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SHCHERBACOV Victor. Schröder T-cvasigrupuri de asociativitate generalizată . 47
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guvernate de sistemul diferenţial ternar de tip Lyapunov-Darboux cu nelinea-
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Approximation of solutions of boundary value problems for
integro-differential equations of the neutral type using a spline
function method

Ihor Cherevko , Andrii Dorosh , Ivan Haiuk , and Andrii Pertsov

Abstract. Boundary value problems for nonlinear integro-differential equations of the
neutral type are investigated. A scheme for approximating the boundary value problem
solution using cubic splines of defect two is proposed and substantiated. A model example
illustrating the proposed approximation scheme is considered.
2010 Mathematics Subject Classification: Primary 34K10; Secondary 34K28.
Keywords: boundary value problem, neutral type, cubic splines.

Aproximarea solut, iilor problemelor cu valori la limită
pentru ecuat, iile integro-diferent, iale de tip neutru folosind
metoda funct, iei spline

Rezumat. În lucrare sunt cercetate probleme cu valori la limită pentru ecuat,iile integro-
diferent,iale neliniare de tip neutru. Este propusă s, i fundamentată o schemă de aproximare
a solut,iei problemei cu valori la limită folosind spline cubice ale defectului doi. Se
consideră un exemplu model care ilustrează schema de aproximare propusă.
Cuvinte-cheie: problemă cu valoarea la limită, tip neutru, spline cubice.

In mathematical modeling of physical and technical processes, the evolution of which
depends on prehistory, we arrive at differential equations with a delay. With the help of
such equations it was possible to identify and describe new effects and phenomena in
physics, biology, technology [1].

Boundary value problems for integro-differential equations with a deviating argument
are mathematical models of various applied processes in biology, immunology, and
medicine. In particular, Volterra integro-differential equations with a delay play an
important role in modeling many real phenomena in ecology [2]. An important task in
their study is to establish convenient conditions that guarantee the existence of solutions
of such problems [2, 3]. Finding solutions to boundary value problems with a time delay
in analytical form is possible only in the simplest cases, so the real task is to develop
efficient methods for finding their approximate solutions [4]. The application of the spline
function method to the approximation of boundary value problems for integro-differential
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APPROXIMATION OF SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR
INTEGRO-DIFFERENTIAL EQUATIONS OF THE NEUTRAL TYPE

equations has been studied in [5]. Approximation schemes for differential-difference
equations using systems of ordinary differential equations have been considered in [6, 7].
The aim of this work is to extend the approximation schemes using cubic splines of defect
two for boundary value problems for integro-differential equations with many delays [8].

1. Problem statement. Solution existence

Let us denote

[𝑦(𝑥)] =
(
𝑦
(
𝑥 − 𝜏0(𝑥)

)
, . . . , 𝑦

(
𝑥 − 𝜏𝑛 (𝑥)

) )
,

[𝑦(𝑥)]1 =

(
𝑦′

(
𝑥 − 𝜏0(𝑥)

)
, . . . , 𝑦′

(
𝑥 − 𝜏𝑛 (𝑥)

) )
, (1)

[𝑦(𝑥)]2 =

(
𝑦′′

(
𝑥 − 𝜏0(𝑥)

)
, . . . , 𝑦′′

(
𝑥 − 𝜏𝑛 (𝑥)

) )
.

Consider a boundary value problem

𝑦′′(𝑥) = 𝑓
(
𝑥, [𝑦(𝑥)], [𝑦(𝑥)]1, [𝑦(𝑥)]2

)
+ (2)

+
𝑏∫

𝑎

𝑔
(
𝑥, 𝑠, [𝑦(𝑠)], [𝑦(𝑠)]1, [𝑦(𝑠)]2

)
𝑑𝑠, 𝑥 ∈ [𝑎; 𝑏],

𝑦 (𝑝) (𝑥) = 𝜑 (𝑝) (𝑥) , 𝑝 = 0, 1, 2, 𝑥 ∈ [𝑎∗; 𝑎] , 𝑦 (𝑏) = 𝛾, (3)

where 𝜏0 (𝑥) = 0, 𝜏𝑖 (𝑥) , 𝑖 = 1, 𝑛 are continuous nonnegative functions defined on [𝑎, 𝑏],
𝜑 (𝑥) is a twice continuously differentiable function on [𝑎∗; 𝑎], 𝛾 ∈ 𝑅,

𝑎∗ = min
0<𝑖≤𝑛

{
inf

𝑥∈[𝑎;𝑏]
(𝑥 − 𝜏𝑖 (𝑥))

}
.

Let us introduce the sets of points defined by the delays 𝜏1 (𝑥) , . . . , 𝜏𝑛 (𝑥):

𝐸𝑖1 =
{
𝑥 𝑗 ∈ [𝑎, 𝑏] : 𝑥 𝑗 − 𝜏𝑖

(
𝑥 𝑗

)
= 𝑎, 𝑗 = 1, 2, . . .

}
,

𝐸𝑖2 =
{
𝑥 𝑗 ∈ [𝑎, 𝑏] : 𝑥0 = 𝑎, 𝑥 𝑗+1 − 𝜏𝑖

(
𝑥 𝑗+1

)
= 𝑥 𝑗 , 𝑗 = 0, 1, 2, . . .

}
,

𝐸2 =

𝑛⋃
𝑖=1

(
𝐸𝑖1 ∪ 𝐸𝑖2

)
.

Assume that the delays 𝜏𝑖 (𝑥) , 𝑖 = 1, 𝑛 are such functions that the sets 𝐸𝑖1, 𝐸𝑖2, 𝑖 = 1, 𝑛
are finite. We will number the points of the set 𝐸2 in ascending order.
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Let us introduce the notation:

𝑃 = sup
{��� 𝑓 (𝑥, [𝑦(𝑥)], [𝑦(𝑥)]1, [𝑦(𝑥)]2

) ��� + �����
𝑏∫

𝑎

𝑔
(
𝑥, 𝑠, [𝑦(𝑠)], [𝑦(𝑠)]1, [𝑦(𝑠)]2

)
𝑑𝑠

����� :���𝑦 (𝑥 − 𝜏𝑖 (𝑥)) ��� ≤ 𝑃1,
���𝑦′ (𝑥 − 𝜏𝑖 (𝑥)) ��� ≤ 𝑃2,���𝑦′′ (𝑥 − 𝜏𝑖 (𝑥)) ��� ≤ 𝑃3, 𝑖 = 0, 𝑛, 𝑥, 𝑠 ∈ [𝑎; 𝑏]

}
,

𝐽 = [𝑎∗; 𝑎] , 𝐼 = [𝑎, 𝑏] ,

𝐼1 = [𝑎, 𝑥1] , 𝐼2 = [𝑥1, 𝑥2] , . . . , 𝐼𝑘 = [𝑥𝑘−1, 𝑥𝑘] , 𝐼𝑘+1 = [𝑥𝑘 , 𝑏] ,

𝐵2
(
𝐽 ∪ 𝐼

)
=

{
𝑦 (𝑥) : 𝑦 (𝑥) ∈

(
𝐶 (𝐽 ∪ 𝐼) ∩

(
𝐶1(𝐽) ∪𝐶1(𝐼)

)
∩

∩
(𝑘+1⋃
𝑗=1
𝐶2 (

𝐼 𝑗
) ))
, |𝑦(𝑥) | ≤ 𝑃1, |𝑦′(𝑥) | ≤ 𝑃2, |𝑦′′(𝑥) | ≤ 𝑃3

}
,

where 𝑃1, 𝑃2, 𝑃3 are positive constants.
A function 𝑦 = 𝑦 (𝑥) will be considered a solution of the boundary value problem

(2)-(3) if it satisfies the equation (2) on [𝑎; 𝑏] (with the possible exception of the points
of the set 𝐸2) and the boundary conditions (3). We will find a solution of the problem
(2)-(3) which belongs to the space 𝐵2(𝐽 ∪ 𝐼).

