )( 0S  are non-degenerate. 

Then for sufficiently small 03   the unique solution of the problem (7), (8) exists 

and for every ],0[ L  and ],0( 3   the following estimate holds: 

6( , , , ) ( , ) ( , , , ) ( , , , ) ( ) ,a y a y y y c                           

where 1)(  ms , 1

7( ) c     . 

Remark 2. The asymptotic of estimates in theorems 1–3 under the imposed conditions is 

the finest. 

Example 1. Let us consider the problem: 

.10,)(],1,0[,
21

;10,)(,5.0),2cos(1

2
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21

000
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




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






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

d
d

d

aa
d

da

 

There is resonance   )(2)(  in the point 0 . The Wronskian 

determinant equals to 1 . The estimate of error for slow variable is 
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3. Averaging of Multifrequency System with Noether Boundary Conditions  

Let us consider the system (7) with boundary conditions 

,))(,,(
0

100 ddssasfaAaA
L

L         (11) 

,)()()(
0

2100

0

100   

L

L

L

L dssagagagdsssBBB     (12) 

where f  – preset n measurable function 2 periodic in components  , 10 , AA  are 

constant  )( nn matrixes, 10 ,BB  – constant  )( mq matrixes, and B  is vector-function 

of the same extension, d  – preset n  vector, 210 ,, ggg  – constant  )( nq matrixes. 

Under the solution of problem (7), (11), (12) we will understand vector-function 

 )(),( a , which satisfies the system of equations (7) and boundary condition (11) in 

classical understanding, and boundary condition (12) as pseudo solution [15], i.e. by 

substitution ),,,(  y ,  ),,,0( y  in the condition (12), the initial value   

is found as vector, which minimizes euclidean norm of discrepancy and the norm of 

which is the least under the conditions. 

The oscillation resonance condition is condition (10). 

Theorem 4. Let us suppose, that: 

1) conditions 1), 2) of Theorem 3 are true; 

2) the unique solution of averaged Noether problem for slow variables, which lies in D  

together with its  neighborhood, exists; 

3) matrix 










L

ds
y

ysa
ysasf

y

yLa
AAM

0

0101

),(
)),(,(

),(
 is invertible, and 


L

dssBBBM
0

102 )(  is )( mq  full rank matrix, mq  . 

Then there will be found constants 9 40, 0c    such that for every ],0( 2     the 

unique solution of the boundary problem (7), (11), (12) exists, moreover, for fast 

variables   as pseudo solution, and for all ],0[ L  and ],0( 4  , estimate performs 

9( , , , ) ( , ) ( , , , ) ( , , , ) ( ) .a y a y y y c                     

Example 2. Let us consider the problem: 
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There is resonance in the point 0  because  2)(1  . The pseudo solution 

0)0(   is found from boundary conditions. The estimate of error for slow variable for 

1   is 
10(1, ) (1)a a c   . 

The Case of the Classic Solution. Let us write boundary condition (12) in the form  

,)(
0

2100  

L

L dssagagag   

where  

L

L dsssBBB
0

100 )()(:    is linear bounded Noether operator. 

Condition, which provides the existence of solving the system (7), which would 

satisfy the condition (12) in classic understanding was received in [15] and was written as 

,0))((
0

2100*  

L

L dssagagagP   

where *
P  is orthoprojector on the core *ker  of operator * , conjugated to  . 

 

Conclusion 

The results of research of multifrequency systems with linearly transformed 

arguments, with in the process of evolution pass through the resonances, are shown. The 

existence and uniqueness of solution of the boundary problems with multipoint and 

integral conditions are proved and the averaging method on fast variables is justified. 

The obtained results are the basis for further investigation of new classes of 

systems, especially systems with frequencies depending on slow variables, and systems 

of higher approximation, and systems with transformed arguments. 
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of one of the authors [1, 2, 3], two theorems of the existence of the selections with conditions of continuity

are proved.
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SELECŢII ALE FUNCŢIILOR POLIFORME
ŞI PROPRIETĂŢILE LOCAL FINITE ALE FUNCŢIILOR

Rezumat. Folosind unele metode din lucrările lui E. Michael [10, 11, 12], T. Dobrowolski şi J. van Mill

[5] şi ale unui din autori [1, 2, 3], se demonstrează două teoreme de existenţă a selecţiilor cu condiţii de

continuitate.

Cuvinte-cheie: funcţie poliformă, selecţie, spaţiu liniar.

1. Introduction

A single-valued mapping f : X −→ Y of a space X into a space Y is said to be a

selection of a given set-valued mapping F : X −→ Y if f(x) ∈ F (x) for each x ∈ X. Note

that by the Axiom of Choice selections always exist. In the category of topological spaces

and continuous single-valued mappings the situation is more complex.

The following problem is important: Under what conditions there exist continuous

selections? There exist many theorems on continuous selections. One of them is the following

classical Michael selection theorem for convex-valued mappings.

Theorem M. (E. Michael, [10]). A multivalued mapping F : X −→ B admits a continuous

single-valued selection, provided that the following conditions are satisfied:

(1) X is a paracompact space;

(2) B is a Banach space or a locally convex complete metrizable linear space;

(3) F is a lower semicontinuous mapping;

(4) for every point x ∈ X, F (x) is a nonempty convex subset of B;

(5) for every point x ∈ X, F (x) is a closed subset of B.

A natural question arises concerning the essentiality of each of conditions (1)-(5). There

are lower semicontinuous convex-valued mappings F : X −→ Y without any continuous

single-valued selections, even for X = [0; 1] (see Example 6.2 from [10]. An important

example is published in [7]. It was proved that every convex-valued lower semicontinuous

mapping mapping of a metrizable domain into a separable Banach space admits a selection,

provided that all values are finite-dimensional ([10], special case of Theorem 3.1). Distinct

results of this kind were proved in [4, 5, 6, 8, 13, 14, 15].

2. Main results

Any space is considered to be a Hausdorff space.

Let X and Y be topological spaces. We say that F : X −→ Y is a set-valued mapping

if F (x) is a non-empty subset of Y for any point x ∈ X.
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The set-valued mapping F : X −→ Y is called:

- lower semicontinuous mapping if the set F−1(H) = {x ∈ X : F (x) ∩ H 6= ∅} is an

open subset of the space X for any open subset H of the space Y ;

- upper semicontinuous mapping if the set F−1(H) = {x ∈ X : F (x) ∩ H 6= ∅} is a

closed subset of the space X for any closed subset H of the space Y ;

- locally closed-valued if for any point a ∈ X and any point b ∈ F (x) there exist an

open subset U of X and an open subset V of Y such that F (x) ∩ ∩clY V is a closed subset

of Y for each point x ∈ U ;

- locally linear finite dimensional, where Y is a linear space, if for any point a ∈ X and

any point b ∈ F (x) there exist an open subset U of X and an open subset V of Y such that

F (x) ∩ V is a subset of some finite dimensional linear subspace of Y for each point x ∈ U .

Theorem 1. Let F : X −→ Y be a lower semicontinuous mapping of a normal metacompact

or a hereditary metacompact space X into a complete metrizable space Y . If the mapping

F is locally closed-valued, then there exists a lower semicontinuous compact-valued mapping

φ : X −→ Y such that φ(x) ⊂ F (x) for each point x ∈ X.

Proof. Let d be a complete metric on a space Y . For any point a ∈ X we fix an open

subset Ua of the space X and an open subset V a of Y such that a ∈ Ua ⊂ F−1(Va) and

F (x)∩ clY V a is a closed subset of Y for any point x ∈ Ua. Since X is a metacompact space,

there exist a subset A of X and an open point-finite cover {Wa : a ∈ A} of the space X such

that Wa ⊂ Ua. If X is a normal space, then we can assume that Wa is an Fσ-subset of X for

each a ∈ A. Hence Wa is a metacompact subspace of X for each a ∈ A. Since V a is an open

subset of the complete space (Y, d), on V a there exists a complete metric da. For any a ∈ A
consider the lower semicontinuous closed-valued mapping Fa : Wa −→ V a, where F − a(x)

= F9x) ∩ V a for any x ∈ Wa, of a metacompact space Wa into a complete metrizable

space (V a, da). Fix a ∈ A. As was proved in [1, 2], there exists a lower semicontinuous

compact-valued mapping φa : Wa −→ V a such that φa(x) ⊂ Fa(x) for each point x ∈ Wa.

Then φ(x) = ∪{φa(x) : a ∈ A, x ∈ Wa} is the desired mapping. The proof is complete.

From the E.Michael result from [12] and Theorem 1 it follows

Corollary 1. Let F : X −→ Y be a lower semicontinuous mapping of a paracompact space X

into a complete metrizable space Y . If the mapping F is locally closed-valued, then there exist

a lower semicontinuous compact-valued mapping ϕ : X −→ Y and a upper semicontinuous

compact-valued mapping ψ : X −→ Y such that ϕ(x) ⊂ ψ(x) ⊂ F (x) for each point x ∈ X.

Theorem 2. Let F : X −→ Y be a lower semicontinuous mapping of a normal metacompact

or a hereditary metacompact space X into a linear metrizable locally convex space Y . If the

mapping F is locally closed-valued and locally linear finite dimensional, then there exists

a lower semicontinuous compact-valued mapping φ : X −→ Y such that φ(x) ⊂ F (x) for

each point x ∈ X. Moreover, if the mapping F is convex-valued, then the mapping φ is

convex-valued too.

Proof. Let d be an invariant metric on a space Y . For any point a ∈ X we fix an open

subset Ua of the space X and an open subset V a of Y such that a ∈ Ua ⊂ F−1(Va) and

F (x) ∩ clY V a is a closed subset of some finite dimensional linear subspace L(a, x) for any

point x ∈ Ua. By virtue of the V.L. Klee theorem [9], the metric d is complete on any
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finite dimensional linear subspace L of Y . Hence the existence of the mapping φ follows

from Theorem 1. Assume now that the sets F (x) are convex. Then the conv(φ) : X −→ Y

is lower semicontinuous too [10]. Fix x ∈ X. Then φ(x) is a compact subset of the finite

dimensional subspace L(a) which contains the linear subspaces {L(a, x) : x ∈ Wa}. Hence

conv(φ)(x) is a compact convex subset of Y . The proof is complete.

From the E.Michael result [10] and Theorem 2 it follows

Corollary 2. Let F : X −→ Y be a lower semicontinuous mapping of a paracompact space

X into a linear metrizable locally convex space Y . If the mapping F is locally closed-valued

and locally linear finite dimensional, then there exists a single-valued continuous mapping

f : X −→ Y such that f(x) ⊂ F (x) for each point x ∈ X.
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CONDIŢII DE INTEGRABILITATE PENTRU SISTEMUL DIFERENŢIAL 

LOTKA-VOLTERRA CU UN FASCICOL DIN DOUĂ DREPTE INVARIANTE 

ŞI O CUBICĂ INVARIANTĂ 

Rezumat. Pentru sistemul diferenţial Lotka-Volterra sunt determinate condițiile de existență a unui 

fascicol format din două drepte invariante și o cubică invariantă ireductibilă. Aplicând teoria Darboux de 

integrabilitate se studiază integrabilitatea sistemelor obținute cu trei soluții algebrice. 

Cuvinte-cheie: sistemul diferențial Lotka-Volterra, curbe invariante algebrice, integrabilitate. 

 

1. Introduction 

A planar polynomial differential system is a differential system of the form 

𝑥̇ = 𝑃(𝑥, 𝑦),   𝑦̇ = 𝑄(𝑥, 𝑦),                                             (1) 

where 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) are real polynomials, 𝑥̇ =
𝑑𝑥

𝑑𝑡
, 𝑦̇ =

𝑑𝑦

𝑑𝑡
 denotes the derivatives 

with respect to independent variable 𝑡. We say that the polynomial differential system (1) 

has degree 𝑛, if 𝑛 = max{𝑑𝑒𝑔𝑃(𝑥, 𝑦), 𝑑𝑒𝑔𝑄(𝑥, 𝑦)}. In particular, when 𝑛 = 2, a 

differential system (1) will be called a quadratic system.  

In this paper we consider the quadratic system of differential equations  

𝑥̇ = 𝑥(𝑎1𝑥 + 𝑏1𝑦 + 𝑐1) ≡ 𝑃(𝑥, 𝑦),   𝑦̇ = 𝑦(𝑎2𝑥 + 𝑏2𝑦 + 𝑐2) ≡ 𝑄(𝑥, 𝑦),              (2) 

in which all coefficients 𝑎1, 𝑏1, 𝑐1, 𝑎2, 𝑏2, 𝑐2 and variables 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡) are 

assumed to be real. The system (2) introduced by Lotka and Volterra appears in 

chemistry and ecology where it models two species in competition. It has been widely 

used in applied mathematics and in a large variety of physical topics such as laser 

physics, plasma physics, neural networks, hydrodynamics, etc [1]. Many authors have 

examined the integrability of system (2).  

The Darboux integrability of (2) by using invariant straight lines and conics was 

investigated in [2]. The integrability of (2) via polynomial first integrals and polynomial 

inverse integrating factors was studied in [1]. The complete classification of systems (2) 

in the plane having a global analytic first integral was provided in [3]. The family of 
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systems (2) according to their geometric properties encoded in the configurations of 

invariant straight lines which these systems possess was classified in [4]. 

The integrability conditions for some classes of quadratic systems (2) having an 

irreducible invariant cubic curve were obtained in [5] and [6]. 

In this paper we study the integrability of system (2) using invariant algebraic 

curves, two invariant straight lines and one irreducible invariant cubic curve, passing 

through one singular point, i.e. forming a bundle of invariant algebraic curves. 

The integrability conditions will be found modulo the symmetry 

(𝑥, 𝑦, 𝑎1, 𝑏1, 𝑐1, 𝑎2, 𝑏2, 𝑐2) → (𝑦, 𝑥, 𝑏2, 𝑎2, 𝑐2, 𝑏1, 𝑎1, 𝑐1).                              (3) 

 

2. Invariant cubic curves 

In this section we find the conditions under which the Lotka-Volterra system (2) has 

a bundle of two invariant straight lines and one irreducible invariant cubic. 

Definition 2.1. An algebraic curve Φ(𝑥, 𝑦) = 0  in  ℂ2 with Φ(𝑥, 𝑦) ∈ ℂ[𝑥, 𝑦] is an 

invariant algebraic curve of a differential system (2) if the following identity holds 

𝜕Φ(𝑥, 𝑦)

𝜕𝑥
𝑃(𝑥, 𝑦) +

𝜕Φ(𝑥, 𝑦)

𝜕𝑦
𝑄(𝑥, 𝑦) ≡ Φ(𝑥, 𝑦)𝐾(𝑥, 𝑦)                      (4) 

for some polynomial 𝐾(𝑥, 𝑦) ∈ ℂ[𝑥, 𝑦]  called the cofactor of the curve Φ(𝑥, 𝑦) = 0.  

By Definition 2.1, a straight line  𝐶 + 𝐴𝑥 + 𝐵𝑦 = 0,   𝐴, 𝐵, 𝐶 ∈ ℂ, (𝐴, 𝐵) ≠ 0 is an 

invariant straight line of system (2) if and only if there exists a polynomial 𝐾(𝑥, 𝑦) =

𝛾 + 𝛼𝑥 + 𝛽𝑦 such that the following identity holds 

𝐴 ∙ 𝑃(𝑥, 𝑦) + 𝐵 ∙ 𝑄(𝑥, 𝑦) ≡ (𝐶 + 𝐴𝑥 + 𝐵𝑦)(𝛾 + 𝛼𝑥 + 𝛽𝑦).                  (5) 

 If the quadratic system (2) has complex invariant straight lines then obviously they 

occur in complex conjugated pairs 𝐶 + 𝐴𝑥 + 𝐵𝑦 = 0  and 𝐶̅ + 𝐴̅𝑥 + 𝐵̅𝑦 = 0. 

By using the identity (5), it is easy to verify that the quadratic system (2) has always 

two invariant straight lines 𝑥 = 0 and 𝑦 = 0 with cofactors 𝐾1 = 𝑎1𝑥 + 𝑏1𝑦 + 𝑐1 and 

𝐾2 = 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2, respectively. 

By Definition 2.1, a cubic curve  

Φ(𝑥, 𝑦) ≡ 𝑎30𝑥3 + 𝑎21𝑥2𝑦 + 𝑎12𝑥𝑦2 + 𝑎03𝑦3 + 

    +𝑎20𝑥2 + 𝑎11𝑥𝑦 + 𝑎02𝑦2 + 𝑎10𝑥 + 𝑎01𝑦 = 0,           (6) 

where 𝑎𝑖𝑗 ∈ ℝ, 𝑖 + 𝑗 = 1,2,3 and (𝑎30, 𝑎21, 𝑎12, 𝑎03) ≠ 0 is said to be an invariant cubic 

curve of system (2) if  the identity (4) holds for some polynomial 𝐾(𝑥, 𝑦) = 𝛾 + 𝛼𝑥 +

𝛽𝑦, called the cofactor of the invariant cubic curve Φ(𝑥, 𝑦) = 0.  

 Identifying the coefficients of the monomials 𝑥𝑖𝑦𝑗  in (4) for cubic curve (6), we 

reduce this identity to an algebraic system of fourteen equations 

𝑈40 ≡ 𝑎30(3𝑎1 − 𝛽) = 0, 

𝑈31 ≡  𝑎21(2𝑎1 + 𝑎2 − 𝛽) + 𝑎30(3𝑏1 − 𝛾) = 0, 

𝑈22 ≡ 𝑎12(𝑎1 + 2𝑎2 − 𝛽) + 𝑎21(2𝑏1 + 𝑏2 − 𝛾) = 0,  
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𝑈13 ≡  𝑎12(𝑏1 + 2𝑏2 − 𝛾) + 𝑎03(3𝑎2 − 𝛽) = 0, 

𝑈04 ≡ 𝑎03(3𝑏2 − 𝛾) = 0,  

𝑈30 ≡ 𝑎20(2𝑎1 − 𝛽) + 𝑎30(3𝑐1 − 𝛼) = 0,   

𝑈21 ≡ 𝑎11(𝑎1 + 𝑎2 − 𝛽) + 𝑎20(2𝑏1 − 𝛾) + 𝑎21(𝑐2 + 2𝑐1 − 𝛼) = 0,                             (7) 

𝑈12 ≡ 𝑎11(𝑏1 + 𝑏2 − 𝛾) + 𝑎02(2𝑎2 − 𝛽) + 𝑎12(2𝑐2 + 𝑐1 − 𝛼) = 0, 

𝑈03 ≡ 𝑎02(2𝑏2 − 𝛾) + 𝑎03(3𝑐2 − 𝛼) = 0,   

𝑈20 ≡ 𝑎10(𝑎1 − 𝛽) + 𝑎20(2𝑐1 − 𝛼) = 0, 

𝑈11 ≡ 𝑎01(𝑎2 − 𝛽) + 𝑎10(𝑏1 − 𝛾) + 𝑎11(𝑐2 + 𝑐1 − 𝛼) = 0, 

𝑈02 ≡ 𝑎01(𝑏2 − 𝛾) + 𝑎02(2𝑐2 − 𝛼) = 0,  

𝑈10 ≡ 𝑎10(𝑐1 − 𝛼) = 0, 

𝑈01 ≡ 𝑎01(𝑐2 − 𝛼) = 0, 

for the unknowns 𝑎30, 𝑎21, 𝑎12, 𝑎03, 𝑎20, 𝑎11, 𝑎02, 𝑎10, 𝑎01 and  𝛼, 𝛽, 𝛾.  

 To simplify derivation of the invariant cubic curves from (7) we use the following 

assertion proved in [7] . 

Lemma 2.1. Suppose that a polynomial system (1) of degree 𝑛 has the invariant algebraic 

curve Φ(𝑥, 𝑦) = 0 of degree 𝑚. Let 𝑃𝑛, 𝑄𝑛 and Φ𝑚 be the homogeneous components of 

𝑃, 𝑄 and Φ of degree 𝑛 and 𝑚, respectively. Then the irreducible factors of Φ𝑚 must be 

factors of 𝑦𝑃𝑛 − 𝑥𝑄𝑛.  

 According to Lemma 2.1, the irreducible factors of Φ3 must be the factors of  

𝑦𝑃2 − 𝑥𝑄2 = 𝑥𝑦[(𝑎1 − 𝑎2)𝑥 + (𝑏1 − 𝑏2)𝑦]. 

The symmetry (3) implies Φ(𝑥, 𝑦) = 0 to have one of the following forms  

Φ(𝑥, 𝑦) ≡ 𝑥3 + 𝑎20𝑥2 + 𝑎11𝑥𝑦 + 𝑎02𝑦2 + 𝑎10𝑥 + 𝑎01𝑦 = 0,                      (8) 

                  Φ(𝑥, 𝑦) ≡ 𝑥2𝑦 + 𝑎20𝑥2 + 𝑎11𝑥𝑦 + 𝑎02𝑦2 + 𝑎10𝑥 + 𝑎01𝑦 = 0,                   (9) 

                  Φ(𝑥, 𝑦) ≡ 𝑥𝑦[(𝑎1 − 𝑎2)𝑥 + (𝑏1 − 𝑏2)𝑦] + 𝑎20𝑥2 + 𝑎11𝑥𝑦 + 𝑎02𝑦2 + 

                                +𝑎10𝑥 + 𝑎01𝑦 = 0,                                                               (10) 

                  Φ(𝑥, 𝑦) ≡ 𝑥2[(𝑎1 − 𝑎2)𝑥 + (𝑏1 − 𝑏2)𝑦] + 𝑎20𝑥2 + 𝑎11𝑥𝑦 + 𝑎02𝑦2 + 

                                +𝑎10𝑥 + 𝑎01𝑦 = 0,                                                               (11) 

                  Φ(𝑥, 𝑦) ≡ 𝑥[(𝑎1 − 𝑎2)𝑥 + (𝑏1 − 𝑏2)𝑦]2 + 𝑎20𝑥2 + 𝑎11𝑥𝑦 + 𝑎02𝑦2 + 

                                          +𝑎10𝑥 + 𝑎01𝑦 = 0,                                                               (12) 

                  Φ(𝑥, 𝑦) ≡ [(𝑎1 − 𝑎2)𝑥 + (𝑏1 − 𝑏2)𝑦]3 + 𝑎20𝑥2 + 𝑎11𝑥𝑦 + 𝑎02𝑦2 + 

                                +𝑎10𝑥 + 𝑎01𝑦 = 0,                                                               (13) 

where 𝑎20, 𝑎11, 𝑎02, 𝑎10, 𝑎01 are unknown coefficients. 

 We study the consistency of system (7) for each cubic curve (8) - (13) and 

determine the conditions under which the Lotka-Volterra system (2) has an irreducible 

invariant cubic. We assume that 

(𝑎1
2 + 𝑏1

2 + 𝑎2
2 + 𝑏2

2)(𝑎1
2 + 𝑐1

2)(𝑏2
2 + 𝑐2

2) ≠ 0                                  (14) 

and that 

33



𝑎2

𝑎1

=
𝑏2

𝑏1

=
𝑐2

𝑐1

                                                                  (15) 

do not hold simultaneously. These conditions ensure the system (2) to be not linear and 

the vector field defined by (2) to be not constant.  

 There are proved the following theorems: 

Theorem 2.1. The quadratic differential system (2) has an irreducible invariant cubic of 

the form (8) if and only if one of the following sets of conditions holds: 

(i) 
 𝑎2 =

3𝑎1

2
, 𝑏1 = 𝑏2 = 0, 𝑐2 = 𝑐1; 

(ii) 
 𝑏2 =

3𝑏1

2
, 𝑐2 = 𝑐1; 

(iii)  𝑎2 = 3𝑎1, 𝑏1 = 𝑏2 = 0,  𝑐2 = 𝑐1; (iv) 
 𝑎2 = 3𝑎1, 𝑏2 =

3𝑏1

2
, 𝑐2 = 𝑐1; 

(v) 
 𝑎2 =

5𝑎1

3
, 𝑏2 =

3𝑏1

2
, 𝑐2 = 𝑐1; 

(vi) 
 𝑎2 =

3𝑎1

2
,  𝑏1 = 𝑏2 = 0, 𝑐1 = 2𝑐2; 

(vii) 
 𝑎2 =

5𝑎1

2
, 𝑏2 =

3𝑏1

2
, 𝑐1 = 2𝑐2; 

(viii)  𝑎2 = 2𝑎1, 𝑏1 = 𝑏2 = 0,   𝑐2 = 3𝑐1;        

(ix)  𝑎2 = 3𝑎1, 𝑏1 = 𝑏2 = 0, 𝑐2 = 2𝑐1;         (x) 
 𝑎2 = 2𝑎1, 𝑏2 =

3𝑏1

2
,  𝑐2 = 3𝑐1; 

(xi) 
 𝑎2 =

15𝑎1

8
, 𝑏2 =

3𝑏1

2
, 𝑐2 = 2𝑐1. 

  

Proof. Let Φ(𝑥, 𝑦) = 0 be of the form (8). We study the consistency of system (7) with 

𝑎30 = 1, 𝑎21 = 𝑎12 =  𝑎03 = 0. In this case the equations 𝑈40 = 0, 𝑈31 = 0 of (7) yield 

𝛽 = 3𝑎1, 𝛾 = 3𝑏1 and 𝑈10 ≡ 𝑎10(𝛼 − 𝑐1) = 0, 𝑈01 ≡ 𝑎01(𝛼 − 𝑐2) = 0. 

 1) Assume that 𝑎10 = 𝑎01 = 0. In this case, the equations 𝑈02 = 0 and 𝑈03 = 0 

imply 𝛼 = 2𝑐2 and 𝑏2 = (3𝑏1)/2.  

 Let 𝑐2 = 𝑐1, then 𝑎20 = 𝑐1/𝑎1. If 𝑏1 = 0, then 𝑎2 = (3𝑎1)/2, 𝑎11 = 0 and we get 

the invariant cubic 

(𝑎1𝑥 + 𝑐1)𝑥2 + 𝑎02𝑎1𝑦2 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 2𝑐1, where 𝑎1𝑐1𝑎02 ≠ 0. We obtain the set of 

conditions (i) of Theorem 2.1. If 𝑏1 ≠ 0 and 𝑎2 = 2𝑎1, then 𝑐1 = 0. In this case we 

obtain a set of conditions which is contained in (x). 

 Suppose that 𝑏1(2𝑎1 − 𝑎2) ≠ 0. Then express 𝑎11 from 𝑈12 = 0 and 𝑎02 from 

𝑈21 = 0. We get the invariant cubic 

2(3𝑎1 − 2𝑎2)((𝑎1𝑥 + 𝑐1)(2𝑎1 − 𝑎2)𝑥 − 𝑏1𝑐1𝑦)𝑥 + 𝑏1
2𝑐1𝑦2 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 3𝑏1𝑦 + 2𝑐1, where 𝑎1𝑐1𝑏1(2𝑎1 − 𝑎2)(3𝑎1 − 2𝑎2) ≠ 0. 

We obtain the set of conditions (ii) of Theorem 2.1. 

 Let 𝑐2 ≠ 𝑐1. Then 𝑎20 = 𝑎11 = 0. In this case the system (7) has no solutions. 

 2) Assume that 𝑎10𝑎01 ≠ 0. Then 𝛼 = 𝑐1, 𝑐2 = 𝑐1 and 𝑐1𝑎1 ≠ 0. We express 𝑎20 

from 𝑈30 = 0, 𝑎10 from 𝑈20 = 0, 𝑎02 from 𝑈02 = 0 and 𝑎11 from 𝑈11 = 0. Then  

𝑈03 ≡ (3𝑏1 − 𝑏2)(3𝑏1 − 2𝑏2) = 0. 

34



 Let 𝑏2 = 3𝑏1 and 𝑎2 = 3𝑎1. In this case 𝑏1 = 0 and the system (2) has an invariant 

cubic curve 

(𝑎1𝑥 + 𝑐1)2𝑥 + 𝑎01𝑎1
2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 𝑐1, where 𝑎1𝑐1𝑎01 ≠ 0. We get the conditions (iii).  

 When 𝑏2 = 3𝑏1 and 𝑎2 ≠ 3𝑎1, the system (7) is not consistent.  

 Let 𝑏2 = (3𝑏1)/2, 𝑏1 ≠ 0 and express 𝑎01 from 𝑈12 = 0. In this case we have 

𝑈21 ≡ (5𝑎1 − 3𝑎2)(3𝑎1 − 𝑎2) = 0. If 𝑎2 = 3𝑎1, then we get the set of conditions (iv). 

The invariant cubic is 

9𝑎1𝑥(𝑎1𝑥 + 𝑐1)2 + 18𝑎1𝑏1𝑐1𝑥𝑦 + 3𝑏1
2𝑐1𝑦2 + 2𝑏1𝑐1

2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 3𝑏1𝑦 + 𝑐1, where 𝑎1𝑐1𝑏1 ≠ 0.  

 If 𝑎2 = (5𝑎1)/3, then we obtain the set of conditions (v). The invariant cubic is 

𝑎1𝑥(𝑎1𝑥 + 𝑐1)2 − 6𝑎1𝑏1𝑐1𝑥𝑦 − 9𝑏1
2𝑐1𝑦2 − 6𝑏1𝑐1

2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 3𝑏1𝑦 + 𝑐1, where 𝑎1𝑐1𝑏1 ≠ 0.  

 3) Assume that 𝑎10 ≠ 0 and let 𝑎01 = 0. Then 𝑎02 ≠ 0 and 𝛼 = 𝑐1. In this case we 

express 𝑐1, 𝑏2, 𝑎20, 𝑎10, 𝑎11 from the equations 𝑈02 = 0, 𝑈03 = 0, 𝑈30 = 0, 𝑈20 = 0, 

𝑈11 = 0, respectively. If 𝑏1 = 0 and 𝑎2 = (3𝑎1)/2, then we obtain the invariant cubic  

(𝑎1𝑥 + 2𝑐2)2𝑥 + 𝑎02𝑎1
2𝑦2 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 2𝑐2, where 𝑎1𝑐2𝑎02 ≠ 0. We get the conditions (vi). 

 If 𝑏1 ≠ 0 and 𝑎2 = (5𝑎1)/2, then we find the invariant cubic curve 

𝑎1𝑥(𝑎1𝑥 + 2𝑐2)2 + 8𝑎1𝑏1𝑐2𝑥𝑦 + 2𝑏1
2𝑐2𝑦2 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 3𝑏1𝑦 + 2𝑐2, where 𝑎1𝑏1𝑐2 ≠ 0. We determine the set 

of conditions (vii).  

 4) Assume that 𝑎01 ≠ 0  and let 𝑎10 = 0. Suppose that 𝑎02 = 𝑎20 = 0. Then 𝑐2 =

3𝑐1 and 𝑏2 = 3𝑏1. If 𝑎11 = 0, then the system (7) is not consistent. If 𝑎11 ≠ 0, then 𝑏1 =

0 and 𝑎2 = 2𝑎1. In this case we obtain the invariant cubic 

𝑎1𝑥3 + 𝑎11𝑦(𝑐1 + 𝑎1𝑥) = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3(𝑎1𝑥 + 𝑐1), where 𝑎1𝑐1𝑎11 ≠ 0. We get the conditions (viii).  

 Let 𝑎02 = 0 and 𝑎20 ≠ 0. In this case from the equations of (7) we find that 𝛼 = 𝑐2, 

𝑐2 = 2𝑐1, 𝑏2 = 3𝑏1, 𝑎20 = 𝑐1/𝑎1, 𝑎11 = 𝑎01(3𝑎1 − 𝑎2)/𝑐1.  

 If 𝑏1 = 0 and 𝑎2 = 3𝑎1. Then (2) has an invariant cubic curve 

𝑎1𝑥3 + 𝑐1𝑥2 + 𝑎01𝑎1𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 2𝑐1, where 𝑎1𝑐1𝑎01 ≠ 0. We obtain the set of 

conditions (ix). If 𝑏1 = 0 and 𝑎2 = 2𝑎1, then the cubic curve (8) is reducible.  

 Let 𝑎20 = 0 and 𝑎02 ≠ 0. In this case the equations of (7) yield 𝛼 = 𝑐2, 𝑐2 = 3𝑐1, 

𝑏2 = (3𝑏1)/2, 𝑎01 = (2𝑐1𝑎02)/𝑏1, 𝑎11 = 2𝑎02(3𝑎1 − 𝑎2)/𝑏1.  

 When 𝑎2 = 2𝑎1, we get the set of conditions (x). The invariant cubic is 

𝑏1𝑥3 + 2𝑎02𝑎1𝑥𝑦 + 𝑎02𝑏1𝑦2 + 2𝑎02𝑐1𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3(𝑎1𝑥 + 𝑏1𝑦 + 𝑐1), where 𝑎1𝑐1𝑏1𝑎02 ≠ 0. 
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 Let 𝑎20𝑎02 ≠ 0. In this case the equations of (7) yield 𝛼 = 𝑐2, 𝑐2 = 2𝑐1, 𝑏2 =

(3𝑏1)/2, 𝑎20 = 𝑐1/𝑎1, 𝑎02 = (3𝑏1𝑎01)/(4𝑐1), 𝑎11 = 𝑎01(3𝑎1 − 𝑎2)/𝑐1.  

 If 𝑎2 = (15𝑎1)/8, then we obtain the set of conditions (xi). The invariant cubic is  

9𝑎1
2𝑥2(𝑎1𝑥 + 𝑐1) − 72𝑎1𝑏1𝑐1𝑥𝑦 − 48𝑏1

2𝑐1𝑦2 − 64𝑏1𝑐1
2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 3𝑏1𝑦 + 2𝑐1, where 𝑎1𝑐1𝑏1 ≠ 0. Theorem 2.1 is proved.  

Theorem 2.2. The quadratic differential system (2) has an irreducible invariant cubic of 

the form (9) if and only if one of the following sets of conditions is realized: 

(i)  𝑎2 = 0,  𝑏2 = 2𝑏1,   𝑐2 = 𝑐1; (ii)  𝑎2 = −𝑎1,  𝑏1 = 0,  𝑐2 = 𝑐1; 

(iii)  𝑎2 = −𝑎1, 𝑏2 = 2𝑏1,  𝑐2 = 𝑐1;         (iv)  𝑎2 = −𝑎1,  𝑏2 = 2𝑏1,  𝑐1 = 2𝑐2; 

(v)  𝑎2 = 0,  𝑏2 = 2𝑏1,   𝑐1 = 2𝑐2; (vi)  𝑎2 = 0,  𝑏1 = 0,  𝑐2 = 2𝑐1. 

Proof. Let Φ(𝑥, 𝑦) = 0 be of the form (9). We study the consistency of system (7) with 

𝑎21 = 1, 𝑎30 = 𝑎12 =  𝑎03 = 0. In this case the equations 𝑈31 = 0, 𝑈22 = 0 of (7) yield 

𝛽 = 2𝑎1 + 𝑎2, 𝛾 = 2𝑏1 + 𝑏2.  

 1) Assume that 𝑎10 = 𝑎01 = 0. Then 𝑎20𝑎02 ≠ 0 and the equations of (7) yield 𝛼 =

2𝑐1,  𝑐2 = 𝑐1, 𝑎2 = 0, 𝑏2 = 2𝑏1, 𝑎11 = (−2𝑎1𝑎02)/𝑏1, 𝑎20 = (2𝑎02𝑎1
2+𝑏1𝑐1)/(2𝑏1

2). 

In this case obtain the set of conditions (i) of Theorem 2.2. The invariant cubic is 

𝑥2(2𝑎02𝑎1
2 + 2𝑏1

2𝑦+𝑏1𝑐1) − 4𝑎1𝑏1𝑎02𝑥𝑦 + 2𝑏1
2𝑎02𝑦2 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 2(𝑎1𝑥 + 2𝑏1𝑦 + 𝑐1), where 𝑎02𝑏1 ≠ 0.  

 2) Assume that 𝑎10𝑎01 ≠ 0. Then 𝛼 = 𝑐1, 𝑐2 = 𝑐1. Let 𝑎20 = 0, then the equations 

𝑈20 = 0, 𝑈21 = 0, 𝑈12 = 0 yield 𝑎2 = −𝑎1, 𝑎11 = (2𝑐1)/𝑎1,  𝑎02 = (−2𝑏1𝑐1)/(3𝑎1
2). 

 If 𝑏1 = 0, then we get the set of conditions (ii). The invariant cubic is 

(2𝑎1
2𝑥 + 4𝑎1𝑐1)𝑥𝑦 + 2𝑎1

2𝑎10𝑥 + (2𝑐1
2 − 𝑎1𝑎10𝑏2)𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 𝑎1𝑥 + 𝑏2𝑦 + 𝑐1), where 𝑎10𝑎1(2𝑐1
2 − 𝑎1𝑎10𝑏2) ≠ 0.  

 If 𝑏1 ≠ 0, then 𝑏2 = 2𝑏1 and we obtain the set of conditions (iii) of Theorem 2.2. 

The invariant cubic (9) looks  

9𝑎1𝑏1𝑥𝑦(𝑎1𝑥 + 2𝑐1) − 6𝑏1
2𝑐1𝑦2 + 8𝑎1𝑐1

2𝑥 − 3𝑏1𝑐1
2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 𝑎1𝑥 + 4𝑏1𝑦 + 𝑐1, where 𝑎1𝑐1𝑏1 ≠ 0.  

 Suppose that 𝑎20 ≠ 0 and let 𝑎2 = 0. Then the equations 𝑈20 = 0, 𝑈02 = 0, 𝑈11 = 0 

yield  𝑎20 = (𝑎1𝑎10)/𝑐1,  𝑎02 = (2𝑏1𝑎01)/𝑐1,  𝑎11 = (2𝑎1𝑎01 + 𝑏1𝑎10 + 𝑏2𝑎10)/𝑐1. 

 When 𝑏1 = 0, the cubic is reducible. If 𝑏1 ≠ 0, then we express 𝑎01 from 𝑈12 = 0 

and 𝑎10 from 𝑈21 = 0. In this case the cubic (9) is also reducible.  

 3) Assume 𝑎01 = 0 and let 𝑎10 ≠ 0. Then 𝑎02 ≠ 0 and 𝛼 = 𝑐1. The equations 𝑈02 =

0, 𝑈03 = 0 yield 𝑐1 = 2𝑐2, 𝑏2 = 2𝑏1. If 𝑎20 = 0, then 𝑎2 = −𝑎1, 𝑎11 = (3𝑐2)/𝑎1,  

 𝑎02 = (−𝑏1𝑐2)/(𝑎1
2), 𝑎10 = 𝑐2

2/(𝑎1𝑏1). In this case we get the set of conditions (iv) of 

Theorem 2.2. The invariant cubic (9) is  

2𝑎1𝑏1𝑥𝑦(2𝑎1𝑥 + 3𝑐1) − 2𝑏1
2𝑐1𝑦2 + 𝑎1𝑐1

2𝑥 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 𝑎1𝑥 + 4𝑏1𝑦 + 𝑐1, where 𝑎1𝑐1𝑏1 ≠ 0.  
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 If 𝑎20 ≠ 0, then 𝑎2 = 0. In this case 𝑎10 = (2𝑐2𝑎20)/𝑎1, 𝑎11 = (6𝑏1𝑎20)/𝑎1, 𝑎20 =

(3𝑐2)/(8𝑏1) and we obtain the set of conditions (v). The invariant cubic is  

𝑎1𝑏1𝑥𝑦(8𝑎1𝑥 + 18𝑐2) + 3𝑎1
2𝑐2𝑥2 − 9𝑏1

2𝑐2𝑦2 + 6𝑎1𝑐2
2𝑥 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 2(𝑎1𝑥 + 2𝑏1𝑦 + 𝑐2), where 𝑎1𝑐2𝑏1 ≠ 0.  

 4) Assume 𝑎10 = 0 and let 𝑎01 ≠ 0. Then 𝑎20 ≠ 0, 𝛼 = 𝑐2, 𝑎2 = 0 and 𝑐2 = 2𝑐1. 

 Let 𝑎02 = 0. Then 𝑏1 = 0 and 𝑎11 = (2𝑎1𝑎01)/𝑐1. In this case we have the 

invariant cubic  

2𝑎1
2𝑥2(𝑦 + 𝑎20) + 2𝑎1(2𝑐1 − 𝑏2𝑎20)𝑥𝑦 + 𝑐1(2𝑐1 − 𝑏2𝑎20)𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 2𝑎1𝑥 + 𝑏2𝑦 + 2𝑐1, where 𝑎1𝑐1𝑎20(2𝑐1 − 𝑏2𝑎20) ≠ 0. We get 

the set of conditions (vi) of Theorem 2.2.  

 Let 𝑎02 ≠ 0. Then 𝑏2 = 2𝑏1, 𝑎02 = (𝑏1𝑎01)/𝑐1, 𝑎11 = (2𝑎1𝑎01)/𝑐1, 𝑎1 = 0 and 

𝑎20 = 𝑐1/𝑏1. In this case the cubic curve (9) is reducible. Theorem 2.2 is proved.  

Theorem 2.3. The quadratic differential system (2) has an irreducible invariant cubic of 

the form (10) if and only if the following set of conditions is satisfied 

(i)  𝑎2 = −𝑎1,  𝑏1 = 0,   𝑐2 = 𝑐1. 

Proof. Let Φ(𝑥, 𝑦) = 0 be of the form (10). We study the consistency of system (7) with 

𝑎21 = 𝑎1 − 𝑎2, 𝑎12 = 𝑏1 − 𝑏2,  𝑎30 = 𝑎03 = 0. In this case the equations 𝑈31 = 0, 𝑈13 =

0 of (7) yield 𝛽 = 2𝑎1 + 𝑎2, 𝛾 = 𝑏1 + 2𝑏2.  

 1) Assume that 𝑎10 = 𝑎01 = 0. Then 𝑎20𝑎02 ≠ 0 and the equations of (7) imply 

𝛼 = 2𝑐1,  𝑐2 = 𝑐1, 𝑎2 = 𝑏1 = 0, 𝑎11 = (−2𝑎1𝑎02−𝑏2𝑐1)/𝑏2, 𝑎20 = 𝑎1(𝑎1𝑎02+𝑏2𝑐1)/𝑏2
2. 

In this case the invariant cubic (10) is reducible.  

 2) Assume that 𝑎10𝑎01 ≠ 0. Then 𝛼 = 𝑐1, 𝑐2 = 𝑐1. When 𝑎20 =  𝑎02 = 0, the 

equations of (7) yield 𝑎2 = −𝑎1, 𝑏2 = −𝑏1, 𝑎11 = 𝑐1 = 0, 𝑎10 = (𝑎01𝑎1)/ 𝑏1. In this 

case the cubic curve is reducible.  

 Suppose that  𝑎02 ≠ 0 and let  𝑎20 = 0. Then from the equations of (7) we find that 

𝑎2 = −𝑎1, 𝑏1 = 0, 𝑎11 = 4𝑐1,𝑎02 = (−2𝑏2𝑐1)/ 𝑎1,  𝑎01 = (−2𝑐1
2)/ 𝑎1, 𝑎10 = (4𝑐1

2)/ 𝑏2. 

In this case the cubic curve (10) is reducible.  

 Suppose that  𝑎20 ≠ 0 and let 𝑎02 = 0. Then from (7) we determine that 𝑎2 = 0,

𝑏2 = −𝑏1, 𝑎11 = −4𝑐1, 𝑎10 = (−2𝑐1
2)/ 𝑏1, 𝑎20 = (−2𝑎1𝑐1)/ 𝑏1,  𝑎01 = (−4𝑐1

2)/ 𝑎1.     

In this case the cubic curve (10) is also reducible.  

 When 𝑎20𝑎02 ≠ 0, the equations of (7) yield 𝑏1 = 𝑎2 =  𝑎11 = 0,  𝑎10 = 𝑐1
2/ 𝑏2, 

 𝑎01 = (−𝑐1
2)/ 𝑎1, 𝑎20 = (𝑎1𝑐1)/ 𝑏2 and 𝑎02 = (−𝑏2𝑐1)/ 𝑎1. The cubic (10) is reducible. 

 3) Assume 𝑎10 ≠ 0  and let 𝑎01 = 0. Then 𝑎02 ≠ 0,  𝑏1 = 0 and 𝛼 = 𝑐1 = 2𝑐2. We 

express 𝑎20,  𝑎11, 𝑎10 from the equations 𝑈21 = 0, 𝑈12 = 0, 𝑈11 = 0 of (7).   

 If 𝑐2 = 0 or 𝑎2 = 0, then the cubic curve (10) is reducible. Suppose that 𝑎2𝑐2 ≠ 0, 

then 𝑎2 = −𝑎1 and  𝑎02 = (−8𝑏2𝑐2)/(3𝑎1). In this case we get the set of conditions (i) 

of Theorem 2.3. The invariant cubic (10) looks 

3𝑎1𝑏2𝑥𝑦(2𝑎1𝑥 − 𝑏2𝑦 + 6𝑐2) − 8𝑏2
2𝑐2𝑦2 + 9𝑎1𝑐2

2𝑥 = 0 
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with cofactor 𝐾3(𝑥, 𝑦) = 𝑎1𝑥 + 2𝑏2𝑦 + 2𝑐2, where 𝑎1𝑐2𝑏2 ≠ 0.  

 4) Assume 𝑎01 ≠ 0 and let 𝑎10 = 0. This case is symmetric to the case 3) and we 

obtain the set of conditions symmetric to (i). Theorem 2.3 is proved. 

Theorem 2.4. The quadratic differential system (2) has an irreducible invariant cubic of 

the form (11) if and only if one of the following sets of conditions holds: 

(i) 
 𝑎2 =

3𝑎1

2
, 𝑏2 = 2𝑏1,   𝑐2 = 𝑐1; 

(ii)  𝑎2 = 3𝑎1,  𝑏1 = 0,   𝑐2 = 𝑐1; 

(iii) 
 𝑎2 =

5𝑎1

3
,  𝑏2 = 2𝑏1,   𝑐2 = 𝑐1; 

(iv)  𝑏1 = 0,   𝑐2 = 3𝑐1; 

(v) 
 𝑎2 =

15𝑎1

7
,  𝑏2 = 2𝑏1,  𝑐2 = 3𝑐1; 

(vi)  𝑎2 = 3𝑎1,  𝑏1 = 0,   𝑐2 = 2𝑐1; 

(vii) 
 𝑎2 =

5𝑎1

2
,  𝑏2 = 2𝑏1,   𝑐2 =

𝑐1

2
; 

(viii) 
 𝑎2 =

7𝑎1

6
,  𝑏2 = 2𝑏1,   𝑐2 =

𝑐1

2
. 

Proof. Let Φ(𝑥, 𝑦) = 0 be of the form (11). We study the consistency of system (7) with 

𝑎30 = 𝑎1 − 𝑎2, 𝑎21 = 𝑏1 − 𝑏2, 𝑎12 =  𝑎03 = 0. In this case the equations 𝑈40 = 0, 𝑈22 =

0 of (7) yield 𝛽 = 3𝑎1, 𝛾 = 2𝑏1 + 𝑏2.  