The definition of the space 𝐵2(𝐽∪ 𝐼) implies that the solution of (2)-(3) is continuously
differentiable for any 𝑥 ∈ [𝑎, 𝑏] where 𝑦′ (𝑎) is the right derivative, and at points of 𝐸2

there exist finite one-sided second derivatives of the solution which may not coincide.
Let us introduce a norm in the space 𝐵2(𝐽 ∪ 𝐼):

∥𝑦∥𝐵2 = max
{

8
(𝑏 − 𝑎)2 max

𝑥∈𝐽∪𝐼
|𝑦(𝑥) |, 2

𝑏 − 𝑎 max
(
max
𝑥∈𝐽

|𝑦′(𝑥) |, max
𝑥∈𝐼

|𝑦′(𝑥) |
)
,

max
(
max
𝑥∈𝐽

|𝑦′′(𝑥) |, max
𝑥∈𝐼1

|𝑦′′(𝑥) |, . . . , max
𝑥∈𝐼𝑘+1

|𝑦′′(𝑥) |
)}
.

The space 𝐵2(𝐽 ∪ 𝐼) with this norm is a Banach space.
The boundary value problem (2)-(3) is equivalent to the integral equation [9]

𝑦 (𝑥) =
𝑏∫

𝑎∗

[
𝑓
(
𝑠, [𝑦(𝑠)], [𝑦(𝑠)]1, [𝑦(𝑠)]2

)
+

𝑏∫
𝑎

𝑔
(
𝑠, b, [𝑦(b)], [𝑦(b)]1, [𝑦(b)]2

)
𝑑b

]
×

×𝐺 (𝑥, 𝑠) 𝑑𝑠 + 𝑙 (𝑥) , 𝑥 ∈ 𝐽 ∪ 𝐼, (4)

9
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𝐺 (𝑥, 𝑠) =
{
𝐺 (𝑥, 𝑠) , 𝑥, 𝑠 ∈ 𝐼,

0, otherwise,

𝑙 (𝑥) =
{

𝜑 (𝑥) , 𝑥 ∈ 𝐽,
𝛾−𝜑 (𝑎)
𝑏−𝑎 (𝑥 − 𝑎) + 𝜑 (𝑎) , 𝑥 ∈ 𝐼,

where 𝐺 (𝑥, 𝑠) is the Green’s function of the boundary value problem

𝑦′′ (𝑥) = 0, 𝑥 ∈ 𝐼, 𝑦 (𝑎) = 𝑦 (𝑏) = 0.

We define the operator 𝑇 in the space 𝐵2(𝐽 ∪ 𝐼) as follows

(𝑇𝑦) (𝑥) =
𝑏∫

𝑎∗

[
𝑓
(
𝑠, [𝑦(𝑠)], [𝑦(𝑠)]1, [𝑦(𝑠)]2

)
+

+
𝑏∫

𝑎

𝑔
(
𝑠, b, [𝑦(b)], [𝑦(b)]1, [𝑦(b)]2

)
𝑑b

]
𝐺 (𝑥, 𝑠) 𝑑𝑠 + 𝑙 (𝑥) , 𝑥 ∈ 𝐽 ∪ 𝐼 .

Hence

(𝑇𝑦)′ (𝑥) =
𝑏∫

𝑎∗

[
𝑓
(
𝑠, [𝑦(𝑠)], [𝑦(𝑠)]1, [𝑦(𝑠)]2

)
+ (5)

+
𝑏∫

𝑎

𝑔
(
𝑠, b, [𝑦(b)], [𝑦(b)]1, [𝑦(b)]2

)
𝑑b

]
𝐺

′

𝑥 (𝑥, 𝑠) 𝑑𝑠 +
𝛾 − 𝜑 (𝑎)
𝑏 − 𝑎 ,

𝑥 ∈ 𝐽 ∪ 𝐼 .

(𝑇𝑦)′′ (𝑥) = 𝑓
(
𝑥, [𝑦(𝑥)], [𝑦(𝑥)]1, [𝑦(𝑥)]2

)
+ (6)

+
𝑏∫

𝑎

𝑔
(
𝑥, 𝑠, [𝑦(𝑠)], [𝑦(𝑠)]1, [𝑦(𝑠)]2

)
𝑑𝑠, 𝑥 ∈ 𝐽 ∪ 𝐼 .

Let the function 𝑓
(
𝑥, [𝑦(𝑥)], [𝑦(𝑥)]1, [𝑦(𝑥)]2

)
be continuous in 𝐺 = [𝑎; 𝑏] × 𝐺𝑛+1

1 ×
𝐺𝑛+1

2 × 𝐺𝑛+1
3 and let 𝑔

(
𝑥, 𝑠, [𝑦(𝑠)], [𝑦(𝑠)]1, [𝑦(𝑠)]2

)
be continuous in 𝑄 = [𝑎; 𝑏] × 𝐺

where 𝐺1 =
{
𝑢 ∈ 𝑅 : |𝑢 | < 𝑃1

}
, 𝐺2 =

{
𝑣 ∈ 𝑅 : |𝑣 | ≤ 𝑃2

}
, 𝐺3 =

{
𝑤 ∈ 𝑅 : |𝑤 | ≤ 𝑃3

}
,

𝑃1, 𝑃2, 𝑃3 are positive constants that are included in the definition of the space 𝐵2(𝐽 ∪ 𝐼).
The following theorem holds.

Theorem 1.1. Let the conditions be met:

1) max
{
max
𝑥∈𝐽

|𝜑 (𝑥) | , (𝑏−𝑎)2

8 𝑃 + max
{
|𝜑 (𝑎) | , |𝛾 |

}}
≤ 𝑃1,

2) max
{
max
𝑥∈𝐽

|𝜑′ (𝑥) | , 𝑏−𝑎
2 𝑃 +

��� 𝛾−𝜑 (𝑎)
𝑏−𝑎

���} ≤ 𝑃2,

10
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3) max
{
max
𝑥∈𝐽

|𝜑′′ (𝑥) | , 𝑃
}
≤ 𝑃3,

4) the functions 𝑓
(
𝑥, [𝑦(𝑥)], [𝑦(𝑥)]1, [𝑦(𝑥)]2

)
and 𝑔

(
𝑥, 𝑠, [𝑦(𝑠)], [𝑦(𝑠)]1, [𝑦(𝑠)]2

)
satisfy the Lipschitz condition in 𝐺 on the variables [𝑦(𝑥)], [𝑦(𝑥)]1, [𝑦(𝑥)]2 with
constants 𝐿1

𝑖
and 𝐿2

𝑖
(𝑖 = 0, 3𝑛 + 2), respectively,

5) (𝑏−𝑎)2

8

𝑛∑
𝑖=0

(
𝐿1
𝑖
+(𝑏−𝑎)𝐿2

𝑖

)
+ 𝑏−𝑎

2

2𝑛+1∑
𝑖=𝑛+1

(
𝐿1
𝑖
+(𝑏−𝑎)𝐿2

𝑖

)
+

3𝑛+2∑
𝑖=2𝑛+2

(
𝐿1
𝑖
+(𝑏−𝑎)𝐿2

𝑖

)
< 1.