 1) Assume that 𝑎10 = 𝑎01 = 0. Then 𝑎02 ≠ 0 and 𝛼 = 2𝑐2.  Suppose that 𝑐2 = 𝑐1, 

then 𝑏2 = 2𝑏1. We express 𝑎11 and 𝑎20 from the equations 𝑈12 = 0 and 𝑈21 = 0 of (7).  

If 𝑎2 = (3𝑎1)/2, then we get the set of conditions (i). The invariant cubic is 

𝑎1𝑥3 + 2𝑏1𝑥2𝑦 + 𝑐1
2𝑥2 − 2𝑎02𝑦2 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 4𝑏1𝑦 + 2𝑐1, where 𝑎1𝑏1𝑎02 ≠ 0. If 𝑎2 ≠ (3𝑎1)/2, then 

𝑎02 = (𝑏1
2𝑐1)/[𝑎1(2𝑎1 − 𝑎2)]. In this case the invariant cubic (11) is reducible.  

 Suppose that 𝑐2 ≠ 𝑐1. Then 𝑎20 = 𝑎11 = 0, 𝑏2 = 2𝑏1 and 𝑎2 = (3𝑎1)/2. In this 

case the algebraic system (7) is not consistent. 

2) Assume that 𝑎10𝑎01 ≠ 0. Then 𝛼 = 𝑐1, 𝑐2 = 𝑐1 and 𝑐1𝑎1 ≠ 0. We express 𝑎20, 

𝑎02, 𝑎11, 𝑎10 from the equations 𝑈20 = 0, 𝑈02 = 0, 𝑈11 = 0, 𝑈30 = 0 of (7).  

Let 𝑏1 = 0. If 𝑎2 = 2𝑎1, then the invariant cubic (11) is reducible.  

If 𝑎2 = 3𝑎1, then we obtain the set of conditions (ii). The invariant cubic is 

𝑎1𝑥2(2𝑎1𝑥 + 𝑏2𝑦 + 4𝑐1) + 2𝑏2𝑐1𝑥𝑦 + 2𝑐1
2𝑥 − 𝑎01𝑎1𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 𝑏2𝑦 + 𝑐1, where 𝑎1𝑐1𝑏2𝑎01 ≠ 0.   

 If (𝑎2 − 2𝑎1)( 𝑎2 − 3𝑎1) ≠ 0 and  𝑎01 = (−𝑏2𝑐1
2)/ 𝑎1

2, then (11) is reducible. 

 Suppose that 𝑏1 ≠ 0. Then 𝑈03 = 0 yields 𝑏2 = 2𝑏1. If 𝑎2 = 3𝑎1, then  𝑎01 =

(−𝑏1𝑐1
2)/ 𝑎1

2 and the invariant cubic (11) is reducible.  

Let 𝑎2 ≠ 3𝑎1. Then express  𝑎01 from 𝑈21 = 0. In this case 𝑈12 ≡ (3𝑎1 −

2𝑎2)(5𝑎1 − 3𝑎2) = 0. If 𝑎2 = (3𝑎1)/2, then the invariant cubic (11) is reducible.  

If 𝑎2 = (5𝑎1)/3, then we get the set of conditions (iii). The invariant cubic is 

𝑎1
2𝑥2(2𝑎1𝑥 + 3𝑏1𝑦 + 4𝑐1) − 6𝑎1𝑏1𝑐1𝑥𝑦 − 18𝑏1

2𝑐1𝑦2 + 2𝑎1𝑐1
2𝑥 − 9𝑏1𝑐1

2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 4𝑏1𝑦 + 𝑐1, where 𝑎1𝑐1𝑏1 ≠ 0.  
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3) Assume that 𝑎01 ≠ 0 and let 𝑎10 = 0. Then 𝛼 = 𝑐2. Suppose that  𝑎20 =  𝑎02 =

0, then  𝑏1 = 0, 𝑐2 = 3𝑐1 and 𝑎11 = (2𝑏2𝑐1)/(𝑎2 − 2𝑎1). When  𝑎2 = 3𝑎1, we get a set 

of conditions which is contained in (ii). When  𝑎2 ≠ 3𝑎1, we express 𝑎01 from 𝑈11 = 0. 

In this case we get the set of conditions (iv). The invariant cubic is 

(3𝑎1 − 𝑎2)(2𝑎1 − 𝑎2)( 2𝑎1𝑥 + 𝑏2𝑦)𝑥2 + 2𝑏2𝑐1
2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 𝑏2𝑦 + 3𝑐1, where 𝑎1𝑐1𝑏2(3𝑎1 − 𝑎2)(2𝑎1 − 𝑎2) ≠ 0.  

 Let  𝑎20𝑎02 ≠ 0. Then 𝑐2 = 2𝑐1 and 𝑏2 = 2𝑏1. We express 𝑎11 from 𝑈12 = 0, 𝑎20 

from 𝑈21 = 0, 𝑎01 from 𝑈02 = 0 and 𝑎2 from 𝑈11 = 0. In this case the invariant cubic 

(11) is reducible.  

Let  𝑎20 = 0 and 𝑎02 ≠ 0. Then from the equations of (7) we find that 𝑎02 =

(2𝑏1𝑎01)/ (3𝑐1), 𝑎11 = (6𝑎1𝑎01)/ (7𝑐1), 𝑎01 = (49𝑏1𝑐1
2)/ (3𝑎1

2) and 𝑎2 = (15𝑎1)/ 7. 

In this case we get the set of conditions (v) of Theorem 2.4. The invariant cubic is  

𝑎1
2(72𝑎1𝑥 + 63𝑏1𝑦)𝑥2 − 882𝑎1𝑏1𝑐1𝑥𝑦 − 686𝑏1

2𝑐1𝑦2 − 1029𝑏1𝑐1
2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 4𝑏1𝑦 + 3𝑐1, where 𝑎1𝑐1𝑏1 ≠ 0.  

Let  𝑎20 ≠ 0 and 𝑎02 = 0. Then from the equations of (7) we find that 

𝑏1 = 0, 𝑐2 = 2𝑐1,  𝑎20 = (𝑎1𝑎11)/𝑏2, 𝑎11 = 𝑎01(3𝑎1 −  𝑎2). 

 If  𝑎2 = 3𝑎1, then we obtain the set of conditions (vi). The invariant cubic is  

(2𝑎1𝑥 + 𝑏2𝑦 + 2𝑐1)𝑥2 − 𝑎01𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 𝑏2𝑦 + 2𝑐1, where 𝑎1𝑏2𝑐1𝑎01 ≠ 0.  

 If  𝑎2 ≠ 3𝑎1, then express 𝑎01 from 𝑈30 = 0. The invariant cubic is reducible. 

4) Assume that 𝑎10 ≠ 0 and let 𝑎01 = 0.  Then 𝛼 = 𝑐1,  𝑏2 = 2𝑏1 and 𝑐2 = 𝑐1/2. 

We express 𝑎20, 𝑎11, 𝑎02 from the equations of (7) and obtain that 

𝑈21 ≡ (7𝑎1 − 6𝑎2)(5𝑎1 − 2𝑎2) = 0. 

If 𝑎2 = (5𝑎1)/2, then we get the set of conditions (vii). The invariant cubic is 

𝑎1
2𝑥2(3𝑎1𝑥 + 2𝑏1𝑦 + 6𝑐1) + 18𝑎1𝑏1𝑐1𝑥𝑦 + 3𝑎1𝑐1

2𝑥 + 9𝑏1
2𝑐1𝑦2 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 4𝑏1𝑦 + 𝑐1, where 𝑎1𝑐1𝑏1 ≠ 0.  

If 𝑎2 = (7𝑎1)/6, then we get the set of conditions (viii). The invariant cubic is 

𝑎1
2𝑥2(𝑎1𝑥 + 6𝑏1𝑦 + 2𝑐1) + 6𝑎1𝑏1𝑐1𝑥𝑦 + 𝑎1𝑐1

2𝑥 − 9𝑏1
2𝑐1𝑦2 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 4𝑏1𝑦 + 𝑐1, where 𝑎1𝑐1𝑏1 ≠ 0. Theorem 2.4 is proved. 

Theorem 2.5. The quadratic differential system (2) has an irreducible invariant cubic of 

the form (12) if and only if one of the following sets of conditions is realized: 

(i) 
 𝑎2 =

3𝑎1

2
,  𝑏1 = 0,   𝑐2 = 𝑐1; 

(ii)  𝑎2 = 3𝑎1, 𝑏2 = −𝑏1,   𝑐2 = 𝑐1; 

(iii) 
 𝑎2 =

5𝑎1

3
,  𝑏2 = −𝑏1,   𝑐2 = 𝑐1; 

(iv) 
 𝑎2 =

5𝑎1

3
, 𝑏2 = −𝑏1, 𝑐2 = 3𝑐1; 

(v) 
 𝑎2 =

5𝑎1

2
,  𝑏1 = 0,   𝑐2 = 3𝑐1; 

(vi) 
 𝑎2 =

3𝑎1

2
,  𝑏1 = 0,   𝑐2 = 3𝑐1; 

(vii)  𝑎2 = 7𝑎1,  𝑏2 = −𝑏1, 𝑐2 = 2𝑐1; (viii) 
 𝑎2 =

5𝑎1

3
,  𝑏2 = −𝑏1,  𝑐2 = 2𝑐1; 
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(ix) 
 𝑎2 =

5𝑎1

2
,  𝑏1 = 0,  𝑐2 = 2𝑐1; 

(x) 
 𝑎2 =

3𝑎1

2
,  𝑏1 = 0,  𝑐2 =

𝑐1

2
; 

(xi) 
 𝑎2 =

5𝑎1

2
,  𝑏1 = 0,  𝑐2 =

𝑐1

2
. 

  

Proof. Let Φ(𝑥, 𝑦) = 0 be of the form (12). We study the consistency of system (7) with 

𝑎30 = (𝑎1 − 𝑎2)2, 𝑎21 = 2(𝑎1 − 𝑎2)(𝑏1 − 𝑏2),  𝑎12 = (𝑏1 − 𝑏2)2 , 𝑎03 = 0.  

In this case we have 𝑈20 ≡ 𝑎20(𝑐1 − 𝑐2) = 0, 𝑈11 ≡ 𝑎11(𝑐1 − 𝑐2) = 0 and the 

equations 𝑈40 = 0, 𝑈31 = 0 of (7) yield 𝛽 = 3𝑎1, 𝛾 = 𝑏1 + 2𝑏2. We divide the 

investigation into the following cases: 

1) Assume that 𝑎10 = 𝑎01 = 0. Then 𝑎02 ≠ 0 and 𝛼 = 2𝑐2, 𝑏1 = 0.  

Let 𝑐2 = 𝑐1.  Then express 𝑎11 from 𝑈12 = 0 and 𝑎20 from 𝑈30 = 0. If 𝑎2 = 2𝑎1, 

then the cubic curve (12) is reducible. If 𝑎2 = (3𝑎1)/2, then we get the set of conditions 

(i) of Theorem 2.5. The invariant cubic is  

𝑥(𝑎1𝑥 + 2𝑏2𝑦)2 + 𝑎1𝑐1𝑥2 + 4𝑏2𝑐1𝑥𝑦 + 4𝑎02𝑦2 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 2𝑏2𝑦 + 2𝑐1, where 𝑎02𝑎1𝑏2 ≠ 0.  

If (𝑎2 − 2𝑎1)(2𝑎2 − 3𝑎1) ≠ 0, then 𝑈21 = 0 implies 𝑎02 = (𝑏2
2𝑐1)/𝑎1 and the 

invariant cubic (12) is reducible.  

Let 𝑐2 ≠ 𝑐1, then 𝑎20 = 𝑎02 = 0. In this case the system (7) is not consistent.  

2) Assume that 𝑎10𝑎01 ≠ 0. Then 𝛼 = 𝑐1, 𝑐2 = 𝑐1 and 𝑐1𝑏2𝑎1 ≠ 0. We express 𝑎20 

from 𝑈20 = 0, 𝑎02 from 𝑈02 = 0 and 𝑎11 from 𝑈11 = 0, then 𝑈02 ≡ 𝑏1(𝑏1 + 𝑏2) = 0.  

Suppose that 𝑏1 = 0 and express 𝑎10 from 𝑈12 = 0. If 𝑎2 = 2𝑎1, then the cubic 

curve (12) is reducible. Let 𝑎2 ≠ 2𝑎1and express 𝑎01 from 𝑈30 = 0. If 𝑎2 = 3𝑎1 or 𝑎2 =

(3𝑎1)/2, then the cubic (12) is reducible.  

Suppose that 𝑏2 = −𝑏1, 𝑏1 ≠ 0 and express 𝑎10 from 𝑈12 = 0. If 𝑎2 = 3𝑎1, then 

we obtain the set of conditions (ii) of Theorem 2.5. The invariant cubic is 

4𝑥(𝑎1𝑥 − 𝑏1𝑦)2 + 8𝑎1𝑐1𝑥2 − 8𝑏1𝑐1𝑥𝑦 + 4𝑐1
2𝑥 + 𝑎01𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 − 𝑏1𝑦 + 𝑐1, where 𝑎01𝑎1𝑏1𝑐1 ≠ 0.  

If 𝑎2 ≠ 3𝑎1, then express 𝑎01 from 𝑈21 = 0. In this case 𝑎2 = (5𝑎1)/3 and we get 

the set of conditions (iii) of Theorem 2.5. The invariant cubic is 

𝑎1𝑥(𝑎1𝑥 − 3𝑏1𝑦)2 + 2𝑎1
2𝑐1𝑥2 − 18𝑎1𝑏1𝑐1𝑥𝑦 + 𝑎1𝑐1

2𝑥 − 12𝑏1𝑐1
2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 − 𝑏1𝑦 + 𝑐1, where 𝑎1𝑏1𝑐1 ≠ 0. 

 3) Assume that 𝑎01 ≠ 0 and let 𝑎10 = 0. Then 𝛼 = 𝑐2 and  

𝑈20 ≡ 𝑎20(2𝑐1 − 𝑐2) = 0. 

Let 𝑎20 = 0. Then 𝑈30 = 0 yields 𝑐2 = 3𝑐1. If 𝑐1 = 0, then 𝑏2 = −𝑏1, 𝑎2 = 3𝑎1 and 

this case is contained in (ii). When 𝑐1 ≠ 0, we express 𝑎11 from 𝑈11 = 0, 𝑎02 from 𝑈02 =

0 and obtain that 𝑈03 ≡ 𝑏1(𝑏2 + 𝑏1) = 0.  

If 𝑏2 = −𝑏1, then express 𝑎01 from 𝑈12 = 0. In this case 𝑎2 = (5𝑎1)/3 and we get 

the set of conditions (iv) of Theorem 2.5. The invariant cubic looks  

𝑎1𝑥(𝑎1𝑥 − 3𝑏1𝑦)2 − 36𝑎1𝑏1𝑐1𝑥𝑦 − 27𝑏1𝑐1
2𝑦 = 0 
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with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 − 𝑏1𝑦 + 3𝑐1, where 𝑎1𝑏1𝑐1 ≠ 0. 

 If 𝑏2 ≠ −𝑏1, then 𝑏1 = 0. We express 𝑎01 from 𝑈12 = 0 and obtain that  

𝑈21 ≡ (5𝑎1 − 2𝑎2)(3𝑎1 − 2𝑎2) = 0. 

Suppose that 𝑎2 = (5𝑎1)/2. In this case we obtain the set of conditions (v). The 

invariant cubic is  

𝑎1𝑥(3𝑎1𝑥 + 2𝑏2𝑦)2 − 48𝑎1𝑏2𝑐1𝑥𝑦 − 32𝑏2
2𝑦2 − 96𝑏2𝑐1

2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 2𝑏2𝑦 + 3𝑐1, where 𝑎1𝑏2𝑐1 ≠ 0.  

Suppose that 𝑎2 = (3𝑎1)/2, then we obtain the set of conditions (vi) of Theorem 

2.5. The invariant cubic is  

9𝑎1𝑥(𝑎1𝑥 + 2𝑏2𝑦)2 + 144𝑎1𝑏2𝑐1𝑥𝑦 + 32𝑏2
2𝑐1𝑦2 + 96𝑏2𝑐1

2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 2𝑏2𝑦 + 3𝑐1, where 𝑎1𝑏2𝑐1 ≠ 0.  

Let 𝑎20 ≠ 0. Then 𝑈30 = 0 yields 𝑐2 = 2𝑐1. We express 𝑎11 from 𝑈11 = 0, 𝑎02 

from 𝑈02 = 0 and obtain that 𝑈03 ≡ 𝑏1(𝑏2 + 𝑏1) = 0. If 𝑏2 = −𝑏1, then express 𝑎01 

from 𝑈12 = 0, 𝑎20 from 𝑈21 = 0 and we get  𝑈30 ≡ (𝑎2 − 7𝑎1)(3𝑎2 − 5𝑎1) = 0. 

When 𝑎2 = 7𝑎1, we get the set of conditions (vii). The invariant cubic is  

4𝑎1𝑥(3𝑎1𝑥 − 𝑏1𝑦)2 + 36𝑎1
2𝑐1𝑥2 − 12𝑎1𝑏1𝑐1𝑥𝑦 + 3𝑏1𝑐1

2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 − 𝑏1𝑦 + 2𝑐1, where 𝑎1𝑏1𝑐1 ≠ 0.  

When 𝑎2 = (5𝑎1)/3, we obtain the set of conditions (viii). The invariant cubic is  

4𝑎1𝑥(𝑎1𝑥 − 3𝑏1𝑦)2 + 4𝑎1
2𝑐1𝑥2 − 108𝑎1𝑏1𝑐1𝑥𝑦 − 81𝑏1𝑐1

2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 − 𝑏1𝑦 + 2𝑐1, where 𝑎1𝑏1𝑐1 ≠ 0.  

If 𝑏2 ≠ −𝑏1, then 𝑈03 = 0 yields 𝑏1 = 0. We express 𝑎01 from 𝑈12 = 0, 𝑎20 from 

𝑈21 = 0 and we find that 𝑈30 ≡ (5𝑎1 − 2𝑎2)(3𝑎1 − 2𝑎2)(3𝑎1 − 𝑎2) = 0. 

When 𝑎2 = 3𝑎1 or 𝑎2 = (3𝑎1)/2,  the cubic curve (12) is reducible. When 𝑎2 =

(5𝑎1)/2, we obtain the set of conditions (ix). The invariant cubic is  

𝑎1𝑥(3𝑎1𝑥 + 2𝑏2𝑦)2 + 9𝑎1
2𝑐1𝑥2 − 12𝑎1𝑏2𝑐1𝑥𝑦 − 12𝑏2

2𝑐1𝑦2 − 24𝑏2𝑐1
2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 2𝑏2𝑦 + 2𝑐1, where 𝑎1𝑏2𝑐1 ≠ 0.   

4) Assume that 𝑎10 ≠ 0 and let 𝑎01 = 0. Then 𝑎02 ≠ 0, 𝛼 = 𝑐1, 𝑏1 = 0 and 𝑐2 =

𝑐1/2. We express 𝑎20 from 𝑈20 = 0, 𝑎11 from 𝑈11 = 0, 𝑎10 from 𝑈30 = 0 and obtain that  

𝑈21 ≡ (5𝑎1 − 2𝑎2)(3𝑎1 − 2𝑎2) = 0. 

If 𝑎2 = (3𝑎1)/2, then we get the set of conditions (x). The invariant cubic is  

𝑥(𝑎1𝑥 + 2𝑏2𝑦)2 + 2𝑎1𝑐1𝑥2 + 4𝑏2𝑐1𝑥𝑦 + 4𝑎02𝑦2 + 𝑐1
2𝑥 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 2𝑏2𝑦 + 𝑐1, where 𝑎1𝑏2𝑐1 ≠ 0.   

If 𝑎2 = (5𝑎1)/2, then 𝑎02 = (4𝑏2
2𝑐1)/𝑎1 and we obtain the set of conditions (xi). 

The invariant cubic is  

𝑎1𝑥(3𝑎1𝑥 + 2𝑏2𝑦)2 + 18𝑎1
2𝑐1𝑥2 + 36𝑎1𝑏2𝑐1𝑥𝑦 + 16𝑏2

2𝑐1𝑦2 + 9𝑎1𝑐1
2𝑥 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 2𝑏2𝑦 + 𝑐1, where 𝑎1𝑏2𝑐1 ≠ 0. Theorem 2.5 is proved. 
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Theorem 2.6. The quadratic differential system (2) has an irreducible invariant cubic of 

the form (13) if and only if one of the following sets of conditions holds: 

(i)  𝑎2 = 2𝑎1, 𝑏1 = 2𝑏2,  𝑐2 = 𝑐1 = 0;    (ii)  𝑎1(𝑏1 − 4𝑏2) + 𝑎2(3𝑏2 − 2𝑏1) = 0,  

 𝑐2 = 𝑐1; 

(iii) 
 𝑎2 =

5𝑎1

3
,  𝑏1 = 3𝑏2,   𝑐2 = 𝑐1; 

(iv) 
 𝑏1 =

7𝑏2

3
,  𝑎2 = 5𝑎1,  𝑐2 = 3𝑐1; 

(v) 
 𝑏1 =

7𝑏2

3
,  𝑎2 =

9𝑎1

5
, 𝑐2 = 3𝑐1; 

(vi) 
 𝑏1 =

4𝑏2

3
,  𝑎2 = 0,  𝑐2 = 3𝑐1; 

(vii) 
 𝑏1 =

5𝑏2

2
,  𝑎2 = 4𝑎1,  𝑐2 = 2𝑐1; 

(viii) 
 𝑏1 =

5𝑏2

2
,  𝑎2 = −5𝑎1,  𝑐2 = 2𝑐1; 

(ix) 
 𝑎2 =

7𝑎1

4
,  𝑏1 =

5𝑏2

2
,  𝑐2 = 2𝑐1; 

(x) 
 𝑎2 =

3𝑎1

4
,  𝑏1 =

7𝑏2

6
,  𝑐2 = 2𝑐1. 

Proof. Let Φ(𝑥, 𝑦) = 0 be of the form (13). We study the consistency of system (7) with 

𝑎30 = (𝑎1 − 𝑎2)3, 𝑎12 = 3(𝑎1 − 𝑎2)(𝑏1 − 𝑏2)2, 𝑎21 = 3(𝑎1 − 𝑎2)2(𝑏1 − 𝑏2) , 𝑎03 =

(𝑏1 − 𝑏2)3. In this case the equations 𝑈40 = 0, 𝑈31 = 0 of (7) yield 𝛽 = 3𝑎1, 𝛾 = 3𝑏2. 

We divide the investigation into the following cases:  

 1) Assume that 𝑎10 = 𝑎01 = 0. Let 𝑎02 = 0 and 𝑎11 = 0. Then 𝛼 = 2𝑐2,  𝑐2 = 𝑐1 =

0 and 𝑎1 = 0. We obtain a contradiction with conditions (14).  

 If 𝑎02 = 0 and 𝑎11 ≠ 0, then 𝑐1 = 2𝑐2, 𝛼 = 𝑐1 + 𝑐2. In this case the system (7) is 

consistent only if 𝑎20 = 0. We get the set of conditions (i) of Theorem 2.6. The invariant 

cubic is 

(𝑎1𝑥 − 𝑏2𝑦)3 − 𝑎11𝑥𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3(𝑎1𝑥 + 𝑏2𝑦), where 𝑎11𝑎1𝑏2 ≠ 0.  

 Let 𝑎02 ≠ 0. Then 𝛼 = 2𝑐2 and 𝑈20 ≡ (𝑐1 − 𝑐2)𝑎20 = 0, 𝑈11 ≡ (𝑐1 − 𝑐2)𝑎11 = 0.  

Suppose that 𝑐2 = 𝑐1. Then 𝑏2𝑎1 ≠ 0. We express 𝑎20 from 𝑈30 = 0 and 𝑎02 from 𝑈03 =

0. If 𝑎2 = 2𝑎1, then the cubic curve (13) is reducible. If 𝑎2 ≠ 2𝑎1, then express 𝑎11 from 

𝑈21 = 0, and 𝑈12 = 0 becomes 𝑈12 ≡ 𝑒1𝑒2𝑒3 = 0, where 𝑒1 = 𝑎1𝑏1 − 2𝑎1𝑏2 + 𝑎2𝑏2,  

𝑒2 = 2𝑎1𝑏1 − 3𝑎1𝑏2 − 𝑎2𝑏1 + 2𝑎2𝑏2,  𝑒3 = 3𝑎1𝑏1 − 4𝑎1𝑏2 − 2𝑎2𝑏1 + 3𝑎2𝑏2. 

 If 𝑒1 = 0 or 𝑒2 = 0, then the cubic curve (13) is reducible. If 𝑒3 = 0, then we  

obtain the set of conditions (ii) of Theorem 2.6. The invariant cubic looks 

𝑎1𝑏2(2𝑎1 − 𝑎2)[(𝑎1 − 𝑎2)𝑥 − (𝑏1 − 𝑏2)𝑦]3 + 𝑐1𝑏2(𝑎1 − 𝑎2)3(2𝑎1 − 𝑎2)𝑥2 + 

+2𝑎1𝑏2𝑐1(𝑏1 − 𝑏2)(𝑎1 − 𝑎2)2𝑥𝑦 + 𝑎1𝑐1(𝑏1 − 𝑏2)3(2𝑎1 − 𝑎2)𝑦2 = 0, 

where 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 3𝑏2𝑦 + 2𝑐1 and 𝑐1𝑎1𝑏2(2𝑎1 − 𝑎2)(𝑎1 − 𝑎2)(𝑏1 − 𝑏2) ≠ 0.  

 Suppose 𝑐2 ≠ 𝑐1, then 𝑎20 = 𝑎11 = 0 and the system (7) has no solutions.  

 2) Assume that 𝑎10𝑎01 ≠ 0. Then 𝛼 = 𝑐1, 𝑐2 = 𝑐1 and 𝑐1𝑏2𝑎1 ≠ 0. We express 𝑎20 

from 𝑈20 = 0, 𝑎02 from 𝑈02 = 0, 𝑎11 from 𝑈11 = 0, 𝑎01 from 𝑈03 = 0 and 𝑎10 from 

𝑈30 = 0. In this case the equations 𝑈21 = 0 and 𝑈12 = 0 have a common factor ℎ =

𝑎1𝑏1 − 2𝑎1𝑏2 + 𝑎2𝑏2. If ℎ = 0, then the cubic (13) is reducible.  
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 Let ℎ ≠ 0 and suppose 𝑏1 = 3𝑏2. Then we obtain an irreducible cubic curve of the 

form (13) only if 𝑎2 = (5𝑎1)/3. We get the set of conditions (iii). The invariant cubic is 

(𝑎1𝑥 − 3𝑏2𝑦)3 + 2𝑎1
2𝑐1𝑥2 − 36𝑎1𝑏2𝑐1𝑥𝑦 − 54𝑎2

2𝑐1𝑦2 + 𝑎1𝑐1
2𝑥 − 27𝑏2𝑐1

2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 3𝑏2𝑦 + 𝑐1, where 𝑐1𝑎1𝑏2 ≠ 0.  

 Suppose that ℎ(𝑏1 − 3𝑏2) ≠ 0 and let 𝑎2 = 3𝑎1. Then (2) has an irreducible cubic 

curve only if 𝑏1 = (5𝑏2)/3. In this case we obtain the set of conditions symmetric to (iii).  

 Let ℎ(𝑏1 − 3𝑏2)(𝑎2 − 3𝑎1) ≠ 0. Then the system of equations (7) (𝑈21 = 0, 𝑈12 =

0) is not consistent.  

 3) Assume that 𝑎01 ≠ 0 and let 𝑎10 = 0. Then 𝛼 = 𝑐2 and  

𝑈20 ≡ 𝑎20(2𝑐1 − 𝑐2) = 0. 

 Suppose that 𝑎20 = 0. Then 𝑈30 = 0 yields 𝑐2 = 3𝑐1 and 𝑐1𝑏2 ≠ 0. We express 𝑎02 

from 𝑈03 = 0, 𝑎01 from 𝑈02 = 0 and 𝑎11 from 𝑈11 = 0. In this case  

𝑈21 ≡ (3𝑏1 − 7𝑏2)[(3𝑎1 − 𝑎2)𝑏1 − 2(2𝑎1 − 𝑎2)𝑏2] = 0. 

 If 𝑏1 = (7𝑏2)/3 and 𝑎2 = 5𝑎1, then we obtain the set of conditions (iv) of Theorem 

2.6. The invariant cubic is  

(3𝑎1𝑥 − 𝑏2𝑦)3 + 18𝑎1𝑏2𝑐1𝑥𝑦 − 6𝑏2
2𝑐1𝑦2 − 9𝑏2𝑐1

2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3(𝑎1𝑥 + 𝑏2𝑦 + 𝑐1), where 𝑐1𝑎1𝑏2 ≠ 0.  

 If 𝑏1 = (7𝑏2)/3 and 𝑎2 = (9𝑎1)/5, then we obtain the set of conditions (v) of 

Theorem 2.6. The invariant cubic is  

(3𝑎1𝑥 − 5𝑏2𝑦)3 − 1350𝑎1𝑏2𝑐1𝑥𝑦 − 750𝑏2
2𝑐1𝑦2 − 1125𝑏2𝑐1

2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3(𝑎1𝑥 + 𝑏2𝑦 + 𝑐1), where 𝑐1𝑎1𝑏2 ≠ 0.  

 Suppose that 3𝑏1 − 7𝑏2 ≠ 0 and let (3𝑎1 − 𝑎2)𝑏1 − 2(2𝑎1 − 𝑎2)𝑏2 = 0. Then 

𝑈12 = 0 imply 𝑎2 = 0. We get the set of conditions (vi). The invariant cubic looks 

(3𝑎1𝑥 + 𝑏2𝑦)3 + 27𝑎1𝑏2𝑐1𝑥𝑦 + 6𝑏2
2𝑐1𝑦2 + 9𝑏2𝑐1

2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3(𝑎1𝑥 + 𝑏2𝑦 + 𝑐1), where 𝑐1𝑎1𝑏2 ≠ 0.  

 Suppose that 𝑎20 ≠ 0, then 𝑈20 = 0 yields 𝑐2 = 2𝑐1 and 𝑎1𝑐1𝑏2 ≠ 0. We express 

𝑎02 from 𝑈02 = 0, 𝑎11 from 𝑈11 = 0, 𝑎01 from 𝑈03 = 0 and 𝑎20 from 𝑈30 = 0. In this 

case  𝑈12 ≡ (2𝑏1 − 5𝑏2)[2𝑏1(3𝑎1 − 𝑎2) − 𝑏2(9𝑎1 − 5𝑎2)] = 0. 

 If 𝑏1 = (5𝑏2)/2 and 𝑎2 = 4𝑎1, then we obtain the set of conditions (vii) of 

Theorem 2.6. The invariant cubic is  

(2𝑎1𝑥 − 𝑏2𝑦)3 + 8𝑎1
2𝑐1𝑥2 + 4𝑎1𝑏2𝑐1𝑥𝑦 − 6𝑏2

2𝑐1𝑦2 − 4𝑏2𝑐1
2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 3𝑏2𝑦 + 2𝑐1, where 𝑐1𝑎1𝑏2 ≠ 0.  

 If 𝑏1 = (5𝑏2)/2 and 𝑎2 = −5𝑎1, then we obtain the set of conditions (viii) of 

Theorem 2.6. The invariant cubic is  

(4𝑎1𝑥 + 𝑏2𝑦)3 + 64𝑎1
2𝑐1𝑥2 + 32𝑎1𝑏2𝑐1𝑥𝑦 + 4𝑏2

2𝑐1𝑦2 + 4𝑏2𝑐1
2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 3𝑏2𝑦 + 2𝑐1, where 𝑐1𝑎1𝑏2 ≠ 0. 

 If 𝑏1 = (5𝑏2)/2 and 𝑎2 = (7𝑎1)/4, then we obtain the set of conditions (ix) of 

Theorem 2.6. The invariant cubic is  
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(𝑎1𝑥 − 2𝑏2𝑦)3 + 𝑎1
2𝑐1𝑥2 − 40𝑎1𝑏2𝑐1𝑥𝑦 − 32𝑏2

2𝑐1𝑦2 − 32𝑏2𝑐1
2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 3𝑏2𝑦 + 2𝑐1, where 𝑐1𝑎1𝑏2 ≠ 0. 

 Suppose that 2𝑏1 − 5𝑏2 ≠ 0 and let 2𝑏1(3𝑎1 − 𝑎2) − 𝑏2(9𝑎1 − 5𝑎2) = 0. Then 

𝑈21 ≡ 𝑎2(3𝑎1 − 4𝑎2) = 0. If 𝑎2 = 0, then the cubic curve (13) is reducible. 

 If 𝑎2 = (3𝑎1)/4, then we obtain the set of conditions (x). The invariant cubic is  

(3𝑎1𝑥 + 2𝑏2𝑦)3 + 27𝑎1
2𝑐1𝑥2 + 72𝑎1𝑏2𝑐1𝑥𝑦 + 32𝑏2

2𝑐1𝑦2 + 32𝑏2𝑐1
2𝑦 = 0 

with cofactor 𝐾3(𝑥, 𝑦) = 3𝑎1𝑥 + 3𝑏2𝑦 + 2𝑐1, where 𝑐1𝑎1𝑏2 ≠ 0. 

 4) Assume that 𝑎10 ≠ 0 and let 𝑎01 = 0. In this case we obtain the sets of 

conditions symmetric to (iv) - (x). Theorem 2.6 is proved.  

 

3. Darboux theory of integrability 

  Let the polynomial differential system (1) have the invariant algebraic curves 

Φj(𝑥, 𝑦) = 0, j = 1, … , 𝑞 with cofactors 𝐾j(𝑥, 𝑦). Then in most cases a first integral (an 

integrating factor) can be constructed in the Darboux form [8] 

Φ1
ℎ1Φ2

ℎ2 ⋯ Φ𝑞

ℎ𝑞
 

and we say that the polynomial system (1) is Darboux integrable.   

Theorem 3.1. The system (1) has a Draboux first integral  

𝐹(𝑥, 𝑦) ≡ Φ1
ℎ1Φ2

ℎ2 ⋯ Φ𝑞

ℎ𝑞 = C                                              (16) 

if and only if there exists constants αj ∈ ℂ, not all identically zero, such that  

ℎ1𝐾1(𝑥, 𝑦) + ℎ2𝐾2(𝑥, 𝑦) + ⋯ + ℎ𝑞𝐾𝑞(𝑥, 𝑦) ≡ 0,                     (17) 

where 𝐾j(𝑥, 𝑦) are the cofactors of  Φj(𝑥, 𝑦) = 0, j = 1, … , 𝑞. 

 Following [8], the relation (16) is a first integral for system (1) if and only if  

𝜕𝐹(𝑥, 𝑦)

𝜕𝑥
𝑃(𝑥, 𝑦) +

𝜕𝐹(𝑥, 𝑦)

𝜕𝑦
𝑄(𝑥, 𝑦) ≡ 0.                                      

 If a first integral cannot be found, Darboux proposed to search for an integrating 

factor μ of the same form.  

Theorem 3.2. The system (1) has a Draboux integrating factor  

μ = Φ1
ℎ1Φ2

ℎ2 ⋯ Φ𝑞

ℎ𝑞
                                                        (18) 

if and only if there exists constants αj ∈ ℂ, not all identically zero, such that  

ℎ1𝐾1(𝑥, 𝑦) + ℎ2𝐾2(𝑥, 𝑦) + ⋯ + ℎ𝑞𝐾𝑞(𝑥, 𝑦) +
𝜕𝑃

𝜕𝑥
+

𝜕𝑄

𝜕𝑦
≡ 0,                 (19) 

where 𝐾j(𝑥, 𝑦) are the cofactors of  Φj(𝑥, 𝑦) = 0, j = 1, … , 𝑞.   

Following [8], the relation (18) is an integrating for system (1) if and only if    

𝑃(𝑥, 𝑦)
𝜕𝜇

𝜕𝑥
+ 𝑄(𝑥, 𝑦)

𝜕𝜇

𝜕𝑦
+ 𝜇 (

𝜕𝑃

𝜕𝑥
+

𝜕𝑄

𝜕𝑦
) ≡ 0.                                     

 How many invariant algebraic curves Φj(𝑥, 𝑦) = 0 must admit the system (1) to 

have a Daroux first integral or a Darboux integrating factor? Darboux proved 
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Theorem 3.3. Suppose system (1) has 𝑞 distinct invariant algebraic curves Φj(𝑥, 𝑦) = 0, 

j = 1, … , 𝑞. If 𝑞 ≥ 𝑛(𝑛 + 1)/2, then either we have a Darboux first integral or a Darboux    

integrating factor.  

 By Theorem 3.3, in the case of quadratic system (2), if  𝑞 ≥ 3, then either we have a 

Darboux first integral or a Darboux integrating factor.   

 The method of Darboux is very useful and elegant one to prove integrability for 

some classes of differential systems depending on parameters [8].  

 

4. Darboux first integrals 

 In this section we determine the sets of conditions from Theorems 2.1 – 2.5, under 

which the quadratic system (2) has Darboux first integrals of the form  

𝑥ℎ1𝑦ℎ2Φℎ3 = 𝐶,                                                  (20) 

where 𝑥 = 0, 𝑦 = 0 are invariant straight lines,  Φ = 0 is an irreducible invariant cubic of 

the form (6) and ℎ1, ℎ2, ℎ3 are real numbers.  

To construct the first integrals (20) we take into account the cofactors 

𝐾1(𝑥, 𝑦), 𝐾2(𝑥, 𝑦) and 𝐾3(𝑥, 𝑦) of these algebraic solutions, obtained in the proofs of 

Theorems 2.1 – 2.5. Then we apply the identity (17)  

ℎ1𝐾1(𝑥, 𝑦) + ℎ2𝐾2(𝑥, 𝑦) + ℎ3𝐾3(𝑥, 𝑦) ≡ 0                               (21) 

to each set of conditions from Theorems 2.1 – 2.5. It was proved the following theorem. 

Theorem 4.1.  The Lotka-Volterra system (2) has a Darboux first integral of the form 

(20) if one of the following conditions is satisfied: 

(i) 
 𝑎2 =

3𝑎1

2
, 𝑏1 = 𝑏2 = 0, 𝑐2 = 𝑐1; 

(ii)  𝑎2 = 3𝑎1,  𝑏1 = 𝑏2 = 0,  𝑐2 = 𝑐1; 

(iii) 
 𝑎2 =

3𝑎1

2
,  𝑏1 = 𝑏2 = 0,  𝑐1 = 2𝑐2; 

(iv)  𝑎2 = 2𝑎1, 𝑏1 = 𝑏2 = 0,  𝑐2 = 3𝑐1;        

(v)  𝑎2 = 3𝑎1,  𝑏1 = 𝑏2 = 0,  𝑐2 = 2𝑐1; (vi) 
 𝑎2 = 2𝑎1, 𝑏2 =

3𝑏1

2
,  𝑐2 = 3𝑐1; 

(vii) 
 𝑎2 =

3𝑎1

2
, 𝑏2 = 2𝑏1,   𝑐2 = 𝑐1; 

(viii)  𝑎2 = 3𝑎1,  𝑏1 = 0,   𝑐2 = 𝑐1; 

(ix) 
 𝑎2 =

5𝑎1

3
,  𝑏2 = 2𝑏1,   𝑐2 = 𝑐1; 

(x)  𝑎2 = 3𝑎1,  𝑏1 = 0,   𝑐2 = 2𝑐1; 

(xi) 
 𝑎2 =

3𝑎1

2
,  𝑏1 = 0,   𝑐2 = 𝑐1; 

(xii)  𝑎2 = 3𝑎1, 𝑏2 = −𝑏1,   𝑐2 = 𝑐1; 

(xiii) 
 𝑎2 =

5𝑎1

2
,  𝑏1 = 0,  𝑐2 = 2𝑐1; 

(xiv) 
 𝑎2 =

3𝑎1

2
,  𝑏1 = 0,  𝑐2 =

𝑐1

2
; 

(xv)  𝑎2 = 2𝑎1, 𝑏1 = 2𝑏2,  𝑐2 = 𝑐1 = 0;    (xvi) 
 𝑏1 =

5𝑏2

2
,  𝑎2 = 4𝑎1,  𝑐2 = 2𝑐1; 

(xvii)  𝑎1(𝑏1 − 4𝑏2) + 𝑎2(3𝑏2 − 2𝑏1) = 0,  

 𝑐2 = 𝑐1. 
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Proof. We use the identity (21) for each set of conditions from Theorems 2.1 – 2.5. 

Substituting in this identity the expressions of the cofactors and identifying the 

coefficients of 𝑥0, 𝑥, 𝑦, we obtain systems of algebraic equations for the unknowns ℎ1, ℎ2 

and  ℎ3. Solving the obtained systems we determine the exponents ℎ1, ℎ2 and  ℎ3. 

Applying the identity (21) to the sets of conditions from Theorem 2.1, we obtain:  

In case (i),  Φ ≡ (𝑎1𝑥 + 𝑐1)𝑥2 + 𝑎02𝑎1𝑦2 = 0  and   ℎ1 = 2, ℎ2 = 2, ℎ3 = −1 . 

In case (ii),  Φ ≡ (𝑎1𝑥 + 𝑐1)2𝑥 + 𝑎01𝑎1
2𝑦 = 0   and   ℎ1 = 2, ℎ2 = 1, ℎ3 = −1 . 

In case (iii),  Φ ≡ (𝑎1𝑥 + 2𝑐2)2𝑥 + 𝑎02𝑎1
2𝑦2 = 0    and   ℎ1 = 2, ℎ2 = 2, ℎ3 = −1 . 

In case (iv),  Φ ≡ 𝑎1𝑥3 + 𝑎11𝑦(𝑐1 + 𝑎1𝑥) = 0    and   ℎ1 = 3, ℎ2 = 0, ℎ3 = −1 . 

In case (v),  Φ ≡ 𝑎1𝑥3 + 𝑐1𝑥2 + 𝑎01𝑎1𝑦 = 0 and   ℎ1 = 0, ℎ2 = 1, ℎ3 = −1 . 

In case (vi),  Φ ≡ 𝑏1𝑥3 + 2𝑎02𝑎1𝑥𝑦 + 𝑎02𝑏1𝑦2 + 2𝑎02𝑐1𝑦 = 0 and   

ℎ1 = 3, ℎ2 = 0, ℎ3 = −1 . 

Applying the identity (21) to the sets of conditions from Theorem 2.4, we have:  

In case (vii), Φ ≡ 𝑎1𝑥3 + 2𝑏1𝑥2𝑦 + 𝑐1
2𝑥2 − 2𝑎02𝑦2 = 0 and  ℎ1 = 0, ℎ2 = 2, ℎ3 = −1 . 

In case (viii),  Φ ≡ 𝑎1𝑥2(2𝑎1𝑥 + 𝑏2𝑦 + 4𝑐1) + 2𝑏2𝑐1𝑥𝑦 + 2𝑐1
2𝑥 − 𝑎01𝑎1𝑦 = 0 

and   ℎ1 = 0, ℎ2 = 1, ℎ3 = −1 . 

In case (ix),  Φ ≡ 𝑎1
2𝑥2(2𝑎1𝑥 + 3𝑏1𝑦 + 4𝑐1) − 6𝑎1𝑏1𝑐1𝑥𝑦 − 18𝑏1

2𝑐1𝑦2 + 2𝑎1𝑐1
2𝑥 − 

−9𝑏1𝑐1
2𝑦 = 0  and   ℎ1 = −2, ℎ2 = 3, ℎ3 = −1 .  

In case (x),  Φ ≡ (2𝑎1𝑥 + 𝑏2𝑦 + 2𝑐1)𝑥2 − 𝑎01𝑦 = 0   and  ℎ1 = 0, ℎ2 = 1, ℎ3 = −1 .  

Applying the identity (21) to the sets of conditions from Theorem 2.5, we get:  

In case (xi),  Φ ≡ 𝑥(𝑎1𝑥 + 2𝑏2𝑦)2 + 𝑎1𝑐1𝑥2 + 4𝑏2𝑐1𝑥𝑦 + 4𝑎02𝑦2 = 0  and  

ℎ1 = 0, ℎ2 = 2, ℎ3 = −1 . 

In case (xii),  Φ ≡ 4𝑥(𝑎1𝑥 − 𝑏1𝑦)2 + 8𝑎1𝑐1𝑥2 − 8𝑏1𝑐1𝑥𝑦 + 4𝑐1
2𝑥 + 𝑎01𝑦 = 0  and  

ℎ1 = 0, ℎ2 = 1, ℎ3 = −1 . 

In case (xiii),  Φ ≡ 𝑎1𝑥(3𝑎1𝑥 + 2𝑏2𝑦)2 + 9𝑎1
2𝑐1𝑥2 − 12𝑎1𝑏2𝑐1𝑥𝑦 − 12𝑏2

2𝑐1𝑦2 − 

−24𝑏2𝑐1
2𝑦 = 0  and  ℎ1 = −2, ℎ2 = 2, ℎ3 = −1 . 

In case (xiv),  Φ ≡ 𝑥(𝑎1𝑥 + 2𝑏2𝑦)2 + 2𝑎1𝑐1𝑥2 + 4𝑏2𝑐1𝑥𝑦 + 4𝑎02𝑦2 + 𝑐1
2𝑥 = 0  and  

ℎ1 = 0, ℎ2 = 2, ℎ3 = −1 . 

Applying the identity (21) to the set of conditions from Theorem 2.6, we obtain: 

In case (xv),  Φ ≡ (𝑎1𝑥 − 𝑏2𝑦)3 − 𝑎11𝑥𝑦 = 0  and   ℎ1 = 1, ℎ2 = 1, ℎ3 = −1 . 

In case (xvi),  Φ ≡ 4𝑎1𝑥(3𝑎1𝑥 − 𝑏1𝑦)2 + 36𝑎1
2𝑐1𝑥2 − 12𝑎1𝑏1𝑐1𝑥𝑦 + 3𝑏1𝑐1

2𝑦 = 0  and    

ℎ1 = −2, ℎ2 = 2, ℎ3 = −1 . 

In case (xvii),  Φ ≡ 𝑎1𝑏2(2𝑎1 − 𝑎2)[(𝑎1 − 𝑎2)𝑥 − (𝑏1 − 𝑏2)𝑦]3 + 𝑐1𝑏2(𝑎1 − 𝑎2)3 ∙ 

∙ (2𝑎1 − 𝑎2)𝑥2+2𝑎1𝑏2𝑐1(𝑏1 − 𝑏2)(𝑎1 − 𝑎2)2𝑥𝑦 + 𝑎1𝑐1(𝑏1 − 𝑏2)3(2𝑎1 − 𝑎2)𝑦2 = 0 

and   ℎ1 = 2𝑎2 − 3𝑎1, ℎ2 = 𝑎1, ℎ3 = 𝑎1 − 𝑎2 . 

Theorem 4.1 is proved. 
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5. Darboux integrating factors 

 In this section we determine the sets of conditions from Theorems 2.1 – 2.5, under 

which the quadratic system (2) has Darboux integrating factors of the form  

𝜇 = 𝑥ℎ1𝑦ℎ2Φℎ3 ,                                                    (22) 

where 𝑥 = 0, 𝑦 = 0 are invariant straight lines,  Φ = 0 is an irreducible invariant cubic of 

the form (6) and ℎ1, ℎ2, ℎ3 are real numbers.  

To construct the integrating factors (22) we take into account the cofactors 

𝐾1(𝑥, 𝑦), 𝐾2(𝑥, 𝑦) and 𝐾3(𝑥, 𝑦) of these algebraic solutions, obtained in the proofs of 

Theorems 2.1 – 2.5. Then we apply the identity (19)  

ℎ1𝐾1(𝑥, 𝑦) + ℎ2𝐾2(𝑥, 𝑦) + ℎ3𝐾3(𝑥, 𝑦) +
𝜕𝑃

𝜕𝑥
+

𝜕𝑄

𝜕𝑦
≡ 0                         (23) 

for each set of conditions from Theorems 2.1 – 2.5. It was proved the following theorem. 

Theorem 5.1.  The Lotka-Volterra system (2) has a Darboux integrating factor of the 

form (22) if one of the following conditions is satisfied:  

(i) 
 𝑏2 =

3𝑏1

2
, 𝑐2 = 𝑐1; 

(ii) 
 𝑎2 = 3𝑎1, 𝑏2 =

3𝑏1

2
, 𝑐2 = 𝑐1; 

(iii) 
 𝑎2 =

5𝑎1

3
, 𝑏2 =

3𝑏1

2
, 𝑐2 = 𝑐1; 

(iv) 
 𝑎2 =

5𝑎1

2
, 𝑏2 =

3𝑏1

2
, 𝑐1 = 2𝑐2; 

(v) 
 𝑎2 =

15𝑎1

8
, 𝑏2 =

3𝑏1

2
, 𝑐2 = 2𝑐1; 

(vi)  𝑎2 = 0,  𝑏2 = 2𝑏1,   𝑐2 = 𝑐1; 

(vii)  𝑎2 = −𝑎1,  𝑏1 = 0,  𝑐2 = 𝑐1; (viii)  𝑎2 = −𝑎1, 𝑏2 = 2𝑏1,  𝑐2 = 𝑐1;         

(ix)  𝑎2 = −𝑎1,  𝑏2 = 2𝑏1,  𝑐1 = 2𝑐2; (x)  𝑎2 = 0,  𝑏2 = 2𝑏1,   𝑐1 = 2𝑐2; 

(xi)  𝑎2 = 0,  𝑏1 = 0,  𝑐2 = 2𝑐1; (xii)  𝑎2 = −𝑎1,  𝑏1 = 0,  𝑐2 = 𝑐1; 

(xiii)  𝑏1 = 0,   𝑐2 = 3𝑐1; (xiv) 
 𝑎2 =

15𝑎1

7
,  𝑏2 = 2𝑏1,  𝑐2 = 3𝑐1; 

(xv) 
 𝑎2 =

5𝑎1

2
,  𝑏2 = 2𝑏1,   𝑐2 =

𝑐1

2
; 

(xvi) 
 𝑎2 =

7𝑎1

6
,  𝑏2 = 2𝑏1,   𝑐2 =

𝑐1

2
; 

(xvii) 
 𝑎2 =

5𝑎1

3
,  𝑏2 = −𝑏1,   𝑐2 = 𝑐1; 

(xviii) 
 𝑎2 =

5𝑎1

3
, 𝑏2 = −𝑏1, 𝑐2 = 3𝑐1; 

(xix) 
 𝑎2 =

5𝑎1

2
,  𝑏1 = 0,   𝑐2 = 3𝑐1; 

(xx) 
 𝑎2 =

3𝑎1

2
,  𝑏1 = 0,   𝑐2 = 3𝑐1; 

(xxi)  𝑎2 = 7𝑎1,  𝑏2 = −𝑏1, 𝑐2 = 2𝑐1; (xxii) 
 𝑎2 =

5𝑎1

3
,  𝑏2 = −𝑏1,  𝑐2 = 2𝑐1; 

(xxiii) 
 𝑎2 =

3𝑎1

2
,  𝑏1 = 0,  𝑐2 =

𝑐1

2
; 

(xiv) 
 𝑎2 =

5𝑎1

3
,  𝑏1 = 3𝑏2,   𝑐2 = 𝑐1; 

(xxv) 
 𝑏1 =

7𝑏2

3
,  𝑎2 = 5𝑎1,  𝑐2 = 3𝑐1; 

(xxvi) 
 𝑏1 =

7𝑏2

3
,  𝑎2 =

9𝑎1

5
, 𝑐2 = 3𝑐1; 

(xxvii) 
 𝑏1 =

4𝑏2

3
,  𝑎2 = 0,  𝑐2 = 3𝑐1; 

(xxviii) 
 𝑏1 =

5𝑏2

2
,  𝑎2 = −5𝑎1, 𝑐2 = 2𝑐1; 

(xxix) 
 𝑎2 =

7𝑎1

4
,  𝑏1 =

5𝑏2

2
,  𝑐2 = 2𝑐1; 

(xxx) 
 𝑎2 =

3𝑎1

4
,  𝑏1 =

7𝑏2

6
,  𝑐2 = 2𝑐1. 
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Proof. We use the identity (23) for each set of conditions from Theorems 2.1 – 2.5. 

Substituting in this identity the expressions of the cofactors and identifying the 

coefficients of 𝑥0, 𝑥, 𝑦, we obtain systems of algebraic equations for the unknowns ℎ1, ℎ2 

and  ℎ3. Solving the obtained systems we determine the exponents ℎ1, ℎ2 and  ℎ3. 

Applying the identity (23) to the sets of conditions from Theorem 2.1, we obtain:  

In case (i),  Φ ≡ 2(3𝑎1 − 2𝑎2)((𝑎1𝑥 + 𝑐1)(2𝑎1 − 𝑎2)𝑥 − 𝑏1𝑐1𝑦)𝑥 + 𝑏1
2𝑐1𝑦2 = 0 and  

ℎ1 = 2, ℎ2 =
2(𝑎2 − 2𝑎1)

3𝑎1 − 2𝑎2

, ℎ3 =
3𝑎2 − 4𝑎1

3𝑎1 − 2𝑎2

. 

In case (ii),  Φ ≡ 9𝑎1𝑥(𝑎1𝑥 + 𝑐1)2 + 18𝑎1𝑏1𝑐1𝑥𝑦 + 3𝑏1
2𝑐1𝑦2 + 2𝑏1𝑐1

2𝑦 = 0 and   

ℎ1 = 2, ℎ1 = −1/2, ℎ3 = −5/6 . 

In case (iii),  Φ ≡ 𝑎1𝑥(𝑎1𝑥 + 𝑐1)2 − 6𝑎1𝑏1𝑐1𝑥𝑦 − 9𝑏1
2𝑐1𝑦2 − 6𝑏1𝑐1

2𝑦 = 0 and  

ℎ1 = −5/2, ℎ2 = 2, ℎ3 = −3/2 . 

In case (iv),  Φ ≡ 𝑎1𝑥(𝑎1𝑥 + 2𝑐2)2 + 8𝑎1𝑏1𝑐2𝑥𝑦 + 2𝑏1
2𝑐2𝑦2 = 0 and   

ℎ1 = −1/4, ℎ2 = −1/2, ℎ3 = −1. 

In case (v),  Φ ≡ 9𝑎1
2𝑥2(𝑎1𝑥 + 𝑐1) − 72𝑎1𝑏1𝑐1𝑥𝑦 − 48𝑏1

2𝑐1𝑦2 − 64𝑏1𝑐1
2𝑦 = 0 and  

ℎ1 = −2, ℎ2 = 1/3, ℎ3 = −5/6 . 

Applying the identity (23) to each set of conditions from Theorem 2.2, we get:  

In case (vi),  Φ ≡ 𝑥2(2𝑎02𝑎1
2 + 2𝑏1

2𝑦+𝑏1𝑐1) − 4𝑎1𝑏1𝑎02𝑥𝑦 + 2𝑏1
2𝑎02𝑦2 = 0 and   

ℎ1 = 1, ℎ2 = 0, ℎ3 = −3/2. 

In case (vii),  Φ ≡ (2𝑎1
2𝑥 + 4𝑎1𝑐1)𝑥𝑦 + 2𝑎1

2𝑎10𝑥 + (2𝑐1
2 − 𝑎1𝑎10𝑏2)𝑦 = 0 and   

ℎ1 = 0, ℎ2 = −1/2, ℎ3 = −3/2. 

In case (viii),  Φ ≡ 9𝑎1𝑏1𝑥𝑦(𝑎1𝑥 + 2𝑐1) − 6𝑏1
2𝑐1𝑦2 + 8𝑎1𝑐1

2𝑥 − 3𝑏1𝑐1
2𝑦 = 0  and   

ℎ1 = −2/3, ℎ2 = −1/2, ℎ3 = −5/6. 

In case (ix),  Φ ≡ 2𝑎1𝑏1𝑥𝑦(2𝑎1𝑥 + 3𝑐1) − 2𝑏1
2𝑐1𝑦2 + 𝑎1𝑐1

2𝑥 = 0  and    

ℎ1 = −1/3, ℎ2 = −1/3, ℎ3 = −1. 

In case (x),  Φ ≡ 𝑎1𝑏1𝑥𝑦(8𝑎1𝑥 + 18𝑐2) + 3𝑎1
2𝑐2𝑥2 − 9𝑏1

2𝑐2𝑦2 + 6𝑎1𝑐2
2𝑥 = 0 and   

ℎ1 = −1/3, ℎ2 = −2/3, ℎ3 = −5/6. 

In case (xi),  Φ ≡ 2𝑎1
2𝑥2(𝑦 + 𝑎20) + 2𝑎1(2𝑐1 − 𝑏2𝑎20)𝑥𝑦 + 𝑐1(2𝑐1 − 𝑏2𝑎20)𝑦 = 0 and   

ℎ1 = 1, ℎ2 = −1/2, ℎ3 = −3/2. 

Applying the identity (23) to the set of conditions from Theorem 2.3, we obtain  

the case (xii), with  Φ ≡ 3𝑎1𝑏2𝑥𝑦(2𝑎1𝑥 − 𝑏2𝑦 + 6𝑐2) − 8𝑏2
2𝑐2𝑦2 + 9𝑎1𝑐2

2𝑥 = 0 and   

ℎ1 = 0, ℎ2 = 0, ℎ3 = −1. 

Applying the identity (23) to the sets of conditions from Theorem 2.4, we have:  

In case (xiii),  Φ ≡ (3𝑎1 − 𝑎2)(2𝑎1 − 𝑎2)( 2𝑎1𝑥 + 𝑏2𝑦)𝑥2 + 2𝑏2𝑐1
2𝑦 = 0 and   

ℎ1 = 2, ℎ2 =
𝑎2 − 2𝑎1

3𝑎1 − 𝑎2

, ℎ3 =
𝑎2 − 4𝑎1

3𝑎1 − 𝑎2

. 

In case (xiv),  Φ ≡ 𝑎1
2(72𝑎1𝑥 + 63𝑏1𝑦)𝑥2 − 882𝑎1𝑏1𝑐1𝑥𝑦 − 686𝑏1

2𝑐1𝑦2 − 

−1029𝑏1𝑐1
2𝑦 = 0 and  ℎ1 = −2, ℎ2 = 1/6, ℎ3 = −5/6. 
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In case (xv),  Φ ≡ 𝑎1
2𝑥2(3𝑎1𝑥 + 2𝑏1𝑦 + 6𝑐1) + 18𝑎1𝑏1𝑐1𝑥𝑦 + 3𝑎1𝑐1

2𝑥 + 9𝑏1
2𝑐1𝑦2 = 0 

and   ℎ1 = −1/3, ℎ2 = −2/3, ℎ3 = −5/6. 

In case (xvi),  Φ ≡ 𝑎1
2𝑥2(𝑎1𝑥 + 6𝑏1𝑦 + 2𝑐1) + 6𝑎1𝑏1𝑐1𝑥𝑦 + 𝑎1𝑐1

2𝑥 − 9𝑏1
2𝑐1𝑦2 = 0 and   

ℎ1 = −1/3, ℎ2 = −2, ℎ3 = −1/6. 

Applying the identity (23) to the sets of conditions from Theorem 2.5, we get:  

In case (xvii),  Φ ≡ 𝑎1𝑥(𝑎1𝑥 − 3𝑏1𝑦)2 + 2𝑎1
2𝑐1𝑥2 − 18𝑎1𝑏1𝑐1𝑥𝑦 + 𝑎1𝑐1

2𝑥 − 

−12𝑏1𝑐1
2𝑦 = 0 and  ℎ1 = −1/2, ℎ2 = −1, ℎ3 = −1/2. 

In case (xviii),  Φ ≡ 𝑎1𝑥(𝑎1𝑥 − 3𝑏1𝑦)2 − 36𝑎1𝑏1𝑐1𝑥𝑦 − 27𝑏1𝑐1
2𝑦 = 0   and    

ℎ1 = −1/4, ℎ2 = −1/4, ℎ3 = −1. 

In case (xix),  Φ ≡ 𝑎1𝑥(3𝑎1𝑥 + 2𝑏2𝑦)2 − 48𝑎1𝑏2𝑐1𝑥𝑦 − 32𝑏2
2𝑦2 − 96𝑏2𝑐1

2𝑦 = 0  and   

ℎ1 = −5/2, ℎ2 = 1, ℎ3 = −3/2. 

In case (xx),  Φ ≡ 9𝑎1𝑥(𝑎1𝑥 + 2𝑏2𝑦)2 + 144𝑎1𝑏2𝑐1𝑥𝑦 + 32𝑏2
2𝑐1𝑦2 + 96𝑏2𝑐1

2𝑦 = 0    

and  ℎ1 = −5/6, ℎ2 = −1/3, ℎ3 = −1/2. 

In case (xxi),  Φ ≡ 4𝑎1𝑥(3𝑎1𝑥 − 𝑏1𝑦)2 + 36𝑎1
2𝑐1𝑥2 − 12𝑎1𝑏1𝑐1𝑥𝑦 + 3𝑏1𝑐1

2𝑦 = 0  and   

ℎ1 = −1/3, ℎ2 = −7/6, ℎ3 = −1/6. 

In case (xxii),  Φ ≡ 4𝑎1𝑥(𝑎1𝑥 − 3𝑏1𝑦)2 + 4𝑎1
2𝑐1𝑥2 − 108𝑎1𝑏1𝑐1𝑥𝑦 − 81𝑏1𝑐1

2𝑦 = 0   

and  ℎ1 = −1/3, ℎ2 = −1/2, ℎ3 = −5/6. 

In case (xxiii),  Φ ≡ 𝑎1𝑥(3𝑎1𝑥 + 2𝑏2𝑦)2 + 18𝑎1
2𝑐1𝑥2 + 36𝑎1𝑏2𝑐1𝑥𝑦 + 16𝑏2

2𝑐1𝑦2 + 

+9𝑎1𝑐1
2𝑥 = 0  and  ℎ1 = −1/2, ℎ2 = −1, ℎ3 = −1/2.  

Applying the identity (23) to the sets of conditions from Theorem 2.6, we obtain: 

In case (xxiv),  Φ ≡ (𝑎1𝑥 − 3𝑏2𝑦)3 + 2𝑎1
2𝑐1𝑥2 − 36𝑎1𝑏2𝑐1𝑥𝑦 − 54𝑎2

2𝑐1𝑦2 + 𝑎1𝑐1
2𝑥 − 

−27𝑏2𝑐1
2𝑦 = 0 and  ℎ1 = −5/6, ℎ2 = −1/2, ℎ3 = −2/3. 

In case (xxv),  Φ ≡ (3𝑎1𝑥 − 𝑏2𝑦)3 + 18𝑎1𝑏2𝑐1𝑥𝑦 − 6𝑏2
2𝑐1𝑦2 − 9𝑏2𝑐1

2𝑦 = 0   and  

ℎ1 = −5/2, ℎ2 = −3/2, ℎ3 = 1. 

In case (xxvi),  Φ ≡ (3𝑎1𝑥 − 5𝑏2𝑦)3 − 1350𝑎1𝑏2𝑐1𝑥𝑦 − 750𝑏2
2𝑐1𝑦2 − 1125𝑏2𝑐1

2𝑦 = 0    

and  ℎ1 = −1/2, ℎ2 = −1/6, ℎ3 = −1. 

In case (xxvii),  Φ ≡ (3𝑎1𝑥 + 𝑏2𝑦)3 + 27𝑎1𝑏2𝑐1𝑥𝑦 + 6𝑏2
2𝑐1𝑦2 + 9𝑏2𝑐1

2𝑦 = 0 

and  ℎ1 = −2, ℎ2 = −2/3, ℎ3 = 0. 

In case (xxviii),  Φ ≡ (4𝑎1𝑥 + 𝑏2𝑦)3 + 64𝑎1
2𝑐1𝑥2 + 32𝑎1𝑏2𝑐1𝑥𝑦 + 4𝑏2

2𝑐1𝑦2 + 

+4𝑏2𝑐1
2𝑦 = 0   and  ℎ1 = −5/3, ℎ2 = −5/6, ℎ3 = 1/6. 

In case (xxix),   Φ ≡ (𝑎1𝑥 − 2𝑏2𝑦)3 + 𝑎1
2𝑐1𝑥2 − 40𝑎1𝑏2𝑐1𝑥𝑦 − 32𝑏2

2𝑐1𝑦2 − 

−32𝑏2𝑐1
2𝑦 = 0   and  ℎ1 = −2/3, ℎ2 = −1/3, ℎ3 = −5/6. 

In case (xxx),  Φ ≡ (3𝑎1𝑥 + 2𝑏2𝑦)3 + 27𝑎1
2𝑐1𝑥2 + 72𝑎1𝑏2𝑐1𝑥𝑦 + 32𝑏2

2𝑐1𝑦2 + 

+32𝑏2𝑐1
2𝑦 = 0   and   ℎ1 = −

5

3
, ℎ2 = −5/9, ℎ3 = −2/9 . 

Theorem 5.1 is proved. 
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Conclusion 

For Lotka-Volterra system (2) with a bundle of two invariant straight lines and one 

irreducible invariant cubic, modulo the symmetry (3), there were obtained 47 sets of 

Darboux integrability conditions. 
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CONDIȚII CENTROAFIN-INVARIANTE DE STABILITATE A MIȘCĂRII 

NEPERTURBATE PENTRU SISTEMUL DIFERENȚIAL 𝒔(𝟏, 𝟐, 𝟑)  CU PARTEA 

PĂTRATICĂ DE TIP DARBOUX 

Rezumat. A fost determinată algebra Lie, seria Lyapunov și condițiile centroafin-invariante de stabilitate 

a mișcării neperturbate guvernate de sistemul critic de tip Lyapunov cu partea pătratică de tip Darboux. 

Cuvinte-cheie: Sistem diferențial, stabilitatea mișcării neperturbate, comitanți și invatianți centro-afini, 

algebră Lie, algebră Sibirschi graduată, grup. 

 

Introduction 

A lot of papers were written in the field of stability of motion. The universal scientific 

literature, concerning the stability of motion contains thousands of papers, including 

hundreds of monographs and textbooks of many authors. This literature is rich in the 

development of this theory, as well as in its applications in practice. 

Note that many problems on stability treated in these works are governed by two-

dimensional (or multidimensional) autonomous polynomial differential systems. Methods 

of the theory of invariants for such systems were elaborated in the school of differential 

equations from Chișinău. Moreover, there was developed the theory of the Lie algebras 

and Sibirsky graded algebras [1-5] with applications in the qualitative theory of these 

equations. 

With a special weight, in this domain, it is published the Lyapunov (1857-1918) PhD 

thesis concerning the stability of motion in 1882 [6]. This work contains many fruitful 

ideas and results of great importance. It is considered that all history related to the theory 

on stability of motion is divided into periods before and after Lyapunov. 

First of all, A.M. Lyapunov gave a strict definition of the stability of motion, which 

was so successful that all scientists took it as fundamental one for their researches. 

Acta et Commentationes, Exact and Natural Sciences, nr. 2(6)2018                                                                   ISSN 2537-6284
Natalia Neagu, Victor Orlov,  p. 51-59
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In this paper and [7], with these visions was studied the Lie algebra, was built the 

Lyapunov series and was determined the stability of the unperturbed motion for two-

dimensional critical differential system 𝑠(1,2,3) with quadratic part of Darboux type. 

 

1. The Lie algebra allowed of Lyapunov canonical form of the differential system 

𝒔(𝟏, 𝟐, 𝟑) with quadratic part of Darboux type 

We will examine the differential system 𝑠(1,2,3) with quadratic part of Darboux type 

of the form 

𝑑𝑥𝑗

𝑑𝑡
= 𝑎𝛼

𝑗
𝑥𝛼 + 𝑎𝛼𝛽

𝑗
𝑥𝛼𝑥𝛽 + 𝑎𝛼𝛽𝛾

𝑗
𝑥𝛼𝑥𝛽𝑥𝛾      (𝑗, 𝛼, 𝛽, 𝛾 = 1,2),                    (1) 

where 𝑎𝛼𝛽
𝑗

 and 𝑎𝛼𝛽𝛾
𝑗

 are a symmetric tensors in lower indices in which the total 

convolution is done. Coefficients and variables in (1) are given over the field of real 

numbers ℝ. 

Remark 1.1. The characteristic equation of system (1) has one zero root and the other 

ones real and negative if and only if the following invariant conditions [7] hold  

𝐼1
2 − 𝐼2 = 0, 𝐼1 < 0,                                                      (2) 

where 

𝐼1 = 𝑎𝛼
𝛼 , 𝐼2 = 𝑎𝛽

𝛼𝑎𝛼
𝛽

.                                                  (3) 

When the characteristic equation of (1) has one zero root and the other one is negative, 

i.e. the conditions (2) and 𝑅2 ≡ 0 from (18) are satisfied, then this system by a center-

affine transformation can be brought to its critical form 

𝑑𝑥

𝑑𝑡
= 𝑥(𝑔𝑥 + 2ℎ𝑦) + 𝑝𝑥3 + 3𝑞𝑥2𝑦 + 3𝑟𝑥𝑦2 + 𝑠𝑦3 ≡ 𝑃,

𝑑𝑦

𝑑𝑡
= 𝑒𝑥 + 𝑓𝑦 + 𝑦(𝑔𝑥 + 2ℎ𝑦) + 𝑡𝑥3 + 3𝑢𝑥2𝑦 + 3𝑣𝑥𝑦2 + 𝑤𝑦3 ≡ 𝑄,

          (4) 

where 𝑎1
1 = 𝑎2

1 = 𝑎22
1 = 𝑎11

2 = 0  and 𝑎1
2 = 𝑒, 𝑎2

2 = 𝑓, 𝑎11
1 = 2𝑎12

2 = 𝑔, 𝑎12
1 =

1

2
𝑎22

2 = ℎ,

𝑎111
1 = 𝑝, 𝑎112

1 = 𝑞, 𝑎122
1 =  𝑟, 𝑎222

1 = 𝑠, 𝑎111
2 = 𝑡, 𝑎112

2 = 𝑢, 𝑎122
2 = 𝑣, 𝑎222

2 = 𝑤. 

We examine the determined equations [8] for system (4) 

𝜉𝑥
1𝑃 + 𝜉𝑦

1𝑄 = 𝜉1𝑃𝑥 + 𝜉2𝑃𝑦 + 𝐷(𝑃),

𝜉𝑥
2𝑃 + 𝜉𝑦

2𝑄 = 𝜉1𝑄𝑥 + 𝜉2𝑄𝑦 + 𝐷(𝑄),
                                           (5) 

where 

𝐷 = 𝜂1
𝜕

𝜕𝑒
+ 𝜂2

𝜕

𝜕𝑓
+ 𝜂3

𝜕

𝜕𝑔
+ 𝜂4

𝜕

𝜕ℎ
+ 𝜂5

𝜕

𝜕𝑝
+ 𝜂6

𝜕

𝜕𝑞
+ 𝜂7

𝜕

𝜕𝑟
+ 𝜂8

𝜕

𝜕𝑠
+

+𝜂9
𝜕

𝜕𝑡
+ 𝜂10

𝜕

𝜕𝑢
+ 𝜂11

𝜕

𝜕𝑣
+ 𝜂12

𝜕

𝜕𝑤
.

        (6) 

The polynomials 𝑃, 𝑄  are given in (4) and 𝜂𝑗  (𝑗 = 1,12̅̅ ̅̅ ̅̅ )  are functions of the 

parameters e, f, g, h, p, q, r, s, t, u, v, w. 

Let us consider 
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𝜉𝑗 = 𝐴𝑖𝑥 + 𝐵𝑖𝑦   (𝑖 = 1,2̅̅ ̅̅ ),                                                   (7) 

where 𝐴𝑖 , 𝐵𝑖 are unknown parameters.  

We write the operator  

𝑋 = 𝜉1
𝜕

𝜕𝑥
+ 𝜉2

𝜕

𝜕𝑦
+ 𝐷,                                                   (8) 

where 𝜉1, 𝜉2 are given in (7) and D is defined in (6). 

Solving the system of equations (5) with respect to the operators (6), (8) with 

coordinates (7)  we obtain 3 independent linear operators 

𝑋1 = 𝑥
𝜕

𝜕𝑥
− 𝑒

𝜕

𝜕𝑒
− 𝑔

𝜕

𝜕𝑔
− 2𝑝

𝜕

𝜕𝑝
− 𝑞

𝜕

𝜕𝑞
+ 𝑠

𝜕

𝜕𝑠
− 3𝑡

𝜕

𝜕𝑡
− 2𝑢

𝜕

𝜕𝑢
− 𝑣

𝜕

𝜕𝑣
, 

𝑋2 = 𝑦
𝜕

𝜕𝑦
+ 𝑒

𝜕

𝜕𝑒
− ℎ

𝜕

𝜕ℎ
− 𝑞

𝜕

𝜕𝑞
− 2𝑟

𝜕

𝜕𝑟
− 3𝑠

𝜕

𝜕𝑠
+ 𝑡

𝜕

𝜕𝑡
− 𝑣

𝜕

𝜕𝑣
− 2𝑤

𝜕

𝜕𝑤
,

𝑋3 = 𝑥
𝜕

𝜕𝑦
− 𝑓

𝜕

𝜕𝑒
− 2ℎ

𝜕

𝜕𝑔
− 3𝑞

𝜕

𝜕𝑝
− 2𝑟

𝜕

𝜕𝑞
− 𝑠

𝜕

𝜕𝑟
+ (𝑝 − 3𝑢)

𝜕

𝜕𝑡
+

      (9) 

+(𝑞 − 2𝑣)
𝜕

𝜕𝑢
+ (𝑟 − 𝑤)

𝜕

𝜕𝑣
+ 𝑠

𝜕

𝜕𝑤
. 

Remark 1.2. The system (4) admits a solvable three-dimensional Lie algebra 𝐿3 composed 

of operators (9). 

The following transformation of the phase plan 

𝑥 = 𝑥̅, 𝑦 = −𝛼𝑥̅ + 𝑦̅  

corresponds to the representation operator 𝑋3 from (9) of the system (4) . 

With this transformation, for 𝑓 ≠ 0, we can always get the equality e = 0. 

Remark 1.3. This property, for 𝑓 ≠ 0 , is true for any Lyapunov canonical two-

dimensional system. 

 

2. Invariant conditions of stability of unperturbed motion for critical system 

𝒔(𝟏, 𝟐, 𝟑) of Lyapunov type (4) with quadratic part of Darboux type 

According to Lyapunov's Theorem [6, §32], we examine the non-critical equation of 

the system (4) 

𝑒𝑥 + 𝑓𝑦 + 𝑔𝑥𝑦 + 2ℎ𝑦2 + 𝑡𝑥3 + 3𝑢𝑥2𝑦 + 3𝑣𝑥𝑦2 + 𝑤𝑦3 = 0.                 (10) 

Then from this relation we express y and obtain 

𝑦 = −
𝑒

𝑓
𝑥 − −

𝑔

𝑓
𝑥𝑦 − 2

ℎ

𝑓
𝑦2 −

𝑡

𝑓
𝑥3 − 3

𝑢

𝑓
𝑥2𝑦 − 3

𝑣

𝑓
𝑥𝑦2 −

𝑤

𝑓
𝑦3.            (11) 

We seek y as a holomorphic function of  x. Then we can write 

𝑦 = −
𝑒

𝑓
𝑥 + 𝐵2𝑥2 + 𝐵3𝑥3 + 𝐵4𝑥4 + 𝐵5𝑥5 + 𝐵6𝑥6 + 𝐵7𝑥7 + 𝐵8𝑥8 + 𝐵9𝑥9 + ⋯   (12) 

Substituting (12) into (11) and identifying the coefficients of the same powers of x in 

the obtained relation we have 
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𝐵2 =
𝑒

𝑓2
(𝑔 − 2

𝑒ℎ

𝑓
), 

𝐵3 = −[
1

𝑓
(𝑔 − 2

𝑒ℎ

𝑓
) 𝐵2 +

1

𝑓
(𝑡 − 3

𝑒𝑢

𝑓
+ 3

𝑒2𝑣

𝑓2
−

𝑒3𝑤

𝑓3
)], 

𝐵4 = −[2
ℎ

𝑓
𝐵2

2 +
1

𝑓
(𝑔 − 2

𝑒ℎ

𝑓
) 𝐵3 +

3

𝑓
(𝑢 − 2

𝑒𝑣

𝑓
+

𝑒2𝑤

𝑓2
)𝐵2], 

𝐵5 = −[4
ℎ

𝑓
𝐵2𝐵3 + 3(

𝑣

𝑓
+

𝑒𝑤

𝑓2
)𝐵2

2 +
1

𝑓
(𝑔 − 2

𝑒ℎ

𝑓
) 𝐵4 +

3

𝑓
(𝑢 − 2

𝑒𝑣

𝑓
+

𝑒2𝑤

𝑓2
)𝐵3], 

𝐵6 = −[2
ℎ

𝑓
(2𝐵2𝐵4 + 𝐵3

2) +
𝑤

𝑓
𝐵2

3 + 6 (
𝑣

𝑓
+

𝑒𝑤

𝑓2
) 𝐵2𝐵3 +

1

𝑓
(𝑔 − 2

𝑒ℎ

𝑓
) 𝐵5 + 

+
3

𝑓
(𝑢 − 2

𝑒𝑣

𝑓
+

𝑒2𝑤

𝑓2
)𝐵4], 

𝐵7 = −[4
ℎ

𝑓
(𝐵2𝐵5 + 𝐵3𝐵4) + 3

𝑤

𝑓
𝐵2

2𝐵3 + 3 (
𝑣

𝑓
+

𝑒𝑤

𝑓2
) (2𝐵2𝐵4 + 𝐵3

2) + 

+
1

𝑓
(𝑔 − 2

𝑒ℎ

𝑓
) 𝐵6 +

3

𝑓
(𝑢 − 2

𝑒𝑣

𝑓
+

𝑒2𝑤

𝑓2
)𝐵5], 

𝐵8 = −[2
ℎ

𝑓
(2𝐵2𝐵6 + 2𝐵3𝐵5 + 𝐵4

2) + 3
𝑤

𝑓
(𝐵2

2𝐵4 + 𝐵2𝐵3
2) + 

+6 (
𝑣

𝑓
+

𝑒𝑤

𝑓2
) (𝐵2𝐵5 + 𝐵3𝐵4) +

1

𝑓
(𝑔 − 2

𝑒ℎ

𝑓
) 𝐵7 +

3

𝑓
(𝑢 − 2

𝑒𝑣

𝑓
+

𝑒2𝑤

𝑓2
)𝐵6], 

𝐵9 = −[4
ℎ

𝑓
(𝐵2𝐵7 + 𝐵3𝐵6 + 𝐵4𝐵5) +

𝑤

𝑓
(3𝐵2

2𝐵5 + 6𝐵2𝐵3𝐵4 + 𝐵3
3) + 

+3 (
𝑣

𝑓
+

𝑒𝑤

𝑓2
) (2𝐵2𝐵6 + 2𝐵3𝐵5 + 𝐵4

2) +
1

𝑓
(𝑔 − 2

𝑒ℎ

𝑓
) 𝐵8 +

3

𝑓
(𝑢 − 2

𝑒𝑣

𝑓
+

𝑒2𝑤

𝑓2
)𝐵7], 

𝐵10 = −[2
ℎ

𝑓
(2𝐵2𝐵8 + 2𝐵3𝐵7 + 2𝐵4𝐵6 + 𝐵5

2) + 3
𝑤

𝑓
(𝐵2

2𝐵6 + 2𝐵2𝐵3𝐵5 + 𝐵2𝐵4
2 + 

+𝐵3
2𝐵4) + 6 (

𝑣

𝑓
+

𝑒𝑤

𝑓2
) (𝐵2𝐵7 + 𝐵3𝐵6 + 𝐵4𝐵5) +

1

𝑓
(𝑔 − 2

𝑒ℎ

𝑓
) 𝐵9 + 

+
3

𝑓
(𝑢 − 2

𝑒𝑣

𝑓
+

𝑒2𝑤

𝑓2
)𝐵8], 

𝐵11 = −[4
ℎ

𝑓
(𝐵2𝐵9 + 𝐵3𝐵8 + 𝐵4𝐵7 + 𝐵5𝐵6) + 3

𝑤

𝑓
(𝐵2

2𝐵7 + 2𝐵2𝐵3𝐵6 + 

+2𝐵2𝐵4𝐵5 + 𝐵3
2𝐵5 + 𝐵3𝐵4

2) + 3 (
𝑣

𝑓
+

𝑒𝑤

𝑓2
) (2𝐵2𝐵8 + 2𝐵3𝐵7 + 2𝐵4𝐵6 + 𝐵5

2) + 

+
1

𝑓
(𝑔 − 2

𝑒ℎ

𝑓
) 𝐵10 +

3

𝑓
(𝑢 − 2

𝑒𝑣

𝑓
+

𝑒2𝑤

𝑓2
)𝐵9], 

𝐵12 = −[2
ℎ

𝑓
(2𝐵2𝐵10 + 𝐵3𝐵9 + 𝐵4𝐵8 + 𝐵5𝐵7 + 𝐵6

2) +
𝑤

𝑓
(3𝐵2

2𝐵8 + 6𝐵2𝐵3𝐵7 + 

+6𝐵2𝐵4𝐵6 + 3𝐵2𝐵5
2 + 3𝐵3

2𝐵6 + 6𝐵3𝐵4𝐵5 + 𝐵4
3) + 6 (

𝑣

𝑓
+

𝑒𝑤

𝑓2
) (𝐵2𝐵9 + 𝐵3𝐵8 + 
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𝐵4𝐵7 + 𝐵5𝐵6) + +
1

𝑓
(𝑔 − 2

𝑒ℎ

𝑓
) 𝐵11 +

3

𝑓
(𝑢 − 2

𝑒𝑣

𝑓
+

𝑒2𝑤

𝑓2
)𝐵10], …         (13) 

Substituting (12) into the right-hand side of the critical differential equation (4) we 

obtain 

𝑔𝑥2 + 2ℎ𝑥𝑦 + 𝑝𝑥3 + 3𝑞𝑥2𝑦 + 3𝑟𝑥𝑦2 + 𝑠𝑦3 = 

= 𝐴2𝑥2 + 𝐴3𝑥3 + 𝐴4𝑥4 + 𝐴5𝑥5 + 𝐴6𝑥6 + 𝐴7𝑥7 + 𝐴8𝑥8 + 𝐴9𝑥9 + 𝐴10𝑥10 + ⋯    

From this, taking into account (12) and (13), we get 

𝐴2 = 𝑔 − 2
𝑒ℎ

𝑓
, 

𝐴3 = 2ℎ𝐵2 + (𝑡 − 3
𝑒𝑞

𝑓
+ 3

𝑒2𝑟

𝑓2
−

𝑒3𝑠

𝑓3
)], 

𝐴4 = 2ℎ𝐵3 + 3(𝑞 − 2
𝑒𝑟

𝑓
+

𝑒2𝑠

𝑓2
)𝐵2, 

𝐴5 = 2ℎ𝐵4 + 3(𝑟 −
𝑒𝑠

𝑓
)𝐵2

2 + 3(𝑞 − 2
𝑒𝑟

𝑓
+

𝑒2𝑠

𝑓2
)𝐵3, 

𝐴6 = 𝑠𝐵2
3 + 2ℎ𝐵5 + 6(𝑟 −

𝑒𝑠

𝑓
)𝐵2𝐵3 + 3(𝑞 − 2

𝑒𝑟

𝑓
+

𝑒2𝑠

𝑓2
)𝐵4, 

𝐴7 = 3𝑠𝐵2
2𝐵3 + 2ℎ𝐵6 + 3 (𝑟 −

𝑒𝑠

𝑓
) (2𝐵2𝐵4 + 𝐵3

2) + 3(𝑞 − 2
𝑒𝑟

𝑓
+

𝑒2𝑠

𝑓2
)𝐵5, 

𝐴8 = 3𝑠(𝐵2
2𝐵4 + 𝐵2𝐵3

2) + 2ℎ𝐵7 + 6 (𝑟 −
𝑒𝑠

𝑓
) (𝐵2𝐵5 + 𝐵3𝐵4) + 3(𝑞 − 2

𝑒𝑟

𝑓
+

𝑒2𝑠

𝑓2
)𝐵6, 

𝐴9 = 𝑠(3𝐵2
2𝐵5 + 6𝐵2𝐵3𝐵4 + 𝐵3

3) + 2ℎ𝐵8 + 3 (𝑟 −
𝑒𝑠

𝑓
) (2𝐵2𝐵6 + 2𝐵3𝐵5 + 𝐵4

2) + 

+3 (𝑞 − 2
𝑒𝑟

𝑓
+

𝑒2𝑠

𝑓2
) 𝐵7,                                                     (14) 

𝐴10 = 3𝑠(𝐵2
2𝐵6 + 2𝐵2𝐵3𝐵5 + 𝐵2𝐵4

2 + 𝐵3
2𝐵4) + 2ℎ𝐵9 + 6 (𝑟 −

𝑒𝑠

𝑓
) (𝐵2𝐵7 + 

+𝐵3𝐵6 + 𝐵4𝐵5) + 3(𝑞 − 2
𝑒𝑟

𝑓
+

𝑒2𝑠

𝑓2
)𝐵8, 

𝐴11 = 3𝑠(𝐵2
2𝐵7 + 2𝐵2𝐵3𝐵6 + 2𝐵2𝐵4𝐵5 + 𝐵3

2𝐵5 + 𝐵3𝐵4
2) + 2ℎ𝐵10 + 

+3 (𝑟 −
𝑒𝑠

𝑓
) (2𝐵2𝐵8 + 2𝐵3𝐵7 + 2𝐵4𝐵6 + 𝐵5

2) + 3(𝑞 − 2
𝑒𝑟

𝑓
+

𝑒2𝑠

𝑓2
)𝐵9, 

𝐴12 = 𝑠3(𝐵2
2𝐵8 + 6𝐵2𝐵3𝐵7 + 6𝐵2𝐵4𝐵6 + 3𝐵2𝐵5

2 + 3𝐵3
2𝐵6 + 6𝐵3𝐵4𝐵5 + 𝐵4

3) + 

+2ℎ𝐵11 + 6 (𝑟 −
𝑒𝑠

𝑓
) (𝐵2𝐵9 + 𝐵3𝐵8 + 𝐵4𝐵7 + 𝐵5𝐵6) + 3 (𝑞 − 2

𝑒𝑟

𝑓
+

𝑒2𝑠

𝑓2
) 𝐵10, … 

We introduce the following notations: 

𝑁1 = 𝑓𝑔 − 2𝑒ℎ;     𝑁2 = 𝑓3𝑝 − 3𝑒𝑓2𝑞 + 3 𝑒2𝑓 𝑟 − 𝑒3 𝑠; 

𝑁3 = 𝑓3𝑡 − 3𝑒𝑓2𝑢 + 3 𝑒2𝑓 𝑣 − 𝑒3 𝑤;   𝑁4 = 𝑓2𝑞 − 2 𝑒2𝑓 𝑟 − 𝑒3 𝑠;             (15) 

𝑁5 = 𝑓𝑟 − 𝑒𝑠. 
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Then, from (13) and (14) with this notations we obtain 

𝐵2 =
𝑒

𝑓3
𝑁1, 𝐵3 = −(

1

𝑓2
𝐵2𝑁1 +

1

𝑓4
𝑁3), 

𝐴2 =
1

𝑓
𝑁1, 𝐴3 = 2ℎ𝐵2 +

1

𝑓3
𝑁2, 𝐴4 = 2ℎ𝐵3 +

3

𝑓2
𝐵2𝑁4, 

𝐴5 = 2ℎ𝐵4 +
3

𝑓
𝐵2

2𝑁5 +
3

𝑓2
𝐵3𝑁4, 

𝐴6 = 𝑠𝐵2
3 + 2ℎ𝐵5 +

6

𝑓
𝐵2𝐵3𝑁5 +

3

𝑓2
𝐵4𝑁4, 

𝐴7 = 3𝑠𝐵2
2𝐵3 + 2ℎ𝐵6 +

3

𝑓
(2𝐵2𝐵4 + 𝐵3

2)𝑁5 +
3

𝑓2
𝐵5𝑁4,  

𝐴8 = 3𝑠(𝐵2
2𝐵4 + 𝐵2𝐵3

2) + 2ℎ𝐵7 +
6

𝑓
(𝐵2𝐵5 + 𝐵3𝐵4)𝑁5 +

3

𝑓2
𝐵6𝑁4, 

𝐴9 = 𝑠(3𝐵2
2𝐵5 + 6𝐵2𝐵3𝐵4 + 𝐵3

3) + 2ℎ𝐵8 +
3

𝑓
(2𝐵2𝐵6 + 2𝐵3𝐵5 + 𝐵4

2)𝑁5 +
3

𝑓2
𝐵7𝑁4,    

𝐴10 = 3𝑠(𝐵2
2𝐵6 + 2𝐵2𝐵3𝐵5 + 𝐵2𝐵4

2 + 𝐵3
2𝐵4) + 2ℎ𝐵9 + 

6

𝑓
(𝐵2𝐵7 + 𝐵3𝐵6 + 𝐵4𝐵5)𝑁5 +

3

𝑓2
𝐵8𝑁4, …                                 (16) 

Lemma 2.1. The stability of unperturbed motion in the system of perturbed motion (4) is 

described by one of the following twelve possible cases, if for expressions (15)                     

𝐼1 = 𝑓 < 0) the following conditions are satisfied: 

I. 𝑁1 ≠ 0, then the unperturbed motion is unstable; 

II. 𝑁1 = 0, 𝑁2 > 0, then the unperturbed motion is stable; 

III. 𝑁1 = 0, 𝑁2 < 0, then the unperturbed motion is unstable; 

IV. 𝑁1 = 𝑁2 = 0,  ℎ𝑁3 ≠ 0, then the unperturbed motion is unstable; 

V. 𝑁1 = 𝑁2 =  ℎ = 0; 𝑁3𝑁4 < 0, then the unperturbed motion is unstable; 

VI. 𝑁1 = 𝑁2 =  ℎ = 0; 𝑁3𝑁4 > 0, then the unperturbed motion is stable; 

VII. 𝑁1 = 𝑁2 = 𝑁4 =  ℎ = 0 , 𝑁3 ≠ 0 ; 𝑁5 > 0 , then the unperturbed motion is 

stable; 

VIII. 𝑁1 = 𝑁2 = 𝑁4 =  ℎ = 0 , 𝑁3 ≠ 0 ; 𝑁5 < 0 , then the unperturbed motion is 

unstable; 

IX. 𝑁1 = 𝑁2 = 𝑁4 =  𝑁5 = ℎ = 0 ; 𝑠𝑁3 < 0 , then the unperturbed motion is 

unstable; 

X. 𝑁1 = 𝑁2 = 𝑁4 =  𝑁5 = ℎ = 0; 𝑠𝑁3 > 0, then the unperturbed motion is stable; 

XI. 𝑁1 = 𝑁2 = 𝑁3 =  0, then the unperturbed motion is stable; 

XII. 𝑁1 = 𝑁2 = 𝑁4 =  𝑁5 = ℎ = 𝑠 = 0, then the unperturbed motion is stable. 

In the last two cases, the unperturbed motion belongs to some continuous series of 

stabilized motion. Moreover, this motion is also asymptotic stable in Cases II, VI, VII and 

X. The expressions 𝑁𝑖  (𝑖 = 1,5̅̅ ̅̅ ) are given in (15).  
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Proof. According to Lyapunov Theorem [6, §32], the coefficients of the 𝐴𝑖 series from 

(14) are analyzed. 

If 𝐴2 ≠ 0 , then from (16) we get 𝑁1 ≠ 0  (taking into account that 𝐼1 = 𝑓 < 0). 

According to Lyapunov Theorem [6, §32], we have proved the Case I. 

If 𝐴2 = 0, i.e. 𝑁1 = 0 respectively 𝐵2 = 0, then by (16) the stability or the instability 

of unperturbed motion is determined by the sign of the expression 𝐴3  (the sign of the 

product 𝑁2). Using the Lyapunov Theorem [6, §32] we obtain the Cases II and III. 

If 𝑁1 = 𝑁2 = 0, then from (16) we get 𝐴4 = −2
ℎ

𝑓4
𝑁3. If ℎ𝑁3 ≠ 0. Then we obtain 

the Cases IV (see the Lyapunov Theorem [6, §32]). 

Suppose 𝑁1 = 𝑁2 = ℎ = 0. Then from (16) it results that 𝐴5 = −
3

𝑓6
𝑁3𝑁4. So the 

stability or the instability of the unperturbed motion is determined by the sign of expression 

𝑁3𝑁4. Using the Lyapunov Theorem [6, §32] we get the Cases V and VI. 

If 𝑁1 = 𝑁2 = 𝑁3 = 0, then all 𝐵𝑖 = 0  (𝑖 ≥ 3) and respectively 𝐴𝑖 = 0 (𝑖 ≥ 5). By 

the Lyapunov Theorem [6, §32] we have the Case XI. 

If 𝑁1 = 𝑁2 = 𝑁4 = ℎ = 0  and 𝑁3 ≠ 0,  then 𝐴6 = 0,  but 𝐴7 =
3

𝑓9
𝑁3

2𝑁5 . So the 

stability or the instability of the unperturbed motion is determined by the sign of expression 

𝑁5. Using the Lyapunov Theorem [6, §32] we get the Cases VII and VIII. 

If 𝑁1 = 𝑁2 = 𝑁4 = 𝑁5 = ℎ = 0  and 𝑁3 ≠ 0,  then 𝐴8 = 0,  but 𝐴9 = −
𝑠

𝑓12
𝑁3

3 . So 

the stability or the instability of the unperturbed motion is determined by the sign of 

expression 𝑠𝑁3. Using the Lyapunov Theorem [6, §32] we get the Cases IX and X. 

If 𝑁1 = 𝑁2 = 𝑁4 = 𝑁5 = ℎ = 𝑠 = 0 then all 𝐴𝑖 = 0 (∀𝑖) vanish. By the Lyapunov 

Theorem [6, §32] we get the Case XII.  Lemma 2.1 is proved. 