Then there exists a unique solution of the problem (2)-(3) in the space 𝐵2(𝐽 ∪ 𝐼).

The proof is carried out similarly to Theorem 1 [5] using the contraction mapping
principle.

2. Computational scheme. Iterative process convergence

Choose an irregular grid Δ = {𝑎 = 𝑥0 < 𝑥1 < . . . < 𝑥𝑚 = 𝑏} on the interval [𝑎; 𝑏] such
that 𝐸2 ⊂ Δ. Let us denote by 𝑆(𝑥, 𝑦) an interpolation cubic spline of defect two on Δ for
the function 𝑦 (𝑥). 𝑆(𝑥, 𝑦) belongs to the space 𝐵2(𝐽 ∪ 𝐼).

We introduce the notation ℎ 𝑗 = 𝑥 𝑗 − 𝑥 𝑗−1, 𝑗 = 1, . . . , 𝑛, 𝑀+
𝑗
= 𝑆′′(𝑥 𝑗 + 0, 𝑦), 𝑗 =

0, . . . , 𝑛−1, 𝑀−
𝑗
= 𝑆′′(𝑥 𝑗 −0, 𝑦) 𝑗 = 1, . . . , 𝑛. It is easy to obtain an image for the spline

𝑆(𝑥, 𝑦):

𝑆(𝑥, 𝑦) = 𝑀+
𝑗−1

(𝑥 𝑗 − 𝑥)3

6ℎ 𝑗

+ 𝑀−
𝑗

(𝑥 − 𝑥 𝑗−1)3

6ℎ 𝑗

+ (7)

+
(
𝑦 𝑗−1 −

𝑀+
𝑗−1ℎ

2
𝑗

6

)
𝑥 𝑗 − 𝑥
ℎ 𝑗

+
(
𝑦 𝑗 −

𝑀−
𝑗
ℎ2
𝑗

6

)
𝑥 − 𝑥 𝑗−1

ℎ 𝑗

,

𝑥 ∈ [𝑥 𝑗−1; 𝑥 𝑗], 𝑗 = 1, 2, . . . , 𝑚.

Taking into account the form of the spline (7) and the continuity of its first derivatives
in the internal nodes of the gridΔwe obtain a system of linear algebraic equations satisfied
by the values 𝑀+

𝑗−1 and 𝑀−
𝑗
( 𝑗 = 1, 2, . . . , 𝑚):

ℎ 𝑗+1𝑦 𝑗−1 − (ℎ 𝑗 + ℎ 𝑗+1)𝑦 𝑗 + ℎ 𝑗 𝑦 𝑗+1 =
ℎ 𝑗ℎ 𝑗+1

6 ×
×

(
ℎ 𝑗𝑀

+
𝑗−1 + 2ℎ 𝑗𝑀

−
𝑗
+ 2ℎ 𝑗+1𝑀

+
𝑗
+ ℎ 𝑗+1𝑀

−
𝑗+1

)
,

𝑗 = 1, 𝑚 − 1.

(8)

We will find a solution of the boundary value problem (2)-(3) in the form of a sequence
of cubic splines with defect 2 according to the following scheme:

A) Choose an initial cubic spline 𝑆
(
𝑥, 𝑦 (0)

)
=

𝛾−𝜑 (𝑎)
𝑏−𝑎 (𝑥 − 𝑎) + 𝜑 (𝑎) which satisfies

the boundary conditions (3) at 𝑥 = 𝑎 and 𝑥 = 𝑏.
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B) Using the original equation (2) and the spline 𝑆
(
𝑥, 𝑦 (𝑘 )

)
, for 𝑘 = 0, 1, . . . find:

𝑀
+(𝑘+1)
𝑗

= 𝑓
(
𝑥 𝑗 , [𝑆(𝑥 𝑗 + 0, 𝑦 (𝑘 ) )], [𝑆(𝑥 𝑗 + 0, 𝑦 (𝑘 ) )]1, [𝑆(𝑥 𝑗 + 0, 𝑦 (𝑘 ) )]2

)
+

+
𝑏∫

𝑎

𝑔
(
𝑥 𝑗 , 𝑠, [𝑆(𝑠, 𝑦 (𝑘 ) )], [𝑆(𝑠 + 0, 𝑦 (𝑘 ) )]1, [𝑆(𝑠 + 0, 𝑦 (𝑘 ) )]2

)
𝑑𝑠,

𝑗 = 0, 𝑚 − 1, (9)

𝑀
−(𝑘+1)
𝑗

= 𝑓
(
𝑥 𝑗 , [𝑆(𝑥 𝑗 − 0, 𝑦 (𝑘 ) )], [𝑆(𝑥 𝑗 − 0, 𝑦 (𝑘 ) )]1, [𝑆(𝑥 𝑗 − 0, 𝑦 (𝑘 ) )]2

)
,

+
𝑏∫

𝑎

𝑔
(
𝑥 𝑗 , 𝑠, [𝑆(𝑠, 𝑦 (𝑘 ) )], [𝑆(𝑠 − 0, 𝑦 (𝑘 ) )]1, [𝑆(𝑠 − 0, 𝑦 (𝑘 ) )]2

)
𝑑𝑠,

𝑗 = 1, 𝑚. (10)

In the correlations (9), (10) substitute 𝑆 (𝑝)
(
𝑥, 𝑦 (𝑘 )

)
= 𝜑 (𝑝) (𝑥), 𝑝 = 0, 1, 2 for

𝑥 < 𝑎.
C) Calculate 𝑦 (𝑘+1)

𝑗
, 𝑗 = 0, 𝑚 by solving the system of equations (8).

D) Obtain the cubic spline 𝑆
(
𝑥, 𝑦 (𝑘+1) ) in the form (7) using the previously calculated

values 𝑦 (𝑘+1)
𝑗

, 𝑗 = 0, 𝑚, 𝑀+(𝑘+1)
𝑗

, 𝑗 = 0, 𝑚 − 1, 𝑀−(𝑘+1)
𝑗

, 𝑗 = 1, 𝑚. This spline
is the next iteration approximation.