Let 𝜑  and 𝜓  be homogeneous comitants of degree 𝜌1  and 𝜌2  respectively of the 

phase variables x and y of a two-dimensional polynomial differential system. Then the 

transvectant 

(𝜑, 𝜓)(𝑗) =
(𝜌1 − 𝑗)(𝜌2 − 𝑗)

𝜌1! 𝜌2!
∑(−1)𝑗 (

𝑗
𝑖
)

𝑗

𝑖=0

𝜕𝑗𝜑

𝜕𝑥𝑗−𝑖𝜕𝑦𝑖

𝜕𝑗𝜓

𝜕𝑥𝑖𝜕𝑦𝑗−𝑖
                (17) 

is also a comitant for this system. 

In the Iu. Calin's works, see for example [9], it is shown that by means of the 

transvectant (17) all generators of the Sibirsky algebras of comitants and invariant for any 

system of type (1) can be constructed. 

According to [10] we write the following comitants of the system (1) 

𝑅𝑖 = 𝑃𝑖(𝑥, 𝑦)𝑦 − 𝑄𝑖(𝑥, 𝑦)𝑥, 𝑆𝑖 =
1

𝑖
(

𝜕𝑃𝑖(𝑥, 𝑦)

𝜕𝑥
+

𝜕𝑄𝑖(𝑥, 𝑦)

𝜕𝑦
) , (𝑖 = 1,3̅̅ ̅̅ ).   (18) 

Later on, we will need the following comitants and invariants from [10] of system (1) 

built by operations (17) and (18): 
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𝐼1 = 𝑆1,   𝐼2 = (𝑅1, 𝑅1)(2),   𝐼3 = ((𝑅3, 𝑅1)(2), 𝑅1)(2),   𝐼4 = (𝑆3, 𝑅1)(2),  

𝐾2 = 𝑅1,   𝐾5 = 𝑆2,   𝐾8 = 𝑅3,   𝐾9 = (𝑅3, 𝑅1)(1),   𝐾10 = (𝑅3, 𝑅1)(2),   (19)  

𝐾11 = ((𝑅3, 𝑅1)(2), 𝑅1)(1),   𝐾14 = (𝑆2, 𝑅1)(1),   𝐾15 = 𝑆3,   𝐾16 = (𝑆3, 𝑅1)(1). 

We consider for system (1) the following expressions composed of comitants and 

invariants from (19) that can be written in the form: 

𝒩1 = 2𝐾14 − 𝐼1𝐾5, 

  𝒩2 = 2𝐼1
2 𝐾10 − 4 𝐼1 𝐾11 − 3 𝐼1 𝐼2𝐾15 − 3 𝐼1

2𝐾16 +  4𝐼3𝐾2 + 3𝐼1 𝐼4𝐾2, 

𝒩3 = −12𝐼1 𝐾10 𝐾2 + 8 𝐾11 𝐾2 + 3 𝐼1
2 𝐾15 𝐾2 − 6 𝐼1 𝐾16 𝐾2 + 6 𝐼4 𝐾2

2 − 

−4 𝐼1
3 𝐾8 +  8 𝐼1

2 𝐾9,   𝒩4 = 2 𝐼3  +  𝐼1 𝐼4,   𝒩5 = 2 𝐾10  +  𝐼1 𝐾15 – 𝐾16,         (20) 

  𝑆 = 3 𝐾15 𝐾2  −  2 𝐼1 𝐾8  −  4 𝐾9. 

Theorem [11]. Let for system of perturbed motion (1) the invariant conditions (2)-(3) and 

𝑅2 ≡ 0 from (18) are satisfied. Then the stability of unperturbed motion is described by 

one of the following twelve possible cases: 

I. 𝒩1 ≢ 0, then the unperturbed motion is unstable; 

II. 𝒩1 ≡ 0, 𝒩2 > 0, then the unperturbed motion is stable; 

III. 𝒩1 ≡ 0, 𝒩2 < 0, then the unperturbed motion is unstable; 

IV. 𝒩1 ≡ 𝒩2 ≡ 0,  𝐾5𝒩3 ≢ 0, then the unperturbed motion is unstable; 

V. 𝒩1 ≡ 𝒩2 ≡  𝐾5 ≡ 0; 𝒩3𝒩4 < 0, then the unperturbed motion is unstable; 

VI. 𝒩1 ≡ 𝒩2 ≡  𝐾5 ≡ 0; 𝒩3𝒩4 > 0, then the unperturbed motion is stable; 

VII. 𝒩1 ≡ 𝒩2 ≡ 𝒩4 ≡  𝐾5 ≡ 0, 𝒩3 ≢ 0; 𝑁5 > 0, then the unperturbed motion is stable; 

VIII. 𝒩1 ≡ 𝒩2 ≡ 𝒩4 ≡  𝐾5 ≡ 0 , 𝒩3 ≢ 0 ; 𝑁5 < 0 , then the unperturbed motion is 

unstable; 

IX. 𝒩1 ≡ 𝒩2 ≡ 𝒩4 ≡  𝒩5 ≡ 𝐾5 = 0; 𝑆𝒩3 < 0, then the unperturbed motion is unstable; 

X. 𝒩1 ≡ 𝒩2 ≡ 𝒩4 ≡  𝒩5 ≡ 𝐾5 ≡ 0; 𝑆𝒩3 > 0, then the unperturbed motion is stable; 

XI. 𝒩1 ≡ 𝒩2 ≡ 𝒩3 ≡  0, then the unperturbed motion is stable; 

XII. 𝒩1 ≡ 𝒩2 ≡ 𝒩4 ≡  𝒩5 ≡ 𝐾5 ≡ 𝑆 ≡ 0, then the unperturbed motion is stable. 

In the last two cases, the unperturbed motion belongs to some continuous series of 

stabilized motion. Moreover, this motion is also asymptotic stable in Cases II, VI, VII and 

X. The expressions 𝑆, 𝐾5, 𝒩𝑖  (𝑖 = 1,5̅̅ ̅̅ ) are given in (19)-(20).  

Proof. Observe that the first three expressions from (20), for critical system (4), look as 

follows: 

𝒩1 = −3𝑁1𝑥,   𝒩2 = 4𝑁2𝑥2,   𝒩3 = 8𝑁3𝑥4 − 8𝑁2𝑥3𝑦,   𝒩4 = 2𝑁4,

𝒩5 =
2

𝑓
𝑁5(𝑒𝑥 + 𝑓𝑦)2,   𝐾5 = 3

ℎ

𝑓
(𝑒𝑥 + 𝑓𝑦),   𝑆 = −4

𝑠

𝑓3
𝑁5(𝑒𝑥 + 𝑓𝑦)4.

(21) 

Using the expressions (21) and the last assertion together with Lemma 2.1, we obtain 

the Cases I-XII. We note that the comitants 𝒩2, 𝒩3𝒩4, 𝒩5, 𝑆𝒩3  from (20), used in the 

Cases II-X of Theorem, are even-degree comitants with respect to x and y and have the 

weights [1] equal to 0, 0, 0, -2, respectively. Moreover, each one of these comitants (in the 
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case when it is applied) is a binary form with a well-defined sing. This ensures that any 

center-affine transformation cannot change their sign. Theorem is proved. 

 

Conclusions 

In this paper the Lie algebra allowed by differential system 𝑠(1,2,3) of the Lyapunov 

canonical form with quadratic part of the Darboux type was determined, which is a solvable 

three-dimensional algebra. Based on the constructed Lyapunov series, all center-affine 

invariant conditions of stability of the unperturbed motion were obtained and they are 

included in twelve cases.  
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Abstract. The Hilbert series for Sibirsky graded algebras of differential systems still now were examined 

using a generalized Sylvester method. These series have a special importance for some problems of 

qualitative theory of differential systems. For example, a problem related to the Hilbert series of differential 

systems is to determine relationships between them. Before finding some relations between Hilbert series, 

generalized or ordinary, it is necessary to build these Hilbert series. The article proposes the construction 

of Hilbert series of Sibirsky graded algebras using the residue method. 
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SERII HILBERT OBIȘNUITE PENTRU UNELE SISTEME DIFERENȚIALE 

CU NELINIARITĂȚI IMPARE 

Rezumat. Seriile Hilbert pentru algebrele graduate Sibirschi ale sistemelor diferențiale până în prezent au 

fost examinate utilizând metoda generalizată a lui Sylvester. Aceste serii au o importanță deosebită pentru 

unele probleme ale teoriei calitative ale sistemelor diferențiale. De exemplu, o problemă legată de seriile 

Hilbert corespunzătoare sistemelor diferențiale este determinarea unor relații între ele. Pentru a obține relații 

între serii Hilbert atât generalizate cât și obișnuite este nevoie de a construi aceste serii Hilbert. În articol 

se propune construirea seriilor Hilbert ale algebrelor graduate Sibirschi prin metoda reziduurilor. 

Cuvinte-cheie: Serii Hilbert, algebre graduate Sibirschi, sisteme diferențiale. 

 

1. Introduction 

A problem related to the Hilbert series of differential systems is to determine the 

relationships between them. Some relations between generalized Hilbert series of 

differential systems with homogeneous nonlinearities of odd degree were found in [1]. 

Lemma 1 [1]. The following relation  

)1(|),,(),(),,( 2313,1 bu
duSHbSIHdbSIH


  

exists between the generalized Hilbert series of algebras 
31

, SSI  and 3,1
SI . 

Lemma 2 [1]. The following relation 

)2(|),,(),(),,( 2515,1 bu
fuSHbSIHfbSIH


  

exists between the generalized Hilbert series of algebras 
51

, SSI  and 5,1
SI . 

According to (1) and (2) we can assume that between generalized Hilbert series of 

algebras 
121

,
k

SSI  and 12,1 k
SI there exists the next relation 

)3(|),,(),(),,( 212112,1 bukk zuSHbSIHzbSIH
   
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for any .1k  

Before finding some relations between Hilbert series, generalized or ordinary, it is 

necessary to build these Hilbert series. 

The construction of Hilbert series with generalized Sylvester method [2] is not always 

simple. The method of computing ordinary Hilbert series for invariants rings using the 

residues it is known from [3]. 

 

2. Hilbert series 

Definition 1 [3]. For a graded vector space 
d

kd
VV




  with 

d
V  finite dimensional for all d 

we define the Hilbert series of V as a formal Laurent series 







kd

d

d
tVtvH .)dim(),(  

Let G  be a linearly reductive group over an algebraically closed field K  and V  be a             

n – dimensional rational representation. Through ),][( tVKH G
 is denoted the Hilbert series 

of invariants ring 
GVK ][  [3]. 

Theorem 1 (Molien’s formula  [3]).  Let G  be a finite group acting on a finite dimensional 

vector space V  over a field K  of characteristic not dividing |G |. Then 


 


G V

G

tG
tVKH

 
.

)1(det

1

||

1
),][(

0
 

If K  has characteristic 0, then )1(det0 t
V

  can be taken as ).1(det t
V

  

Suppose that )(Kchar = 0. In Theorem 1 we have seen that for a finite group the 

Hilbert series of invariant ring can easily be computed. If G  is a finite group and V  is a 

finite dimensional representation, then according to [3] we have 

)4(.
)1(det

1

||

1
),][( 

 


G V

G

tG
tVKH

 
 

This idea can be generalized to arbitrary reductive groups. Let us assume that K  is 

the complex numbers ℂ. We can choose a Haar measure d  on C  and normalize it such 

that .1
C

d  Let V  be a finite dimensional rational representation of .G  The proper 

generalization of (4) is given in [3] 

H(ℂ )5(.
)1(det

),][ 



C V

G

t

d
tV




 

We mention that the Hilbert series H(ℂ ),][ tV G
 converges for |t| < 1 because it is a 

rational function with poles only at t = 1. Since C is compact, there exist constants A > 0 

such that for every  ℂ and every eigenvalue   of   we have .A  Since 
  is an 
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eigenvalue of ,  it follows that A||   for all ,  so .1  It is clear that the integral 

on the right-hand side of (5) is also defined for |t| < 1 [3]. 

Assume that G  is also connected. Let T be a maximal torus of ,G  and let D  be a 

maximal compact subgroup of T. We may assume that C  contains .D  The torus can be 

identified with (ℂ*)r, where r is the rank of G , and D  can be identified with the subgroup 

rS )( 1

 of (ℂ*)r, where 1S  ℂ* is the unit circle. We can choose a Haar measure d  on D  

such that ].3[1
D

d  

Suppose that f  is a continuous class function on .C  An integral like 
C

df  )(  can 

be viewed as an integral over ,D  since f  is constant on conjugacy classes. More precisely, 

there exists a weight function D: ℝ, such that for every continuous class function f  

we have .)()()(  
DC

dfdf   

So, from [3], we have  

H(ℂ )6(.
)1(det

)(

)1(det
),][ 







D VC V

G

t

d

t

d
tV








 

 

3. The Residue Theorem  

We recall the Residue Theorem in complex function theory. This theorem can be 

applied to compute the Hilbert series of invariant rings [3]. 

Suppose that )(zf  is a meromorphic function on ℂ. If a ℂ, then f  can be written 

as a Laurent series around az   







dk

k

k
azczf .)()(  

If d > 0 and 0
d

c , then f  has a pole at z = a and the pole order is d. 

The residue of f  at z = a is denoted by Res(f, a) and defined by 

.),(
1

 cafRes  

If the pole order of f  at z = a is ,1k then the residue can be computed by 

)).()((lim
)!1(

1
),(

1

1

zfaz
dz

d

k
afRes k

k

k

az










 

Suppose that ]1,0[:  ℂ is a smooth curve. The integral over the curve   is defined 

by 

 
1

0

.)())(()( dtttfdzzf 


 

62



Theorem 2 (The Residue Theorem [3]). Suppose that D  is a connected, simply connected 

compact region in ℂ whose border is ,D  and ]1,0[:  ℂ is a smooth curve such that 

)1()0(,])1,0([   D  and 
 
circles around D  exactly once in counterclockwise 

direction. Assume that f  is a meromorphic function on ℂ  with no poles in .D  Then we 

have 

 



 Da

afResdzzf
i

).,()(
2

1
 

There are only finitely many points in the compact region D  such that f  has                

non-zero residue there. So we have 

Theorem 3 [4].  

)7(,
))(det(

1

2

1
),][(

1 z

dz

ztIi
tVKH

S V

G







 

where 1S  ℂ is the unit circle  .1|:| zz  

 

4. Applications of the Residue Theorem to compute Hilbert series of Sibirsky graded 

algebras of differential systems 

Using the Residue Theorem and corresponding generating function [2] the formula 

(7) can be adapted for computing ordinary Hilbert series for Sibirsky graded algebras of 

comitants and invariants of differential systems [5]. 

Theorem 4. The ordinary Hilbert series for Sibirsky graded algebras of invariants of 

differential systems can be calculated using the formula 

)8(,
)(

2

1
)(

1

)0(

dz
z

z

i
tH

S

SI  






 

where 1S  ℂ is the unit circle  ,1|:| zz  and )()0( z


  is the corresponding generating 

function [2], 

),()...()()1( )0()0()0(2)0(

10
zzzz

mmm 
 


 






























,0,

)1()1)(1(

1

,0,
)1)(1(

1

)(

1

21211

1

)0(

im

k

kmmm

i

m mfor

tztztz

mfor
tzzt

z

i

iii

i
  


0

}{



ii

m  and consists of a finite number )(   of distinct natural numbers. 

We mention that this method of computing ordinary Hilbert series for Sibirsky graded 

algebras of comitants and invariants for differential systems was verified for the following 

known Hilbert series ,
1SI

H  ,
2S

H  ,
2SI

H  ,
2,0SI

H  ,
2,1SI

H  ,
3,1SI

H  ,
3,2SI

H  
5S

H  from [2] and 

,
5,1S

H  
5,1SI

H  from [1]. 
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Remark 1. The ordinary Hilbert series of Sibirsky graded algebra of comitants are 

obtained from the ordinary Hilbert series of algebra of invariants in the following way:
 

),()(
}0{

tHtH
SIS 




 where },...,,{
21 mmm }.0{   

From the paper [3] it is known the method of computing ordinary Hilbert series for 

invariants rings using the residues. This method was adapted for ordinary Hilbert series of 

Sibirsky graded algebras of comitants and invariants of differential systems. In contrast to 

the construction methods of these series, exposed in [2], with the help of residues [3], of 

the primary generating functions [2], we obtained the ordinary Hilbert series for Sibirsky 

graded algebras of the differential systems ),7(s  ),7,1(s  ),3,2,1(s  ),5,3,1(s  ),7,3,1(s  

).7,5,3,1(s  

Theorem 5. For differential system )7(s  the following ordinary Hilbert series of the  

Sibirsky graded algebras of comitants 
7

S  and invariants 
7

SI  were obtained 

 + 6 +  6 +  7 +  4 + 1(
)  (1)  (1 )  (1 )  (1)  (1 )  (1 ) + (1

1
)( 432

93745244357
tttt

ttttttt
tH

S




+ 28t5 + 112t6 + 325t7 +788t8 + 1719t9 + 3499t10 + 6716t11 + 12225t12 + 21205t13 + 

+ 35194t14 + 56030t15 + 85698t16 + 126023t17 + 178425t18 + 243697t19 + 321789t20 + 

+ 411501t21 + 510260t22 + 613944t23 + 717118t24 + 813553t25 + 896906t26 + 961309t27 + 

+ 1002042t28 + 1015982t29 + 1002042t30 + 961309t31 + 896906t32 + 

+ 813553t33 +717118t34 + 613944t35 + 510260t36 + 411501t37 + 321789t38 + 

+ 243697t39 + 178425t40 + 126023t41 + 

+ 85698t42 + 56030t43 + 35194t44 + 21205t45 + 12225t46 + 6716t47 + 3499t48 + 1719t49 + 

+ 788t50 + 325t51 + 112t52 + 28t53+ 6t54 + 6t55 + 7t56 + 4t57 + t58), 




 5432

273534434
15 + 2 +  2 +  4 +  4 + 1(

)  (1 )  (1 )  (1)  (1 )  (1 ) + (1

1
)(

7
ttttt

tttttt
tH

SI

+ 59t6 + 150t7 + 312t8 + 578t9 + 1011t10 + 1673t11 + 2631t12 + 3917t13+ 5541t14 + 7450t15 

+ + 9551t16 + 11651t17 + 13543t18 + 15011t19 + 15933t20 + 16238t21 + 15933t22 + 

+ 15011t23 + 13543t24 + 11651t25 + 9551t26 + 7450t27 + 5541t28 + 3917t29 + 2631t30 + 

1673t31 + 1011t32 + 578t33 + 312t34 + 150t35 + 59t36 + 15t37 + 2t38 + 2t39 + 4t40 + 3t41 + t42). 

From this theorem it results that the Krull dimension [2] of the Sibirsky graded 

algebra 
7

S  (respectively
7

SI ) is equal to 15 (respectively 13). 

Theorem 6. For differential system )7,1(s  the following ordinary Hilbert series of the 

Sibirsky graded algebras of comitants 7,1
S  and invariants 7,1

SI  were obtained 




 432

937453453323
177741(

)1()1()1()1()1()1()1(

1
)(

7,1
tttt

ttttttt
tH

S

+ 85t5 + 331t6 + 1009t7 + 2657t8 + 6368t9 + 14278t10 + 30208t11 + 60574t12 + 115441t13 + 

+ 209688t14 + 363888t15 + 604838t16 + 965096t17 + 1481667t18 + 2193216 t19 + 

+ 3135942t20 + 4337738t21 + 5811835t22 + 7550176t23 + 9518852t24 + 11655892t25 + 

64



+ 13872730t26 + 16058633t27 + 18089130t28 + 19836497t29 + 21182751t30 + 

+ 22032184t31 + 22322579t32 + 22032184t33 + 21182751t34 + 19836497t35 + 

+ 18089130t36 + 16058633t37 + 13872730t38 + 11655892t39 + 9518852t40 + 7550176t41 + 

+ 5811835t42 + 4337738t43 + 3135942t44 + 2193216t45 + 1481667t46 + 965096t47 + 

+ 604838t48 + 363888t49 + 209688t50 + 115441t51 + 60574t52 + 30208t53 + 14278t54 + 

+ 6368t55 + 2657t56 + 1009t57 + 331t58 + 85t59 + 17t60 + 7t61 + 7t62 + 4t63 +t64), 




 5432

2735445335
5392431(

)1()1()1()1()1()1(

1
)(

7,1
ttttt

tttttt
tH

SI

+ 196t6 + 525t7 + 1214t8 + 2558t9 + 5097t10 + 9569t11 + 16975t12 + 28396t13 + 44981t14 + 

+ 67577t15 + 96665t16 + 131839t17 + 171920t18 + 214631t19 + 257063t20 + 295599t21 + 

+ 326684t22 + 346880t23 + 353937t24 + 346880t25 + 326684t26 + 295599t27 + 257063t28 + 

+ 214631t29 + 171920t30 + 131839t31 + 96665t32 + 67577t33 + 44981t34 + 28396t35 + 

+ 16975t36 + 9569t37 + 5097t38 + 2558t39 + 1214t40 + 525t41 + 196t42 + 53t43 + 

+ 9t44 + 2t45 + 4t46 + 3t47 +t48). 

From this theorem it results that the Krull dimension [2] of the Sibirsky graded 

algebra 7,1
S  (respectively

 7,1
SI ) is equal to 19 (respectively 17). 

Theorem 7. For differential system )3,2,1(s  the following ordinary Hilbert series of the 

Sibirsky graded algebras of comitants 
3,2,1

S  and invariants 
3,2,1

SI  were obtained 




 5432

7353463222
9036931(

)1()1()1()1()1()1(

1
)(

3,2,1
ttttt

tttttt
tH

S

+ 220t6 + 459t7 + 946t8 + 1748t9 + 3032t10 + 4845t11 + 7302t12 + 10268t13 + 13749t14 + 

+ 17327t15 + 20781t16 + 23565t17 + 25460t18 + 26051t19 + 25460t20 + 23565t21 + 

+20781t22 + 17327t23 + 13749t24 + 10268t25 + 7302t26 + 4845t27 + 3032t28 + 1748t29 + 

+ 946t30 + 459t31 + 220t32 + 90t33 + 36t34 + 9t35 + 3t36 – t37 + t38), 




 65432

735245332
128572461(

)1()1()1()1()1)(1(

1
)(

3,2,1
ttttt

tttttt
tH

SI

+ 244t7 + 447t8 + 756t9 + 1203t10 + 1760t11 + 2433t12 + 3124t13 + 3800t14 + 4351t15 + 

+ 4736t16 + 4854t17 + 4736t18 + 4351t19 +3800t20 + 3124t21 + 2433t22 + 1760t23 + 

+1203t24 + 756t25 + 447t26 + 244t27 + 128t28 + 57t29 + 24t30 + 6t31 +t32 + t34). 

From this theorem it results that the Krull dimension [2] of the Sibirsky graded 

algebra 
3,2,1

S  (respectively
 3,2,1
SI ) is equal to 17 (respectively 15). 

Theorem 8. For ifferential system )5,3,1(s  the following ordinary Hilbert series of the 

Sibirsky graded algebras of comitants 5,3,1
S  and invariants 5,3,1

SI  were obtained 




 5432

745448367
39310217321(

)1()1()1()1()1()1(

1
)(

5,3,1
ttttt

tttttt
tH

S

+ 1295t6 + 3788t7 + 10229t8 + 25559t9 + 59435t10 + 128624t11 + 260754t12 + 497142t13 + 

+ 895543t14 + 1528784t15 + 2480535t16 + 3832821t17 + 5651535t18 + 7964888t19 + 
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+ 10746190t20 + 13897132t21 + 17246232t22 + 20554573t23 + 23544429t24 + 

+ 25932413t25 + 27476107t26 + 28009657t27 + 27476107t28 + 25932413t29 + 

+ 23544429t30 + 20554573t31 + 17246232t32 + 13897132t33 + 10746190t34 + 

+ 7964888t35 + 5651535t36 +497142t41 + 260754t42 + 3832821t37 + 2480535t38 + 

+ 1528784t39 + 895543t40 + 128624t43 + 59435t44 + + 25559t45 + 10229t46 + 

+ 3788t47 + 1295t48 + 393t49 + 102t50 + 17t51 + 3t52 + 2t53 +t54), 




 65432

35547366
78125377141(

)1()1()1()1()1(

1
)(

5,3,1
tttttt

ttttt
tH

SI

+ 2077t7 + 5160t8 + 11689t9 + 24616t10 + 47739t11 + 86576t12 + 146479t13 + 233075t14 + 

+ 348813t15 + 493340t16 + 659032t17 + 834212t18 + 1000116t19 + 1138132t20 + 

+1228974t21 + 1261281t22 + 1228974t23 + 1138132t24 + 1000116t25 + 834212t26 + 

+659032t27 + 493340t28 + 348813t29 + 233075t30 + 146479t31 + 86576t32 + 47739t33 + 

+24616t34 +11689t35 + 5160t36 + 2077t37 + 781t38 + 253t39 + 77t40 + 

+ 14t41 + 2t42 +t43 + t44). 

From this theorem it results that the Krull dimension [2] of the Sibirsky graded 

algebra 5,3,1
S  (respectively

 5,3,1
SI ) is equal to 23 (respectively 21). 

Theorem 9. For differential system )7,3,1(s  the following ordinary Hilbert series of the 

Sibirsky graded algebras of comitants 
7,3,1

S  and invariants 
7,3,1

SI  were obtained 




 432

937555483523
11920841(

)1()1()1()1()1()1()1(

1
)(

7,3,1
tttt

ttttttt
tH

S

+ 630t5 + 2704t6 + 10022t7 + 33698t8 + 104818t9 + 304181t10 + 826655t11 + 2112616t12 + 

+ 5098405t13 + 11666106t14 + 25400587t15 +52790206t16 + 105011044t17 + 

+ 200416900t18 + 367773321t19 + 650140950t20 + 1109089748t21 + 1828673257t22 + 

+2918286116t23 + 4513317434t24 + 6772373326t25 + 9869976204t26 + 

+ 13983988556t27 + 19277729149t28 + 25877612329t29 + 33848259389t30 +  

+ 43167949995t31 + 53708076135t32 + 65220413010t33 + 77335714909t34 +  

+ 89575940034t35 + 101380841773t36 + 112147463549t37 + 121279087722t38 + 

+ 128238286339t39 + 132597788686t40 + 34082589969t41 + 132597788686t42 + 

+ 128238286339t43 + 121279087722t44 + 112147463549t45 + 101380841773t46 + 

+ 89575940034t47 + 77335714909t48 + 65220413010t49 + 53708076135t50 + 

+ 43167949995t51 + 33848259389t52 + 25877612329t53 + 19277729149t54 + 

+ 13983988556t55 + 9869976204t56 + 6772373326t57 + 4513317434t58 + 2918286116t59 + 

+ 1828673257t60 + 1109089748t61 + 650140950t62 + 367773321t63 + 200416900t64 + 

+ 105011044t65 + 52790206t66 + 25400587t67 + 11666106t68 + 5098405t69 + 

+ 2112616t70 + 826655t71 + 304181t72 + 104818t73 + 33698t74 + 10022t75 + 2704t76 + 

+ 630t77 + 119t78 + 20t79 + 8t80 + 4t81 +t82), 




 432

27556483423
11422941(

)1()1()1()1()1()1(

1
)(

7,3,1
tttt

tttttt
tH

SI
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+ 576t5 + 2433t6 + 8812t7 + 28787t8 + 86580t9 + 242349t10 + 633691t11 + 1554313t12 + 

+ 3589873t13 + 7838767t14 + 16239174t15 + 32018338t16 + 60242752t17 + 108417618t18 + 

+ 187010583t19 + 309738539t20 + 493386952t21 + 756961044t22 + 1119980967t23 + 

+ 1599914185t24 + 2208870842t25 + 2949986298t26 + 3814040685t27 + 4777086279t28 + 

+ 5799732655t29 + 6828681083t30 + 7800621224t31 + 8648294432t32 + 9307907390t33 + 

+ 9726879111t34 + 9870564527t35 + 9726879111t36 + 9307907390t37 + 8648294432t38 + 

+ 7800621224t39 + 6828681083t40 + 5799732655t41 + 4777086279t42 + 3814040685t43 + 

+ 2949986298t44 + 2208870842t45 + 1599914185t46 + 1119980967t47 + 756961044t48 + 

+ 493386952t49 +309738539t50 + 187010583t51 + 108417618t52 + 60242752t53 + 

+ 32018338t54 + 16239174t55 + 7838767t56 + 3589873t57 + 1554313t58 + 633691t59 + 

+ 242349t60 + 86580t61 + 28787t62 + 8812t63 + 2433t64 + 576t65 + 114t66 + 22t67 + 9t68 + 

+ 4t69 + t70). 

From this theorem it results that the Krull dimension [2] of the Sibirsky graded 

algebra 
7,3,1

S  (respectively
 7,3,1
SI ) is equal to 27 (respectively 25).  

Theorem 10. For differential system )7,5,3,1(s  the following ordinary Hilbert series of the 

Sibirsky graded algebras of comitants 
7,5,3,1

S  and invariants 
7,5,3,1

SI  were obtained 

,
)1()1()1()1()1()1()1(

)(+ 1439807462298270315)(
)(

94785123148219

112060

7,5,3,1 ttttttt

tUtttU
tH

S







 

where U(t)=1 + 6t + 20t2 + 87t3 + 642t4 + 4481t5 + 26793t6 + 141973t7 + 684115t8 + 

+ 3033350t9 + 12465139t10 + 47749507t11 + 171414077t12 + 579433144t13 + 

+ 1852114710t14 + 5618767624t15 + 16230539293t16 + 44770726947t17 + 

+ 118233818156t18 + 299625404135t19 + 730145608913t20 + 1714167261299t21 + 

+ 3883773551652t22 + 8505306230645t23 + 18029418149708t24 +37042309655531t25 + 

+ 73851959357894t26 + 143039363140182t27 +269416219454043t28 + 

+ 493944596168225t29 + 882268074320900t30 + 1536543007952396t31 + 

+ 2611196867637156t32 + 4333024660344442t33 + 7025611335473678t34 + 

+ 11137398421309529t35 + 17271787147116907t36 + 26216525599773850t37 + 

+ 38968364210329669t38 + 56747752371861786t39 + 80997424826732157t40 + 

+ 113358368681589288t41 + 155617153462411693t42 + 209620178940739772t43 + 

+ 277153165150321324t44 + 359788117447054402t45 + 458704770582751394t46 + 

+ 574498645384155800t47 + 706992640391687667t48 + 855072713288320920t49 + 

+ 1016569872742669961t50 + 1188209740459545784t51 + 1365646993055807450t52 + 

+ 1543595104982837472t53 + 1716052512321252802t54 +1876615582976246945t55 + 

+ 2018857942986265569t56 + 2136746272693569424t57 + 2225056091622875140t58 + 

+ 2279748435060291614t59, 

,
)1()1()1()1()1()1(

)(+ 51479323293350250+)(
)(

3775123921519

110452

7,5,3,1 tttttt

tVtttV
tH

SI





 

where V(t)=1 + 5t + 15t2 + 70t3 + 546t4 + 3691t5 + 21211t6 + 108097t7 + 501215t8 + 
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+ 2135708t9 + 8420376t10 + 30894213t11 + 106057925t12 + 342316946t13 + 

+ 1043225615t14 + 3012988906t15 + 8273667765t16 + 21663519624t17 + 

+ 54225659702t18 + 130054129145t19 + 299492368986t20 + 663439513913t21 + 

+ 1416140486098t22 + 2917219852903t23 + 5807630254373t24 + 11187994444298t25 + 

+ 20880385856690t26 + 37794195363608t27 + 66411190209119t28 + 

+ 113391841520052t29 + 188282608991333t30 + 304271520124478t31 + 

+ 478898737877115t32 + 734584562409596t33 + 1098797608776741t34 + 

+ 1603661779481979t35 + 2284804664001899t36 + 3179293473234493t37 + 

+ 4322594520474429t38 + 5744627532607767t39 + 7465155325802975t40 + 

+ 9488929831214829t41 + 11801175204390804t42 + 14364091127469868t43 + 

+ 17115070624832596t44 + 19967223601230372t45 + 22812575427180540t46 + 

+ 25527987499683011t47 + 27983465544664079t48 + 30052140716959960t49 + 

+ 31620895669339212t50 + 32600424240909358t51. 

From this theorem it results that the Krull dimension [2] of the Sibirsky graded 

algebra 7,5,3,1
S  (respectively

 7,5,3,1
SI ) is equal to 39 (respectively 37). 

Remark 2. The Theorem 5 – 10  are published for the first time into the papers [6-11]. 

We note that the Krull dimension plays an important role in solving the center-focus 

problem for differential systems [12]. 
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MULTIPLICITATEA MAXIMALĂ A LINIEI DE LA INFINIT PENTRU 

SISTEMELE DIFERENŢIALE DE GRADUL PATRU 

Rezumat. În această lucrare se arată că în clasa sistemelor diferenţiale de gradul patru multiplicitatea 

algebrică maximală a liniei de la infinit este egală cu 10. 

Cuvinte-cheie:  sistem diferenţial de gradul patru, dreaptă invariantă, multiplicitate algebrică.  

 

1. Introduction and the statement of main result 

We consider the real polynomial system of differential equations  
𝑑𝑥

𝑑𝑡
= 𝑃(𝑥, 𝑦),   

𝑑𝑦

𝑑𝑡
= 𝑄(𝑥, 𝑦).                                              (1) 

Denote 𝑛 = 𝑚𝑎𝑥{𝑑𝑒𝑔(𝑃), deg (𝑄)}. If 𝑛 = 4 then system (1) is called quartic. 

At present, a great number of works are dedicated to the investigation of polynomial 

differential systems with invariant straight lines. The problem of the estimation of the 

number of invariant straight lines which can have a polynomial differential system was 

considered in [1].  

In [2] it is given the estimation 3𝑛 − 2 ≤ 𝑀𝑎(𝑛) ≤ 3𝑛 − 1 of maximal algebraic 

multiplicity 𝑀𝑎(𝑛) of an invariant straight line for the class of two-dimensional 

polynomial differential systems of degree 𝑛 ≥ 2 and it was shown that in the class of 

cubic differential systems the maximal multiplicity of an affine real straight line (of the 

line at infinity) is seven.  

In this paper we show that in the class of quartic differential systems the maximal 

algebraic multiplicity of the line at infinity is equal to 10. 

Theorem. For quartic differential systems the algebraic multiplicity of the line at infinity 

is at most ten. Any quartic system having the line at infinite of multiplicity 10 via affine 

transformations and time rescaling can be written in the form  

𝑥̇ = −𝑥, 𝑦̇ = 𝑥4 + 3𝑦.                                                   (2) 

 

2. The proof of the Theorem  

We consider the real quartic system of differential equations    

 𝑥̇ = ∑ 𝑝𝑗(𝑥, 𝑦) ≡ 𝑝(𝑥, 𝑦)4
𝑗=0 ,   𝑦̇ = ∑ 𝑞𝑗(𝑥, 𝑦) ≡ 𝑞(𝑥, 𝑦)4

𝑗=0 ,                          (3) 
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where 𝑝0=𝑎0, 𝑝1(𝑥, 𝑦) = 𝑎1𝑥 + 𝑎2𝑦, 𝑝2(𝑥, 𝑦) = 𝑎3𝑥2 + 𝑎4𝑥𝑦 + 𝑎5𝑦2, 𝑝3(𝑥, 𝑦) =

𝑎6𝑥3 + 𝑎7𝑥2𝑦 + 𝑎8𝑥𝑦2 + 𝑎9𝑦3, 𝑝4(𝑥, 𝑦) = 𝑎10𝑥4 + 𝑎11𝑥3𝑦 + 𝑎12𝑥2𝑦2 + 𝑎13𝑥𝑦3 +

𝑎14𝑦4, 𝑞0=𝑏0 𝑞1(𝑥, 𝑦) = 𝑏1𝑥 + 𝑏2𝑦, 𝑞2(𝑥, 𝑦) = 𝑏3𝑥2 + 𝑏4𝑥𝑦 + 𝑏5𝑦2, 𝑞3(𝑥, 𝑦) = 𝑏6𝑥3 +

𝑏7𝑥2𝑦 + 𝑏8𝑥𝑦2 + 𝑏9𝑦3, 𝑞4(𝑥, 𝑦) = 𝑏10𝑥4 + 𝑏11𝑥3𝑦 + 𝑏12𝑥2𝑦2 + 𝑏13𝑥𝑦3 + 𝑏14𝑦4.  

Suppose that the right-hand sides of (3) do not have the common divisors of degree 

greatest than 0, i.e.  

𝑔𝑐𝑑 (𝑝, 𝑞) = 1 and 𝑦𝑝4(𝑥, 𝑦) − 𝑥𝑞4(𝑥, 𝑦) ≢ 0,                                  (4) 

 i.e. at infinity the system (3) has at most five distinct singular points. 

The homogeneous system associated to the system (3) has the form 

 𝑥̇ = ∑ 𝑝𝑗(𝑥, 𝑦)𝑍4−𝑗 ≡ 𝑃(𝑥, 𝑦, 𝑍)4
𝑗=0 ,   𝑦̇ = ∑ 𝑞𝑗(𝑥, 𝑦)𝑍4−𝑗 ≡ 𝑄(𝑥, 𝑦, 𝑍)4

𝑗=0 .       (5) 

Denote 𝕏 = 𝑃(𝑥, 𝑦, 𝑍)
𝜕

𝜕𝑥
+ 𝑄 (𝑥, 𝑦, 𝑍)

𝜕

𝜕𝑦
.  

We say that the line at infinity 𝑍 = 0 has algebraic multiplicity 𝑚 + 1 if 𝑚 is the 

greatest positive integer such that 𝑍𝑚 divides  𝔼∞ = 𝑃 ∙ 𝕏(𝑄) − 𝑄 ∙ 𝕏(𝑃) (see [3]). 

In this section, for quartic system (3) we determine the maximal algebraic 

multiplicity of the line at infinity 𝑍 = 0. 

Because 𝑝4
2(𝑥, 𝑦) + 𝑞4

2(𝑥, 𝑦) is not identically zero, by a centro-affine 

transformation and time rescaling we can make 𝑏10 ≠ 0, and more that,  𝑏10 = 1.  

For the homogenized system (4) we calculate the determinant  𝔼∞ from the 

definition of the algebraic multiplicity. 𝔼∞ is a polynomial of degree 11 in 𝑥, 𝑦, 𝑍. We 

write it in the form:   

 𝔼∞ = 𝐴0(𝑥, 𝑦) + 𝐴1(𝑥, 𝑦)𝑍 + 𝐴2(𝑥, 𝑦)𝑍2 + 𝐴3(𝑥, 𝑦)𝑍3 + 

                         +𝐴4(𝑥, 𝑦)𝑍4 + 𝐴5(𝑥, 𝑦)𝑍5 + 𝐴6(𝑥, 𝑦)𝑍6 + 𝐴7(𝑥, 𝑦)𝑍7 +                     (6) 

 +𝐴8(𝑥, 𝑦)𝑍8 + 𝐴9(𝑥, 𝑦)𝑍9 + 𝐴10(𝑥, 𝑦)𝑍10 + 𝐴11(𝑥, 𝑦)𝑍11 

where  𝐴𝑖(𝑥, 𝑦), 𝑖 = 0, . . . ,11, are polynomials in 𝑥 and 𝑦. 

The algebraic multiplicity of the line at infinity is 𝑚∞ ∈ 𝑁∗ if 𝑚∞ is the maximal 

number such that 𝑍𝑚∞−1 divides  𝔼∞. 

The algebraic multiplicity 𝑚∞ of the line at infinity is at least two if the identity 

𝐴0(𝑥, 𝑦) ≡ 0 holds.  

The polynomial 𝐴0(𝑥, 𝑦) looks as: 𝐴0(𝑥, 𝑦) = 𝐴01(𝑥, 𝑦)𝐴02(𝑥, 𝑦) where 

𝐴01(𝑥, 𝑦) = −𝑥5 + (𝑎10 − 𝑏11) 𝑥4𝑦 + (𝑎11 − 𝑏12) 𝑥3𝑦2 + (𝑎12 −  𝑏13) 𝑥2𝑦3 + 

+(𝑎13 − 𝑏14)𝑥 𝑦4 + 𝑎14𝑦5, 

𝐴02(𝑥, 𝑦) = (𝑎11 − 𝑎10𝑏11)𝑥6 + 2(𝑎12 − 𝑎10𝑏12)𝑥5𝑦 + (3𝑎13 + 𝑎12𝑏11 − 𝑎11𝑏12 − 

−3 𝑎10𝑏13) 𝑥4𝑦2 + 2(2 𝑎14 +  𝑎13𝑏11 −  𝑎11𝑏13 − 2 𝑎10𝑏14) 𝑥3𝑦3 + 

+(3 𝑎14𝑏11 + 𝑎13 ∙ 𝑏12 − 𝑎12𝑏13 − 3 𝑎11𝑏14)𝑥2𝑦4 + 

+2 (𝑎14𝑏12 − 𝑎12𝑏14) 𝑥𝑦5  + (𝑎14𝑏13  −  𝑎13𝑏14)𝑦6. 

As 𝐴01(𝑥, 𝑦) ≢  0 (see (4)), we require 𝐴02(𝑥, 𝑦) to be identically equal to zero. 

The identity 𝐴02(𝑥, 𝑦) ≡ 0 holds if the following conditions  

71



𝑎11 = 𝑎10 𝑏11, 𝑎12 =  𝑎10 𝑏12,   𝑎13 = 𝑎10 𝑏13, 𝑎14 = 𝑎10 𝑏14  are satisfied. 

The algebraic multiplicity 𝑚∞ of the line at infinity is at least three if 𝐴1(𝑥, 𝑦) ≡ 0. 

Unde the above conditions we have 𝐴1(𝑥, 𝑦) = −𝐴11(𝑥, 𝑦)𝐴12(𝑥, 𝑦),  where  

𝐴11(𝑥, 𝑦) = 𝑥4 + 𝑏11 𝑥3 𝑦 + 𝑏12 𝑥2 𝑦2 + 𝑏13 𝑥 𝑦3 + 𝑏14 𝑦4 ≢  0, 

𝐴12 (𝑥, 𝑦) = (𝑎7 − 𝑎10𝑎6  − 𝑎6𝑏11 + 𝑎10
2  𝑏6 + 𝑎10𝑏11𝑏6 − 𝑎10𝑏7)𝑥6 + 

+(2𝑎8 − 2𝑎10 ∙ 𝑎7 − 2 𝑎6 𝑏12  + 2 𝑎10 𝑏12 𝑏6 + 2 𝑎10
2 𝑏7 − 2 𝑎10𝑏8)𝑥5𝑦 + 

+(3𝑎9 − 3𝑎10𝑎8 − 𝑎10𝑎7𝑏11 + 𝑎8 ∙ 𝑏11 + 𝑎10 𝑎6𝑏12 − 𝑎7 𝑏12 − 3 𝑎6𝑏13 − 

−𝑎10
2 𝑏12𝑏6 + 3 𝑎10𝑏13 𝑏6 + 𝑎10

2  𝑏11𝑏7  + 𝑎10𝑏12𝑏7  + 3 𝑎10
2 𝑏8  − 

−𝑎10 𝑏11𝑏8 − 3 𝑎10𝑏9)𝑥4𝑦2 + 

+(−4 𝑎10 𝑎9  −  2 𝑎10𝑎8𝑏11  + 2 𝑎9 𝑏11  + 2 𝑎10 𝑎6 ∙  𝑏13  −  2 𝑎7 𝑏13 − 

−4 𝑎6 𝑏14  − 2 𝑎10
2   𝑏13𝑏6  +  4 𝑎10𝑏14𝑏6  + 2 𝑎10 𝑏13 𝑏7   + 2 𝑎10

2  𝑏11𝑏8 + 

+4 𝑎10
2  𝑏9 − 2 𝑎10 𝑏11 𝑏9) 𝑥3 𝑦3 + 

+(− 3 𝑎10𝑎9𝑏11 − 𝑎10𝑎8𝑏12 +  𝑎9𝑏12 + 𝑎10𝑎7𝑏13 − 𝑎8𝑏13 +  3 𝑎10𝑎6𝑏14 − 

−3 𝑎7𝑏14 − 3 𝑎10
2 𝑏14𝑏6 − 𝑎10

2  𝑏13 𝑏7 + 3 𝑎10 𝑏14 𝑏7 + 𝑎10
2 𝑏12 𝑏8  + 

+𝑎10𝑏13𝑏8 +  3 𝑎10
2 𝑏11𝑏9 − 𝑎10𝑏12𝑏9) 𝑥2 𝑦4 + 

+(−2 𝑎10 𝑎9 𝑏12 + 2 𝑎10 𝑎7 𝑏14 − 2 𝑎8 𝑏14 − 2 𝑎10
2  𝑏14 𝑏7  +  2𝑎10𝑏14𝑏8 + 

+2 𝑎10
2 𝑏12𝑏9)𝑥 𝑦5 + 

+(−𝑎10𝑎9 𝑏13 + 𝑎10𝑎8𝑏14 − 𝑎9𝑏14 − 𝑎10
2 𝑏14𝑏8 + 𝑎10

2 𝑏13𝑏9 +  𝑎10 𝑏14 𝑏9) 𝑦6. 

If 𝐴12 (𝑥, 𝑦) ≡ 0 then we obtain the following two series of conditions: 

1) 𝑎6 =  𝑎10𝑏6, 𝑎7 =  𝑎10 𝑏7, 𝑎8 = 𝑎10 𝑏8, 𝑎9 = 𝑎10 𝑏9; 

2) 𝑎7  =  𝑎10 𝑏7  −  𝑎10𝛼 −  𝑏11𝛼,   𝑎8 = 𝑎10𝑏8  −  𝑎10
2  𝛼 −  𝑎10 𝑏11𝛼 −

 𝑏12 𝛼,    𝑎9 =  𝑎10 𝑏9  −  𝑎10
3 𝛼 −  𝑎10

2  𝑏11 𝛼 − 𝑎10 𝑏12 𝛼 −   𝑏13 𝛼, 𝑏14 =

 −𝑎10 (𝑎10
3  + 𝑎10

2  𝑏11 +  𝑎10𝑏12  +  𝑏13),   𝛼 = 𝑎10 𝑏6  − 𝑎6, 𝛼 ≠  0.  

In the conditions 1) we have 𝐴2(𝑥, 𝑦) = −𝐴11(𝑥, 𝑦)𝐴21(𝑥, 𝑦), where 

𝐴21(𝑥, 𝑦) = (𝑎4 − 2𝑎10𝑎3 − 𝑎3 𝑏11 + 2𝑎10
2  𝑏3 + 𝑎10𝑏11𝑏3  − 𝑎10𝑏4 )𝑥5 + 

+(2𝑎5 − 3𝑎10𝑎4 − 𝑎10 𝑎3 𝑏11 −  2 𝑎3𝑏12 +  𝑎10
2  𝑏11 𝑏3 + 2 𝑎10 𝑏12 𝑏3 + 

+3 𝑎10
2 𝑏4 − 2 𝑎10𝑏5) 𝑥4 𝑦 −(4 𝑎10𝑎5 +  2𝑎10 𝑎4 𝑏11  −  𝑎5 𝑏11  +  𝑎4 𝑏12 + 

+3 𝑎3 𝑏13  −  3 𝑎10 𝑏13 𝑏3  − 2 𝑎10
2  𝑏11 𝑏4 −  𝑎10 𝑏12 𝑏4 −  4 𝑎10

2 𝑏5 + 

+𝑎10𝑏11𝑏5)  𝑥3 𝑦2 −(3𝑎10𝑎5𝑏11 + 𝑎10𝑎4𝑏12 −  𝑎10𝑎3𝑏13 +  2𝑎4𝑏13 +  4 𝑎3𝑏14 + 

+𝑎10
2  𝑏13𝑏3 −  4 𝑎10 𝑏14 𝑏3 − 𝑎10

2  𝑏12 𝑏4 − 2 𝑎10 𝑏13 𝑏4 − 3 𝑎10
2  𝑏11𝑏5) 𝑥2𝑦3 − 

−(2 𝑎10𝑎5𝑏12 + 𝑎5𝑏13 − 2 𝑎10𝑎3𝑏14 + 3 𝑎4𝑏14 + 2 𝑎10
2 𝑏14𝑏3 − 3𝑎10𝑏14𝑏4 − 

−2𝑎10
2 𝑏12𝑏5 −  𝑎10𝑏13𝑏5) 𝑥𝑦4 −  (𝑎10 𝑎5𝑏13  − 𝑎10 𝑎4 𝑏14 + 2 𝑎5 𝑏14 + 𝑎10

2  𝑏14 𝑏4 − 

−𝑎10
2  𝑏13 𝑏5  −  2 𝑎10𝑏14 𝑏5) 𝑦5 . 

If the identity 𝐴21(𝑥, 𝑦) ≡ 0 holds, then the multiplicity 𝑚∞  is at least four. The 

identity 𝐴21(𝑥, 𝑦) ≡ 0 leads us to the following two series of conditions: 

1.1) 𝑎3 = 𝑎10 𝑏3,     𝑎4 = 𝑎10 𝑏4 ,    𝑎5 = 𝑎10 𝑏5; 
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1.2) 𝑎4 = 𝑎10 𝑏4 +  2 𝑎10𝛽 +  𝑏11𝛽, 𝑎5 = 𝑎10 𝑏5 +  3 𝑎10
2 𝛽 +  2 𝑎10𝑏11𝛽 +

  𝑏12𝛽,     𝑏13 = −𝑎10 (4𝑎10
2  +  3 𝑎10 𝑏11  + 2𝑏12),      𝑏14 = 𝑎10

2  (3 𝑎10
2  +

 2 𝑎10 𝑏11 + 𝑏12),    𝛽 = 𝑎3 − 𝑎10𝑏3, 𝛽 ≠ 0; 

In the conditions 1.1) we have 𝐴3(𝑥, 𝑦) = 𝐴11(𝑥, 𝑦)𝐴31(𝑥, 𝑦), where  

𝐴31(𝑥, 𝑦) = (3 𝑎1 𝑎10 − 𝑎2 − 3𝑎10
2  𝑏1  +  𝑎1 𝑏11 −  𝑎10 𝑏1 𝑏11 +  𝑎10𝑏2) 𝑥4 +

+(4 𝑎10 𝑎2 +  2 𝑎1 𝑎10 𝑏11 −  2𝑎10
2 𝑏1 𝑏11 +  2 𝑎1 𝑏12 −  2 𝑎10 𝑏1𝑏12 −  4 𝑎10

2  𝑏2)𝑥3𝑦 +

+(3 𝑎10 𝑎2 𝑏11 +  𝑎1𝑎10𝑏12 +  𝑎2𝑏12 −  𝑎10
2  𝑏1 𝑏12 + 3 𝑎1𝑏13 − 3  𝑎10 𝑏1 𝑏13 −

−3𝑎10
2  𝑏11 𝑏2 −  𝑎10 𝑏12 𝑏2) ∙ 𝑥2𝑦2 + (2𝑎10𝑎2𝑏12 + 2𝑎2𝑏13 + 4𝑎1𝑏14 − 4𝑎10𝑏1𝑏14 −

−2𝑎10
2 𝑏12𝑏2 − 2𝑎10𝑏13𝑏2) 𝑥 𝑦3 + ( 𝑎10 𝑎2 𝑏13 −  𝑎1 𝑎10 𝑏14 + 3 𝑎2 𝑏14 +  𝑎10

2  𝑏1 𝑏14 −

−𝑎10
2  𝑏13 𝑏2 − 3 𝑎10 𝑏14 𝑏2) 𝑦4. 

The identity 𝐴31(𝑥, 𝑦) ≡ 0 holds if one of the following two sets of conditions is 

satisfied: 

1.1.1) 𝑎1 = 𝑎10 𝑏1, 𝑎2 = 𝑎10 𝑏2; 

1.1.2) 𝑎2 = 𝑎10 𝑏2 + 3 𝑎10𝛾 + 𝑏11𝛾,  𝑏12 = −3 𝑎10 (2 𝑎10 + 𝑏11),   𝑏13 = 𝑎10
2  (8 𝑎10 +

3 𝑏11),   𝑏14 = −𝑎10
3  (3 𝑎10 + 𝑏11), 𝛾 = 𝑎1 − 𝑎10 𝑏1, 𝛾 ≠  0. 

If one of the conditions 1.1.1) or 1.1.2) is satisfied, then the multiplicity 𝑚∞ ≥ 5. 

In the conditions 1.1.1) we have 𝐴4(𝑥, 𝑦) = 𝛿𝐴11(𝑥, 𝑦) ∙  𝐴41(𝑥, 𝑦), where 𝛿 =

𝑎0 − 𝑎10 𝑏0 and 𝐴41(𝑥, 𝑦) = 4 𝑎10 𝑥3 + 𝑏11 𝑥3 + 3 𝑎10 𝑏11 𝑥2 𝑦 + 2𝑏12 𝑥2 𝑦 +

 2 𝑎10 𝑏12 𝑥 𝑦2 + 3 𝑏13 𝑥 𝑦2 + 𝑎10𝑏13 𝑦3 + 4 𝑏14 𝑦3. 

If 𝛿 = 0, then 𝑑𝑒𝑔(𝑔𝑐𝑑(𝑃, 𝑄)) > 0 (see (4)).  Let 𝛿 ≠ 0 and 𝐴41(𝑥, 𝑦) ≡ 0 ⇒ 

𝑏11 = −4 𝑎10,   𝑏12 = 6𝑎10
2 , 𝑏13 = −4 𝑎10

3 ,   𝑏14 = 𝑎10
4 , then 𝐴5(𝑥, 𝑦) = 𝛿𝐴11(𝑥, 𝑦) ∙

 𝐴51(𝑥, 𝑦), where 𝐴51(𝑥, 𝑦) = 3 𝑎10𝑏6 𝑥2 + 𝑏7𝑥2 + 2𝑎10𝑏7 𝑥𝑦 + 2𝑏8 𝑥 𝑦 + 𝑎10𝑏8 𝑦2 +

3𝑏9𝑦2. 

The identity 𝐴51(𝑥, 𝑦) ≡ 0 holds if 𝑏7 = −3 𝑎10 𝑏6, 𝑏8 = 3 𝑎10
2  𝑏6, 𝑏9 = −𝑎10

3  𝑏6. 

In these conditions 𝐴6(𝑥, 𝑦) = 𝛿 𝐴11(𝑥, 𝑦)(2 𝑎10𝑏3 𝑥 + 𝑏4 𝑥 + 𝑎10𝑏4 𝑦 + 2 𝑏5 𝑦) ≡

0  ⇒  𝑏4 = −2 𝑎10𝑏3, 𝑏5 = 𝑎10
2 𝑏3  ⇒ 𝐴7(𝑥, 𝑦) = 𝛿(𝑎10𝑏1 + 𝑏2) ∙ 𝐴11(𝑥, 𝑦) ≡ 0 ⇒ 𝑏2 =

−𝑎10𝑏1  ⇒ 𝐴8(𝑥, 𝑦) = 4 𝛿2(𝑥 − 𝑎10𝑦)3 ≢  0. 

Thus, we have obtain 𝔼∞ = 𝑍8(4 𝑥3 − 12𝑎10 𝑥2𝑦 + 12 𝑎10
2  𝑥𝑦2 − 4 𝑎10

3  𝑦3 +

3 𝑏6 𝑥2𝑍 − 6 𝑎10𝑏6 𝑥𝑦𝑍 + 3 𝑎10
2 𝑏6 𝑦2𝑍 + 2 𝑏3 𝑥𝑍2 + 2 𝑎10𝑏3 𝑦𝑍2 + 𝑏1𝑍3)𝛿2   and the 

algebraic multiplicity 𝑚∞ = 9. 

The quartic system {(3), (4)} takes the form: 

𝑥̇ = 𝑎10𝑥4 − 4 𝑎10
2  𝑥3𝑦 + 6 𝑎10

3  𝑥2 𝑦2 − 4𝑎10
4  𝑥𝑦3 + 𝑎10

5  𝑦4 + 𝑎10𝑏6 𝑥3 − 3 𝑎10
2 𝑏6 ∙  𝑥2𝑦 

+ 3 𝑎10
3 𝑏6 𝑥𝑦2 − 𝑎10

4 𝑏6𝑦3 + 𝑎10𝑏3 𝑥2 − 2 𝑎10
2 𝑏3 𝑥𝑦 + 𝑎10

3 𝑏3 𝑦2 + 

+𝑎10𝑏1𝑥 − 𝑎10
2 𝑏1𝑦 + 𝑎10𝑏0 + 𝛿,                                        (7) 

𝑦̇ = 𝑥4 − 4𝑎10𝑥3𝑦 + 6 𝑎10
2  𝑥2𝑦2 − 4 𝑎10

3  𝑥 𝑦3 + 𝑎10
4 𝑦4 + 𝑏6𝑥3 − 3 𝑎10𝑏6𝑥2 𝑦 + 

+3 𝑎10
2  𝑏6 𝑥 𝑦2 − 𝑎10

3  𝑏6 𝑦3 + 𝑏3 𝑥2 − 2 𝑎10 𝑏3 𝑥 𝑦 + 𝑎10
2  𝑏3 𝑦2 + 𝑏1 𝑥 − 𝑎10𝑏1 𝑦 +  𝑏0. 

In the conditions 1.1.2) we have 𝐴4(𝑥, 𝑦) = 𝐴11(𝑥, 𝑦) ∙ 𝐴41(𝑥, 𝑦),  where 

𝐴41(𝑥, 𝑦) = −4𝑎0 𝑎10 𝑥3 + 4 𝑎10
2  𝑏0 𝑥3 − 𝑎0 𝑏11 𝑥3 + 𝑎10 𝑏0 𝑏11 𝑥3 + 12 𝑎0 𝑎10

2  𝑥2 𝑦 −
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−12 𝑎10
3  𝑏0 𝑥2 𝑦 + 3 𝑎0𝑎10 𝑏11 𝑥2 𝑦 − 3 𝑎10

2 𝑏0𝑏11𝑥2 𝑦 − 12 𝑎0 𝑎10
3  𝑥 𝑦2 +

+12 𝑎10
4  𝑏0 𝑥𝑦2 − 3 𝑎0 𝑎10

2  𝑏11 𝑥 𝑦2 + 3 𝑎10
3  𝑏0𝑏11 𝑥  𝑦2 + 4 𝑎0𝑎10

4  𝑦3 −  4 𝑎10
5 𝑏0 𝑦3 +

+𝑎0𝑎10
3 𝑏11 𝑦3 − 𝑎10

4 𝑏0 𝑏11 𝑦3 + 𝑎10𝑏6 𝑥3 𝛾 +  𝑏11𝑏6 𝑥3 𝛾 − 𝑏7 𝑥
3 𝛾 − 9 𝑎10

2  𝑏6 𝑥2𝑦 𝛾 −

−3 𝑎10𝑏11𝑏6 𝑥2𝑦 𝛾 − 𝑎10 𝑏7 𝑥2 𝑦 𝛾 − 2 𝑏8 𝑥2 𝑦 𝛾 − 6 𝑎10
2  𝑏7 𝑥 𝑦2 𝛾 −

−2𝑎10𝑏11𝑏7 𝑥 𝑦2𝛾 − 3 𝑎10 𝑏8 𝑥 𝑦2𝛾 − 𝑏11𝑏8 𝑥𝑦2𝛾 − 3 𝑏9 𝑥𝑦2 𝛾 − 3 𝑎10
2 𝑏8 ∙  𝑦3𝛾 −

−𝑎10𝑏11𝑏8 𝑦3𝛾 − 5 𝑎10𝑏9 𝑦3𝛾 − 2𝑏11𝑏9 𝑦3𝛾 . 

The identity 𝐴41(𝑥, 𝑦) ≡ 0 yields 

  𝑏7 = (−4𝑎0𝑎10 + 4𝑎10
2 𝑏0 − 𝑎0𝑏11 + 𝑎10𝑏0𝑏11 + 𝑎10𝑏6 𝛾 + 𝑏11𝑏6 𝛾)/𝛾,   

𝑏8 = 𝑎10(8 𝑎0𝑎10 − 8𝑎10
2 𝑏0 + 2𝑎0𝑏11 − 2𝑎10𝑏0𝑏11 − 5𝑎10𝑏6𝛾 − 2𝑏11 ∙ 𝑏6 𝛾)/𝛾, 

𝑏9 = 𝑎10
2  (−4 𝑎0𝑎10 + 4 𝑎10

2  𝑏0 − 𝑎0 𝑏11 + 𝑎10 𝑏0 𝑏11 + 3 𝑎10 𝑏6 𝛾 + 𝑏11 𝑏6 𝛾)/𝛾. 

In these conditions 𝐴5(𝑥, 𝑦) = −𝐴11(𝑥, 𝑦) ∙ 𝐴51(𝑥, 𝑦)/𝛾, where  

𝐴51(𝑥, 𝑦) = 4 𝑎0
2 𝑎10 𝑥2 − 8 𝑎0𝑎10

2 𝑏0 𝑥2 + 4 𝑎10
3  𝑏0

2 𝑥2 + 𝑎0
2 𝑏11 𝑥2 − 

−2 𝑎0 𝑎10 𝑏0 𝑏11 𝑥2 + 𝑎10
2  𝑏0

2 𝑏11 𝑥2 − 8 𝑎0
2𝑎10

2  𝑥 𝑦 +  16 𝑎0 𝑎10
3  𝑏0 𝑥 𝑦 − 

−8 𝑎10
4 𝑏0

2 𝑥 𝑦 − 2𝑎0
2 𝑎10𝑏11 𝑥 𝑦 +  4 𝑎0𝑎10

2 𝑏0𝑏11 𝑥 𝑦 − 2 𝑎10
3 𝑏0

2𝑏11 𝑥 𝑦 +  

+4𝑎0
2𝑎10

3  𝑦2 − 8 𝑎0𝑎10
4 𝑏0 𝑦2 + 4 𝑎10

5 𝑏0
2 𝑦2 + 𝑎0

2𝑎10
2 𝑏11 𝑦2 − 2 𝑎0𝑎10

3 𝑏0𝑏11𝑦2 + 

+𝑎10
4 𝑏0

2𝑏11 𝑦2  −  4 𝑎0𝑎10𝑏6 𝑥2𝛾 + 4 𝑎10
2  𝑏0𝑏6 𝑥2𝛾 − 𝑎0𝑏11𝑏6 𝑥2 𝛾 + 𝑎10𝑏0𝑏11𝑏6 𝑥2 𝛾 + 

+8 𝑎0 𝑎10
2  𝑏6𝑥 𝑦 𝛾 − 8 𝑎10

3 𝑏0𝑏6 𝑥 𝑦 𝛾 + 2 𝑎0𝑎10𝑏11𝑏6 𝑥 𝑦 𝛾 − 2 𝑎10
2 𝑏0𝑏11𝑏6 𝑥 𝑦 𝛾 − 

− 4 𝑎0𝑎10
3 𝑏6 𝑦2 𝛾 + 4 𝑎10

4 𝑏0𝑏6 ∙  𝑦2 𝛾 − 𝑎0𝑎10
2  𝑏11 𝑏6 𝑦2 𝛾 +  𝑎10

3  𝑏0 𝑏11 𝑏6 𝑦2 𝛾 + 

+ 2𝑎10 𝑏3 𝑥2 𝛾2 + 𝑏11 𝑏3 𝑥2 𝛾2 − 𝑏4𝑥2 𝛾2 − 6 𝑎10
2  𝑏3 𝑥 𝑦 𝛾2 − 2 𝑎10 𝑏11 𝑏3 𝑥 𝑦 𝛾2 − 

−2 𝑏5 𝑥 𝑦 𝛾2 −  3 𝑎10
2  𝑏4 𝑦2 𝛾2  −  𝑎10 𝑏11 𝑏4 𝑦2 𝛾2  −  2 𝑎10 𝑏5 𝑦2 𝛾2  − 𝑏11 𝑏5 𝑦2 𝛾2. 

The identity 𝐴51 ≡  0 ⟹ 𝑏4 = (4 𝑎0
2 𝑎10 − 8 𝑎0 𝑎10

2  𝑏0 + 4 𝑎10
3  𝑏0

2 +  𝑎0
2 𝑏11 − 

− 2𝑎0 ∙ 𝑎10𝑏0𝑏11 + 𝑎10
2 𝑏0

2 𝑏11 − 4𝑎0𝑎10𝑏6 𝛾 + 4𝑎10
2 𝑏0 𝑏6 𝛾 − 𝑎0𝑏11𝑏6 𝛾

+   𝑎10𝑏0𝑏11𝑏6 𝛾 + 2 𝑎10 ∙  𝑏3 𝛾2 + 𝑏11 𝑏3 𝛾2)/𝛾2, 

𝑏5 = −𝑎10 (4 𝑎0
2 𝑎10 − 8 𝑎0 𝑎10

2  𝑏0 + 4 𝑎10
3  𝑏0

2 + 𝑎0
2 𝑏11 −  2𝑎0𝑎10 ∙ 𝑏0𝑏11 + 𝑎10

2 𝑏0
2𝑏11 − 

−4𝑎0𝑎10𝑏6 𝛾 + 4 𝑎10
2 𝑏0𝑏6 𝛾 − 𝑎0𝑏11𝑏6 𝛾 + 𝑎10 𝑏0 𝑏11 𝑏6 𝛾 +  

3 𝑎10 𝑏3 ∙  𝛾2 + 𝑏11 𝑏3  𝛾2)/𝛾2 ⇒  

 𝐴6(𝑥, 𝑦) = −(𝑥 −  𝑎10 𝑦)2 (𝑥 +  3 𝑎10 𝑦 +  𝑏11 𝑦) ∙ 𝐴61(𝑥, 𝑦)/𝛾2, where 

𝐴61(𝑥, 𝑦) = −4 𝑎0
3 𝑎10 𝑥2 + 12 𝑎0

2 𝑎10
2  𝑏0 𝑥2 − 12 𝑎0 𝑎10

3  𝑏0
2 𝑥2 +   4 𝑎10

4  𝑏0
3 𝑥2 − 

−𝑎0
3 𝑏11 𝑥2 + 3 𝑎0

2 𝑎10 𝑏0 𝑏11 𝑥2 − 3 𝑎0 𝑎10
2  𝑏0

2 𝑏11 𝑥2 + 𝑎10
3  𝑏0

3 𝑏11 𝑥2 + 

+8 𝑎0
3 𝑎10

2  𝑥𝑦 − 24𝑎0
2  ∙ 𝑎10

3  𝑏0 𝑥 𝑦 + 24𝑎0 𝑎10
4  𝑏0

2 𝑥 𝑦 − 8 𝑎10
5  𝑏0

3 𝑥 𝑦 + 

+2 𝑎0
3 𝑎10 𝑏11 𝑥 𝑦 − 6 𝑎0

2 𝑎10
2  𝑏0 𝑏11 𝑥𝑦 + 6𝑎0 ∙ 𝑎10

3  𝑏0
2 𝑏11 𝑥 𝑦 − 2𝑎10

4  𝑏0
3 𝑏11𝑥 𝑦 − 

−4𝑎0
3 𝑎10

3  𝑦2 + 12 𝑎0
2 𝑎10

4  𝑏0 𝑦2 − 12 𝑎0𝑎10
5  𝑏0

2 𝑦2 + 4 𝑎10
6 ∙  𝑏0

3𝑦2 − 𝑎0
3𝑎10

2  𝑏11 𝑦2 + 

+ 3 𝑎0
2 𝑎10

3  𝑏0 𝑏11 𝑦2 − 3𝑎0 𝑎10
4  𝑏0

2 𝑏11 𝑦2 + 𝑎10
5  𝑏0

3 𝑏11 𝑦2 + 4 𝑎0
2 𝑎10 ∙  𝑏6 𝑥2 𝛾 − 

−8 𝑎0 𝑎10
2  𝑏0 𝑏6 𝑥2 𝛾 +  4 𝑎10

3  𝑏0
2 𝑏6 𝑥2𝛾 + 𝑎0

2 𝑏11𝑏6 𝑥2𝛾 − 2 𝑎0 𝑎10 𝑏0 𝑏11 𝑏6 𝑥2 𝛾 + 

+𝑎10
2  𝑏0

2 𝑏11𝑏6 𝑥2  𝛾 − 8 𝑎0
2 𝑎10

2  𝑏6 𝑥 𝑦  𝛾 + 16 𝑎0 𝑎10
3  𝑏0 𝑏6 𝑥 𝑦  𝛾 − 

−8 𝑎10
4  𝑏0

2 𝑏6 𝑥 𝑦  𝛾 − 2 𝑎0
2  ∙ 𝑎10 𝑏11 𝑏6 𝑥 𝑦  𝛾 + 4 𝑎0 𝑎10

2  𝑏0 𝑏11 𝑏6 𝑥 𝑦  𝛾 −  

−2 𝑎10
3  𝑏0

2 𝑏11 𝑏6 𝑥 𝑦  𝛾 + 4 𝑎0
2 𝑎10

3  𝑏6 𝑦2  𝛾 −  8 𝑎0 𝑎10
4  𝑏0 𝑏6 𝑦2  𝛾 + 

+4 𝑎10
5  𝑏0

2 𝑏6 𝑦2  𝛾 +  𝑎0
2 𝑎10

2  𝑏11 𝑏6 𝑦2  𝛾 − 2 𝑎0 𝑎10
3  𝑏0 𝑏11 𝑏6 𝑦2  𝛾 + 
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+𝑎10
4  𝑏0

2 𝑏11 𝑏6 𝑦2 𝛾 − 4 𝑎0 𝑎10 𝑏3 𝑥2 𝛾2 +  4 𝑎10
2  𝑏0 𝑏3 𝑥2 𝛾2 − 𝑎0 𝑏11 𝑏3 𝑥2 𝛾2 + 

+𝑎10 𝑏0 𝑏11 ∙  𝑏3 𝑥2𝛾2 + 8 𝑎0 𝑎10
2  𝑏3 𝑥 𝑦 𝛾2 − 8 𝑎10

3  𝑏0 𝑏3 𝑥𝑦 𝛾2  + 

+ 2 𝑎0 𝑎10 𝑏11 𝑏3 𝑥𝑦  𝛾2 −  𝑎10
2  𝑏0 𝑏11 ∙  𝑏3 𝑥𝑦 𝛾2 − 4 𝑎0 𝑎10

3  𝑏3 𝑦2𝛾2 + 

+4 𝑎10
4  𝑏0 𝑏3 𝑦2  𝛾2 − 𝑎0 𝑎10

2  𝑏11 𝑏3 𝑦2  𝛾2 + 𝑎10
3  𝑏0 𝑏11 𝑏3 ∙  𝑦2 𝛾2 + 3 𝑎10 𝑏1 𝑥2 𝛾3 + 

+𝑏1 𝑏11 𝑥2𝛾3 − 𝑏2 𝑥2𝛾3 − 6 𝑎10
2  𝑏1 𝑥 𝑦 𝛾3 − 2 𝑎10 𝑏1 𝑏11 𝑥 𝑦 𝛾3 + 2 𝑎10 𝑏2 𝑥𝑦 𝛾3 + 

+3 𝑎10
3  𝑏1 𝑦2𝛾3 + 𝑎10

2  𝑏1𝑏11 𝑦2𝛾3 − 𝑎10
2  𝑏2𝑦2𝛾3 − 3 𝑥2𝛾4 − 18 𝑎10𝑥𝑦 𝛾4 − 

−6𝑏11 𝑦𝛾4 − 27 𝑎10
2  𝑦2 𝛾4 − 18 𝑎10 𝑏11 𝑦2 𝛾4 − 3 𝑏11

2  𝑦2𝛾4). 

The identity 𝐴61(𝑥, 𝑦) ≡  0 holds if 𝑏2 = −(𝑎10 𝑏1 + 3 𝛾), 𝑏11 = −4𝑎10. 

In these conditions we have 𝐴7(𝑥, 𝑦) = 𝛾(𝑥 −  𝑎10 𝑦)4 (4 𝑎0 − 4 𝑎10 𝑏0 − 𝑏6 𝛾) ≡ 0   ⇒  

𝑎0 = (4 𝑎10 𝑏0 + 𝑏6 𝛾)/4   ⇒     𝐴8(𝑥, 𝑦) = 𝛾2(8 𝑏3 − 3 𝑏6
2)(−𝑥 + 𝑎10 𝑦)3/4 ⇒ 𝑏3 =

 3𝑏6
2/8    ⇒     𝐴9(𝑥, 𝑦) = 3𝛾2(−𝑥 + 𝑎10 𝑦) (16 𝑏1𝑥 − 𝑏6

3 𝑥 − 16 𝑎10𝑏1𝑦 + 𝑎10𝑏6
3 𝑦 −

64 𝑦 𝛾)/16 ≢ 0. 

So, 𝔼∞ = −𝑍9 𝛾2(−4 𝑥 + 4 𝑎10 𝑦 − 𝑏6 𝑍) (−48 𝑏1𝑥 +  3 𝑏6
3 𝑥 + 48 𝑎10 𝑏1 𝑦 −

3 𝑎10 𝑏6
3 𝑦 − 64 𝑏0 𝑍 + 4 𝑏1 𝑏6 𝑍 + 192 𝑦 𝛾)/64  and 𝑚∞ = 10. 

In this case the quartic system {(3), (4)} looks as: 

𝑥̇ = 8𝑎10 𝑥4 − 32𝑎10
2  𝑥3𝑦 + 48𝑎10

3  𝑥2𝑦2 − 32 𝑎10
4  𝑥𝑦3 + 8 𝑎10

5  𝑦4 +  

+8 𝑎10𝑏6 𝑥3 − 24𝑎10
2  𝑏6 𝑥2𝑦 + 24 𝑎10

3  𝑏6 𝑥𝑦2 − 8 𝑎10
4  𝑏6 𝑦3 + 3 𝑎10 ∙ 𝑏6

2𝑥2 − 

−6 𝑎10
2 𝑏6

2 𝑥𝑦 + 3𝑎10
3 𝑏6

2𝑦2 + 8 𝑎10𝑏1𝑥 − 8 𝑎10
2  𝑏1𝑦 + 8 𝑎10𝑏0 +   

+ 8 𝑥 𝛾 − 32 𝑎10𝑦𝛾 + 2 𝑏6𝛾)/8,                                         (8) 

𝑦̇ = (8 𝑥4 − 32 𝑎10 𝑥3𝑦 + 48 𝑎10
2  𝑥2𝑦2 − 32 𝑎10

3 𝑥𝑦3  + 8 𝑎10
4  𝑦4 + 

+8 𝑏6 𝑥3 − 24 𝑎10 𝑏6 𝑥2𝑦 + 24 𝑎10
2 𝑏6 𝑥𝑦2  −  8 𝑎10

3  𝑏6 𝑦3 + 3 𝑏6
2 𝑥2 − 

− 6 𝑎10𝑏6
2 𝑥𝑦 + 3 𝑎10

2  𝑏6
2 𝑦2 + 8 𝑏1 𝑥 − 8 𝑎10𝑏1 𝑦 + 8 𝑏0 − 24 𝑦 𝛾)/8. 

The transformation of coordinates 𝑋 = 𝑏6 + 4 𝑥 − 4 𝑎10 𝑦, 𝑌 = 4(64 𝑏0 −

4 𝑏1 𝑏6 + (48 𝑏1 − 3 𝑏6
3)𝑥 − (48 𝑎10 𝑏1 − 3 𝑎10 𝑏6

3 + 192 𝛾)𝑦)/3  and time rescaling  

𝑡 = −𝜏/𝛾  reduce the system (8) to the system 

                                         𝑋̇ = −𝑋,    𝑌̇ = 𝑋4 + 3 𝑌.                                            (9)  

In the conditions 1.2)  we have  𝐴3(𝑥, 𝑦) = −𝐴11(𝑥, 𝑦) ∙  𝐴31(𝑥, 𝑦),  where 

𝐴31(𝑥, 𝑦) = (−3 𝑎1𝑎10 + 𝑎2 + 3 𝑎10
2 𝑏1 − 𝑎1𝑏11 + 𝑎10𝑏1𝑏11 − 𝑎10𝑏2)𝑥4 – 

−(4 𝑎10𝑎2 + 2 𝑎1𝑎10𝑏11 − 2𝑎10
2 𝑏1𝑏11 + 2𝑎1𝑏12 − 2𝑎10𝑏1𝑏12 − 4 𝑎10

2 𝑏2)𝑥3𝑦 + 

+(12𝑎1𝑎10
3 − 12𝑎10

4  𝑏1 + 9𝑎1𝑎10
2  𝑏11 − 3 𝑎10 𝑎2 𝑏11 − 9𝑎10

3  𝑏1𝑏11 + 5𝑎1𝑎10𝑏12 −

𝑎2 𝑏12 − 5 𝑎10
2 𝑏1𝑏12 + 3𝑎10

2 𝑏11𝑏2 + 𝑎10𝑏12𝑏2) 𝑥2𝑦2 − 

−(12 𝑎1𝑎10
4 − 8𝑎10

3 𝑎2 − 12𝑎10
5 𝑏1 + 8𝑎1𝑎10

3 𝑏11 − 6𝑎10
2 𝑎2𝑏11 − 8 𝑎10

4 𝑏1𝑏11 + 

+4 𝑎1𝑎10
2 𝑏12 − 2 𝑎10𝑎2𝑏12 −  4 𝑎10

3 𝑏1𝑏12 + 8𝑎10
4  𝑏2 + 6𝑎10

3  𝑏11𝑏2 + 2𝑎10
2 𝑏12𝑏2) ∙  𝑥𝑦3 + 

+(3𝑎1𝑎10
5 − 5𝑎10

4  𝑎2 − 3 𝑎10
6 𝑏1 + 2𝑎1𝑎10

4 𝑏11 − 3𝑎10
3 𝑎2𝑏11 − 2𝑎10

5  𝑏1 𝑏11 + 

+𝑎1𝑎10
3 𝑏12 − 𝑎10

2 𝑎2𝑏12 − 𝑎10
4 𝑏1𝑏12 + 5 𝑎10

5 𝑏2 + 3 𝑎10
4 𝑏11𝑏2 + 𝑎10

3 𝑏12𝑏2)𝑦4 + 

+ 𝛽(𝑎10𝑏6 + 𝑏11𝑏6 − 𝑏7)𝑥4 + 

+ 𝛽(2 𝑎10
2 𝑏6 + 2𝑎10𝑏11𝑏6 + 2 𝑏12 𝑏6 − 2 𝑏8) 𝑥3𝑦 – 𝛽(9 𝑎10

3 𝑏6 + 6 𝑎10
2 𝑏11𝑏6 + 

+3 𝑎10 𝑏12 𝑏6  − 𝑎10
2  𝑏7 − 𝑎10 𝑏11 𝑏7 − 𝑏12 𝑏7 + 𝑎10 𝑏8 + 𝑏11 𝑏8 + 3 𝑏9)𝑥2𝑦2 − 
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− 𝛽 (6 𝑎10
3 𝑏7 + 4 𝑎10

2 𝑏11𝑏7 + 2 𝑎10𝑏12𝑏7 + 2𝑎10𝑏9 + 2𝑏11𝑏9)𝑥𝑦3 – 

−𝛽(3 𝑎10
3 𝑏8 + 2 𝑎10

2  𝑏11 𝑏8 + 𝑎10 𝑏12 𝑏8 + 𝑎10
2  𝑏9 + 𝑎10 𝑏11𝑏9 + 𝑏12 𝑏9)𝑦4 . 

As 𝐴11(𝑥, 𝑦) ≢ 0, we require that 𝐴31(𝑥, 𝑦) ≡  0.  The identity   𝐴31(𝑥, 𝑦) ≡ 0       

holds  if  

𝑎2 = 3𝑎1𝑎10 − 3𝑎10
2 𝑏1 + 𝑎1𝑏11 − 𝑎10𝑏1𝑏11 + 𝑎10𝑏2 − 𝑎10𝑏6𝛽 − 𝑏11𝑏6 𝛽 + 𝑏7 𝛽, 

𝑏8 = (−6𝑎1𝑎10
2  + 6𝑎10

3 𝑏1 − 3 𝑎1𝑎10𝑏11 + 3 𝑎10
2 𝑏1𝑏11 − 𝑎1𝑏12 + 𝑎10𝑏1𝑏12 +

+3𝑎10
2 𝑏6 𝛽 + 3𝑎10𝑏11𝑏6 𝛽 + 𝑏12𝑏6𝛽 − 2𝑎10𝑏7𝛽)/𝛽, 

𝑏9 = −𝑎10 (−6 𝑎1𝑎10
2 +  6𝑎10

3 𝑏1 − 3𝑎1𝑎10𝑏11 + 3 𝑎10
2 𝑏1𝑏11 − 𝑎1𝑏12 + 𝑎10𝑏1𝑏12 + 

+4𝑎10
2 𝑏6𝛽 + 3𝑎10𝑏11𝑏6𝛽 + 𝑏12𝑏6𝛽 − 𝑎10𝑏7𝛽)/𝛽. 

In these conditions  𝐴4(𝑥, 𝑦) ≡ 0  ⇒  

𝑏4 = −(4 𝑎0𝑎10 − 4𝑎10
2 𝑏0 + 𝑎0𝑏11 − 𝑎10𝑏0𝑏11 − 𝑎1𝑎10𝑏6 + 𝑎10

2 𝑏1𝑏6 − 𝑎1𝑏11𝑏6 + 

+𝑎10𝑏1𝑏11𝑏6 + 𝑎1𝑏7 − 𝑎10𝑏1𝑏7 − 2𝑎10𝑏3 𝛽 − 𝑏11𝑏3𝛽 + 𝑎10𝑏6
2𝛽 + 

+𝑏11𝑏6
2𝛽 − 𝑏6𝑏7𝛽 + 2𝛽2)/𝛽,  

𝑏5 = (4𝑎0𝑎10
2 − 4𝑎10

3 𝑏0 + 𝑎0𝑎10𝑏11 − 𝑎10
2 𝑏0𝑏11 − 𝑎1𝑎10

2 𝑏6 + 𝑎10
3 𝑏1𝑏6 − 𝑎1𝑎10𝑏11𝑏6 + 

+𝑎10
2 𝑏1𝑏11𝑏6  + 𝑎1𝑎10𝑏7 − 𝑎10

2 𝑏1𝑏7 − 3𝑎10
2 ∙ 𝑏3𝛽 − 𝑎10𝑏11𝑏3𝛽 + 𝑎10

2 𝑏6
2𝛽 + 

+𝑎10𝑏11𝑏6
2𝛽 − 𝑎10𝑏6𝑏7𝛽 − 6𝑎10𝛽2 − 2𝑏11𝛽2)𝛽,   

 𝑏12 = −3(2𝑎10
2 + 𝑎10𝑏11) ⇒ 𝐴5(𝑥, 𝑦) = −𝐴11(𝑥, 𝑦) ∙ 𝐴51(𝑥, 𝑦)/𝛽, where 

   𝐴51 = (−4𝑎0𝑎1𝑎10 +  4𝑎1𝑎10
2 𝑏0 + 4𝑎0𝑎10

2 𝑏1 − 4𝑎10
3 𝑏0𝑏1 − 𝑎0𝑎1𝑏11 + 𝑎1𝑎10𝑏0𝑏11+ 

+𝑎0𝑎10𝑏1𝑏11 − 𝑎10
2 𝑏0𝑏1𝑏11 + 𝑎1

2𝑎10𝑏6 − 2𝑎1𝑎10
2 𝑏1𝑏6 + 𝑎10

3 𝑏1
2𝑏6 + 𝑎1

2𝑏11𝑏6 −

−2𝑎1𝑎10𝑏1𝑏11𝑏6 + 𝑎10
2 𝑏1

2𝑏11𝑏6 − 𝑎1
2𝑏7 + 2𝑎1 ∙ 𝑎10𝑏1𝑏7 − 𝑎10

2 𝑏1
2𝑏7)𝑥2  +  (8 𝑎0𝑎1𝑎10

2 −

−8 𝑎1𝑎10
3 𝑏0 − 8 𝑎0𝑎10

3 𝑏1 + 8 𝑎10
4 𝑏0𝑏1 + 2 𝑎0𝑎1 𝑎10 ∙ 𝑏11 − 2𝑎1𝑎10

2 𝑏0𝑏11 −

−2𝑎0𝑎10
2 𝑏1𝑏11 + 2𝑎10

3 𝑏0𝑏1𝑏11 − 2𝑎1
2𝑎10

2 𝑏6 + 4𝑎1𝑎10
3 𝑏1𝑏6 − 2𝑎10

4 𝑏1
2𝑏6 − 2𝑎1

2𝑎10𝑏11𝑏6 +

+4𝑎1𝑎10
2 𝑏1𝑏11𝑏6 − 2𝑎10

3 𝑏1
2𝑏11𝑏6 + 2𝑎1

2𝑎10𝑏7 − 4𝑎1𝑎10
2 𝑏1𝑏7 + 2𝑎10

3 𝑏1
2𝑏7)𝑥 𝑦 +

+(4𝑎1𝑎10
4 𝑏0 − 4𝑎0𝑎1𝑎10

3 + 4𝑎0𝑎10
4 𝑏1 − 4𝑎10

5 𝑏0𝑏1 − 𝑎0𝑎1𝑎10
2 𝑏11 + 𝑎1𝑎10

3 𝑏0𝑏11 +

+𝑎0𝑎10
3 𝑏1𝑏11 − 𝑎10

4 𝑏0𝑏1𝑏11 + 𝑎1
2 𝑎10

3 𝑏6 − 2𝑎1𝑎10
4 𝑏1𝑏6 + 𝑎10

5 𝑏1
2𝑏6 + 𝑎1

2𝑎10
2 𝑏11𝑏6 −

−2𝑎1𝑎10
3 𝑏1𝑏11𝑏6 + 𝑎10

4 𝑏1
2𝑏11 ∙ 𝑏6 − 𝑎1

2𝑎10
2 𝑏7 + 2𝑎1𝑎10

3 𝑏1𝑏7 − 𝑎10
4 𝑏1

2𝑏7) 𝑦2 +

+𝛽 (3 𝑎0𝑎10𝑏6 − 3 𝑎10
2 𝑏0𝑏6 − 𝑎1𝑎10𝑏6

2 + 𝑎10
2 𝑏1 ∙ 𝑏6

2  − 𝑎1𝑏11𝑏6
2 + 𝑎10𝑏1𝑏11𝑏6

2 +

 +𝑎0𝑏7 − 𝑎10𝑏0𝑏7 +  𝑎1𝑏6𝑏7 − 𝑎10𝑏1𝑏6𝑏7)𝑥2 + 𝛽(6 𝑎10
3 𝑏0𝑏6 − 6𝑎0𝑎10

2 𝑏6 + 2𝑎1𝑎10
2 𝑏6

2 −

−2𝑎10
3 𝑏1𝑏6

2 + 2𝑎1𝑎10𝑏11𝑏6
2 − 2𝑎10

2  𝑏1𝑏11𝑏6
2 − 2𝑎0𝑎10𝑏7 + 2𝑎10

2 𝑏0𝑏7 − 2𝑎1𝑎10𝑏6𝑏7 +

+2𝑎10
2 𝑏1𝑏6𝑏7) 𝑥 𝑦 + 𝛽(3 𝑎0𝑎10

3  𝑏6 − 3 𝑎10
4  𝑏0 𝑏6  −  𝑎1 𝑎10

3  𝑏6
2 + 𝑎10

4  𝑏1 𝑏6
2 −

−𝑎1𝑎10
2  𝑏11 𝑏6

2 + 𝑎10
3  𝑏1 𝑏11 𝑏6

2 + 𝑎0 𝑎10
2  𝑏7 − 𝑎10

3  𝑏0 𝑏7 +  𝑎1 𝑎10
2  𝑏6 𝑏7 −

−𝑎10
3  𝑏1 𝑏6 𝑏7)𝑦2 + 𝛽2 (3𝑎1 − 6 𝑎10 𝑏1 − 𝑏1 𝑏11 + 𝑏2 + 𝑎10 𝑏3 𝑏6 +  𝑏11 𝑏3 𝑏6 −

−𝑏3 𝑏7)𝑥2 + 𝛽2 (18 𝑎1𝑎10 − 12 𝑎10
2  𝑏1 + 6 𝑎1𝑏11 − 4 𝑎10𝑏1𝑏11 − 2𝑎10𝑏2 −

−2𝑎10
2  𝑏3 𝑏6 − 2𝑎10 𝑏11𝑏3 𝑏6 +  2𝑎10𝑏3𝑏7) ∙ 𝑥 𝑦 + 𝛽2 (27 𝑎1 𝑎10

2 − 30 𝑎10
3  𝑏1  +

+18 𝑎1 𝑎10 𝑏11 − 19 𝑎10
2  𝑏1 𝑏11 + 3 𝑎1 𝑏11

2 − 3 𝑎10 𝑏1𝑏11
2 + 𝑎10

2  𝑏2  +  𝑎10
3  𝑏3 𝑏6 +

+𝑎10
2  𝑏11 𝑏3 𝑏6 − 𝑎10

2  𝑏3 𝑏7 )𝑦2 −  𝛽3𝑏6 𝑥2 − 𝛽3(10 𝑎10 𝑏6 +  6 𝑏11 𝑏6 −   4 𝑏7) 𝑥 𝑦 −

−𝛽3( 13 𝑎10
2 𝑏6 +  12 𝑎10𝑏11𝑏6 +  3 𝑏11

2 𝑏6 − 4 𝑎10𝑏7 −  2 𝑏11 𝑏7)𝑦2. 

The identity 𝐴5(𝑥, 𝑦) ≡ 0 holds  if 
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𝑏2 = (−12𝑎1
3𝑎10 + 36𝑎1

2𝑎10
2 𝑏1 − 36𝑎1𝑎10

3 𝑏1
2 + 12𝑎10

4 𝑏1
3 − 3𝑎1

3𝑏11 + 9𝑎1
2𝑎10𝑏1𝑏11 − 

9𝑎1𝑎10
2 𝑏1

2𝑏11 + 3𝑎10
3 𝑏1

3𝑏11 + 20𝑎0𝑎1𝑎10𝛽 − 20𝑎1𝑎10
2 𝑏0𝛽 − 20𝑎0𝑎10

2 𝑏1𝛽 + 

+20𝑎10
3 𝑏0𝑏1𝛽 + 5𝑎0𝑎1𝑏11𝛽 − 5𝑎1𝑎10𝑏0𝑏11𝛽 − 5𝑎0𝑎10𝑏1𝑏11𝛽 + 5𝑎10

2 𝑏0𝑏1𝑏11𝛽 + 

+16𝑎1
2𝑎10𝑏6𝛽 − 32𝑎1𝑎10

2 𝑏1𝑏6𝛽 + 16𝑎10
3 𝑏1

2𝑏6𝛽 + 4 𝑎1
2𝑏11𝑏6𝛽 − 8𝑎1𝑎10𝑏1 ∙ 𝑏11𝑏6𝛽 + 

+4𝑎10
2 𝑏1

2𝑏11𝑏6𝛽 − 12𝑎1𝑎10𝑏3𝛽2 + 12𝑎10
2 𝑏1𝑏3𝛽2 − 3𝑎1𝑏11𝑏3𝛽2 + 3𝑎10𝑏1𝑏11𝑏3𝛽2 − 

+12𝑎0𝑎10𝑏6𝛽2 + 12𝑎10
2 𝑏0𝑏6𝛽2 − 3𝑎0𝑏11𝑏6𝛽2 + 3𝑎10𝑏0𝑏11𝑏6 𝛽2 − 4𝑎1𝑎10𝑏6

2𝛽2 + 

+4𝑎10
2 𝑏1𝑏6

2 ∙ 𝛽2 − 𝑎1𝑏11𝑏6
2𝛽2 +  𝑎10𝑏1𝑏11𝑏6

2𝛽2 − 6𝑎1𝛽3 + 12𝑎10𝑏1𝛽3 + 2𝑏1𝑏11𝛽3 + 

+4𝑎10𝑏3𝑏6𝛽3 + 𝑏11𝑏3 ∙ 𝑏6𝛽3 + 2𝑏6𝛽4)/(2𝛽3)  and 

   𝑏7 = −3(4𝑎1𝑎10 − 4𝑎10
2 𝑏1 + 𝑎1𝑏11 − 𝑎10𝑏1𝑏11 − 2𝑎10𝑏6𝛽 − 𝑏11𝑏6𝛽)/(2𝛽). 

In these conditions 𝐴6(𝑥, 𝑦) ≢ 0, therefore 𝑚∞ = 7. 

In the conditions 2)  the identity 𝐴2(𝑥, 𝑦) ≡  0 leads us to the following conditions 

𝑎4 = 2𝑎10𝑎3 + 𝑎3𝑏11 − 2𝑎10
2 𝑏3 − 𝑎10𝑏11𝑏3 + 𝑎10𝑏4 + 𝑎10𝑏6𝛼 + 𝑏11𝑏6𝛼 − 𝑏7𝛼 + 𝛼2, 

 𝑎5 = 3𝑎10
2 𝑎3 + 2𝑎10𝑎3𝑏11 + 𝑎3𝑏12 − 3𝑎10

3 𝑏3 − 2𝑎10
2 𝑏11𝑏3 − 𝑎10𝑏12𝑏3 + 𝑎10𝑏5 + 

+2𝑎10
2 𝑏6𝛼 + 2𝑎10 ∙ 𝑏11𝑏6𝛼 + 𝑏12𝑏6𝛼 − 𝑎10𝑏7𝛼 − 𝑏8𝛼 + 3𝑎10𝛼2 + 𝑏11𝛼2,  

𝑏9 = −𝑎10
3 𝑏6 − 𝑎10

2 𝑏7 − 𝑎10𝑏8 + 6𝑎10
2 𝛼 + 3𝑎10𝑏11𝛼 + 𝑏12𝛼, 

  𝑏13 = −𝑎10(4𝑎10
2 + 3𝑎10𝑏11 + 2𝑏12). 