Let us introduce the notation:

_1 =

𝑛∑︁
𝑖=0

(
𝐿1
𝑖 + (𝑏 − 𝑎)𝐿2

𝑖

)
, (11)

_2 =

2𝑛+1∑︁
𝑖=𝑛+1

(
𝐿1
𝑖 + (𝑏 − 𝑎)𝐿2

𝑖

)
, _3 =

3𝑛+2∑︁
𝑖=2𝑛+2

(
𝐿1
𝑖 + (𝑏 − 𝑎)𝐿2

𝑖

)
,

𝑢 =
𝐾5

8
(𝑏 − 𝑎)2 + 𝐻

2

8
, 𝑣 =

𝐾5

2
(𝑏 − 𝑎) + 2𝐻

3
,

` = 5
(
1 + 1

2
_1𝐻

2 + _2𝐻 + _3

)
.

Theorem 2.1. Assume that there exists a solution of the boundary value problem (2)-(3)
and it belongs to the space 𝐵2(𝐽 ∪ 𝐼). When the following inequality is true

\ = 𝑢_1 + 𝑣_2 + _3 < 1, (12)

12
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then there exists 𝐻∗ such that for all 0 < 𝐻 < 𝐻∗ the sequence of splines
{
𝑆

(
𝑥, 𝑦 (𝑘 )

)}
,

𝑘 = 0, 1, . . . converges uniformly on [𝑎; 𝑏] and the following correlations hold lim
𝑘→∞

𝑆 (𝑝) (𝑥, 𝑦 (𝑘 ) ) − 𝑦 (𝑝) (𝑥)
 ≤ 𝑅𝑝𝜔 (𝑦′′ (𝑥) , 𝐻) , 𝑝 = 0, 1, 2, (13)

𝑅0 = sup
𝐻≤𝐻∗

(
𝑢`

1 − \ + 5𝐻2

2

)
, 𝑅1 = sup

𝐻≤𝐻∗

( 𝑣`

1 − \ + 5𝐻
)
,

𝑅2 = sup
𝐻≤𝐻∗

( `

1 − \ + 5
)
,

𝜔 (𝑦′′ (𝑥) , 𝐻) = max
1≤𝑟≤𝑙+1

𝜔𝑟 (𝑦′′ (𝑥) , 𝐻) ,

where 𝜔𝑟 ( 𝑓 , 𝐻) is the continuity modulus of the function 𝑓 on the interval 𝛿𝑟 .

3. Example

Consider the boundary value problem for the neutral type equation:

𝑦′′ (𝑥) = 1
4
𝑦′′ (𝑥 − 1) + 1, 𝑥 ∈ [0; 2] ,

𝑦 (𝑥) = 𝑥, 𝑦′ (𝑥) = 1, 𝑦′′ (𝑥) = 0, 𝑥 ∈ [−1; 0] , 𝑦 (2) = 5
2
.

The precise solution 𝑦 (𝑥) was found using the method of steps. The approximate
solution 𝑦20

𝑆
(𝑥) and 𝑦40

𝑆
(𝑥), according to the iterative scheme proposed in the work, was

obtained on the 2nd iteration with a 20 and 40 segment grid respectively. Δ20
𝑆

and Δ40
𝑆

are
the absolute errors of the approximate solutions.

Table 1. Precise and approximate solutions

𝑥 𝑦(𝑥) 𝑦20
𝑆
(𝑥) Δ20

𝑆
𝑦40
𝑆
(𝑥) Δ40

𝑆

0.5 0.21875 0.21552 0.00323 0.21716 0.00159
1 0.6875 0.68146 0.00604 0.68443 0.00307

1.5 1.4375 1.43448 0.00302 1.43596 0.00154

When comparing the exact and approximate solutions, one can notice that the absolute
error at 20 segments does not exceed 0.006, and the relative error – 0.8%. But at 40
segments the absolute error does not exceed 0.003, and the relative error – 0.4%.

4. Conclusion

In this paper we investigate boundary value problems for nonlinear integro-differential
equations of neutral type. Sufficient conditions for the existence of solutions of such

13
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problems are established. The iterative schemes for finding approximate solutions of
these problems using cubic splines of defect two are constructed and substantiated, the
convergence of the iterative process is investigated. The use of the apparatus of spline
functions allows us to construct algorithms that are simple to implement and at the same
time suitable for solving a wide class of boundary value problems.
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Problems of the theory of invariants and Lie algebras
applied in the qualitative theory of differential systems
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Abstract. In this work there were formulated 18 problems from the theory of invariant
processes, Lie algebras, commutative graded algebras, generating functions and Hilbert
series, orbit theory and Lyapunov stability theory that are important to be solved. There
was substantiated the necessity of using the solutions of these problems in the qualitative
theory of differential systems.
2010 Mathematics Subject Classification: 34C14, 34C45, 30E201, 30E202.
Keywords: differential system, comitants and invariants, Lie algebras and comutative
graded algebras, generating functions and Hilbert series, orbit theory, stability of unper-
turbed motion.

Probleme din teoria invariant, ilor şi algebrelor Lie pentru
aplicaţii ı̂n teoria calitativă a sistemelor diferenţiale

Rezumat. În lucrare au fost formulate 18 probleme importante din teoria proceselor inva-
riante, algebrelor Lie, algebrelor graduate comutative, funcţiilor generatoare şi seriilor
Hilbert, teoria orbitelor şi teoria stabilităţii după Lyapunov ce se cer rezolvate. A fost
argumentată necesitatea utilizării soluţiilor acestor probleme ı̂n teoria caliativă a siste-
melor diferenţiale.
Cuvinte-cheie: sistem diferenţial, comitanţi şi invarianţi, algebre Lie şi algebre gradu-
ate comutative, funcţii generatoare şi serii Hilbert, teoria orbitelor, stabilitatea mişcării
neperturbate.

1. Introduction

Since 1963 in the school of differential equations from Chisinau, Republic of Moldova,
under the leadership of the academician C. Sibirsky (1928-1990), there has been founded a
new research direction, which later it was formed as ”The Method of Algebraic Invariants
in the Theory of Differential Equations”. This direction was based on the results of the
monographs [1]-[4] after which there were published a lot of works of the academician
C. Sibirsky and his disciples. Among them we can mention the works of N. Vulpe,
M. Popa, Iu. Calin, V. Baltag as well as their students’.
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PROBLEMS OF THE THEORY OF INVARIANTS AND LIE ALGEBRAS
APPLIED IN THE QUALITATIVE THEORY OF DIFFERENTIAL SYSTEMS
The main results of these works concerned the construction of polynomial bases of

invariants and comitants of some classical linear groups (the centro-affine 𝐺𝐿 (2,R), the
rotation 𝑆𝑂 (2,R) and the orthogonal group 𝑂 (2,R)) with the help of which there were
determined some qualitative properties of autonomous polynomial differential systems as
well as the geometric behavior of their solutions.

The mentioned direction of investigation has been recognized and has aroused the
interest of specialists from Canada, USA, Brazil, Spain, Slovenia, Belarus, France, Algeria
and some scientific centers of other countries. This is confirmed by the monograph [5]
recently published on this topic by a group of authors from the scientific centers of three
countries (Spain, Canada, Moldova).