In the above conditions we have: 𝐴3(𝑥, 𝑦) ≡ 0  ⇒ 

𝑎2 = 3𝑎1𝑎10 − 3𝑎10
2 𝑏1 + 𝑎1𝑏11 − 𝑎10𝑏1𝑏11 + 𝑎10𝑏2 − 𝑎10𝑎3𝑏6 − 𝑎3𝑏11𝑏6 + 𝑎10

2 𝑏3𝑏6 + 

+𝑎10𝑏11𝑏3𝑏6 + 𝑎3𝑏7 − 𝑎10𝑏3𝑏7 − 3𝑎3𝛼 + 5𝑎10𝑏3𝛼 + 𝑏11𝑏3𝛼 − 𝑏4𝛼 − 𝑎10𝑏6
2𝛼 − 

−𝑏11𝑏6
2𝛼 + 𝑏6𝑏7𝛼 − 2𝑏6𝛼2, 

𝑏5 = −4𝑎10𝑎3 − 𝑎3𝑏11 + 3𝑎10
2 𝑏3 + 𝑎10𝑏11𝑏3 − 𝑎10𝑏4 − 𝑎10𝑏6𝛼 − 𝑏11𝑏6𝛼 + 𝑏7𝛼 − 2𝛼2, 

𝑏8 = −3𝑎10
2 𝑏6 − 2𝑎10𝑏7 + 8𝑎10𝛼 + 2𝑏11𝛼,    𝑏12 = −3𝑎10(2𝑎10 + 𝑏11) ⇒ 

⇒ 𝐴4(𝑥, 𝑦) ≡  0 ⇒  𝑏2 = −𝑎1, 𝑏4 = −2𝑎3,    𝑏7 = 3(−𝑎10𝑏6 + 𝛼),   𝑏11 = −4𝑎10 ⇒

⇒ 𝐴5(𝑥, 𝑦) ≢  0,  𝑚∞ = 6. 

Thus, the maximal algebraic multiplicity of the line at infinity is not greater than ten 

(see the case 1.1.2).  In this way we have proved the Theorem. 
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CONDIȚIILE INVARIANTE DE STABILITATE ALE MIȘCĂRII PENTRU 

UNELE SISTEME DIFERENȚIALE PATRUDIMENSIONALE 

Rezumat. Au fost obținute condițiile centroafin invariante de stabilitate a mișcării neperturbate pentru 

sistemul diferențial patru dimensional pătratic de tip Darboux în condiția invariantă nedegenerată. 

Cuvinte-cheie:  sistemul diferențial, mișcarea neperturbată, invariant, comitant, algebra Lie, stabilitatea.  

 

1. Introduction 

In mathematics, stability theory addresses the stability of solutions of differential 

equations and of trajectories of dynamical systems under small perturbations of initial 

conditions.  

The differential systems with polynomial nonlinearities are important in various 

applied problems. For example: the Van der Pol oscillator; the Fitzhugh–Nagumo model 

for action potentials of neurons; in seismology to model the two plates in a geological 

fault; in studies of phonation to model the right and left vocal fold oscillators as well as 

many other applications. 

The stability of unperturbed motions using the theory of algebras, of invariants and 

of Lie algebras was studied for the first time in [1].  

In [2] the center-affine invariant conditions of stability of unperturbed motion, 

described by critical two-dimensional differential systems with quadratic nonlinearities 

s(1; 2), cubic nonlinearities s(1; 3) and fourth-order nonlinearities s(1; 4), were obtained.  

In this paper, the similar investigations are done for some four-dimensional 

differential systems with quadratic nonlinearities. 

 

2. Center-affine invariants and mixt comitants for four-dimensional differential 

system with quadratic nonlinearities 

We consider the system of differential equations  

 ( , ) , , 1,4 ,
j

j j jdx
a x a x x P x a j

dt

  

                                  (1) 
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where 
ja  is a symmetric tensor in lower indices in which the total convolution is done, 

and the group of center-affine transformations (4, )GL  given by formulas 

 , det 0;r r j r

j jx q x q   , 1,4r j  .                                   (2) 

Coefficients and variables in (1) are given over the field of real numbers . The phase 

variables vector  1 2 3 4, , ,x x x x x  of system (1), which changes by formulas (2), is usually 

called contravariant [3]. Any other vector  1 2 3 4, , ,y y y y y  which changes by formulas 

(2), is called cogradient with vector x . The vector  1 2 3 4, , ,u u u u u , which changes by 

formulas 

,j

r r ju p u  , 1,4 ,r j                                                  (3) 

where
r j r

j s sp q   is the Kronecker’s symbol, is called covariant.  The vector u  is also 

called contragradient with vector x .  

Applying the transformation (2), the system (1) will be brought to the system 

 , , 1,4 ,
j

j jdx
a x a x x j

dt

  

                                          (4) 

in which the coefficients are linear functions of  the coefficients of system (1) and are 

rational functions of parameters of transformation (2). We will denote the set of 

coefficients of system (1) by a , the set of coefficients of transformed system (4) by a , 

and the set of parameters of transformation (2) by q . 

According to [3], we say that the polynomial ( , , )k x u a  of the coefficients of system (1) 

and of the coordinates of vectors x   and u  is call mixt comitant of the system (1) with 

respect to (4, )GL group, if the following identity holds 

( , , ) ( , , ),gk x u a k x u a                                                    (5) 

for all q  from (4, )GL  and every coordinates of vectors x  and u , as well as all the 

coefficients a  of system (1), where g  is an integer number called the weight of comitant. 

If the mixt comitant k  does not depend on the coordinates of the vector u , then we call it 

simply comitant, but if k  does not depend on the coordinates of the vector x  we call it 

contravariant. If k  does not depend on x  and u , then we will call it invariant of system 

(1) with respect to (4, )GL group. 

The following center-affine invariant polynomials of the system (1) are known from [4]: 

1,4 ,I a

   2,4 ,I a a 

    3,4 ,I a a a  

     4,4 ,I a a a a   

     

1,4 ,P a x 

   2,4 ,P a a x  

    3,4 ,P a a a x   

     4,4 ,P a a a a x    

     

6,4 ,K a a a a a a x x x x         

        0,4 ,S u x   1,4 ,S a x u 

   
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2,4 ,S a a x u  

    3,4 ,S a a a x u   

     6,4 ,pqrs

p q r sR a a a a a a u u u u     

       

1,4

6,4

, 1,4

det ,
i

j

i j

S
R

x





 
  

 
  1,4 ,K a x x y z    

                     (6) 

  ,4 1,4iI i   are invariants,   ,4 1,4iP i   and  6,4K  are comitants,  ,4 0,3jS j   are 

mixed comitants, 6,4R  is contravariant, and 1,4K is comitant of cogradient vectors x , y , 

z  [3]. The vectors   and 
pqrs are four-dimensional unit vector with coordinates 1 

when an even permutation of the indices holds, -1 when an odd permutation of the 

indices holds and 0 in other cases.  

Remark 1. The characteristic equation of the system (1) has the form
 

4 3 2

1,4 2,4 3,4 4,4 0,L L L L                                          (7) 

where the coefficients of  equation (7) are invariants of system (1) and have the following 

form:  

1,4 1,4 ,L I 
  

 2

2,4 1,4 2,4

1
,

2
L I I 

  
 3

3,4 1,4 2,4 3,4 1,4

1
3 2 ,

6
L I I I I  

 

 2 2 4

4,4 1,4 3,4 4,4 1,4 2,4 2,4 1,4

1
8 6 6 3 ,

24
L I I I I I I I    

                        (8) 

where  1,4 1,4I i 
 from (6). 

 

3. Invariant conditions of stability of unperturbed motion  for system (1) in case 

when the roots of the characteristic equation have nonzero real parts 

Definition 1. If for any small positive value  , however small, one can find a positive 

number   such that for all perturbations 
0( )jx t  satisfying the condition  

 
22

0

1

( ) ,j

j

x t 


                                                       (9) 

the inequality   
22

1

( ) ,j

j

x t 


  is valid for any 0t t , then the unperturbed motion 

 0 1,4jx j   is called stable, otherwise it is called unstable. If the unperturbed 

motion is stable and the number   can be found however small such that for any 

perturbed motions satisfying (9) the condition  
22

1

lim ( ) 0,j

t
j

x t




 is valid, then the 

unperturbed motion is called asymptotically stable. 
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By means of the Lyapunov theorems on stability of unperturbed motion  by the 

signs of the roots of the characteristic equation (7) of system (1) and the Hurwitz theorem 

on the signs of the roots of an algebraic equation (see, for example, [5]) we have 

Theorem 1. Assume that the center-affine invariants (8) of system (1) satisfy inequalities                          

 ,4 0 1,4iL i  ,   
2 2

1,4 2,4 3,4 3,4 1,4 4,4 0L L L L L L   . 

Then the unperturbed motion  0 1,4jx j   of this system is asymptotically stable. 

Theorem 2.  If at least one of the center-affine invariant expressions (8) of system (1) is 

negative, then the unperturbed motion  0 1,4jx j   of this system is unstable. 

 

4. Invariant conditions of stability of unperturbed motion for system (1) in case 

when the characteristic equation has one zero root in conditions 6,4 1,40, 0R K   

Lemma 1. [4] If in (6) we have 1,4 0K   then the system (1) takes the form 

   1

12 , 1,4 .
j

j jdx
a x x a x j

dt

 

                                  (10) 

The system (10) is called four-dimensional differential system of Darboux type. 

Remark 2. The expression 6,4 0K   from (6) is the invariant partucular  4,GL 

integral of system (10). 

Remark 3. For any center-affine transformation of the system (6), its quadratic part 

retains its form changing only the variables and coefficients. This follows from the fact 

that the identity 1,4 0K   is preserved under any center-affine transformation. 

From [4] with considering Remark 3 it follows 

Lemma 2. If in system (10) we have 6,4 0R  , then by the center-affine transformation 

1 2 3 4

0,4 1,4 2,4 3,4, , , ,x S x S x S x S     

the system (10) can be brought to the following form : 

     1 2 1 1 2 3 2 1 3 4 3 1

1 1 12 , 2 , 2 ,x x x a x x x x a x x x x a x  

         

 4 1 2 3 4 4 1

4,4 3,4 2,4 1,4 12 ,x L x L x L x L x x a x                             (11) 

where   i,4 0,3S i   are from (6) and   j,4 1,4L j   are from (8). 

Definition 2. The differential system (1) will be called a critical system of Lyapunov type 

if the characteristic equation of the system has one zero root and all other roots have 

negative real parts. 

Notice that for system (11) the characteristic equation coincides with equation (7). 

Lemma 3. The system (1) or (11) is critical of Lyapunov type if and only if the following 

invariant conditions hold:  
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4,4 ,4 1,4 2,4 3,40, 0 ( 1,2,3), 0,iL L i L L L                         (12) 

where  j,4 1,4L j   are from (8).  

The proof of Lemma 3 follows from the Hurwitz theorem on the signs of the roots 

of an algebraic equation and from equation (7) (see, for example [5]). 

Notice that the system (11) in invariant conditions (12) by the center-affine 

transformation   

1 1 2 3 4 2 2 3 3 4 1

3,4 2,4 1,4 , , , ,x L x L x L x x x x x x x x        

can be brought to the canonical form 

   2 , 2 ,x x ax by cz du y z y ax by cz du          

   2,4 1,4 3,4 2 , 2 .z x L y L z L u z ax by cz du u y u ax by cz du             (13) 

According to Lyapunov’s theorem [6], we will build the power series by which we can 

determine the stability of unperturbed motion of system (13). The first equation in system 

(13) is called the critical equation, and the other three are called non-critical equations. 

Using the algorithm from Lyapunov’s theorem [6] we examine the equations generated 

by right-hand sides of latest three equations of system (13). We have non-critical 

2,4 1,4 3,4 2 0,x L y L z L u z ax by cz du       

 2 0y u ax by cz du     .  

We express ,x y  and z  from non-critical equations in the following way: 

 2 ,y u ax by cz du       2 ,z y ax by cz du      

 2,4 1,4

3,4 3,4 3,4 3,4

2L Lx z
u y z ax by cz du

L L L L
                                 (14) 

We will seek ,x y  and z  as a holomorphic function on x . Then we can write 

2 3 2 3 2 3

1 2 3 1 2 3 1 2 3( ) ..., ( ) ..., ( ) ...y x A x A x A x z x B x B x B x u x C x C x C x              (15) 

Substituting (15) into (14) we get  
2 3 2 3 2 3

1 2 3 1 2 3 1 2 3... 2( ...)[ ( ...)A x A x A x C x C x C x ax b A x A x A x              

2 3 2 3

1 2 3 1 2 3( ...) ( ...)],c B x B x B x d C x C x C x         

2 3 2 3 2 3

1 2 3 1 2 3 1 2 3... 2( ...)[ ( ...)B x B x B x A x A x A x ax b A x A x A x              

2 3 2 3

1 2 3 1 2 3( ...) ( ...)],c B x B x B x d C x C x C x         

2,4 1,42 3 2 3 2 3

1 2 3 1 2 3 1 2 3

3,4 3,4 3,4

... ( ...) ( ...)
L Lx

C x C x C x A x A x A x B x B x B x
L L L

              

2 3 2 3 2 3

1 2 3 1 2 3 1 2 32( ...)[ ( ...) ( ...)B x B x B x ax b A x A x A x c B x B x B x              

2 3

1 2 3( ...)].d C x C x C x     

This implies that 1 10, 0,A B  1 2 1 1 2

3,4

1
, 2 ( ), 0,C A C a dC B

L
                     
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1 2,4 1

2

3,4

2 ( )
,

C L a dC
C

L


 3 2 1 2 12[ ( 2 )],A bA C C a dC    3 2 12 ( ),B A a dC    

3 2 1,4 1 2 1 2,4 2 2,4 1

3,4

2
[ ( ) ( 2 )],C A L a dC bA C L C L a dC

L
      

4 1 3 3 2 2 2 3 12[ ( ) ( ) ( 2 )],A C bA cB C bA dC C a dC       4 3 1 2 2 22[ ( ) ( )],B A a dC A bA dC      

4 3 3 1,4 1 2 1,4 2 2,4 2 2 1 2,4 3 3

3,4

2
[( )( ) ( )( ) ( )C B A L a dC A L C L bA dC C L bA cB

L
          

3 2,4 1( 2 )],...C L a dC                                                 (16) 

Substituting (15) into right-hand side of the critical equation (13) we get  

  2 3

1 2 32 ...,x ax by cz du D x D x D x        

or in expanded form we get 
2 3 2 3 2 3

1 2 3 1 2 3 1 2 32 [ ( ...) ( ...) ( ...)]x ax b A x A x A x c B x B x B x d C x C x C x              

2 3

1 2 3 ...,D x D x D x     

This implies that     

1 2 1 3 2 2 4 3 3 30, 2( ), 2( ), 2( ),D D a dC D bA dC D bA cB dC         

5 4 4 4 6 5 5 5 7 6 6 62( ), 2( ), 2( ),...D bA cB dC D bA cB dC D bA cB dC               (17) 

Using the Lyapunov’s theorem, in [7] was obtained 

Lemma 4. The stability of the unperturbed motion corresponding to system (13) is 

described by one of the following two possible cases: 

       
3,41) 0,L a d   then the unperturbed motion is unstable ;  

       
3,42) 0,L a d   then the unperturbed motion is stable.  

In the latter case the unperturbed motion belongs to some continuous series of stabilized 

motions, and moreover, if perturbations are small enough then perturbed motion will tend 

Asymptotically to one of stabilized motions. 

Proof.  According to Lyapunov’s theorem on stability of unperturbed motion in critical 

case [6], we examine the coefficients iD  from (17) taking into account (16). If 2 0D  , 

then we have first case from Lemma 4. If 2 0D  , then we obtain 0 ( 2)i i iA B C i      

from (16), therefore 0, 1,2,3,... .iD i   According to Lyapunov’s theorem we have the 

second case of  this lemma. Lemma 4 is proved. 

Theorem 3.  Let for differential system of the perturbed motion (1) the invariant 

conditions 6,4 1,40, 0R K   be satisfied. Then in conditions (12) the stability of 

unperturbed motion corresponding to this system is described by one of the following 

two possible cases: 

       3 2

1,4 1,4 1,4 2,4 1,4 3,4 1,4 1,4 2,4 2,4 2,4 1,4 3,4 4,41) 4( 3 2 ) 15( 2 2 ) 0,I P I I P I P I P I P I P P        then the 

unperturbed motion is unstable;  
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       3 2

1,4 1,4 1,4 2,4 1,4 3,4 1,4 1,4 2,4 2,4 2,4 1,4 3,4 4,41) 4( 3 2 ) 15( 2 2 ) 0,I P I I P I P I P I P I P P        then the 

unperturbed motion is stable.  

In the latter case the unperturbed motion belongs to some continuous series of stabilized 

motions, and moreover, if perturbations are small enough then perturbed motion will tend 

Asymptotically to one of stabilized motions. The invariant polynomials ,4 ( 1,4)iI i   and 

,4 ( 1,4)jP j   are given in (6).  

Proof. Using the system (13), obtained as a result of center-affine transformation in 

conditions 
6,4 1,40, 0R K   and (12) with the help of the invariant polynomials 

,4 ( 1,4)iI i   and ,4 ( 1,4)jP j   from (6), we obtain  

3 2

1,4 1,4 1,4 2,4 1,4 3,4 1,4 1,4 2,4 2,4 2,4 1,4 3,4 4,4 3,44( 3 2 ) 15( 2 2 ) 30( ) .I P I I P I P I P I P I P P L a d x         

Consequently taking into account Lemma 4 we obtain truth of this theorem. Theorem 3 is 

proved. 

 

5. Invariant conditions of stability of unperturbed motion for system (1) in case 

when the characteristic equation (7) has two pure imaginary roots in conditions 

6,4 1,40, 0R K   

Lemma 5. The characteristic equation (7) has two pure imaginary roots 1   and 

1   and the other two real and negative if and only if the following invariant 

conditions 

2 2

1,4 3,4 1,4 2,4 3,4 1,4 4,4 3,4 1,4 2,4 3,40, 0, 0, 0L L L L L L L L L L L                 (18) 

hold, where ,4 ( 1,4)iL i   are from (8). 

Proof.  Denote by ( 1,4)i i   the roots of characteristic equation (7). According to 

Vieta's theorem we have      

1 2 3 4 1,4 1 2 1 3 1 4 2 3 2 4 3 4 2,4, ,L L                           

1 2 3 1 2 4 1 3 4 2 3 4 3,4 1 2 3 4 4,4, .L L                                    (19) 

Let us suppose that 1 i   and 
2

2 ( 1)i i     , where 0   is real number. From 

(19) we obtain 

2 2 2

3 4 1,4 3 4 2,4 3 4 3,4 3 4 4,4, , ( ) , .L L L L                            (20) 

From the first and third equalities (20) we get  

3,4

1,4 3,4

1,4

( 0).
L

L L
L

                                           (21) 

Taking into account the first and second equalities from (20) we obtain 
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3,42

1,4 2,4

1,4

0 ( 3,4).j j

L
L L j

L
                                         (22) 

Using the Hurwitz theorem on the signs of the roots of an algebraic equation [5] and the 

inequality (21) we get first three conditions from (18). Substituting 
3 4   from second 

equality (20) into last equality (20) we obtain equality from (18). Lemma 5 is proved. 

Lemma 6. The characteristic equation (7) has two pure imaginary roots 1   and 

1   of multiplicity 2 if and only if the following invariant conditions 

2

2,4 1,4 3,4 2,4 4,40, 4 0,L L L L L                                           (23) 

hold, where ,4 ( 1,4)iL i   are from (8). 

Proof. Let us suppose that   

1 2 3 4, ,i i         
                                           

 (24) 

where 0   is real number.  From (19) we obtain  

2 4

1,4 3,4 2,4 4,40, 2 , .L L L L                                          (25) 

Because 0   is real number, from (25) we get 

2,4 2,4

1
( 0),

2
L L                                                     (26) 

and  

2

2,4 4,44 0.L L                                                           (27) 

The conditions (25)-(27) coincide with (23). Lemma 6 is proved. 

Theorem 4.  Let for differential system of the perturbed motion (1) the invariant 

conditions 6,4 1,40, 0R K   be satisfied. Then this system by center-affine 

transformation can be reduced to the form 1 2 3 4( , , , )x x y x z x u x     

a) in conditions (18):  

2 , 2 , 2 ,x y x P y x y Q z u z R                           (28) 

2

2,4 1,4( ) 2 ,u y L z L u u S         

where   is from (21),  ,4iL  is from (8) and  Ax By Cz Du      with , , ,A B C D  real 

constants.  

b) in  conditions (23):   

22 , 2 , 2 , 2 ,x y x y x y z u z u y z u                          (29) 

where   is from (26),  ,4iL  is from (8) and  Ax By Cz Du      with , , ,A B C D  real 

constants.  
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Proof.  a) As shown in the Lemmas 1 and 2 in conditions 6,4 1,40, 0R K   the system 

(1) by the center affine transformation is reduced to the form (11). In the case (18) the 

system (11) has the form 
1 2 3 4 1 1

11 12( , , , , , ,x x y x z x u x a a       1 1

13 14, )a a    

2

2
2 , 2 , 2 , 2 ,

b bcd
x y x y z y z u z u x by cz du u

d


                  (30)

 

where 
 

3,4 2,4 1,4, , , ( , , , ).b L c L d L x y z u                              (31) 

Let’s consider the transformation 
  

2 2( ) , ( ) , , ,X c y dz u Y c x d y z Z x U y                           (32) 

where according to (21) and (31) we have 
2 b

d
 

 
and determinant 

3 0.      

Making the transformation (32) in the system (30)-(31) we obtain for it the form (28). 

b) In the case (23) the system (11) has the form  

            4 22 , 2 , 2 , 2 2 ,x y x y z y z u z u x z u                         (33)
 

where 
 

2,4 2

1,4 3,4 2,4 4,4, , 0, 4 .
2

L
ax by cz du L L L L                                 (34) 

Let’s consider the transformation 
  

2 3, , , .X y u Y x z Z x U y                                           (35) 

According to (16) the determinant of transformation (35)  is
 
 

3 0.      

Making the transformation (35) in the system (33)-(34) we obtain for it the form (29). 

Theorem 4 is proved. 

 

6. The theorem on the integrating factor for a four-dimensional differential system 

Let's suppose that the system (1) admits the ( 1)n  - dimensional commutative Lie 

algebra with operators 

 ( ) 1,4; 1,3 ,j

j
X x j

x
  


  


                                (36) 

and  

 ( , ) 1,4 .j

j
P x a j

x


  


                                      (37) 

Let’s consider the determinant constructed on coordinates of operators (36)-(37) 

1 2 3 4

1 1 1 1

1 2 3 4

2 2 2 2

1 2 3 4

3 3 3 3

1 2 3 4P P P P

   

   

   
                                               (38) 
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Theorem 5. [4] If the four-dimensional differential system (1) admits three-dimensional 

commutative Lie algebra of operators (36), then the function 
1

 


 where 0   from 

(38) is the integrating factor for Pfaff equations 
2 3 4 1 3 4 1 2 4 1 2 3

2 2 2 2 2 2 2 2 2 2 2 2

2 3 4 1 1 3 4 2 1 2 4 3 1 2 3 4

3 3 3 3 3 3 3 3 3 3 3 3

2 3 4 1 3 4 1 2 4 1 2 3

0,dx dx dx dx

P P P P P P P P P P P P

           

                

2 3 4 1 3 4 1 2 4 1 2 3

1 1 1 1 1 1 1 1 1 1 1 1

2 3 4 1 1 3 4 2 1 2 4 3 1 2 3 4

3 3 3 3 3 3 3 3 3 3 3 3

2 3 4 1 3 4 1 2 4 1 2 3

0,dx dx dx dx

P P P P P P P P P P P P

           

                

2 3 4 1 3 4 1 2 4 1 2 3

1 1 1 1 1 1 1 1 1 1 1 1

2 3 4 1 1 3 4 2 1 2 4 3 1 2 3 4

2 2 2 2 2 2 2 2 2 2 2 2

2 3 4 1 3 4 1 2 4 1 2 3

0,dx dx dx dx

P P P P P P P P P P P P

           

                  (39) 

that determine the general integral of system (1). 

 

7. The Lie algebra of operators admitted by the system (28). Some particular 

integrals and one first integral of Darboux type 

Lemma 7. The Lie algebra of operators admitted by the system (28) has the form      

2 2 2

1 1 2 3 2[( ) ( ) ( ) 2 2 2 ]X Bd D c x Ad c y x xz C xu
x

       


        


 

2 2

1 2 3 2[ ( ) ( ) ( ) 2 2 2 ]Ad c x Bd D c y xy yz C yu
y

       


         


 

2 2 2

2 1 2 3 2[ ( ) ( ) 2 2 2 ]A c y c z xz z C zu
z

      


       


 

2 2 2

2 1 2 3 2[ ( ) ( ) 2 2 2 ] ,A c x c u xu zu C u
u

       


      


 

2 2 2 2

2 5 4 3 6 6[ ( ) ( )( 2 ) 2 2 2 ]X c x A c c y x xz C xu
x

         


        


 

2 2 2

5 4 3 6 6[ ( )( 2 ) ( ) 2 2 2 ]A c c x c y xy yz C yu
y

         


         


 

2 2 2

6 4 3 6 6[ ( ) ( ) 2 2 2 ]A c x c z xz z C zu
z

        


       


 

2 2 2 2

6 4 3 6 6[ ( ) ( ) 2 2 2 ] ,A c y c u xu zu C u
u

        


       


 

2 2 2

3 7 8 9[ ( ) ( ) 2 2 2 ]X B c x A c y x xz xu
x

      


        


 

2 2

7 8 9[ ( ) ( ) 2 2 2 ]A c x B c y xy yz yu
y

      


       

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2 2 2

7 8 9[ ( ) ( ) 2 2 2 ]B c z A c u xz z zu
z

     


        


 

2 2 2 2 2

7 8 9[ ( ) ( ) ( )( ) 2 2 2 ] ,A c y A c z Ad B c u xu zu u
u

      


         


 

2 2 2 2

4 5 10[ ( ) 2( ) 2 ( ) 2 2 ]X c x B x A c xy xz C xu
x

      


        


 

2 2 2 2

5 10[ ( ) 2( ) 2 ( ) 2 2 ]c y B xy A c y yz C yu
y

      


        


 

2 2 2 2

5 10[ ( ) 2( ) 2 ( ) 2 2 ]c z B xz A c yz z C zu
z

      


        


 

2 2 2 2

5 10[ ( ) 2( ) 2 ( ) 2 2 ] ,c u B xu A c yu zu C u
u

      


       


            (40) 

where  
2 2 2 2 2

1 ( ) ( ) ,A B cd BCd BDc CD AC A d B d BD            

2 2

2 3( ) 2 , ( ) ,Ac Bd D A Cd c D             

2 2 2 2 3 2 2 2 4

4 2 ( ) 3( ) ( )( 2 ),BCc C A Cd Dc A c B c BC AD A B c                 

2 2 2 2 2

5 6 7( 2 ) , ( 2 ) , ( )( ) ,B c C B c C Ad A B c BC                  

2 3 2 2

8 9 10( ) ( ) , ( ) , .AC c B Cd Dc BD AD c BC Cd cD D                      (41) 

Proof. Writing the operators (36) in a general form ( )j

j
X x

x






and solving the 

determining equations 

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 , ( 1,4)j j j j j j j j

x x x x x x x x
P P P P P P P P j                

we obtain that the system (28) admits the operators (40)-(41).  

The operators ( 1,2,3,4)iX i   are linearly independent, since the determinant of fourth 

order constructed on coordinates of these operators is different from zero. Notice that 

commutators [ , ] 0, ( , 1,4).i jX X i j 
 

Therefore operators ( 1,4)iX i   form a four-

dimensional Lie algebra. Further,  using the theorem 5 on integrating factor we calculate 

determinant   which is constructed on the coordinates of three operators ( 1,2,3,4)iX i   

and on the right-hand sides of the system (28), we obtain         

2 2 2 2 2 2

134 234 123 1 2 3 124 1 2 30, ( ) , ( ) ,A B c A c                     

where 
2 2 3 2 2 2

1 2, 2( ) 2 ( ) 2 ( ) 2 ,x y c Bc C B x A c y Cd cD D z C u                       

2 2 2 2 2 2 2 2 2 2

3 (2 4 ) ( ) [2 (6 ) 4 ]x d xy cd xz c d xu c y c c d yz                      

3 2 2 2 4 6 2 2 2 2 4 2[ (5 ) (8 ) 4 ] [ (4 ) 4 ]( ).cdyu c c c d c d z c c d dzu u                   (42) 

We denote the operator of system (28) by .P Q R S
x y z u

   
    

   
 Then we obtain   
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1 1( ) 4 ,     
2 2( ) 2 ,      

3 3( ) ( 4 ),d        
1 2 1 2( ) 2(2 ) ,             

where .Ax By Cz Du       

From the last equalities we get 

Theorem 6. The functions 1 2 3, ,    from (42) are particular integrals of the system (28) 

and the function 2

1 2F     is a first integral of Darboux type for this system. 

Remark 4. The comitant 
6,4K  from (6) for the system (28) has the form 

6,4 1 3K   , 

where   from (21) and 1 , 3  are from (42). 

 

8. The Lie algebra of operators admitted by the system (29). Some particular 

integrals and one first integral of Darboux type 

Lemma 8. The Lie algebra of operators admitted by the system (28) has the form        

3 2 2 2 3

1 [ 2( ) 2 2 2 ]Y x C B x A xy D xz C xu
x

    


      


 

3 2 2 2 3[ 2( ) 2 2 2 ]y C B xy A y D yz C yu
y

    


      


 

3 2 2 3 2[ 2( ) 2 2 2 ]z C B xz A yz D z C zu
z

    


      


 

3 2 2 3 2[ 2( ) 2 2 2 ] ,u C B xu A yu D zu C u
u

    


     


 

3 2 2 2 3

2 [ 2( ) 2 2 ]Y D x CD AC BD x D xz CD xu
x

    


       


 

3 2 2 3[ 2( ) 2 2 ]D y CD AC BD xy D yz CD yu
y

    


       


 

2 3 2 2 3 2[ 2( ) 2 2 ]A y D z CD AC BD xz D z CD zu
z

     


       


 

3 3 2 2 3 2[ 2( ) 2 2 ] ,A x D u CD AC BD xu D zu CD u
u

     


      


 

3 3 2 2

3 [ 2 2 ( ) 2 ( ) ]Y B x A y Ex AC BD xz BC AD xu
x

     


        


 

3 3 2[ 2 2 ( ) 2 ( ) ]A x B y Exy AC BD yz BC AD yu
y

     


       


 

3 2 2 2[ 2 2 ( ) 2 ( ) ]B z A u Exz AC BD z BC AD zu
z

     


        


 

2 4 3 2 22 2 ( ) 2 ( ) ] ,A y A z B u Exu AC BD zu BC AD u
u

      


       


 

3 2 5 2 3

4 [ ( ) 2 2 2 ]Y C B x A y Hx Fxz Gxu
x

    


       


 

5 3 2 3[ ( ) 2 2 2 ]A x C B y Hxy Fyz Gyu
y

    


      

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3 3 2 4 3 2[ ( ) 2 2 2 ]A x C B z A u Hxz Fz Gzu
z

     


       


 

6 3 2 3 2( ) 2 2 2 ] ,A z C B u Hxu Fzu Gu
u

    


     


                       (43) 

where 2 2 2( ) ,E BC A B     2 ,F CD AC BD     2 2 3,G C BC AD      

2 2 3 2 2 4( ) .H C BC AD A B         

The proof of Lemma 8 is similarly with the proof of Lemma 7.  

The operators ( 1,2,3,4)iY i   are linearly independent, since the determinant of fourth 

order constructed on coordinates of these operators is different from zero. Notice that 

commutators [ , ] 0, ( , 1,4).i jY Y i j 
 

Therefore operators ( 1,4)iY i   form a four-

dimensional Lie algebra. Further,  using the theorem 5 on integrating factor we calculate 

determinant   which is constructed on the coordinates of three operators ( 1,2,3,4)iY i   

and on the right-hand sides of the system (29), we obtain 

2 7 2 2 7 2

123 134 124 2340, , ,A A B                

where      
2 2 3 2 2 3, 2( ) 2 2 2 ,x y C B x A y D z C u                               (44) 

Direct calculation of the operator   for the system (29) gives  

( ) 4 ,      ( ) 2 ,      ( ) 2(2 ) ,             

where .Ax By Cz Du       

From the last equalities we get 

Theorem 7. The functions   and   from (44) are particular integrals of the system (29) 

and the function 2F   is a first integral of Darboux type for this system. 

Remark 5. The comitant 
6,4K  from (6) for the system (29) has the form 3 2

6,4K   , 

where   from (26) and   are from (44). 

Remark 6. The first integral 2

1 2F     of the system (28) is the holomorphic integral of 

Lyapunov type, i.e. this integral can be written in the form 2 2 ( , , , )F x y F x y z u   , 

where ( , , , )F x y z u  is the polynomial of the order more than two.         

From [4] it is known the comitant of system (1) in the form    

4,4 4,4 3,4 1,4 2,4 2,4 1,4 3,4 4,4

4
2 ,

5
L L P L P L P P

 
      

 
                      (45) 

where ,4 ( 1,4)jP j   are from (6) and  ,4 ( 1,4)iL i   are from (8). 

Remark 7. The comitant 4,4  for the system (28) has the form 4,4 2   , where 2  is 

from (42). 

Using the Lyapunov’s theorem [6], the theorems 6-7 and remarks 6-7, we obtain 
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Theorem 7. [8] Assume for the system (1) with 
1,4 0K   and 

6,4 0R   under center-affine 

invariant conditions (18), the comitant (45) is not identically zero. Then the system has a 

periodic solution containing an arbitrary constant, and varying this constant one can 

obtain a continuous sequence of periodic motions, which comprises the studied 

unperturbed motion. This motion is stable and any perturbed motion, sufficiently close to 

the unperturbed motion, will tend asymptotically to one of the periodic motions. 
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PROIECTIVITATEA FASCICOLELOR DE SECȚIUNI CONICE 

Abstract. În această lucrare sunt discutate câteva rezultate care vor fi de ajutor în viitor, de a clasifica și 

de a demonstra anumite teoreme ale curbelor cubice în planul proiectiv. 

Cuvinte cheie: plan proiectiv, secțiuni conice, serii proiective, fascicole de secțiuni conice. 

 

We are working in the projective plane. 

Definition 1. A series (or range) is a bijective function which has as an image a line from 

the plane. 

Definition 2. Let  gf ,  be two series and r a bijective function, such that 

)()( gDomrDom   and ).()( rDomrIm   Then we define the series f  and g  (in this 

order) to be r - projective, written simply as ,gf
r

  if and only if for any distinct points 

);(},,,{ gImDCBA   

))(),();(),((),;,( 1111 DfrgCfrgBfrgAfrgDCBA   - as cross-ratios [1, p. 33]. 

Because of bijectivity if the above equality is true, then also 

))(),();(),((),;,( 1111 DgrfCgrfBgrfAgrfDCBA   

is true. Hence  .fggf
rr

  Similarly .gffg
rr

  Therefore the order does 

not matter, and we will simply denote fggf
rr

  to mean that f  and g  are                         

r - projective. 

Definition 3. Let DCBA ,,,  be four distinct any three non-collinear points in the 

projective plane. 
ABCD

P  is the set that contains all the conics that pass through CBA ,,  

and D  also named a pencil of conics. Let x  be a line that passes through only one of the 

points CBA ,,  or .D  Suppose it passes through A  (the same procedure is undertaken for 

the other points). Then any conic from the pencil 
ABCD

P  intersects the line x  in another 

second point, let it be .X  X  is different from A  in all cases except the case when the 

conic is tangent ,x  and XA  will be a double point. Now, for any xX   there is, 

respectively, the conic ,
ABCD

PXABCD  the conic that passes through the points 

CBAX ,,,  and D  when AX   it will be the conic from the pencil tangent to .x  

Acta et Commentationes, Exact and Natural Sciences, nr. 2(6)2018                                                                   ISSN 2537-6284
Cezar Port, Sergiu Port,  p. 92-94

92



This establishes a bijective correspondence between points xX   and conics from 

,
ABCD

P  in particular a function .: xPf
ABCD

  This series will be denoted by 
DCBAx

s
,,,,

 or 

simply ,
x

s  when there is no confusion. 

Before going forward with the main theorem, we need a lemma, which is a                    

well-known result in projective plane geometry. 

Lemma 1. Let A  and B  be two points, 
i

a  and 
i

b  will represent lines passing through A  

and respectively ,B  i ℕ. 

 1. If ),;,(),;,(
32103210

bbbbaaaa   (this is the cross-ratio of lines), ),;,(
4210

aaaa  

),,;,(
4210

bbbb  ),;,(),;,(
52105210

bbbbaaaa   and finally ),,;,(),;,(
62106210

bbbbaaaa   

then ).,;,(),;,(
65436543

bbbbaaaa    

 2. In this part every line passes through .A  If  ),;,(),;,( mnbbmnaa  

),;,(),;,( mnddmncc   then ).,;,(),;,( dcbadcba   

Theorem 1. Let DCBA ,,,  be four distinct non-collinear points in the projective plane, 

see Figure 1. Let yx,  be lines that pass through only one of the points CBA ,,  or .D  

Then 
yidx

ss    where id  is the identity function on .
ABCD

P  

Proof. 

Let xX   and ,yXABCDY   where Y  is the second point of intersection on 

line .y  There are two cases, either the lines pass through the same point or through two 

different points. 

First case. Suppose, without loss of generality, that .Ayx   Then  

),;,(),;,( CDYXBCDYXA   

by the conic's general properties.  As X  varies on ,x  the cross-ratio of ),;,( CDYXA  is 

constant, as the lines yx,  are fixed, results that the cross-ratio of ),;,( CDYXB  also must 

be constant. So as X  varies on ,x  Y  moves accordingly on .y  Because ),;,( CDYXB  is 

constant for any ,xX   by the lemma (here BCmBDn  , ) from above, we have for 

4321
,,, XXXX   (distinct points on x ) and their corresponding 

4321
,,, YYYY  on ,y  that  

),;,(),;,(
43214321

YYYYBXXXXB   

which means exactly  

),;,(),;,(
43214321

YYYYXXXX   

therefore .
yidx

ss   
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Figure 1. The two cases 

Second case. Suppose, without loss of generality, that ., yBxA   Then 

).,;,(),;,( CDYXBCDYXA   

Furthermore, the cross-ratio of ),,;,( CDYXA  depends only on ,Y  as the lines 

ACADAX ,,  are fixed. Same way, the cross-ratio of ),;,( CDYXB  depends only on 

.X  So as X  is varies on ,x  Y  moves accordingly on .y  By the cross-ratio properties, we 

have also that  

).,;,(),;,( CDYXBYXCDA   

By the lemma (here AXaACaADa 
210

,,  and BYbBDbBCb 
210

,, ), 

we have for 
4321

,,, XXXX  (distinct points on x ) and their corresponding 
4321

,,, YYYY  

on ,y  that  

),;,(),;,(
43214321

YYYYBXXXXA   

which means exactly  

),;,(),;,(
43214321

YYYYXXXX   

 therefore .
yidx

ss   

This theorem shows that it does not matter which line x  (as in the theorem) is 

chosen, the series is projectively "invariant". In conclusion, any pencil of conics gives a 

unique projective series. 
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Abstract. We classify all cubic differential systems with exactly six affine real invariant straight lines

(taking into account their parallel multiplicity) of four slopes. One invariant strait line of the first slope has

parallel multiplicity m, m = 1, 2, 3. We proove that there are five distinct classes of such systems. For

every class we carried out the qualitative investigation on the Poincaré disk.
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SISTEMELE DIFERENŢIALE CUBICE CU DREPTE INVARIANTE AFINE
REALE DE MULTIPLICITATE PARALELĂ TOTALĂ ŞASE ŞI DE

CONFIGURAŢIA
(
3(m), 1, 1, 1

)
Rezumat. Sunt clasificate sistemele diferenţiale cubice cu exact şase drepte afine reale invariante (ţinându-

se cont de multiplicitatea paralelă) de patru pante. O dreaptă de prima pantă are multiplicitatea paralelă

m, m = 1, 2, 3. Se arată că există cinci clase distincte de astfel de sisteme. Fiecare clasă este studiată din

punct de vedere calitativ şi pe discul Poincaré sunt construite portretele de fază.

Cuvinte-cheie: Sistem diferenţial cubic, dreaptă invariantă, portret de fază.

1. Introduction and statement of main results

We consider the real polynomial system of differential equations

dx

dt
= P (x, y),

dy

dt
= Q(x, y), gcd(P,Q) = 1 (1)

and the vector field

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
(2)

associated to system (1).

Denote n = max
{

deg(P ), deg(Q)
}

. If n = 2 (n = 3) then system (1) is called

quadratic (cubic).

An algebraic curve f(x, y) = 0, f ∈ C[x, y]
(
a function f = exp( g

h
), g, h ∈ C[x, y]

)
is

called invariant algebraic curve (exponential factor) of the system (1) if there exists a polyno-

mial

Kf ∈ C[x, y], deg(Kf ) ≤ n − 1 such that the identity X(f) ≡ f(x, y)Kf (x, y), (x, y) ∈ R2

holds. In particular, a straight line l ≡ αx + βy + γ = 0, α, β, γ ∈ C is invariant for (1) if

there exists a polynomial Kl ∈ C[x, y] such that the identity

αP (x, y) + βQ(x, y) ≡ (αx+ βy + γ)Kl(x, y), (x, y) ∈ R2 (3)

holds. The polynomialKf (x, y) is called cofactor of the invariant algebraic curve (exponential

factor) f. If m is the greatest natural number such that lm divides X(l) then we say that l

has parallel multiplicity m. In the case of cubic systems we have m ∈ {1, 2, 3}. If l has the

parallel multiplicity m, then f1 = exp(1
l
), ..., fm−1 = exp( 1

lm−1 ) are exponential factors.
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Let f1, . . . , fr
(
fr+1 = exp(gr+1/hr+1), . . . , fs = exp(gs/hs)

)
are invariant algebraic

curves (exponential factors) of (1) with cofactors Kf1(x, y), ..., Kfs(x, y), respectively. The

system (1) is called Darboux integrable if there exists a non-constant function of the form F =

fα1
1 · · · fαs

s ,

αj ∈ C, j = 1, s, such that either F is a first integral or F is an integrating factor for

(1) (about the theory of Darboux, presented in the context of planar polynomial differential

systems on the affine plane, see [23]). The function of the form

fα1
1 · · · fαs

s , (4)

where αj ∈ C, |α1| + · · · + |αs| 6= 0, is a first integral (an integrating factor) for (1) if and

only if in x and y the identity

α1Kf1(x, y) + α2Kf2(x, y) + ...+ αsKfs(x, y) ≡ 0 (5)(
s∑
j=1

αjKfj(x, y) ≡ −∂P (x, y)

∂x
− ∂Q(x, y)

∂y

)
(6)

holds.

By present a great number of works have been dedicated to the investigation of poly-

nomial differential systems with invariant straight lines.

The problem of estimating the number of invariant straight lines which a polynomial

differential system can have was considered in [2]; the problem of coexistence of the invariant

straight lines and limit cycles was examined in {[22] : n = 2}, {[11], n = 3}, [10].

The classification of all cubic systems with the maximum number of invariant straight

lines, including the line at infinity, and taking into account their geometric multiplicities, is

given in [13].

In [2] it was proved that the non-degenerate cubic system (1) can have at most eight

affine invariant straight lines. The cubic systems with exactly eight and exactly seven distinct

affine invariant straight lines have been studied in [13], [15]; with invariant straight lines of

total geometric (parallel) multiplicity eight (seven) - in [3], [4], [5]
(
[19], [30]

)
, and with six

real invariant straight lines along two (three) directions - in [17], [18]. The cubic systems

with degenerate infinity and invariant straight lines of total parallel multiplicity six and

total parallel multiplicity five were investigated in [20], [27], [28]. In [31] it was shown that

in the class of cubic differential systems the maximal
(
algebraic, geometric, integrable or

infinitesimal, see [6]
)

multiplicity of an affine real straight line (of the line at infinity) is

seven. In [32] the cubic systems with two affine real non-parallel invariant straight lines of

maximal multiplicity are classified.

In this paper a qualitative investigation of real cubic systems of the form{
ẋ = P0 + P1(x, y) + P2(x, y) + P3(x, y) ≡ P (x, y),

ẏ = Q0 +Q1(x, y) +Q2(x, y) +Q3(x, y) ≡ Q(x, y), gcd(P,Q) = 1,
(7)

where Pk =
∑

j+l=k

ajlx
jxl, Qk =

∑
j+l=k

bjlx
jxl (k = 0, 3) and |P3(x, y)| + |Q3(x, y)| 6≡ 0, with

affine real invariant straight lines of total parallel multiplicity six and of four distinct slopes,
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is given. Only one invariant straight line from these lines can have the parallel multiplicity

greater or equal two. Our main result is the following one:

Theorem 1.1. Assuming that a cubic system (7) possesses affine real invariant straight

lines of total parallel multiplicity six with four distinct directions and at least three of these

lines have multiplicity one. Then via an affine transformation and time rescaling this sys-

tem can be brought to one of the five systems (8)−(12) given in Table 1.1. Also, in this

table for each system (8)−(12) the invariant straight lines, Darboux first integral F (x, y)(
or integrating factor µ(x, y)

)
and phase portrait in the Poincaré disk are given.

Table 1.1. Canonical forms and qualitative investigation of the cubic systems with

invariant straight lines of configurations
(
3, 1, 1, 1

)
,
(
3(2), 1, 1, 1

)
and

(
3(3), 1, 1, 1

)
Fig./

Systems, invariant straight lines lj, first integral (F ) or integrating factor (µ) Tab.

Configuration (3,1,1,1).

(8)


ẋ = x(x+ 1)(x− a),

ẏ = (y − 1)
(
ay + (1− b)x2 + (a− 1)bxy + aby2

)
,

(b− 1)(a+ b+ ab)(1 + b+ ab) 6= 0, a > 0, b ∈ R,
1.1/

4.1
l1 = x, l2 = x+ 1, l3 = x− a, l4 = y − 1, l5 = x− ay, l6 = x+ y;

µ(x, y) = xα1(x+ 1)α2(x− a)α3(y − 1)α4(x− ay)α5(x+ y)α6

where α4 = (1− b)α1 =
1− b
b

, α2 = aα3 = − a

b(a+ 1)
, α5 = (a+ b+ ab)α3,

α6 = (1 + b+ ab)α3 if b 6= 0; F1(x, y) =
(x+ 1)(x− ay)

x(y − 1)
if b = 0;

Configuration (3,1,1,1).

(9)


ẋ = x(x+ 1)(x− a), −1 < a ≤ 1, a 6= 0, b > 0, c ∈ R∗,
ẏ = y

(
− a+ (1− a)x+ (1− bc)x2 + (b− 1)cxy + cy2

)
,(

|a+ b+ ab|+ |ac− (a+ 1)2|
)(
|1 + a+ ab|+ |c− a|

)
6= 0, if − 1 < a < 0,

and
(
|b− a|+ |ac− 1|

)(
|c− a|+ |ab− 1|

)
6= 0, if 0 < a ≤ 1,

1.2/

4.2

l1 = x, l2 = x+ 1, l3 = x− a, l4 = y, l5 = y − x, l6 = y + bx;

F2(x, y) = (x+ 1)−
(b+1)bc
a+1 (x− a)−

(b+1)abc
a+1 y−(b+1)(y − x)b(y + bx);

Configuration
(
3(2),1,1,1

)
.

(10)


ẋ = x2(x+ 1),

ẏ = y
(
x+ (1− bc)x2 + (b− 1)cxy + cy2

)
,

b ∈ R∗+, c ∈ R∗,
1.3

l1,2 = x, l3 = x+ 1, l4 = y, l5 = y − x, l6 = y + bx;

F3(x, y) = (x+ 1)−(b+1)bcy−(b+1)(y − x)b(y + bx);
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Table 1.1 (continued)

Fig./
Systems, invariant straight lines lj, first integral (F ) or integrating factor (µ) Tab.

Configuration
(
3(2),1,1,1

)
.

(11)


ẋ = x2(x+ 1),

ẏ = y
(
− bc− 2bcx+ (b− 1)cy + (1− bc)x2 + (b− 1)cxy + cy2

)
,

b ∈ R∗+, c ∈ R∗,
1.4

l1,2 = x, l3 = x+ 1, l4 = y, l5 = y − x− 1, l6 = y + b(x+ 1);

F4(x, y) = x−(b+1)bce(b+1)bc/xy−(b+1)(y − x− 1)b
(
y + b(x+ 1)

)
;

Configuration
(
3(3),1,1,1

)
.

(12)


ẋ = x3,

ẏ = y
(
(1− bc)x2 + (b− 1)cxy + cy2

)
,

c(bc− 1)(bc+ c+ 1)(b2 + bc+ 1) 6= 0, b > 0, c ∈ R,
1.5

l1,2,3 = x, l4 = y, l5 = y − x, l6 = y + bx;

F5(x, y) = x−(b+1)bcy−(b+1)(y − x)b(y + bx).

1) 2) 3) 4)

5) 6) 7) 8)

9) 10)

Fig. 1.1. Phase portraits of the system (8)
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1) 2) 3) 4)

Fig. 1.2. Phase portraits of the system (9)

1) 2) 1) 2)

Fig. 1.3. Phase portraits of the system (10) Fig. 1.4. Phase portraits of the system (11)

1) 2)

Fig. 1.5. Phase portraits of the system (12)

2. Some properties of the cubic systems with invariant straight lines

By a straight lines configuration of invariant straight lines of a cubic system we un-

derstand the set of all its invariant affine straight lines, each endowed with its own parallel

multiplicity.

The goal of this section is to enumerate such properties for invariant straight lines that

will allow the construction of configurations of straight lines realizable for (7). Some of these

properties are obvious or easy to prove and others were proved in [29].

Properties:

2.1) In the finite part of the phase plane each system (7) has at most nine singular

points.

2.2) In the finite part of the phase plane, on any straight line there are at most three

singular points of the system (7).

2.3) The system (7) has no more than eight affine invariant straight lines
(
[2]
)
.

2.4) At infinity the system (7) has at most four distinct singular points if

yP3(x, y) − xQ3(x, y) 6≡ 0. In the case yP3(x, y) − xQ3(x, y) ≡ 0 the infinity is degener-

ate, i.e. consists only of singular points.
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2.5) If yP3(x, y) − xQ3(x, y) 6≡ 0, then the infinity represents for (7) a non-singular

invariant straight line, i.e. a line that is not filled up with singularities.

2.6) Through one point cannot pass more than four distinct invariant straight lines of

the system (7).

We say that the straight lines lj ≡ αjx + βjy + γj ∈ C[x, y], (αj, βj) 6= (0, 0), j = 1, 2,

are parallel if α1β2−α2β1 = 0. Otherwise the straight lines are called concurrent. If an affine

invariant straight line l has the parallel multiplicity equal to m, then we will consider that

we have m parallel invariant straight lines identical with l.

2.7) The intersection point (x0, y0) of two concurrent invariant straight lines l1 and l2

of the system (7) is a singular point for this system.

By a triplet of parallel affine invariant straight lines we shall mean a set of parallel

affine invariant straight lines of total parallel multiplicity 3.

2.8) If the cubic system (7) has a triplet of parallel affine invariant straight lines, then

all its finite singular points lie on these straight lines.

2.9) The parallel multiplicity of an affine invariant straight line of the cubic system

(7) is at most three.

2.10) If the cubic system (7) has two concurrent affine invariant straight lines l1, l2

and l1 has the parallel multiplicity equal to m, 1 ≤ m ≤ 3, then this system cannot have more

than 3−m singular points on l2 \ l1.
We say that three affine straight lines are in generic position if no pair of these lines

are parallel and no more that two lines are passing through the same point.

2.11) For the cubic system (7) the total parallel multiplicity of three affine invariant

straight lines in generic position is at most four.

Proposition 2.1. If l ≡ αx+ βy + γ = 0, α 6= 0 (β 6= 0) is a real invariant straight line of

the system (7) then the transformation X = αx+ βy+ γ, Y = y
(
X = αx+ βy+ γ, Y = x

)
reduce (7) to a system of the form

Ẋ = X(a0 + a1X + a2Y + a3X
2 + a4XY + a5Y

2),

Ẏ = b0 + b1X + b2Y + b3X
2 + b4XY + b5Y

2+

+b6X
3 + b7X

2Y + b8XY
2 + b9Y

3.

(13)

Indeed, in the case α 6= 0 (β 6= 0), from (7) and (3), we have:

Ẋ = αẋ+ βẏ = (αx+ βy + γ)Kl(x, y) = X ·Kl

(
(X − βY − γ)/α, Y

)
,

Ẏ = ẏ = Q(x, y) = Q
(
(X − βY − γ)/α, Y

)
(
Ẋ = αẋ+ βẏ = (αx+ βy + γ)Kl(x, y) = X ·Kl

(
Y, (X − αY − γ)/β

)
,

Ẏ = ẏ = Q(x, y) = Q
(
Y, (X − αY − γ)/β

) )
.

Denote that the polynomial Kl(x, y) has degree less or equal to two and, consequently,

Kl

(
(X − βY − γ)/α, Y

)
has the same degree. �

Proposition 2.2. If lj ≡ αjx + βjy + γj = 0, j = 1, 2, ∆ ≡ α1β2 − α2β1 6= 0 are two

real invariant straight lines of the system (7) then the transformation X = α1x+ β1y + γ1,
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Y = α2x+ β2y + γ2 reduce (7) to a system of the form{
Ẋ = X(a0 + a1X + a2Y + a3X

2 + a4XY + a5Y
2),

Ẏ = Y (b0 + b1X + b2Y + b3X
2 + b4XY + b5Y

2).
(14)

Indeed,

Ẋ = α1ẋ+ β1ẏ = (α1x+ β1y + γ1)Kl1(x, y) =

= X ·Kl1

(
(β2X − β1Y + β1γ2 − β2γ1)/∆, (−α2X + α1Y + α2γ1 − α1γ2)/∆

)
,

Ẏ = α2ẋ+ β2ẏ = (α2x+ β2y + γ2)Kl2(x, y) =

= Y ·Kl2

(
(β2X − β1Y + β1γ2 − β2γ1)/∆, (−α2X + α1Y + α2γ1 − α1γ2)/∆

)
. �

3. Canonical forms

Let the system (7) hase a triplet {l1, l2, l3} of parallel invariant straight lines. Then:

3.1) lj, j = 1, 2, 3 are distinct and l1 ‖ l2 ‖ l3, or

3.2) l1 has parallel multiplicity two, l2 ≡ l1 6≡ l3 and l1 ‖ l3, or

3.3) l1 ≡ l2 ≡ l3 and l1 has parallel multiplicity three.

Along four directions there are only three possible configurations of six invariant

straight lines, three of which form a triplet of parallel invariant straight lines:

1) (3, 1, 1, 1), 2)
(
3(2), 1, 1, 1

)
, 3)

(
3(3), 1, 1, 1

)
.

Notation (3, 1, 1, 1) means that there are six distinct real invariant straight lines of

four directions and three of these lines form a triplet of parallel straight lines
(
the case

3.1)
)
. Configurations

(
3(2), 1, 1, 1

)
and

(
3(3), 1, 1, 1

)
correspond to the cases 3.2) and 3.3),

respectively.

3.1. Configuration (3, 1, 1, 1). Without loss of generality we can consider that one straight

line of these six is parallel with to Ox axis and the straight lines from triplet are parallel

with to Oy axis of coordinates. Taking into account the properties 2.2), 2.7) and 2.8)

from Section 2, the straight lines can have (up to some affine transformations) one of the

following three positions given in Fig. 3.1.

a)

2l 3ll1

4l

5l
l6

5l

l6

c)

l6

b)

l12l 3l

4l
4l

l1 3l2ll5

Fig. 3.1. Configurations of the type (3,1,1,1)

It is clear that the set of cubic systems which have the invariant straight lines of

configuration (3, 1, 1, 1) is a subset of the set of all cubic systems which have invariant

straight lines of configuration (3, 1).

In the case a) of Fig. 3.1 we can consider l1 = x, l1 ∩ l5 ∩ l6 = (0, 0), l2 = x + 1,

l3 = x − a, a > 0, l4 = y − 1. Then, using an affine transformation and time rescaling, the

cubic system for which (0, 0) is a singular point and lj, j = 1, 2, 3, 4 are invariant straight
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lines can be written in the form{
ẋ = x(x+ 1)(x− a) ≡ P (x, y), a > 0,

ẏ = (y − 1)(b1x+ b2y + b3x
2 + b4xy + b5y

2) ≡ Q(x, y), gcd(P,Q) = 1.
(15)

Note that the straight line l ≡ y − Ax − B = 0, A,B ∈ R is invariant for polynomial

differential system (1) if and only if the polynomial in x:

Ψl(x) = Q(x,Ax+B)− A · P (x,Ax+B)

is identically zero. According to [16] if the straight line l ≡ y − Ax − B = 0, A,B ∈ R is

invariant for (1) then l divides

E(X) = P · X(Q)−Q · X(P ), i.e.

E(X)=P (x, y)
(
P (x, y)∂Q(x,y)

∂x
+Q(x, y)∂Q(x,y)

∂y

)
−Q(x, y)

(
P (x, y)∂P (x,y)

∂x
+Q(x, y)∂P (x,y)

∂y

)
.

The polynomial E(X) has in x and y the degree 3(n − 1) + 2. In particular, in the case

of cubic systems we have deg
(
E(X)

)
= 8. Let l1, ..., l6 be the invariant straight lines of

(1) and l = y − Ax − B. Suppose that the lines l, lj, j = 1, ..., 6 are distinct. Denote

El(x) =
(
E(X)/(l1 · · · l6)

)
|y=Ax+B. The straight line l = y − Ax − B is invariant for (1) if

and only if in the same time the identities Ψl(x) ≡ 0 and El(x) ≡ 0 take place.

The straight line l5 (l6) passes through the singular points (0, 0) and (a, 1)
(
(−1, 1)

)
,

therefore it is described by equation x−ay = 0 (x+y = 0). The lines l5 and l6 are invariant

if {
Ψl5(x) = x(a− x)

(
a(b2 − ab1 − a) + (b5 + ab4 + a2b3 − a2)x

)
≡ 0,

Ψl6(x) = x(x+ 1)
(
b2 − b1 − a+ (1− b3 + b4 − b5)x

)
≡ 0,

i.e. if the following series of conditions is satisfied: b1 = 0, b2 = a, b4 = b(a − 1), b5 = ab,

where b = 1− b3. In these conditions the system (15) looks as{
ẋ = x(x+ 1)(x− a) ≡ P (x, y), a > 0,

ẏ = (y − 1)
(
ay + (1− b)x2 + (a− 1)bxy + aby2

)
≡ Q(x, y), gcd(P,Q) = 1,

(16)

i.e. we obtain the system (8) from Table 1.1.

Let l = y − Ax−B. For (16) we have

El(x) = −
(
a(1 + bB)(2− 2b+ 3bB) + b(a− 1 + 5aA+ b− ab− 2aAb− 2bB + 2abB+

+6aAbB)x+ b(1− b− 2Ab+ 2aAb+ 3aA2b)x2
)
,

Ψl(x) = aB(B − 1)(1 + bB) +B(2aA+ b− ab− 2aAb− bB + abB + 3aAbB)x+

+
(
(1− b)(1 + A)(aA− 1) +B(1− b− 2Ab+ 2aAb+ 3aA2b)

)
x2+

+bA(1 + A)(aA− 1)x3.

In conditions a > 0 and deg
(

gcd(P,Q)
)

= 0 the identities
{

Ψl(x) ≡ 0, El(x) ≡ 0
}

hold if

(b− 1)
(
a+ b(a+ 1)

)(
1 + b(a+ 1)

)
= 0. In this case (15) has more than six invariant straight

lines. Indeed, in the case b = 1
(
respectively, a+ b(a+ 1) = 0; 1 + b(a+ 1) = 0

)
the system

(15) has the invariant straight line l7 = y
(
respectively, l7 = x−ay+a+1; l7 = 1+b(x+y)

)
.

In the case b) and c) of Fig. 3.1 we can consider l1 = x, l2 = x+1, l3 = x−a and l4 = y.

It is clear that in the case b)
(
c)
)

of Fig. 3.1 we have −1 < a < 0 (a > 0). Moreover,
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in the case c) we can consider 0 < a ≤ 1. The cubic system for which lj, j = 1, 2, 3, 4 are

invariant straight lines looks as{
ẋ = x(x+ 1)(x− a), (−1 < a < 0 or 0 < a ≤ 1),

ẏ = y(b0 + b1x+ b2y + b3x
2 + b4xy + b5y

2).
(17)

The straight lines l5,6 pass through the singular point (0, 0). Therefore, they are described

by an equation of the form y − bx = 0, b ∈ R \ {0}. Using the transformation x → x, y →
αy, α > 0 we can choose l5 = y−x. Then, l6 = y+bx, b > 0. Solving the system of identities{

Ψl5(x) = x(a+ b0 + (b1 + b2 + a− 1)x+ (b3 + b4 + b5 − 1)x2) ≡ 0,

Ψl6(x) = −bx(a+ b0 − (b · b2 − b1 − a+ 1)x+ (b2 · b5 − b · b4 + b3 − 1)x2) ≡ 0

we obtain that the straight lines l5,6 are invariant for (17) if b0 = −a, b1 = 1 − a, b2 = 0,

b3 = 1− bc, b4 = c(b− 1), where c = b5, i.e. if the system (17) has the form{
ẋ = x(x+ 1)(x− a) ≡ P (x, y), −1 < a ≤ 1, a 6= 0, b > 0,

ẏ = y
[
− a+ (1− a)x+ (1− bc)x2 + c(b− 1)xy + cy2

]
≡ Q(x, y).

(18)

Let l = y − Ax−B. For (18) we have

El(x) = c(3(cB2 − a) + 2(1− a− cB + 3cAB + bcB)x+ (1− 2cA+ 3cA2 − bc+ 2cAb)x2),

Ψl(x) = B(B2c− a)+B(1− a− cB+3cAB+bcB)x+B(1− 2cA+ 3cA2 − bc+ 2bcA)x2+

+cA(A− 1)(A+ b)x3.

If c = 0, then (18) is degenerate, i.e. deg
(

gcd(P,Q)
)
> 0. Let c 6= 0. Then, the system

of identities
{
El(x) ≡ 0, Ψl(x) ≡ 0

}
is equivalent to the system of equalities

{
A(A− 1)(A+

b) = 0, cB2 − a = 0, 1− a− cB + 3cAB + bcB = 0, 1− 2cA+ 3cA2 − bc+ 2cAb = 0
}
.

In the case A = 0 we obtain b−a = ac−1 = 0, B = 1/a or c−a = ab−1 = 0, B = −1.

Therefore, if 0 < a ≤ 1 then the system (18) has the seventh invariant straight line l7 ≡
y−a = 0 if b−a = ac−1 = 0, B = 1/a and l7 ≡ y+1 = 0 if c−a = ab−1 = 0, B = −1. Let(
|b− a|+ |ac− 1|

)(
|c− a|+ |ab− 1|

)
6= 0 and A = 1. Then {c− a = ab+ a+ 1 = 0, B = 1}

⇒ −1 < a < 0 and we have the invariant straight line l7 ≡ y − x − 1 = 0. At last, if

A = −b then a + b(a + 1) = ac − (a + 1)2 = 0, A = B = a/(a + 1). Taking into account

that b > 0 these equalities imply −1 < a < 0. Thus, if −1 < a < 0 then the system

(18) has exactly six distinct invariant straight lines if and only if the following inequality(
|c− a|+ |ab+ a+ 1|

)(
|a+ b(a+ 1)|+ |ac− (a+ 1)2|

)
6= 0 holds.

The above description leads us to the system (9) from Table 1.1 and to the inequalities

associated with it.

3.2. Configuration
(
3(2), 1, 1, 1

)
. Let the system (7) have six invariant straight lines of

the considered configuration of which l1 has parallel multiplicity two, l2 ≡ l−1, and l3 ‖ l1,2.
Taking into account Properties 2.8) and 2.10) the invariant straight lines lj, j = 1, ..., 6

have (up to some affine transformations) one of the following two positions given in Fig. 3.2.
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b)a)

l5

l6

l5

l6

22

l4 l4

a)

l5

l6

3

b)

3

2

c)

3

2

2

Fig. 3.2. Configuration
(
3(2),1,1,1

)
Fig. 3.3. Configuration

(
3(3),1,1,1

)
Without loss of generality we can consider that l1,2 = x, l3 = x+1, l4 = y. The cubic system

for which these lines are invariant looks as{
ẋ = x2(x+ 1) ≡ P (x, y),

ẏ = y(b0 + b1x+ b2y + b3x
2 + b4xy + b5y

2) ≡ Q(x, y), gcd(P,Q) = 1.
(19)

In the case a)
(
b)
)

of Fig. 3.2 via the transformation x→ x, y → γy, γ 6= 0 we make

the line l5 to be described by the equation y−x = 0 (y−x− 1 = 0). The equation of l6 has

the form y = −bx (y = −bx − b), b > 0. In this case, i.e. a)
(
b)
)

of Fig. 3.2, the straight

lines l5,6 are invariant for (19) if the identities hold:{
Ψl5 = x

[
b0 + (b1 + b2 − 1)x+ (b3 + b4 + b5 − 1)x2

]
≡ 0,

Ψl6 = bx
[
− b0 + (bb2 − b1 + 1)x+ (bb4 − b2b5 − b3 + 1)x2

]
≡ 0


Ψl5 = b0 + b2 + b5 + (b0 + b1 + 2b2 + b4 + 3b5)x+ (b1 + b2 + b3 + 2b4 + 3b5 − 1)x2+

+(b3 + b4 + b5 − 1)x3 ≡ 0,

Ψl6 = b
[
− b0 − b2b5 + bb2 + (−3b2b5 + 2bb2 + bb4 − b0 − b1)x+ (−3b2b5 + bb2+

+2bb4 − b1 − b3 + 1)x2 + (−b2b5 + bb4 − b3 + 1)x3
]
≡ 0

 .

These identities give us

b0 = b2 = 0, b1 = 1, b3 = 1− bc, b4 = c(b− 1)(
b0 = −bc, b1 = −2bc, b2 = b4 = c(b− 1), b3 = 1− bc

)
,

where c = b5. We obtained the system (10)
(
(11)

)
from Table 1.1. For both systems the

equality c = 0 is in contradiction with the condition gcd(P,Q) = 1.

3.3. Configuration
(
3(3), 1, 1, 1

)
. For the first step, without loss of generality, we consider

the system {
ẋ = x3,

ẏ = y(b0 + b1x+ b2y + b3x
2 + b4xy + b5y

2).
(20)

The system (20) has the invariant straight lines: l1,2,3 = x and l4 = y. The other invariant

straight lines l5 and l6 of (20) (if exist) must pass through singular point (0, 0). Moreover,

we can consider that l5 (l6) is described by the equation y−x = 0 (y+ bx = 0, b > 0). The

identities
Ψl5 = x

[
b0 + (b1 + b2)x+ (b3 + b4 + b5 − 1)x2

]
≡ 0,

Ψl6 = −bx
[
b0 + (b1 − bb2)x+ (b2b5 − bb4 + b3 − 1)x2

]
≡ 0

have the solution

b0 = b1 = b2 = 0, b3 = 1− bc, b4 = c(b− 1), (21)

where c = b5.
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In the conditions
{

(21), b5 = c
}

the straight lines l5,6 are invariant for the system (20).

The cofactors of lines l4, l5, l6 are respectively: K4(x, y) = (1 − bc)x2 + c(b − 1)xy + cy2,

K5(x, y) = x2 + bcxy+ cy2 and K6(x, y) = x2− cxy+ cy2. From these, K4(x, 0) = (1− bc)x2,
K5(x, x) = (bc+ c+ 1)x2 and K6(x,−bx) = (b2c+ bc+ 1)x2. Therefore, if (bc− 1)(bc+ c+

1)(b2c+ bc+ 1) = 0 then at least one of the invariant straight lines has parallel multiplicity

greater than one but this is not allowed in the examined configuration. If in the system{
(21), (21), b5 = c

}
the parameter c vanishes then the condition gcd(P,Q) = 1 is not met.

Thus, the system (12) from Table 1.1 of Theorem 1.1 and its associated conditions are

obtained.

4. Darboux integrability

In this section we construct the first integrals (F ) or the integrating factors (µ) for

systems (8)−(12).

4.1. Integrability of the system (8):
ẋ = x(x+ 1)(x− a) ≡ P (x, y),

ẏ = (y − 1)
(
ay + (1− b)x2 + (a− 1)bxy + aby2

)
≡ Q(x, y),

(b− 1)(a+ b+ ab)(1 + b+ ab) 6= 0, a > 0, b ∈ R.
The cofactors of the invariant straight lines: l1 = x, l2 = x + 1, l3 = x − a, l4 = y − 1,

l5 = x− ay, l6 = x+ y of this system are, respectively:

Kl1(x, y) = (x+ 1)(x− a), Kl2(x, y) = x(x− a), Kl3(x, y) = x(x+ 1),

Kl4(x, y) = ay + (1− b)x2 + (a− 1)bxy + aby2,

Kl5(x, y) = −a+ (1− ab)x+ a(1− b)y + x2 + abxy + aby2,

Kl6(x, y) = −a+ (b− a)x+ a(1− b)y + x2 − bxy + aby2.

Putting s = 6, f ≡ l and Klj(x, y), j = 1, 6 in (6) and identifying the coefficients near

the same powers of x and y, we get the system

α1 + α5 + α6 = −2,

(1− a)α1 − aα2 + α3 + (1− ab)α5 + (b− a)α6 = (a− 1)(b+ 2),

α4 + (1− b)(α5 + α6) = 2(b− 1),

α1 + α2 + α3 + (1− b)α4 + α5 + α6 = b− 4,

b
(
2a− 2 + (a− 1)α4 + aα5 − α6

)
= 0,

b(3 + α4 + α5 + α6) = 0.

If b 6= 0 then this system has the following solution in α1, ..., α6 :

α1 =
1

b
, α2 =− a

(a+1)b
, α3 =− 1

(a+1)b
, α4 =

1−b
b
, α5 =−a+(a+1)b

(a+ 1)b
, α6 =−1+(a+1)b

(a+ 1)b
.

Therefore,

µ(x, y) = x
1
b (x+ 1)−

a
(a+1)b (x− a)−

1
(a+1)b (y − 1)

1−b
b (x− ay)−

a+(a+1)b
(a+1)b (x+ y)−

1+(a+1)b
(a+1)b

is a Darboux integrating factor of the system (8)
(
see, (4)

)
.

For these cofactors in the case b 6= 0, the identity (5) takes place if and only if α1 =

0, ..., α6 = 0. If b = 0, then the identity (5) is equivalent to the system
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
α1 + α5 + α6 = 0,

(1− a)α1 − aα2 + α3 + α5 + aα6 = 0,

α4 + α5 + α6 = 0,

α1 + α2 + α3 + α4 + α5 + α6 = 0;

⇔


α1 = −(α5 + α6),

α2 = α5,

α3 = α6,

α4 = −(α5 + α6).

This system has the solution α1 = α4 = −α2 = −α5 = −1. Thus,

F (x, y) =
(x+ 1)(x− ay)

x(y − 1)

is a first integral of the system
{

(8), b = 0
}

.

4.2. Integrability of the system (9):
ẋ = x(x+ 1)(x− a), a > −1, b > 0, c ∈ R∗,
ẏ = y

(
− a+ (1− a)x+ (1− bc)x2 + (b− 1)cxy + cy2

)
,(

|a+ b+ ab|+ |ac− (a+ 1)2|
)(
|1 + a+ ab|+ |c− a|

)
6= 0, if − 1 < a < 0,

and
(
|b− a|+ |ac− 1|

)(
|c− a|+ |ab− 1|

)
6= 0, if 0 < a ≤ 1.

The invariant straight lines: l1 = x, l2 = x+ 1, l3 = x− a, l4 = y, l5 = y − x, l6 = y + bx of

(9) have the cofactors, respectively:

Kl1(x, y) = (x+ 1)(x− a), Kl2(x, y) = x(x− a), Kl3(x, y) = x(x+ 1),

Kl4(x, y) = −a+ (1− a)x+ (1− bc)x2 + (b− 1)cxy + cy2,

Kl5(x, y) = −a+ (1− a)x+ x2 + bcxy + cy2, Kl6(x, y) = −a+ (1− a)x+ x2 − cxy + cy2.

Putting Kli(x, y), i = 1, 6 in the identity (5) we obtain in αi, i = 1, 6 the system:

α1 + α4 + α5 + α6 = 0,

(1− a)(α1 + α4 + α5 + α6)− aα2 + α3 = 0,

α1 + α2 + α3 + (1− bc)α4 + α5 + α6 = 0,

(b− 1)α4 + bα5 − α6 = 0,

α4 + α5 + α6 = 0;

⇔



α1 = 0,

α2 = −(b+ 1)bcα6/(a+ 1),

α3 = −(b+ 1)abcα6/(a+ 1),

α4 = −(b+ 1)α6,

α5 = bα6.

Considering α6 = 1, the solution of this system gives us the following first integral of (9):

F (x, y) = (x+ 1)−
(b+1)bc
a+1 (x− a)−

(b+1)abc
a+1 y−(b+1)(y − x)b(y + bx).

4.3. Integrability of the systems (10)−(12).

Similarly to subsections 4.1 and 4.2 for each system (10)−(12) we calculate the cofac-

tors Klj(x, y), j = 1, 6
(
see, (3)

)
of invariant straight lines and the exponents αj, j = 1, 6(

see, (5)
)

of the first integrals F (x, y) of the form (4). The obtained results are given in

Table 4.1.

Table 4.1. First integrals of systems (10) − (12)

Syst. li, i = 1, 6 Ki(x, y), i = 1, 6 αi, i = 1, 6 F

(10)

l1 = x,

l2 = e1/x,

l3 = x+ 1,

l4 = y,

l5 = y − x,
l6 = y + bx,

Kl1 = x(x+ 1),

Kl2 = −x− 1,

Kl3 = x2,

Kl4 = x+ (1− bc)x2 + (b− 1)cxy + cy2,

Kl5 = x+ x2 + bcxy + cy2,

Kl6 = x+ x2 − cxy + cy2,

α1 = 0,

α2 = 0,

α3 = −(b+ 1)bcα6,

α4 = −(b+ 1)α6,

α5 = bα6;

F3
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Table 4.1 (continued)

Syst. li, i = 1, 6 Ki(x, y), i = 1, 6 αi, i = 1, 6 F

(11)

l1 = x,

l2 = e1/x,

l3 = x+ 1,

l4 = y,

l5 = y − x− 1,

l6 = y + bx+ b,

Kl1 = x(x+ 1),

Kl2 = −x− 1,

Kl3 = x2,

Kl4 = bc(y − 2x− 1)− cy + (1− bc)x2+
+(b− 1)cxy + cy2,

Kl5 = bcy + x2 + bcxy + cy2,

Kl6 = −cy + x2 − cxy + cy2,

α1 = −(b+ 1)bcα6,

α2 = (b+ 1)bcα6,

α3 = 0,

α4 = −(b+ 1)α6,

α5 = bα6;

F4

(12)

l1 = x,

l2 = e1/x,

l3 = e1/x
2
,

l4 = y,

l5 = y − x,
l6 = y + bx,

Kl1 = x2,

Kl2 = −x,
Kl3 = −2,

Kl4 = (1− bc)x2 + (b− 1)cxy + cy2,

Kl5 = x2 + bcxy + cy2,

Kl6 = x2 − cxy + cy2,

α1 = −(b+ 1)bcα6,

α2 = 0,

α3 = 0,

α4 = −(b+ 1)α6,

α5 = bα6.

F5

5. Qualitative investigation of the systems (8)−(12)

In this section, the qualitative study of the systems (8)−(12) from Theorem 1.1 will

be done. For this purpose, in order to determine the topological behavior of trajectories,

the singular points in the finite and infinite part of the phase plane will be examined. This

information and the information provided by the existence of invariant straight lines will be

taken into account when the phase portraits of the system (8)−(12) on the Poincaré disk

will be constructed.

We set the abbrevation SP for a singular point and use here the following notations:

λ1 and λ2 for eigenvalues of SP ; S for a saddle (λ1λ2 < 0); N s for a stable node (λ1, λ2 < 0);

Nu for a unstable node (λ1, λ2 > 0); S − N s(u) for a saddle-node with a stable (unstable)

parabolic sector, P s(u) for a stable (unstable) parabolic sector, H for a hyperbolic sector.

5.1. System (8)
(
configuration (3,1,1,1)

)
, i.e. the system

ẋ = x(x+ 1)(x− a) ≡ P (x, y),

ẏ = (y − 1)
(
ay + (1− b)x2 + (a− 1)bxy + aby2

)
≡ Q(x, y),

(b− 1)(a+ b+ ab)(1 + b+ ab) 6= 0, a > 0, b ∈ R,

which has the invariant straight lines: l1 = x, l2 = x+ 1, l3 = x− a, l4 = y − 1, l5 = x− ay
and l6 = x+ y. This system has in the finite part of the phase plane nine singular points if

b 6= 0 and six if b = 0. The semi-plane of parameters a, b; a > 0 is divided in thirteen sectors

Ij by straight lines a = 0, b = 0, b = ±1 and the hyperbolas (a + 1)b = ±1, (a + 1)b = ±a
(see, Fig. 5.1).
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Fig. 5.1. Bifurcation diagram of the system (8)

In each of these sectors we calculate the eigenvalues of singular points and bring them in

Table 5.1. In Table 5.1 we used the notations: α = a+ 1 and β = a(b+ 1).

Taking into account that a > 0, from Table 5.1 it is easy to see that the singular points

O1 and O3 (respectively, point O5) of the system (8) are unstable nodes (is a stable nod). If

b < −1 or b > 0 then the O9 is a saddle, and if −1 < b < 0 then O9 is a stable node and so

on.

Further we will study non-hyperbolic singular points of the system (8): O2 in the sector

I11; O4 in the sectors I4−I6 and O6 in I2, I5 and I8. In the other cases the singular points

are hyperbolic.
Table 5.1. System (8): singular points, eigenvalues and types of SP

SP λ1; λ2 I1/I2/I3 I4/I5/I6 I7/I8/I9 I10/I11/I12 I13

O1(−1, 1) α; α N i

O2(0, 1) −a; β S S S S/S−N s/N s S

O3(a, 1) aα; aα Nu

O4(−1,− 1
a
) α; α(αb−a)

a
Nu S−Nu S S S

O5(0, 0) −a; −a N s

O6(a,−a)
aα;

aα(αb− 1)
Nu/S−Nu/S S/S−Nu/Nu Nu/S−N i/S S S

O7(−1, b−1
b

) α; a−αb
b

S − Nu S −
O8(a,

b−1
b

) aα; a−αab
b

S/−/Nu Nu/−/S S/−/Nu S −
O9(0,−1

b
) −a; β

b
S S S N s/−/S −

Fig. 1.1: 1)/2)/3) 4)/5)/2) 3)/4)/6) 7)/8)/9) 10)

1) Singular point O2(0, 1). Sector I11 is the semi-straight line of the semi-plane bOa, a >

0 given by equation b = −1. On I11 the eigenvalues of O2 are λ1 = −a and λ2 = 0, therefore

it is a semi-hyperbolic singular point. The transformation (x, y)→ (x, y− 1) translate O2 in

the origin of the system of coordinates xOy. Then, changing x by y and y by x, i.e. x = Y ,
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y = X and rescaling the time τ = −at, the system
{

(8), b = −1
}

takes the form Ẋ = 1
a
X
(
aX + (a− 1)Y + aX2 + (a− 1)XY − 2Y

)
= P (X, Y ),

Ẏ = Y − 1−a
a
Y 2 − 1

a
Y 3 = Y +Q(X, Y ).

The function Y = ϕ(X) =
∑

i≥1 ciX
i is an analitic solution of equation Y +Q(X, Y ) =

0 if and only if it vanishes Y = ϕ(X) ≡ 0. Putting Y = 0 in P (X, Y ) we obtain ψ(X) =

X2 +X3. According to [1] the singular point O2(0, 1) is a stable saddle-node.

2) Singular point O4

(
− 1,− 1

a

)
. In this case the sectors I4, I5 and I6 are placed on the

hyperbola a− (1 + a)b = 0, i.e. b = a
a+1

, where a > 0. The eigenvalues of O4 are λ1 = 1 + a

and λ2 = 0, therefore O4 is a semi-hyperbolic singular point. Translating O4 in the origin(
(x, y)→ (x+ 1, y + 1/a)

)
and putting b = a

a+1
in (8) we obtain

ẋ = x(x− 1)(x− a− 1), ẏ = (ay − a− 1)
(
− (a+ 1)x+ x2 + a(a− 1)xy + a2y2

)
/(a2 + a).

The nondegenerate transformation (x, y)→
(
Y,X+Y/a

)
and the time rescaling τ = (a+1)t

reduce the last system to the form Ẋ = − 1
a+1

X
(
aX + (a+ 2)Y − a2

a+1
X2 − (a+2)a

a+1
XY − 2Y 2

)
= P (X, Y ),

Ẏ = Y − a+2
a+1

Y 2 + 1
a+1

Y 3 = Y +Q(X, Y ).

From the equation Y +Q(X, Y ) = 0 we find Y = ϕ(X) = 0. Putting Y = 0 in P (X, Y ) we

obtain ψ(X) = − a
a+1

X2 + a2

(a+1)2
X3. According to [1], the singular point O4

(
− 1,− 1

a

)
is an

unstable saddle-node.

3) Singular point O6(a,−a), a > 0. The sectors I2, I5 and I6 are placed on the hyperbola

(a + 1)b = 1, i.e. b = 1
a+1

. The eigenvalues of O6 are λ1 = (1 + a)a and λ2 = 0, thus the

singular point O6 is semi-hyperbolic. Proceeding in the same way as in the case 2) for O6 we

obtain ψ(X) = − 1
a+1

X2 + 1
(a+1)2

X3. According to [1] the point O6 is of saddle-node type.

Proposition 5.1. At infinity the system (8) has the following singular points:

a) X1∞(1, 0, 0) − saddle; X2∞(1,−1, 0), X3∞
(
1, 1

a
, 0
)
− stable nodes and Y∞(0, 1, 0) −

unstable node, if b < 0;

b) X1∞(1, 0, 0) − stable node; X2∞(1,−1, 0), X3∞
(
1, 1

a
, 0
)
− saddles and Y∞(0, 1, 0) −

stable node, if b > 0;

c) if b = 0 then the infinity is degenerate for (8), i.e. consists only of singular points.

The singular points situated at the ends of the Oy axis are nodes. Through each of every

other singular point at the infinity passes only one trajectory.

Proof. In the case b 6= 0 (b = 0) the first Poincaré transformation x = 1/z, y = u/z

and the time rescaling τ = t/z2 (τ = t/z) reduce (8) to the system

ż = z(z + 1)(az − 1), u̇ = (u+ 1)(au− 1)
(
bu+ (1− b)z

)
(
ż = (z + 1)(az − 1), u̇ = (u+ 1)(au− 1)

)
,

and the second transformation: x = v/z, y = 1/z and τ = t/z2 (τ = zt) give us

v̇ = v(v + 1)(v − a)
(
b+ (1− b)z

)
, ż = z(z − 1)

(
ab+ (a− 1)bv + az + (1− b)v2

)
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(
v̇ = v(v + 1)(v − a), ż = (z − 1)(az + v2)

)
.

Putting z = 0 in the right-hand sides of these systems and equaling them with zero

we obtain the following singular points, respectively: X1∞(1, 0, 0) : {λ1 = −1, λ2 = −b},
X2∞(1,−1, 0) : {λ1 = −1,

λ2 = b(a + 1)}, X3∞

(
1, 1

a
, 0
)

:
{
λ1 = −1, λ2 = b(a+1)

a

}
and Y∞(0, 1, 0) : {λ1 = λ2 = −ab}(

Y∞(0, 1, 0) : {λ1 = λ2 = −a}
)
. The types of these singular points are completely determined

by their eigenvalues: λ1 and λ2. �

In Fig. 5.2 are illustrated the singular points from Proposition 5.1.

S S

N
u

N
s

N
u

N
s

N
s

N
s

N
s

N
u

S

S
S

S

N
s

N
s

N
s

N
s
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Fig. 5.2. Singular points at the infinity of the system (8)

The qualitative study in the finite part of phase plane and at the infinity leads us to

the portraits given in Fig. 1.1.

5.2. System (9)
(
configuration (3,1,1,1)

)
:

ẋ = x(x+ 1)(x− a), a > −1, b > 0, c ∈ R∗,
ẏ = y

(
− a+ (1− a)x+ (1− bc)x2 + (b− 1)cxy + cy2

)
,(

|a+ b+ ab|+ |ac− (a+ 1)2|
)(
|1 + a+ ab|+ |c− a|

)
6= 0, if − 1 < a < 0,

and
(
|b− a|+ |ac− 1|

)(
|c− a|+ |ab− 1|

)
6= 0, if 0 < a ≤ 1.

For this system the straight lines: l1 = x, l2 = x+1, l3 = x−a, l4 = y, l5 = y−x, l6 = y+bx

are invariant. At the infinity it has four singular points and in the finite part of the phase

plan it has nine (seven). All singular point are hyperbolic. Their eigenvalues and their types

are given in Table 5.2. The information from the Table 5.2 are sufficiently to sketch phase

portraits (see Fig. 1.2).

In the Table 5.2 we used the notations: α = a+ 1 and β = b+ 1.
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Table 5.2. System (9): singular points, eigenvalues and types of SP

−1 < a < 0 0 < a ≤ 1

SP λ1;λ2
c < 0 c > 0 c < 0 c > 0

O1(−1, 0) α; −bc N i S N i S

O2(0, 0) −a; −a N i N i N s N s

O3(a, 0) aα; −a2bc S N s N i S

O4(−1,−1) α; cβ S N i S N i

O5(a, a) aα; a2cβ N s S S N i

O6(−1, b) α; bcβ S N i S N i

O7(a,−ab) aα; a2bcβ N s S S N i

O8,9

(
0,±

√
a
c

)
−a; 2a S − − S

X1∞(1, 0, 0) −1; −bc S N s S N s

X2∞(1, 1, 0) −1; cβ N s S N s S

X3∞(1,−b, 0) −1; bcβ N s S N s S

Y∞(0, 1, 0) −c; −c N i N s N i N s

see Fig. 1.2: 1) 2) 3) 4)

5.3. System (10) (configuration
(
3(2),1,1,1)

)
:

ẋ = x2(x+ 1),

ẏ = y
(
x+ (1− bc)x2 + (b− 1)cxy + cy2

)
,

b ∈ R∗+, c ∈ R∗.

The straight lines: l1,2 = x, l3 = x+ 1, l4 = y, l5 = y−x şi l6 = y+ bx are invariant for (10).

The lines l1, l5, l4 and l6 divide the neighborhood of O(0, 0) in eight sectors. We enu-

merate these sectors from positive Ox semi-axis in counterclockwise direction. The notation

P uH4P sHP u means that the first sector is unstable parabolic, the second sector is of hy-

perbolic type, the 3,4,5,6 sectors are stable parabolic, the 7 sector is hyperbolic and the 8

sector is unstable parabolic.

Proposition 5.2. In the finite part of the phase plane the system (10) has the following

singular points:

1) O1(0, 0) − P uH4P sHP u if c < 0, and 2P uH2P sH2P u, if c > 0;

2) O2(−1, 0) − unstable node if c < 0, and saddle if c > 0;

3) O3,4(−1,−1) − saddle if c < 0, and unstable node if c > 0.

Proof. We will examine separately every singular point O1−O4.

a) Singular point O1(0, 0). Both eigenvalues of the point O1 are null. We will study

the behavior of the trajectories in a neighborhood of this point using blow-up method. First

we apply in (10) the transformation x = X, y = XY :{
Ẋ = ẋ = x2(x+ 1) = X2(X + 1),

Ẏ = ẏ/x− yẋ/x2 = bX2Y (Y − 1)(Y + a).
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Then, rescaling the time τ = X2t and using the substitution (X, Y )→ (X + 1, Y ), the

last system takes the form:

Ẋ = X, Ẏ = bY (Y − 1)(Y + a). (22)

The singular points of the system (22) and their eigenvalues are:{
M1(0, 0) : λ1 = 1, λ2 = −bc

}
− unstable node if c < 0, and saddle if c > 0;{

M2(0, 1) : λ1 = 1, λ2 = (b+ 1)c
}
− saddle if c < 0, and unstable node if c > 0;{

M3(0,−b) : λ1 = 1, λ2 = (b+ 1)bc
}
− saddle if c < 0, and unstable node if c > 0.

The behavior of the trajectories near the points: M1, M2, and (0, 0) is illustrated in

Fig. 5.3a (Fig. 5.3b) if c < 0 (c > 0).
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Fig. 5.3. System (10): the type of the singular point (0, 0)

b) Singular points O2(−1, 0), O3(−1,−1) and O4(−1, 0). These points have the eigen-

values respectively:

O2: λ
2 + (bc− 1)λ− bc = 0; λ1 = 1; λ2 = −bc;

O3: λ
2 − (1 + (b+ 1)c)λ+ (b+ 1)c = 0; λ1 = 1; λ2 = (b+ 1)c;

O4: λ
2 − (1 + (b+ 1)bc)λ+ (b+ 1)bc = 0; λ1 = 1; λ2 = (b+ 1)bc.

Each of the point O2, O3 and O4 are hyperbolic and is not difficult to determine their

types. �

Because the cubic nonlinearities of (9) and (10) coincide, these systems have the same

singular points at the infinity: X1∞(1, 0, 0), X2∞(1, 1, 0), X3∞(1,−b, 0), Y∞(0, 1, 0). More-

over, for both systems the eigenvalues λ1, λ2 are the same, respectively, and their types are

completely determined by the value of parameter c (see, Tab. 5.2).

The arguments outlined above are enough to be able to draw the phases portraits of the

system (10)

(see, Fig. 1.3,1) if c < 0 and Fig. 1.3,2) if c > 0.)

5.4. System (11)
(
configuration

(
3(2),1,1,1

))
:

ẋ = x2(x+ 1),

ẏ = y
(
− bc− 2bcx+ (b− 1)cy + (1− bc)x2 + (b− 1)cxy + cy2

)
,

b ∈ R∗+, c ∈ R∗.
For the system (11) the straight lines: l1,2 = x, l3 = x + 1, l4 = y, l5 = y − x − 1 and

l6 = y + b(x+ 1) are invariant.
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Proposition 5.3. If c < 0 (c > 0), then the system (11) has in the finite parte of the phase

plane the following six (four) singular points:

1) O1(0, 0), O2(0, 1), O3(0,−b) − saddle-nodes;

2) O4(−1, 0) − unstable node;

3) O5,6

(
−1,± 1√

−c

)
− saddles.

Proof. a) Singular point O1(0, 0). This point has the eigenvalues: λ1 = 0 and λ2 = −bc.
Therefore, O1 is a semi-hyperbolic. Rescaling in (11) the time τ = −bct we obtain the system ẋ = − 1

bc
x2(x+ 1) = P (x, y),

ẏ = y − b−1
b
y2 + 2xy + bc−1

bc
x2y + 1−b

b
xy2 − 1

b
y3 = y +Q(x, y).

The equation
{
y + Q(x, y) = 0, y(0) = 0

}
has the solution y = 0. Putting y = 0 in

P (x, y) we have ψ(x) = P (x, 0) = − 1
bc

(x2 +x3). According to [1], the singular point O1(0, 0)

is of saddle-node type.

b) Singular point O2(0, 1) has the eigenvalues: λ1 = 0 and λ2 = (b + 1)c, i.e. O2 is

semi-hyperbolic. At the beginning, via substitution (x, y) → (x, y − 1) we translate O2 in

origin, then rescaling in (11) the time τ = (b+ 1)ct, we obtain the system ẋ = 1
(b+1)c

x2(x+ 1) = P (x, y),

ẏ = y + 2
(b+1)c

x2(1− x) + 2xy + b+2
b+1

y2(x+ 1) + 1+(b+1)c
(b+1)c

x2y + 1
b+1

y3 = y +Q(x, y).

The solution y = ϕ(x) =
∑

i≥1 cix
i of the equation y + Q(x, y) = 0 has the form

ϕ(x) = − 2
(b+1)c

x2 + 2
(b+1)c

x3 + · · ·. Putting ϕ(x) in P (x, ϕ(x)) we come to the function

ψ(x) = 1
(b+1)c

(x2 + x3). Therefore, the singular point O2(0, 1) is of saddle-node type (see,

[1]).

c) Singular point O3(0,−b). Similarly as in b), for O3(0,−b) we get ϕ = 2
(b+1)c

x2 + · · ·
and ψ(x) = 1

(b+1)bc
(x2 + x3). Thus, O3 is of saddle-node type

(
[1]
)
.

d) Singular points O4(−1, 0) and O5,6(0,±1/
√
−c). The eigenvalues of O4 (O5,6) are

λ1 = λ2 = 1 (λ1 = −2 and λ2 = 1). Therefore, O4 (O5,6) is (are) unstable node (saddles). �

Because the systems (9) and (11) have the same cubic non-linearities, their singular

points at the infinity coincide. The qualitative characteristics of these points are given in

Tab. 5.2.

The investigations allowed us to draw the phase portraits of the system (11) (see, Fig.

1.4).

5.5. System (12)
(
configuration

(
3(3),1,1,1

))
:

ẋ = x3,

ẏ = y
(
(1− bc)x2 + (b− 1)cxy + cy2

)
,

c(bc− 1)
(
(b+ 1)c+ 1

)(
(b+ 1)bc+ 1

)
6= 0, b > 0, bc ∈ R.