”The Method of Algebraic Invariants in the Theory of Differential Equations” is devel-
oped even today quite effectively in the research realized in the Republic of Moldova. The
above mentioned direction made it possible since the 90-s of the last century in the course
of the next decades to appear and develop together with this direction, researches in the
fields of invariant processes, Lie algebras and commutative graded algebras, generating
functions and Hilbert series, the theory of orbits, stability of unperturbed motion after
Lyapunov, governed by autonomous polynomial differential systems. This direction was
confirmed under the name ”Differential Equations and Algebras”.

The essential results of these researches together with ”The Method of Algebraic Invari-
ants in the Theory of Differential Equations” were brought in the monographs [6]-[13].
M. Popa, P. Macari, A. Braicov, S. Port, E. Bâcova, E. Staruş (Naidenova), N. Gerştega, O.
Cerba (Diaconescu) , V. Orlov, V. Pricop, N. Neagu, V. Repeşco, D. Cozma, contributed
to the mentioned research and the ones that followed.

Let us examine the system of autonomous polynomial differential equations (PDS)
of the first order in the general form, which contains the maximum possible number of
non-zero coefficients

𝑑𝑥 𝑗

𝑑𝑡
=

∑︁
𝑚𝑖∈Γ

𝑃
𝑗
𝑚𝑖
(𝑥) ( 𝑗 = 1, 2, . . . , 𝑛; 𝑖 = 1, 2, . . . , 𝑙), (1)

whereΓ = {𝑚1, 𝑚2, . . . , 𝑚𝑙} is a finite set of non-negative integers and 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)
is the vector of phase variables with 𝑛 coordinates. We denote by 𝑁 the maximum num-
ber of non-zero coefficients of system (1) and by 𝑚𝑖 the degree of homogeneity of the
polynomial 𝑃 𝑗

𝑚𝑖
(𝑥) of system (1) with respect to the coordinates of the phase vector 𝑥.

Such systems, we will denote by 𝑠𝑛 (Γ). In the case, when 𝑛 = 2, we will write them
simply 𝑠(Γ). The coefficients and phase variables of PDS (1) take values from the field
of real numbers R.
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2. The problem of the minimal polynomial basis of centro-affine
comitants and invariants

1. Find the minimal polynomial basis of centro-affine comitants and invariants of
systems 𝑠(1, 2, 3) and 𝑠(0, 1, 2, 3) by tensor method.

Comments to Problem 1: The number of elements in this basis was considered in
[15], where the types and the number of comitants (1170) and invariants (652) of system
𝑠(1, 2, 3) were brought. The expressions for comitants and invariants were constructed
by the classical method of transvectants [4], taken from [16], without expressions of
mentioned comitants and invariants being published anywhere. A part of expressions
of comitants and invariants referred in [15] were constructed earlier in tensorial form by
other authors and were brought in the works [1]-[4], [16]-[18]. If we know the tensor
expressions from the basis of comitants and invariants of system 𝑠(1, 2, 3), then using the
method described in [19], it is easy to build this basis for system 𝑠(0, 1, 2, 3).

The necessity to know the elements of the basis of centro-affine comitants and invariants
of systems 𝑠(1, 2, 3) and 𝑠(0, 1, 2, 3) results from the importance of investigating these
systems both theoretically and practically in various scientific centers of the world. The
apparatus of the theory of invariants allows us to obtain answer to some problems from
the qualitative theory of PDS, which cannot be obtained by other known methods.

2. Find the minimal polynomial bases of centro-affine comitants and invariants of
other systems 𝑠(Γ).

Comments to Problem 2: Until now, the minimal polynomial bases of centro-affine
comitants and invariants for the systems 𝑠(0), 𝑠(1), 𝑠(2), 𝑠(3), 𝑠(0, 1), 𝑠(0, 2), 𝑠(0, 3),
𝑠(1, 2), 𝑠(1, 3), 𝑠(0, 1, 2), 𝑠(0, 1, 3) are known from the papers [1]-[4], [17], [19], [20].
Using the elements of these bases, there were obtained complete, important and surprising
results for the mentioned systems.

Remark 2.1. According to [6], [7], [11], [13] the minimal polynomial basis of centro-
affine comitants and invariants for PDS forms finitely determined commutative graded
algebras of these elements in relation to the unimodular group 𝑆𝐿 (2,R), which in [11],
[13] are called the Sibirsky graded algebras or simply Sibirsky algebras.

3. Construction problems of Hilbert series for Sibirsky graded
algebras of unimodular comitants and invariants of systems 𝒔(𝚪)

3. Determine a more effective method for solving Cayley’s functional equation [6], [7],
[11], [13] for the generalized and ordinary Hilbert series of Sibirsky graded algebras [6],
[7], [11], [13] of unimodular comitants and invariants of the systems 𝑠(Γ) from (1).
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4. Determine the maximal degree of the generators of Sibirsky graded algebras of

comitants and invariants for any differential system 𝑠(Γ) from (1) with respect to the
coefficients and phase variables of this system, or to indicate a fairly reasonable upper
bound for this degree of generators for any system 𝑠(Γ) from (1).

5. Determine the formula for the number of generators or indicate a fairly reasonable
upper bound of this number for Sibirsky algebras of comitants and invariants for all
differential systems 𝑠(Γ) from (1).

6. Determine if the Krull dimension [6], [7], [11], [13] of Sibirsky algebras of comitants
(invariants) of the system 𝑠(Γ) from (1) denoted by 𝑁 −1 (𝑁 −3) can be the upper bound
of maximal number of algebraic limit cycles of this system.

7. Prove that the projection of Sibirschi algebra of comitants (invariants) of system
𝑠(Γ) with 1 ∈ Γ\{0} form a graded algebras on the invariant variety of system 𝑠(Γ) from
(1), when the matrix elements of the linear part on the main diagonal are equal to zero
and the elements on the secondary diagonal are equal to 1, and they are with opposite
signs. What is the number of algebraically independent elements of this set ?

Comments to Problems 3-6: In the papers [6], [7] it is shown the tight connection in
the construction of centro-affine comitants and invariants of systems 𝑠(Γ) from (1) with
the study of generating functions of generalized and ordinary Hilbert series of Sibirsky
graded algebras of unimodular comitants and invariants of the mentioned systems. Here
an important role is due to the solution of Cayley’s functional equation, for which in
the papers [6], [7] it is used the generalized method of J. Silvester. But this method is
connected with cumbersome computations and application of supercomputers, which for
𝑠(Γ) systems (1) with Γ more complicated cannot be realized.

8. Prove the formula

𝐻 (𝑆𝐼1,2𝑘+1,𝑏 = 𝐻 (𝑆𝐼1, 𝑏)𝐻 (𝑆2𝑘+1, 𝑢, 𝑧) |𝑢2=𝑏,𝑧=𝑏,

for system 𝑠(1, 2𝑘 + 1) (𝑘 ≥ 1). This formula has been applied to 𝑠(1, 3) and 𝑠(1, 5)
systems, for which the generalized Hilbert series are known from [11], [13].

9. Find the generalized Hilbert series of Sibirsky algebra 𝑆1,2,3 of comitants for system
𝑠(1, 2, 3) from (1).

Comments to Problem 9: We mention that using the residue method in [11], [13] the
ordinary Hilbert series of Sibirsky algebras of comitants 𝑆1,2,3 and invariants 𝑆𝐼1,2,3 for
system 𝑠(1, 2, 3) were constructed, as well as for other systems 𝑠(Γ) from (1). But for
the construction of generalized Hilbert series, this method couldn’t be used.
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10. Suppose that the Hilbert series 𝐻 (𝑆𝑚, 𝑢, 𝑧1) and 𝐻 (𝑆𝑛, 𝑢, 𝑧2) (𝑚 ≠ 𝑛) are known.
Can the Hilbert series 𝐻 (𝑆𝑚,𝑛, 𝑢, 𝑧1, 𝑧2) be constructed using these series without solving
Cayley’s equation

𝜑Γ (𝑢) − 𝑢−2𝜑Γ (𝑢−1) = 𝜑
(0)
Γ

(𝑢)

known from [6], [7], [11], [13] ?
Comments to Problem 10: The problem was formulated in [6], [7], but until now no

positive or negative answer has been given to this problem.

4. Problems of construction the Hammond’s functions for syzygies
(definition relations), related to generators of Sibirsky algebras

11. a) Determine the Hammond series of differential systems for the generators of
Sibirsky algebras of invariants 𝑆𝐼1,2,3 and comitants 𝑆1,2,3.

b) Determine the type of syzygies. Carry out their construction and show their
irreducibility.

Comments to Problem 11: It is known from [11], [12], [13] that any finitely deter-
mined algebra 𝐴 can be written as follows

𝐴 =< 𝑎1, 𝑎2, . . . , 𝑎𝑚 | 𝑓1 = 0, 𝑓2 = 0, . . . , 𝑓𝑛 = 0 > (𝑚, 𝑛 < ∞), (2)

where𝑚 is the number of generators, and 𝑛 is the number of definition relations (syzygies).
These numbers are related by the formula

𝑛 = 𝑚 − 𝜚(𝐴). (3)

where 𝜚(𝐴) is the Krull dimension of algebra 𝐴.
Using the formula of Hammond series from [6], [7] and the generators from [17], [20],

Problem 11 can be solved.

5. Problems of constructing the generating functions for
centro-affine comitants and invariants of the systems 𝒔𝒏(𝚪) (𝒏 ≥ 3)

12. Determine the generating functions of comitants and invariants for systems 𝑠3(1)
and 𝑠3(0, 1). Generalize this result for any system 𝑠3(Γ).

Comments to Problem 12: In papers [21]-[23] some centro-affine comitants and
invariants necessary for the research carried out within the systems 𝑠𝑛 (Γ) were constructed
for various values of 𝑛 ≥ 3. However, the generating functions, which determine the
dimensions of linear spaces of these invariant polynomials according to their type, are not
known. These dimensions play an important role in the construction of the polynomial
bases of comitants and invariants for the mentioned systems, which are very important in
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the qualitative investigation of these systems. In the two-dimensional case, these functions
were constructed in [6], [7], [11], [13]. The idea of constructing the generating functions
for this case could also help us for systems 𝑠𝑛 (Γ) with 𝑛 ≥ 3. Here, the work of the
famous German mathematician Paul Gordan of the 19th-20th centuries, who constructed
generating functions for the comitants and invariants of ternary forms, could be useful.
This work could serve as a point of inspiration for the formulated problem.

6. Lie algebras admitted by PDS, which govern the comitants and
invariants of PDS

13. Determine the Lie algebra of operators with or without representations admitted
by the Lorenz generalized system:

¤𝑥 = 𝑔𝑥 + ℎ𝑦 + 𝑘𝑧 + 𝑎𝑦𝑧,

¤𝑦 = 𝑝𝑥 + 𝑞𝑦 + 𝑟𝑧 + 𝑏𝑥𝑧,

¤𝑧 = 𝑠𝑥 + 𝑚𝑦 + 𝑛𝑧 + 𝑐𝑥𝑦.

Investigate the integrability of this system and the behavior of its solutions.
Does Problem 13 remain open, when the system can be generalized by adding or

excluding some terms from the right-hand sides of the system, provided that the classical
Lorenz system indicated below can be obtained ?

Comments to Problem 13: If we denote 𝑔 = −𝜎, ℎ = 𝜎, 𝑎 = 0, 𝑝 = 𝑟 , 𝑞 = −1,
𝑏 = −1, 𝑠 = 𝑚 = 0, 𝑛 = −𝛽, 𝑐 = 1, then we obtain the classical form of Lorenz’s system
[24]. The determining equations of Lie algebras and the formula of the Lie integrating
factor can be found in papers [21], [22].

14. a) Determine the form of polynomial systems of type (1) ( 𝑗 = 2, 3, 4, 5), which
admit Lie operators with degree coordinates ≥ 2 besides the partial derivatives of the
phase variables. Determine the comitants of these systems with respect to the Lie algebra
admitted by examined system. Carry out the qualitative investigation of these systems.

b) Determine the form of polynomial systems of type (1) ( 𝑗 = 2, 3, 4, 5), which admit
Lie operators with rational function coordinates besides the partial derivatives of the
phase variables. Determine the invariants and comitants of this Lie algebra and carry
out the qualitative investigation of these systems.

Comments to Problem 14: The author did not know any examples that would give a
positive or negative answer to this problem.

15. a) Study the proprieties of the factorized systems 𝑠(1, 2)/𝐺𝐿 (2,R) and
𝑠(0, 1, 2, 3)/𝐺𝐿 (2,R) from [20].
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b) Complete the classification of the dimension of the orbits for system 𝑠(0, 1, 2, 3)
determining more successfully the invariant elements, which form the Krull dimension
of Sibirsky algebra of comitants for this system, which can separate all non-singular
invariant variety [6]-[8], [10].

Comments to Problem 15: The factorized systems [20] belong to non-singular in-
variant varieties that contain 𝐺𝐿 (2,R) - orbits of the maximal dimension [6]-[8], [10].
These varieties are closed sets and the differential systems, which are on these orbits, are
the richest in qualitative properties.

16. a) Obtain the classification of 𝐺𝐿 (3,R) – orbits for system (1) of the Darboux
type 𝑠3(1, 2) şi 𝑠3(1, 3) and determine their factored systems.

b) Carry out investigation on the stability of the Lyapunov unperturbed motion governed
by systems 16 a).

Comments to Problem 16: The factorized systems defined in [20] for the two-
dimensional case can also be extended to the ternary case. But here it is necessary to
build the algebraic base of 𝐺𝐿 (3,R) - comitants and invariants for these systems.