This system has the following invariant straight lines: l1,2,3 = x, l4 = y, l5 = y − x and

l6 = y + bx.
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Proposition 5.4. If c < 0 (c > 0) then in the finite parte of the phase plane the system (12)

has only one singular point (0, 0) which is of the type P u2H2P u2HP u (unstable topological

node) if c < 0 (c > 0).

Proof. Both eigenvalues of the singular point O(0, 0) are null. Therefore, O(0, 0) is

nilpotent. We will study the behavior of the trajectories in a neighborhood of this point

using blow-up method. In the polar coordinates x = ρcosθ, y = ρsinθ the system (12) takes

the form:
dρ
dτ

= ρ
(

cos4 θ + b sin4 θ + (1− bc) sin2 θ cos2 θ + c(b− 1) sin3 θ cos θ
)
,

dθ
dτ

= c sin θ cos θ(sin θ − cos θ)(sin θ + b cos θ),
(23)

where τ = ρ2t. Taking into account that the system (12) is symmetric with respect to the

origin, it is sufficient to consider θ ∈ [0, π). The singular points of the system (23) with first

coordinate ρ = 0 and the second θ ∈ [0, π), their eigenvalues and types respectively are:

M1(0, 0): {λ1 = 1, λ2 = −bc}− unstable node, if c < 0, and saddle, if c > 0;

M2(0, π/2): {λ1,2 = ±c}− saddle;

M3(0, π/4):
{
λ1 =

1

2
, λ2 =

(b+ 1)c

2

}
− saddle, if c < 0, and unstable node, if c > 0;

M4(0,−arctg b):
{
λ1 =

1

b2 + 1
, λ2 =

(b+ 1)bc

b2 + 1

}
− saddle, if c < 0, and unstable node, if

c > 0.

We obtain Fig. 5.4a), if c < 0, and Fig. 5.4b), if c > 0. In the case c < 0 we have the

following partition in sectors of the neighborhood of the origin: P u2H2P u2HP u and in the

case c > 0 the neighborhood of the origin is an unstable topological node. �
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Fig. 5.4. System (12): the type of the singular point (0, 0)

The systems (9) and (12) have the same qualitative characteristic at the infinity.

The phase portraits of the system (12) are given in Fig. 1.5.

The results obtained in the Sections 3 − 5 prove the Theorem 1.1.
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8. Cozma D. and Şubă A. The solution of the problem of center for cubic differential

systems with four invariant straight lines. An. Ştiinţ. Univ. ”Al. I. Cuza”(Iaşi),
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Abstract. In this paper, it is proved that the integral operator 
*S S  is compact if the contour of integration 

is of the Lyapunov type. An example is brought to show that this property of the operator 
*S S becomes 

false if the contour of integration has angular points.  
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ASUPRA COMPACTICITAȚII UNOR OPERATORI INTEGRALI  

CU NUCLEE DE TIP CAUCHY 

Rezumat. În lucrare se demonstrează că operatorul integral singular 
*S S  este compact în cazul în care 

conturul de integrare este de tip Lyapunov. Se construiește un exemplu care arată că această proprietate a 

operatorului 
*S S  devine falsă dacă conturul are puncte unghiulare. 

Cuvinte-cheie: operator integral singular, operator compact, contur Lyapunov pe porțiuni. 

 

1. Introducere  

Fie Γ  un contur compus pe planul complex C  și S  operatorul integral singular cu 

nucleul Cauchy 

Γ

1
Γ

( )
( S )( t ) d , t .

i t

 
 

 
 

                                                 (1.1) 

În lucrare se demonstrează că în cazul în care conturul Γ  este de tip Lyapunov atunci 

operatorul *S S  este compact în spațiul ΓpL ( , ),  unde  

kn

k

kttt



 



1

)( , 11  pk , 1 2k , ,..., n.                           (1.2) 

Se construiește și se analizează un exemplu care demonstrează că dacă conturul Γ  

are puncte unghiulare, atunci operatorul *S S  încetează a mai fi compact. Din faptul că 

proprietatea operatorului *S S  de a fi compact depinde de netezimea conturului de 

integrare rezultă că normele esențiale ale operatorilor 
1

2
S,P ( I S )   și 

1

2
P ( I S )   

depind de mărimile unghiurilor formate de contur în punctele sale unghiulare. Astfel, în 

consecință, metodele de cercetare elaborate de către matematicianul I. Simonenko în cazul 

ecuațiilor integrale singulare pe contururi cu puncte unghiulare necesită unele precizări și 

modificări. 
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2. Operatorul *S  

Vom stabili câteva proprietăți ale operatorului *S  începând cu determinarea formei 

explicite al acestui operator (a se vedea [1] și [2]). Fie ΓpL ( , )   și 1Γ q

qL ( , ),   unde 

1 1 1p q ,   atunci  

|∫ 𝜑(𝑡) 

𝛤

𝜓̅(𝑡)|𝑑𝑡|| = |∫ 𝜑(𝑡)𝜌
1

𝑝⁄ (𝑡) 

𝛤

𝜓̅(𝑡)𝜌−1
𝑝⁄ (𝑡)|𝑑𝑡|| ≤ 

1

1 1

Γ Γ

Γ Γ

q
p q

q
p p p q

L ( , ) L ( , )
( ( t ) ( t ) dt ) ( ( t ) ( t ) dt ) .

 
      



   

Din teorema lui Riesz despre forma generală a operatorului liniar și mărginit în spațiul

ΓpL ( )  rezultă următoarea afirmație. 

Spațiul conjugat al spațiului ΓpL ( , )  este spațiul 1 1 1Γ 1q

qL ( , ), p q .      

În mod obișnuit aceasta înseamnă că toate funcționalele liniare și continue din 

Γ*

pL ( , )  au următoarea formă  

Γ

Ψ Γp( ) ( t ) ( t ) dt ( L ( , )),       

unde 1Γ q

qL ( , )   și, în plus,  

1Γ Γ
Ψ * q

p qL ( , ) L ( , )
.

 
   

Menționăm că dacă ponderea 
kn

k

kttt



 



1

)( verifică condițiile  

11  pk , 1 2k , ,..., n,                                             (2.1) 

atunci ponderea 
1

1

1

k( q )n
q

k

k

( t ) t t











  verifică condițiile  

1 1 1k( q ) q .                                                    (2.2) 

Așadar, dacă condițiile (2.1) și (2.2) sunt verificate, atunci din teorema lui B. Hvedelidze 

[3] rezultă că operatorul S  este mărginit și în spațiul 1Γ q

qL ( , ).   

Fie Γt .  Se vede ușor că are loc egalitatea  

dt h( t ) dt ,  

unde h( t ) exp( i ( t )),  iar ( t )  este unghiul format de tangenta la curba Γ  cu semiaxa 

pozitivă reală. Funcția h( t )  este definită în orice punct nesingular și este mărginită și 

continuă pe porțiuni. 

Teorema 2.1. Fie Γ  un contur compus și pentru funcția ( t )  sunt verificate condițiile 

(2.1). În spațiul 1Γ q

qL ( , )   operatorul *S  este legat de operatorul S   prin relația 

*S HSH,                                                        (2.3) 
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unde operatorul H este definit de egalitatea  

( H )( t ) h( t ) ( t ).   

Demonstrație. Fie   și   funcții raționale pe conturul Γ.  În integrala iterată  

Γ Γ

1 ( )
( S , ) ( t ) dt d

i t

 
   

 


  , 

în care o integrală este obișnuită iar alta singulară, avem dreptul [3] să schimbăm ordinea 

de integrare. Obținem 

1

Γ

1 ( )h ( )
( S , ) ( t )h( t )dt d ( ,H S H ).

i t

  
     

 



  
   

Prin urmare *S HSH.  Teorema este demonstrată. 

Considerăm câteva exemple. Fie Γ  un arc de cerc, atunci 

0 0

i it Re ,d Re id i( t ) d .           Prin urmare, 0h( ) i( t ).    În acest caz are loc 

egalitatea 

0

2

0 Γ Γ

1 1* i( t ) ( ) ( )d
( S )( t ) d ( S )( t ).

( t t ) i tR ( t )

     
  

  


  

 
   

În mod similar, dacă  Γ a,b , atunci 1d d ,h( t )    și  *S S.  Vom arăta că, într-un 

anumit sens, cu aceste exemple au fost epuizate toate curbele  în care operatorul S  este 

autoadjunct în spațiul 2 ΓL ( ).  Are loc următoarea teoremă. 

Teorema 2.2. Dacă operatorul S  este autoadjunct în spațiul 2 ΓL ( )  , atunci Γ  este un 

cerc, un arc de cerc, sau o parte a unei drepte. 

Demonstrație. Fie *S S, atunci pentru orice funcție   din 2 ΓL ( )  are loc egalitatea  

1 1

Γ

1 1
0*h ( t )h ( )

( ) ( )d (( S S ) )( t ) .
i t t


   

  

 

   
 

  

Din această relație rezultă că 

( t )h( t )h( ) t.                                                       (2.4) 

Fie s  abscisa de arc și t t( s )  ecuația (naturală) a curbei Γ . Așa cum dt h( t )ds ,

atunci h( t( s )) t ( s )  și egalitatea (2.4) poate fi transcrisă sub forma  

0
0

0

t( s ) t( s )
t ( s )t ( s ) .

t( s ) t( s )


  


                                               (2.5) 

Din această egalitate rezultă existența derivatei de orice ordin a funcției t( s ). Derivând 

ambele părți ale egalității  

0 0 0( t( s ) t( s ))t ( s )t ( s ) t( s ) t( s )     

odată în raport cu s , apoi în raport cu 0s , obținem 

0 0 0( t ( s )t ( s )t ( s ) ( t( s ) t( s ))t ( s )t ( s ) t ( s )         

și 
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0 0 0 0 0( t ( s )t ( s )t ( s ) ( t( s ) t( s ))t ( s )t ( s ) t ( s ).         

Ținând cont de egalitatea 1t ( s )t ( s ) ,   atunci din ultimele două relații obținem 

0 0 0 0( t( s ) t( s ))( t ( s )t ( s ) t ( s )t ( s ) .       

Din egalitatea  

0 0t ( s ) / ( t ( s ) t ( s ) / t ( s )                                             (2.6) 

și din faptul că funcția t t( s ) nu poate fi constantă obținem că raportul t ( s ) / ( t ( s )   este 

constant k ). De aici, pentru 0k   rezultă că 
1

kst( s ) ce c .  Deoarece 1t ( s ) ,  atunci 

Re𝑘 = 0  ceea ce înseamnă că funcția t t( s )  reprezintă ecuația unui cerc, sau a unui arc 

de cerc. Pentru 0k   soluția ecuației (2.6) este funcția 1t cs c ,   în care 1c .  

Teorema este demonstrată. 

Menționăm că din cele demonstrate mai sus operatorul S  este autoadjunct în spațiul 

2 ΓL ( )  și în cazul în care Γ  este orice dreaptă sau o parte a unei drepte. 

 

3. Compacticitatea operatorului *S S  

În caz general operatorii S  și *S  nu coincid, însă pentru o clasă vastă de curbe acești 

operatori diferă printr-un termen compact. Această afirmație se conține în următoarea 

teoremă. 

Teorema 3.1. Fie Γ un contur compus de tip Lyapunov și *S  conjugatul operatorului S  

care acționează în spațiul ΓpL ( , ).  Atunci operatorul *S S este compact în spațiul 

1Γ q

qL ( , ).   

Demonstrație. Pentru început considerăm Γ  un contur simplu închis de tip Lyapunov. 

Notăm cu 0Γ  cercul unitate, iar prin  t ( z )  funcția lui Riemann care transformă conform 

discul unitate în domeniul G ,  mărginit de Γ.  Operatorul S  poate fi (a se vedea [2]) 

exprimat sub forma  

1

0 1S B S B T ,                                                            (3.1) 

unde  

0

0 0

Γ

1
Γ

( )
( S )( z ) d , z ,

i z

 
 

 
 

                                             (3.2) 

0

1

Γ

1 1( )
(T )( ) ( ) ( ( ))d ,

i ( ) ( z ) z

 
     

    


 

                              (3.3) 

( B )( z ) ( ( z )),     1( B )( t ) ( ( t )),     

iar z ( t )  este funcția inversă funcției t ( z ).  Nucleul operatorului integral (3.3) are 

singularități slabe pe conturul 0Γ  și, prin urmare [4], este compact în spațil 1Γ q

qL ( , ).   

Determinăm operatorii *B și 1 *( B ) . Fie   și   funcții raționale pe conturul 0Γ ,atunci  
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0Γ

( B , ) ( ( z )) ( z ) dz     
1

Γ

d
( t ) ( ( t )) ( t ) dt ( , B ).

dt


        

Din această egalitate rezultă că  

1* d
B B

dt

   și 1 * d
( B ) B.

dz

   

Operatorul 
0 0S ( t ) ( t ) S    este compact, aceasta rezultă din teorema 4.3 din 

lucrarea [2].  Deoarece 
0 0

*S S  este compact, atunci 

1 1

0 1 0 1

* *S S ( t ) B S ( t ) B T B S B T        

1 1

0 0 2 2( t ) ( ( t )) B S B B S B T T         , 

unde 2T  este un operator compact. Vom considera acum cazul în care conturul Γ  este un 

arc simplu deschis.  Fie Γ̃ un contur simplu închis care conține arcul Γ . Notăm cu ( t )

funcția caracteristică al arcului Γ : 

𝜒(𝑡) = {
1,   t ∈ Γ

0,   t ∈ Γ̃\Γ
. 

Spațiul ΓpL ( , )  în mod obișnuit poate fi identificat cu subspațiul funcțiilor N de forma 

𝜒𝜑̃  (𝜑̃ ∈ 𝐿𝑝(𝛤̃, 𝜌). Subspațiul N este invariant în raport cu operatorul 𝐴 = 𝜒𝑆̃𝜒𝐼,unde 

(𝑆̃ℎ)(𝑧) =
1

𝜋 𝑖
∫

ℎ(𝜉)

𝜉 − 𝑧
Γ̃

𝑑𝜉 ,   𝑧 ∈ Γ̃, 

iar restricția acestui operator pe spațiul ΓpL ( , )  coincide cu operatorul S. În baza celor 

demonstrate, avem 𝐴∗ = 𝜒𝑆̃∗𝜒𝐼 = 𝜒(𝑆̃ + 𝑇)𝜒𝐼, unde T  este un operator compact. De aici 

rezultă că operatorul *S S  este compact. 

Considerăm acum cazul general în care Γ  este alcătuit dintr-un număr finit de arce și 

curbe închise 1 2 2Γ Γ Γ, ,..., .  Fie j( t )  funcția caracteristică a curbei Γj  și 
jR  operatorul 

definit în spațiul ΓpL ( , )  prin relația j jR I.  Atunci 
1

n

j k

j ,k

S R SR .


   Operatorii 

j kR SR ( j k )  sunt operatori integrali cu nuclee continue (amintim că curbele Γj și Γk (𝑗 ≠

𝑘) nu au puncte comune), prin urmare sunt compacți. Restricția operatorilor  
j kR SR  pe 

spațiul Γ Γp j j pL ( , )( R L ( , ))   coincide cu operatorul S. În baza celor deja demonstrate 

avem *

j j j j j( R SR ) R SR T  , unde 
jT  sunt operatori compacți. De aici rezultă că *S S  este 

compact. Teorema este demonstrată. 

Teorema 3.1 devine falsă dacă cel puțin într-un punct al conturului Γ  nu este 

îndeplinită condiția lui Lyapunov. Presupunem, de exemplu, că 1 2Γ Γ Γ ,   unde 1  şi 2  

sunt segmente de dreaptă care unesc punctul 0z  cu 1z  şi, respectiv 0z  cu iz  . În 

punctul  0z  conturul formează un unghi de măsură 2 . Vom arăta că în acest caz 

operatorul *S S  nu este compact în spațiul  2L .  
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Fie Γt . Așa cum dt dt  pentru 1Γt  și dt i dt  pentru 
2Γt ,  atunci 1h( t )

pentru 
1Γt  și h( t ) i pentru 

2Γt .  În baza teoremei 2.1 avem *S HSH.   

Admitem că operatorul *S S  este compact, atunci operatorul  T HSH S , X  unde 

X  este funcția caracteristică a lui 2 , de asemenea este compact.  În spaţiul  2L  

considerăm şirul   tn  normat de funcţii definit prin relaţiile  

 

1
0

1
0 Γ 0

n

n , t , ;
n

t n N ,

, t \ ; .
n



  
  

  
 

      

pentru

pentru 

 

și vom arăta că din șirul n nT   nu se poate extrage nici un subşir convergent. În baza 

definiţiei operatorului T  avem 

       
  1

0

1 1
n

n n

t n
T t t S HSH d

i t t
  

  

 
     

  


X
X  

  1

22
0

1
n

t ( i ) t t
n d

i t


 

 
 




X
 

 
22

1 1 1
1 2

t ( i )
(ln( ) arctg ).

i t nn t


 

X
 

Fie   22

1
1nu ( t ) t ln( ,

n t
 X  

1
nv ( t ) t narctg

t n
 X   și  

1

2
n n nu v .    

Din relațiile  

 

1

2

2 2Γ

0

1
1

p

p p p

n L
u n ln ( )dx

n x
    

2 2

2

12 2

0 0

1 1
1 1

p pn n

p p pp pdy
n ln ( ) n ln ( )dy c n ,

y n y

 

      

1

2 2

Γ

0 0

1 1

p

p

p p p p

n L ( )

dy
v n ) dx n

nx y n

 
   

 
 

n

(arctg arctg   

2 2

2

0

1
pp p

p pn dy c n
y

 
 

 
 
 arctg  

rezultă că 
 Γ

0 1 2
p

n Ln
lim T , p .


  pentru  

Astfel, dacă şirul   2 Γn nT L    ar conţine un subşir convergent, atunci acest 

subşir în mod necesar ar converge la zero. Deoarece  n n( t ) v ( t ),   atunci 

2 2

1

2 2

Γ Γ

0 0

1 1
0

n

n nL ( ) L ( )
v arctg dy arctg dy .

y y
       
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De aici rezultă că  n  nu conţine nici un subşir convergent în spaţiul  2L . Aşadar, 

operatorul T   nu este compact în spaţiul  2L . 
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Abstract. Consider the general cubic differential system  yxPx , ,  yxQy , , where 

 , ,P Q x yR ,  max deg ,deg 3P Q  ,  , 1GCD P Q  . If this system has enough invariant straight 

lines considered with their multiplicities, then, according to [1], we can construct a Darboux first integral. 

In this paper we obtain 26 canonical forms for cubic differential systems which possess real invariant 

straight lines along one direction of total multiplicity seven including the straight line at the infinity.  
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2010 Mathematics Subject Classification: 34C05 

 

FORMELE CANONICE ALE SISTEMELOR DIFERENȚIALE CUBICE CE 

POSEDĂ DREPTE INVARIANTE REALE DE-A LUNGUL UNEI DIRECȚII A 

CĂROR MULTIPLICITATE TOTALĂ ESTE EGALĂ CU ȘAPTE 

Rezumat. Fie sistemul diferențial cubic general  yxPx , ,  yxQy , , unde  , ,P Q x yR , 

 max deg ,deg 3P Q  ,  , 1GCD P Q  . Conform [1], pentru un sistem diferențial cubic se poate de 

construit o integrală primă de tip Darboux, dacă sistemul dat posedă un număr suficient de drepte 

invariante considerate cu multiplicitățile lor. În această lucrare se obțin 26 sisteme ce reprezintă formele 

canonice ale sistemelor diferențiale cubice ce posedă drepte invariante reale de-a lungul unei direcții și a 

căror multiplicitate totală este egală cu șapte împreună cu dreapta de la infinit. 

Cuvinte cheie: sistem diferențial cubic, dreaptă invariantă, integrabilitate Darboux. 

 

1. Introduction 

We consider the real polynomial system of differential equations  

 

 
  1,,

,

,
















QPGCD

yxQ
dt

dy

yxP
dt

dx

                    (1) 

and the vector field  

   , ,P x y Q x y
x y

 
 

 
                        (2) 

associated to system (1). Denote     max deg ,degn P Q . If 2n   ( 3n  ), then the 

system (1) is called a quadratic (cubic) system. 

Definition 1. An algebraic curve  , 0f x y  ,  ,f x yC , is called invariant algebraic 

curve for the system (1), if there exists a polynomial  ,fK x yC , such that the identity  

     , ,ff f x y K x y                         (3) 

holds. 
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The invariant algebraic curves  ,f x y x y      of the order one of system (1) 

are called invariant straight lines of the system (1). 

System (1) is called Darboux integrable if there exists a non-constant function of 

the form 1 2

1 2 ... s

sF f f f
 

    , where 
jf  is an invariant algebraic curve and Cj , 

1,j s , such that F  is a first integral or F is an integrating factor for (1). The function 

1 2

1 2 ... s

sF f f f
 

     is called a Darboux first integral. If a polynomial differential system 

has enough invariant straight lines (including their multiplicity), then, according to [1], a 

Darboux first integral can be constructed for this system. 

In the theory of dynamic systems, the investigation of polynomial differential 

systems with invariant straight lines is done using different types of multiplicities of these 

invariant straight lines, for example: parallel multiplicity, geometric multiplicity; 

algebraic multiplicity; etc [2]. In this paper we will use the notion of algebraic 

multiplicity of an invariant straight line.  

Definition 2. Let  m xC  be the C -vector space of polynomials in  xC  of degree at 

most m . Then it has dimension n

n mR C  . Let 
1 2, ,..., Rv v v  be a base of  m xC . If k  is 

the greatest positive integer such that the k -th power of  ,f x y  divides det RM , where 

     

     

1 2

1 1 1

1

2

2

1 ...

...
,

... ... ... ...

...

R

R R R

R

R

R

v v

v

v

v

M

v

v

v v  

 
 
 
 
  
 

 

then the invariant algebraic curve f  of degree m of the vector field  has algebraic 

multiplicity k . 

In the above definition, the expression  1

1

R v  means that the operator   is 

applied 1R   times on vector 
1v , i.e.     1k k

i iv v  . 

There are a great number of articles dedicated to the investigation of polynomial 

differential systems with invariant straight lines. In [3] the authors estimate the number of 

invariant straight lines that a polynomial differential system can have. The problem of 

coexistence of invariant straight lines and limit cycles has been studied in [4,5], and the 

problem of coexistence of invariant straight lines and singular points of the center type 

for cubic system has been studied in [6,7]. The classification of all cubic systems which 

have the maximum number of invariant straight lines including their multiplicities was 

performed in [8,9]. In [10] were studied the cubic systems with exactly eight invariant 

straight lines. The cubic systems with six real invariant straight lines along two and three 

directions were studied in [11,12]. 
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In this paper we obtain all canonical forms of cubic differential systems with real 

invariants straight lines along one direction with their total multiplicity equal to seven 

including the multiplicity of the invariant straight line at the infinity. 

 

2. The algebraic multiplicity of invariant straight lines 

We will study the following cubic differential system 

     

     

0 1 2 3

0 1 2 3

, , , ,

, , , ,

x a P x y P x y P x y

y b Q x y Q x y Q x y

   


   

                      (4) 

where    , , , , 1,3i iP x y Q x y i   are homogenous polynomials of degree i , and the coeffi- 

cients are arbitrary parameters   ,

0

,
i

i j j

i i j j

j

P x y a x y





 ,   ,

0

,
i

i j j

i i j j

j

Q x y b x y





 , 1,3i  .  

When the system (4) has an invariant straight line of the form 0x y     , we 

can bring this straight line to the form 0x   using the affine transformation 

,x x y y y      . It is obvious that the conditions for the existence of invariant 

straight line 0x   for system (4) are simpler than the conditions for the existence of 

invariant straight line 0x y      for the same system.  

Besides the existence of invariant straight lines, we are interested the invariant 

straight lines to have a certain algebraic multiplicity. According to Definition 2, for the 

cubic differential system with invariant straight lines we have 2

3 3R C  . As the basis of 

the vector space of polynomials  1 xC  we can choose 1 2 31, ,v v x v y   . Then the 

matrix RM  has the form  

   

   

1

0 , ,

0

R

P

x y

M P x y Q x y

Q

 
 

  
 
 

. 

In this case, the polynomial det RM
 
looks    det RM P Q Q P 

 
and is a polynomial 

of degree 8 with respect to x  and y . According to Definition 2, the straight line 0x   

is invariant if and only if the polynomial det RM  can be written as  
7

0

det i

R i

i

M x A y x


  , 

where   deg 7iA y i  . Moreover, if the polynomials  0A y ,    1 ,..., kA y A y , 0,6k , 

are identically zero, then the straight line 0x   has the algebraic multiplicity 2k  .  

To study the multiplicity of an invariant straight line at infinity we carry out the 

Poincaré transformation 
1

x
x

 , 
y

y
x

 . The multiplicity of an invariant straight line at 

infinity is equal to the multiplicity of the invariant straight line 0x   of the following 

system 
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3 3

4

1 1
, , ,

1
, .

y y
x yx P x Q

x x x x

y
y x P

x x

    
    

    


        

3. Obtaining the canonical forms of cubic differential systems  

We emphasize that the calculations used in determination of canonical forms are 

quite large, so we will show in detail only formulas used for obtaining a single canonical 

form, and the rest will be omitted. Let us note by     1 1 2 2 3d m d m d   a configuration 

of invariant straight lines, where id  is the number of straight lines, and im  is their 

corresponding multiplicity. If 1im  , then im  is not written. For example, the notation 

(1(4)+2) indicates that there are three parallel invariant straight lines, where one of them 

has the multiplicity equal to four and the other two have the multiplicity equal to one. 

Depending on the multiplicity of the invariant straight lines at infinity, we divide the 

investigation into seven cases. 

Case 1: The straight line at infinity has multiplicity equal to 1. The real invariant 

straight lines from the finite plane can have the following configurations: a) (1(6));      

b) (1(4)+2); c) (1(4)+1(2)); d) (1(3)+1(3)); e) (1(3)+1(2)+1); f) (1(2)+1(2)+1(2)). 

1.a) (1(6)) Conditioning the system (4) to have the invariant straight line 0x   and 

applying Definition 1, we obtain the following conditions on the parameters of the 

system (4): 

00 01 02 030; 0; 0; 0.a a a a     

According to Definition 2, the condition for the invariant straight line 0x   to 

have algebraic multiplicity equal to two is equivalent with the condition  0 0A y  , i.e. 

the following system of equations hold 

 
2

11 00 01 10 01 10 00 02

2 2

11 00 10 12 00 10 11 01 12 00 01 10 02 10 01 02 10 00 03

2 2

1

00 10 1

1 12 00 11 01 10 12 01

1 00 10 01

2 2

10 11 00 12 00

12 0

0 0

0

1 1

1 1

2 0;

2 2 3 3 3 0;

2

0;

2 2

2 2

b a a b a

a b b a b a

b

b b

a b a a b a a b a b b a b a b b a b b

a a b a b

a a b a b

a a b a

a b

a b

   

       

    

  

  

2 2

11 02 12 00 02 11 01 02 10 02 10 03 11 00 03 10 01 03

2 2 2

12 00 11 12 01 11 02 10 12 02 12 01 02 11 02 10 11 03 12 00 03 11 01 03 10 02 03

2 2

12 01 11 12 02 11 03

2 2 4 0;

2 2 2 2 5 0;

2 2

a b a b b a b b a b a b a b b a b b

a b a a b a b a a b a b b a b a a b a b b a b b a b b

a b a a b a b a

      

          

   

  

 

2

10 12 03 11 02 03 10 03

12 03 12 02 11 03

12 03 12 03

3 3

2 0;

0.

0;a b a b b a b

a b a b a b

a b a b








 

  

 




 





 

By solving this system, we get four sets of conditions, i.e. the system (4) with the 

invariant straight line 0x   implies four cubic differential systems which have this 

invariant straight line of algebraic multiplicity equal to two.  

By asking the invariant straight line 0x   of the system (4) to have algebraic 

multiplicity equal to three, i.e. the condition  1 0A y   must hold for each one of those 

four systems, we obtain eight differential systems. 
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By asking the invariant straight line 0x   of the system (4) to have algebraic 

multiplicity equal to four, i.e. the condition  2 0A y   to be realized for each one of 

those eight systems, we obtain 11 cubic differential systems. 

By asking the invariant straight line 0x   of the system (4) to have algebraic 

multiplicity equal to five, i.e. the condition  3 0A y   must hold for each one of those 11 

systems, we obtain two differential systems.  

Finally, by conditioning the invariant straight line 0x   to have multiplicity equal 

to six for the system (4), we obtain one set of conditions, i.e. the system satisfying these 

conditions has the form 

3

30 00

2 3 2

00 10 20 30 30

, 0,

3 .

x a x b

y b b x b x b x a x y

  


    

 

Carrying out the transformations 30 20 20

30 00 20 30

2
,

2 3

b x b y b
x x y

a b b a

 
   , 

30

t
a


  and using 

the notation 10 00b ab , we obtain the canonical form of the cubic differential system with 

invariant straight lines of total algebraic multiplicity equal to seven including the straight 

line at infinity: 

3

2

,a 0,

1 3 ,

x x

y ax x y

  


  
         (s1)  

where 0a  , as the transformation ,x x a a   doesn’t change the system (s1). 

1.b) (1(4)+2) There are 11 systems with the invariant straight line 0x   of total 

multiplicity equal to 4, but only one of them can have the invariant straight lines 1 0x   

and 0x a  . This system can be brought to the form: 

  

  3 2

1 , 1,

1 .

x x x x a a

y ay a xy x x y

   


     

        (s2) 

1.c) (1(4)+1(2)) We have established that 11 systems have the invariant straight line 

0x   with total multiplicity equal to 4. Asking that the straight line 1 0x   to be 

invariant with multiplicity equal to 2, we obtain only one system, which can be brought 

to the form: 

 2

2 2

1 , ,

1 2 3 .

x x x a

y ax xy x y

   


   

R
        (s3) 

1.d) (1(3)+1(3)) There are 8 systems that have the invariant straight line 0x   with 

algebraic multiplicity equal to 3. Asking that the straight line 1 0x   to be invariant 

with multiplicity equal to 3, we obtain only one system, which can be brought to the 

form: 

   
2

2 3 2

1 , \ 1 ,

2 .

x x x a

y y ax xy x x y

   


    

R
       (s4) 
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1.e) (1(3)+1(2)+1) There are 8 systems that have the invariant straight line 0x   with 

multiplicity equal to 3. Asking that the straight line 1 0x   to be invariant with 

multiplicity equal to 2 and the straight line 0x a   to be invariant, we obtain only one 

system, which can be brought to the form: 

    

     2 2

1 , \ 1;0 ,

1 1 1 .

x x x x a a

y ay a x a xy a x y

    


       

R
         (s5) 

1.f) (1(2)+1(2)+1(2)) There are 4 systems that have the invariant straight line 0x   with 

multiplicity equal to 2. Asking that the straight lines 1 0x   and 0x a   to be 

invariant with multiplicity equal to 2, we obtain only one differential system that can be 

brought to the form: 

  

 2 2

1 , 1, ,

2 1 3 .

x x x x a a b

y bx ay x a xy x y

    


     

R
        (s6) 

Case 2: The straight line at infinity has multiplicity equal to 2. Asking that the 

invariant straight line at infinity of the system (4) to have multiplicity equal to two, we 

obtain 5 sets of conditions, i.e. there are 5 cubic differential systems that satisfy this 

condition. For the total algebraic multiplicity to be equal to 7, we must search for real 

planar invariant straight lines with total multiplicity equal to 5. The planar invariant 

straight lines can have the following configurations: a) (1(5)); b) (1(4)+1); c) (1(3)+1(2)); 

d) (1(3)+1+1); e) (1(2)+1(2)+1). 

2.a) (1(5)) For the five differential systems which have the invariant straight line at 

infinity with multiplicity equal to two we require that the invariant straight line 0x   to 

be invariant with multiplicity five. As a result, we obtain the following system: 

3

2

,a 0,

.

x x

y a x x

  


  
         (s7) 

2.b) (1(4)+1) In this case we obtain two differential systems:  

 
3

1 ,

.

x x x

y y xy x

  


  

     (s8)         
 2

2

1 ,a 0,

2 .

x x x

y a x xy

   


  

      (s9) 

2.c) (1(3)+1(2)) In this case we obtain three differential systems: 

 
2 2

1 ,

.

x x x

y y ax xy x y

  


   

(s10)   
 2

2

1 ,a ,

1 .

x x x

y ax xy

   


  

R
 (s11)  

 
2

2

1 ,a ,

2 .

x x x

y y ax xy

   


  

R
 (s12) 

2.d) (1(3)+1+1) This configuration corresponds to the system  

  

 2

1 , 1,

1 .

x x x a x a

y ay x a xy

    


   

         (s13) 

2.e) (1(2)+1(2)+1) In this case we obtain the system  

      

 2

1 ,a 1; \ 0 , ,

1 2 .

x x x a x b

y bx ay x a xy

      


    

R
       (s14) 
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Case 3: The straight line at the infinity has multiplicity equal to 3. There are 10 cubic 

differential systems that have the invariant straight line at infinity with the multiplicity 

equal to 3. It follows that the real invariant straight lines must have total algebraic 

multiplicity equal with four, therefore we can have the following configurations:  

a) (1(4)); b) (1(3)+1); c) (1(2)+1(2)); d) (1(2)+1+1).  

3.a) (1(4)) Asking the straight line 0x   to be invariant with algebraic multiplicity 

equal to four, we establish that only one of those 10 systems satisfies this condition and it 

can be brought to the form 

2

2 3

,a 0,

2 .

x x

y a x xy x

  


   
         (s15) 

3.b) (1(3)+1) In this case we obtain the system 

 
2 3

1 ,a ,

.

x x x

y y ax xy x

   


   

R
         (s16) 

3.c) (1(2)+1(2)) By solving the remaining system of algebraic equations, we will obtain 

several sets of condition. By performing affine transformations and time rescaling, we 

can bring the obtained systems to one of the following two canonical forms: 

 
3

1 ,a ,

2 .

x x x

y ax y xy x

   


   

R
   (s17)           

 
2

1 ,

.

x x x

y x y

  


 

    (s18) 

3.d) (1(2)+1+1) In this case we obtain the following canonical form: 

  1 ,

, 1.

x x x a x

y x ay a

  


  
         (s19) 

Case 4: The straight line at infinity has multiplicity equal to 4. By asking the 

invariant straight line at infinity of the system (4) to have multiplicity equal to four, we 

obtain 13 cubic differential systems. Therefore, the real planar invariant straight lines 

must have total multiplicity equal to three, so they can have the following configurations: 

a) (1(3)); b) (1(2)+1); c) (1+1+1). 

4.a) (1(3)) By asking the straight line 0x   to be invariant with multiplicity equal to 

three, we obtain the following two systems: 

2

3

,a 0,

.

x x

y a xy x

  


  
    (s20)           

2 3

,

.

x x

y y x x




  
    (s21) 

4.b) (1(2)+1) If the straight line 0x   is invariant with multiplicity equal to two and the 

straight line 1 0x   is invariant, then only one system from those 13 systems satisfies 

these conditions, and he can be brought it to the following form: 

 
3

1 ,a ,

.

x x x

y ax y xy x

   


   

R
         (s22) 
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4.c) (1+1+1) In this case, for each one of these 13 systems we determine three invariant 

straight lines of the form 0x  , 1 0x   and 0, 1x a a   . Only one system satisfy 

these conditions and it can be brought to the form: 

  1 ,

1, 1.

x x x a x

y a

  


 
         (s23) 

Case 5: The straight line at infinity has multiplicity equal to 5. In this case we have 

seven cubic differential systems. It follows that the real planar invariant straight lines 

must have total algebraic multiplicity equal to two, therefore they can have one of the 

following two configurations: a) (1(2)); b) (1+1). 

5.a) (1(2)) For these 7 systems, we obtain that only one system can be brought to the 

canonical form:  

2 3

,a ,

.

x x

y ax y x x

 


   

R
         (s24) 

5.b) (1+1) By asking the straight lines 0x   and 1 0x   to be invariant for the cubic 

differential systems with an invariant straight line at infinity which have algebraic 

multiplicity equal to five, we obtain that there are no parameter values satisfying these 

conditions. Therefore, there are no cubic differential systems of such configuration.   

Case 6: The straight line at infinity has multiplicity equal to 6. By asking the 

invariant straight line at infinity of the system (4) to have multiplicity equal to six, we 

obtain three cubic differential systems. We can have only one real planar invariant 

straight line. Therefore, for each of these systems we condition the straight line 0x   to 

be invariant. Thus, we obtain a single system, which can be brought to the following 

form: 

2 3

,

2 .

x x

y y x x




   
        (s25) 

Case 7: The straight line at infinity has multiplicity equal to 7. By asking the 

invariant straight line at infinity of the system (4) to have multiplicity equal to seven, we 

get the system: 

 2

1,a ,

.

x

y x a x

 


 

R
         (s26) 

 According to the above obtained results, we have proved the following theorem: 

Theorem. Any cubic differential system with real invariant straight lines along one 

direction with total algebraic multiplicity equal to seven, including the invariant straight 

line at the infinity, by an affine transformation and time rescaling can be brought to one 

of the systems (s1) – (s26). 
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PRODUSUL CARTEZIAN A DOUĂ SUBCATEGORII

Rezumat. Se examinează o construcţie categorială care permite de a obţine noi subcategorii reflective cu

anumite proprietăţi.

Cuvinte-cheie: Subcategorii reflective, perechi de subcategorii conjugate, produsul de dreapta a două

subcategorii.

Let K be a coreflective subcategory, and R a reflective subcategory of the category of

locally convex topological vector Hausdorff spaces C2V with respective functors k : C2V −→ K
and r : C2V −→ R.

Concerning the terminology and notation see [1]. Note by µK = {m ∈ Mono |
k(m) ∈ Iso}, εR = {e ∈ Epi | r(e) ∈ Iso}. Further for an arbitrary object X of the

category C2V we examine the following construction: let kX : kX −→ X is K-coreplique,

and rkX : kX −→ rkX-replique of the respective objects. On the morphisms kX and rkX

we construct the cocartesian square

vX · kX = uX · rkX . (1)

Definition 1. 1. The full subcategory of all isomorphic objects with the type of objects is

called vX cartesian product of the subcategories K and R, noted by v = K ∗dc R.

2.The diagram of cartesian product is called the diagram of cartesian product of the pair of

conjugate subcategories (K,R) (Diagram (RCP)).

kX

X

Diagram (RCP)

Reciprocally. Let R be a reflective subcategory, and K be a coreflective subcategory of the

category C2V . Let X be an object of the category C2V , rX : X −→ rX-R-replique and

krX : krX −→ rX be K-coreplique of the respective objects. On the morphisms rX and krX

we construct the cartesian product

rX · wX = krX · tX (2)

Definition 2. 1. The full subcategory of all isomorphic objects with the objects of type vX

is called cartesian product of the subcategories K and R, noted W = K ∗sc R.

Acta et Commentationes, Exact and Natural Sciences, nr. 2(6)2018                                                                   ISSN 2537-6284
Dumitru Botnaru, Olga Cerbu,  p. 133-138
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2. The diagram of the cartesian square (2) is called the diagram of the left cartesian product

of the pair of conjugate subcategories (K,R) (Diagram (LCP)).

Diagram (LCP)

Lemma 1. R ⊂ K ∗dc R.

Proof. Let | A |∈| R | and kA : kA −→ A be K-coreplique, rkA : kA −→ rkA, R-replique of

the respective objects. Then kA = f ·rkA for an morphism f . It is obvious that f ·rkA = 1·kA

is cocartesian square construct on the morphisms kA and rkA. So vA = 1.

Theorem 1. The application X 7→ vX define a functor

v : C2V −→ K ∗dc R.

Proof. We define the functor v on the morphism. Let f : X −→ Y ∈ C2V . We examine the

diagram (RCP) constructed for the objects X and Y .

kX

For the morphism f · kX exists one single morphism f1 : kX −→ kY so that

f · kX = kY · f1. (3)

The same for the morphism rkY · f1 exists one single morphism f2 : rkX −→ rkY . It

follows that

rkY · f1 = f2 · rkX . (4)
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Then we have

vY · f · kX = (from3) = vY · kY · f1 = (from1) = uY · rkY · f1 = (from4) = uY · f2 · rkX

or

(vY · f) · kX = (uY · f2) · rkX . (5)

From equality (5) concerning that (3) is cocartesian square, it results the existence of

a single morphism g, such that

vY · f = g · vX , (6)

uY · f2 = g · uX . (7)

Define g = t(f). In equality (6) vY is an epimorphism. Thus, we deduce that the

morphism g verifing equality (6), is unique. And here we come out with the result v(1) = 1

and v(f · h) = v(f) · v(h).

Concerning the functor v : C2V −→ K ∗dcR appears the following problem: When v is

a reflector functor?

We examine the following condition:

(RCP) For any object X of the category C2V in the diagram (RCP) the morphism uX

belongs to the class µK.

Theorem 2. Let it be a pairs of the subcategories (K,R) verify the condition (RCP). Then

v it is a reflector functor.

Proof. We examine the diagram (RCP) constructed for objects X and Y of the category

C2V . Let f : X −→ vY . Since uY ∈ µK, it follows that

f · kX = uY · g (8)

for a morphism g. Further, rkX is R-replique of object kX. So

g = h · rkX (9)

for a morphism h. We have

f · kX = (from8) = uY · g = (from9) = uY · h · rkX

or

f · kX = (uY · h) · rkX . (10)

I mean that square (1) is cocartesian, we deduce that:

f = w · vX , (11)

uY · h = w · uX . (12)
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kX

So morphism f extends through morphism vX . The uniqueness of this extension results

from the fact that vX it is like rkX an epimorphism.

Theorem 3. Let K be a coreflective subcategory, but R is a reflective subcategory of the

category C2V, M̃ - the subcategory of the spaces with Mackey topology, S is the subcategory

of the spaces with weak topology. If K ⊂ M̃, but S ⊂ R, then the pair of subcategories

(K,R) verify condition (RCP) the cartesian product is a reflective subcategory.

Proof. Since S ⊂ R, it follows that εR ⊂ εS = Eu ∩Mu = µM̃ ⊂ µK. We examine the

diagram (RCP) for an arbitrary object X of the category C2V . We have rkX ∈ εR. So, and

vX ∈ εR. Thus vX , kX ∈ µK. On the other hand vX · kX ∈ µK. In equality

vX · kX = uX · rkX ,

where rkX , kX , vX are bijective application. In other words uX is a bijective application.

Thus uX ∈ µK.

Example. 1. For any coreflective subcategory K we have K ∗dc Π = Π, Π-reflective subcat-

egory of the complete space with weak topology.

2. For any coreflective subcategory K we have K ∗dc S = S, S-reflective subcategory of the

space with weak topology.

Proof. We construct the (RCP) diagram for an arbitrary object X of the category C2V in

relation to the pair of subcategories (K,Π). We represent the reflector functor π : C2V −→ Π

as a composition

π = g0 · s.

So either skX : kX −→ skX S-replique of the object kX, but gskX0 : skX −→ g0skX is a

Γ0-replique of the object skX, where Γ0 is subcategory of the complete space.

Thus gskX0 · skX is a replique of the object kX. We construct the cocartesian square on

the morphism kX and skX :

uX1 · skX = vX1 ,

on the morphisms uX1 and gskX0 :

vX2 · uX1 = uX2 · gskX0 .

Then
(v1X · vX2 ) · kX = uX2 · (gskX0 · skX)

is a cocartesian square construct on morphisms kX and gskX0 ·skX or morphisms kX and πkX .
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Since kX is an epimorphism it results as well uX1 and uX2 are epimorphisms. Therefore uX2 is

retractable, but vX2 ∈| Π |. Further gskX0 ∈ εΓ0. So vX2 ∈ εΓ0, but vX1 ∈| S |. Thus we have

proved that K ∗dc Π = Π and K ∗dc S = S.

Return to previous diagram. If for any object X ∈| C2V | we have uX2 ∈ µK, then uX2
is an isomorphism, and from equality

gskX0 · skX = (uX2 )−1 · vX2 · vX1 · kX

it results that kX ∈Mu, and M̃ ⊂ K.

Remark. 1. May it be M̃ /∈ K. Then the pair (K,Π) do not check the condition (RCP),

but K ∗dc Π = Π. So the condition (RCP) is sufficient, but not necessary that the respective

product is a reflective subcategory.

2. Lemma 1 indicates inclusion R ⊂ K ∗dc R, and the preceding examples indicate the

equality of these subcategories.

Definition 3 (see [1]). Let K a coreflective subcategory and L a reflective subcategory of the

category C2V with those functors k : C2V −→ K and l : C2V −→ L. Pair (K,L) is called a

pair of conjugate subcategories if

µK = εL.

Theorem 4. Let (K,L) a pair of conjugate subcategories, and R a reflective subcategory of

the category C2V. Then:

1. K ∗dc R = QεL(R), where QεL(R) is the full subcategory of all εL-factorobjects of

objects of the subcategory R.

2. K ∗dc R is a reflective subcategory of the category C2V.

3. The subcategory K ∗dc R is closed in relation to εL-factorobjects.

4. v · k = r · k.

5. If r(K) ⊂ K, then the coreflector functor k : C2V −→ K and the reflector v : C2V −→
K ∗dc R commute: k · v = v · k.

Proof. 1. In the (RCP) diagram kX ∈ µK = εL. So kX ∈ εL = µK. Thus K∗dcR ⊂ QεL(R).

Reciprocally : Let b : A −→ X ∈ εL and A ∈| R |. Then b · kA : kA −→ X is K-coreplique

of the object X, and

kA = f · rkA (13)

is an cocartesian square construct on the morphisms kX and rkX . So X ∈| K ∗dc R |.

=

137



2. Result from 1. and the Theorem 2.

3. Result from 1.

4. For an object of form kX, diagram (RCP) is the next one

Thus vkX = rkX.

5. Examine the diagram (RCP) construct for an arbitrary object X of the category

C2V . Then krX it is also V-replique of the object kX. Further, uX ∈ µK and rkX ∈| K |,
according to the hypothesis r(K) ⊂ K. So

kvX = rkX = vkX

or

k · v = v · k.

In the paper [2] was introduced the right product of the productK∗dR of the coreflective

subcategory K and of the reflective subcategory R, the properties of this product have been

examined and examples have been construct.

Theorem 5. Let K (respective R) a coreflective subcategory (respective: reflective)of the

category C2V, those functors k : C2V −→ K and r : C2V −→ R commute: k · r = r · k. Then

K ∗dc R = K ∗d R.

Proof. Let’s examine the diagram of the right product constructed for an arbitrary object

X of the category C2V in relation to the subcategories K and L.

Because functors k and r commute, be sure to verify that k(rX) = rkX . Thus, the right

product is obtained by constructing the cocartesian square on morphisms kX and k(rX),

and the right cocartesian product is obtained by constructing the cocartesian square on

morphisms kX and rkX . So these products coincide.

References
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