17. Let the ternary linear system be given

𝑑𝑥 𝑗

𝑑𝑡
= 𝑎

𝑗
𝛼𝑥

𝛼 ( 𝑗 , 𝛼 = 1, 2, 3). (4)

𝑎) Prove that the centro-affine invariants

\1 = 𝑎𝛼
𝛼, \2 = 𝑎𝛼

𝛽 𝑎
𝛽
𝛼, \3 = 𝑎𝛼

𝛾 𝑎
𝛽
𝛼𝑎

𝛾

𝛽
(5)

form the polynomial base of system (4).
𝑏) Prove that the centro-affine comitants

𝜎1 = 𝑎𝛼
`𝑎

𝛿
𝛽𝑎

𝛾
𝛼𝑥

𝛿𝑥`𝑥aY𝛽𝛾a , 𝜒1 = 𝑥𝛼𝑢𝛼, 𝜒2 = 𝑎𝛼
𝛽 𝑥

𝛽𝑢𝛼,

𝜒3 = 𝑎𝛼
𝛾 𝑎

𝛽
𝛼𝑥

𝛾𝑢𝛽 , 𝛿4 = 𝑎𝛼
𝛾 𝑎

𝛽
𝑝𝑎

𝛾
𝑞𝑢𝛼𝑢𝛽𝑢𝑟Y𝑝𝑞𝑟 (6)

together with the invariants (5) forms the polynomial base of comitants and invariants
for system (4).

Comments to Problem 17: The centro-affine invariants (5) and comitants (6) of
system (4) were studied in [21]. Here is brought the syzygy

𝜒1(𝑙 𝜒1 + 𝑚𝜒2)2 + [𝑛(𝑙 𝜒1 + 𝑚𝜒2) − 𝑚𝜒3] (𝜒2
2 + 𝜒1𝜒3) + 𝑙 𝜒2(𝜒2

2−

−3𝜒1𝜒3) + 𝜒3(𝑛𝜒2 − 𝜒3)2 + 𝛿4𝜎1 = 0,

where
𝑙 =

1
6
(\3

1 − 3\1\2 + 2\3), 𝑚 =
1
2
(\2 − \2

1), 𝑛 = \1.

But, until now, the answer to Problem 17 is not known.
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7. The Center and Focus Problem

18. Prove that the number of essential Poincaré-Lyapunov quantities [11], [13]
for system (1) with Γ = {1, 𝑚1, 𝑚2, . . . , 𝑚𝑙} is equal to the Krull dimension of Sibirsky
algebra of invariants of system (1) with Γ = {𝑚1, 𝑚2, . . . , 𝑚𝑙}.

Comments to Problem 18: This statement is true for systems 𝑠(1, 2) and 𝑠(1, 3). We
suppose that the proof of this hypothesis came from the study of many invariants and
comitants of systems (1) with Γ = {1, 𝑚1, 𝑚2, . . . , 𝑚𝑙} and Γ = {𝑚1, 𝑚2, . . . , 𝑚𝑙} with
respect to the groups 𝐺𝐿 (2,R) ⊃ 𝑆𝐿 (2,R) ⊃ 𝑆𝑂 (2,R).
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268 p. (in Russian).

[3] Sibirsky, K.S. Introduction to the algebraic theory of invariants of differential equations. Manchester-
New York, Manchester University Press, 1988, VII, 169 p. (Nonl. Science: Theory and Applications).

[4] Vulpe, N.I. Polynomial bases of comitants of differential systems and their applications in qualitative
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[10] Popa, M., Repeşco, V. Lie algebras and dynamical systems in plan. UST, 2016, 237 p. (in Romanian).
[11] Popa, M.N., Pricop, V.V. The Center and Focus Problem: Algebraic Solutions and Hypotheses. IMI,
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[22] Diaconescu, O.V. Lie algebras and invariants integrals for polynomial differential systems. PhD Thesis
in Mathematics. State University of Moldova, Chişinău, 2008, 126 p. (in Russian).
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Extension of linear operators with applications

Vasile Neagu and Diana Bı̂clea

Abstract. The article presents a method for solving characteristic singular integral
equations perturbed with compact operators. The method consists in reducing the solution
of these equations to the solution of the systems of singular (unperturbed) equations, which
are solved by factoring the coefficients of the obtained systems. The method presented
concerns some results of Gohberg and Krupnik and can be used in solving other classes
of functional equations with composite operators that fit into the scheme described by
Theorem 1.1.
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Extensii ale operatorilor liniari cu aplicaţii
Rezumat. În lucrare este prezentată o metodă de rezolvare a unor ecuaţii integrale
singulare caracteristice perturbate cu operatori compacţi. Metoda constă ı̂n reducerea
soluţionării acestor ecuaţii la soluţionarea unor sisteme de ecuaţii singulare (nepertur-
bate), care se rezolvă prin factorizarea coeficienţilor sistemelor obţinute. Metoda pre-
zentată are tangenţă cu unele rezultate ale lui Gohberg şi Krupnik şi ar putea fi folosită la
rezolvarea altor clase de ecuaţii funcţionale cu operatori compuşi, care se ı̂ncadrează ı̂n
schema descrisă de Teorema 1.1.
Cuvinte-cheie: ecuaţii integrale singulare, operator compact, factorizare.

Introduction

In the monographs of Muskhelishvili [1] and Gakhov [2] and in other works it is
indicated that the solution of singular integral equations can be found in rare cases. Even
in these cases finding the exact solution requires complicated calculations of singular
integrals accompanied with combersome theoretical and computational difficulties. The
content of this article, as well as the studies of other authors [3], [4], [5], [6], [7], [8], [9]
once again confirms the statement of academicians Muskhelishvili and Gakhov.

In this paper we study the problem of solving singular integral equations containing
compact terms

𝐴𝜑 ≡ 𝑎 (𝑡) 𝜑 (𝑡) + 𝑏(𝑡)
𝜋𝑖

∫
Γ

𝜑 (𝜏)
𝜏 − 𝑡 𝑑𝜏 +

∫
Γ

𝑘 (𝑡, 𝜏) 𝜑 (𝜏) = 𝑓 (𝑡) , (1)
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where function 𝑘 (𝑡, 𝜏) is continuous or with weak singularities. To each operator 𝐴,
defined by the left hand side of (1), according to the rule described in Theorem 1.1, we
associate a matrix operator 𝐴

𝐴𝜓 = 𝐶 (𝑡) 𝜓 (𝑡) + 𝐷 (𝑡)
𝜋𝑖

∫
Γ

𝜓 (𝜏)
𝜏 − 𝑡 𝑑𝜏, (2)

which has the property that both operators 𝐴 and 𝐴 are or are not invertible in the
respective spaces. Thus, the solution of the considered equation is reduced to a similar
problem for a system of equations, which turns out to be a system of ”ordinary” singular
integral equations, without compact terms. The obtained system of singular integral
equations is solved by the method of factoring the coefficients, a method developed in the
monograph [3] etc. An explicit expression of the solution of the considered equation is
obtained through the solution of the system of equations. The method presented in this
paper is based on the results of the works of Gohberg and Krupnik [10], and can be used
for solving other classes of functional equations with composite operators that fit into the
scheme described by Theorem 1.1.

To invert operators of the form (2), where 𝐶 (𝑡) and 𝐷 (𝑡) are matrices of continuous
functions satisfying the conditions det(𝐶 (𝑡) ∓ 𝐷 (𝑡)) ≠ 0, it is necessary (see [3]) to
factorize the matrix

𝐺 (𝑡) = (𝐶 (𝑡) − 𝐷 (𝑡))−1(𝐶 (𝑡) + 𝐷 (𝑡)).

This means that the matrix 𝐺 (𝑡) must be represented in the form

𝐺 (𝑡) = 𝐺− (𝑡) · 𝑑𝑖𝑎𝑔
(
𝑡𝑘1 , 𝑡𝑘2 , . . . , 𝑡𝑘𝑛

)
· 𝐺+ (𝑡) ,

where 𝐺+(𝑧) (𝐺− (𝑧)) are matrices of functions with analytic elements in the domains
𝐹+ = {𝑧 | |𝑧 | < 1} (𝐹− = {𝑧 | |𝑧 | > 1}), and 𝑘1, 𝑘2, . . . , 𝑘𝑛 are integers called partial
indices of the operator 𝐴. Depending on the numbers 𝑘1, 𝑘2, . . . , 𝑘𝑛, the operator 𝐴 can
be invertible, left invertible or right invertible. In particular, if all numbers 𝑘1, 𝑘2, . . . , 𝑘𝑛

are positive, then the operator 𝐴 is left invertible, if all are negative, then 𝐴 is right
invertible, and finally, if all numbers are equal to zero, then 𝐴 is invertible. We will apply
these results to the inversion of the operator 𝐴.

1. Extension of linear operators

Let 𝑉 be some Banach algebra of linear bounded operators acting in a Banach space
𝐵, and 𝑉 (𝑚) be a Banach algebra of elements of the form

𝐴 𝑗𝑘

𝑚
𝑗,𝑘=1 , where 𝐴 𝑗𝑘 ∈ 𝑉 .

If 𝐵 (𝑚) is a Banach space of vectors 𝑋 = ⌊𝑥1, . . . , 𝑥𝑚⌋ with elements 𝑥 𝑗 ∈ 𝐵 and with
the norm ∥𝑋 ∥ = max𝑘 ∥𝑥𝑘 ∥ , then 𝑉 (𝑚) is a Banach algebra of linear bounded operators
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in the space 𝐵 (𝑚) . Denote by 𝐼 and 𝐼𝑚 the unit operators acting in the spaces 𝑉 and,
respectively, 𝑉 (𝑚) . Suppose also that 𝐼 ∈ 𝑉 and 𝐼𝑚 ∈ 𝑉 (𝑚) . Assume that

𝐴 =

𝑟∑︁
𝑗=1

𝐴 𝑗1𝐴 𝑗2 · · · 𝐴 𝑗𝑠, (3)

where 𝐴 𝑗𝑘 ∈ 𝑉 . The operator 𝐴 ∈ 𝑉 (𝑚) is called a linear extension of the operator 𝐴 (of
order 𝑚) if:

1) the elements of the matrix 𝐴 are linear combinations of the elements 𝐴 𝑗𝑘 and the
unit operator;

2) there exist invertible operators 𝑋 and 𝑍 from the algebra 𝑉 (𝑚) such that

𝐴 = 𝑌 ·
(
𝐼𝑚−1 0

0 𝐴

)
· 𝑍. (4)

It is easy to see that the operator 𝐴 =
∑𝑟

𝑗=1 𝐴 𝑗1𝐴 𝑗2 · · · 𝐴 𝑗𝑠 and its linear extension 𝐴
(if it exists) are Noetherian (or are not Noetherian) simultaneously in the spaces 𝐵 and
𝐵 (𝑚) , respectively, and

𝑑𝑖𝑚𝑘𝑒𝑟𝐴 = 𝑑𝑖𝑚𝑘𝑒𝑟𝐴 and 𝑑𝑖𝑚𝑐𝑜𝑘𝑒𝑟𝐴 = 𝑑𝑖𝑚𝑐𝑜𝑘𝑒𝑟𝐴.

The following Theorem holds

Theorem 1.1. Each element 𝐴 from the algebra 𝑉 of the form 𝐴 =
∑𝑟

𝑗=1 𝐴 𝑗1𝐴 𝑗2 · · · 𝐴 𝑗𝑠

(𝐴 𝑗𝑘 ∈ 𝑉) admits the linear expansion (of order 𝑚 ≤ 𝑟 (𝑠 + 1) + 1).

Proof. Let us compose the following matrix of order 𝑟 (𝑠 + 1)

𝑀 =

©«

𝐼𝑟 𝐵1 0 · · · 0
0 𝐼𝑟 𝐵2 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 𝐵𝑠

0 0 0 · · · 𝐼𝑟

ª®®®®®®®¬
,

where

𝐵𝑘 =

©«
𝐴1𝑘 0 · · · 0
0 𝐴2𝑘 · · · 0
· · · · · · · · · · · ·
0 0 · · · 𝐴𝑘𝑘

ª®®®®®¬
.

Denote by 𝐹 a column of the length 𝑟 (𝑠+1), whose top 𝑟𝑠 elements are equal to zero and
the bottom 𝑟 elements are equal to the identity operator. Let also𝐺 = ∥ 𝐼, . . . , 𝐼︸  ︷︷  ︸

𝑟

, 0, · · · , 0︸   ︷︷   ︸
𝑟𝑠

∥.
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It is easy to verify the validity of the expansion(
𝑀 𝐹

𝐺 0

)
=

(
𝐼𝑚−1 0
𝐻 𝐼

)
·
(
𝐼𝑚−1 0

0 𝐴

)
·
(
𝐼𝑚−1 𝐹

0 𝐼

)
, (5)

with 𝑚 = 𝑟 (𝑠 + 1) + 1, 𝐻 = ∥𝑀0, 𝑀1, . . . , 𝑀𝑠 ∥, where 𝑀0 = ∥ 𝐼, . . . , 𝐼︸  ︷︷  ︸
𝑟

∥ and

𝑀𝑘 = ∥𝐴11𝐴12 . . . 𝐴1 𝑗 , 𝐴21𝐴22 . . . 𝐴2 𝑗 , . . . , 𝐴𝑘1𝐴𝑘2 . . . 𝐴𝑟𝑘 ∥ (𝑘 = 1, 2, . . . , 𝑠).
Note that the operators

𝑌 =

(
𝐼𝑚−1 0
𝐻 𝐼

)
, 𝑍 =

(
𝐼𝑚−1 𝐹

0 𝐼

)
are invertible in the space 𝐵 (𝑚) and their inverse operators are of the form

𝑌−1 =

(
𝐼𝑚−1 0
−𝐻 𝐼

)
, 𝑍−1 =

(
𝐼𝑚−1 −𝐹

0 𝐼

)
,

respectively. Therefore, the operator

𝐴 =

(
𝑀 𝐹

𝐺 0

)
is a linear extension of the operator 𝐴. Theorem 1.1 is proved. □

Note that the extreme factors on the right hand side of equality (5) are triangular
matrices with unity on the main diagonal, therefore, they are invertible. This implies
that the operator 𝐴 is normally solvable. It is Noetherian or invertible if and only if the
operator 𝐴 is of such type.

Corollary 1.1. The operator 𝐴 is invertible in the space 𝐵 if and only if the operator

𝐴 =

(
𝑀 𝐹

𝐺 0

)
is invertible in the space 𝐵𝑛(𝑁+1)+1.

Corollary 1.2. Let 𝐴0, 𝐶𝑘 , 𝐷𝑘 ∈ 𝐿 (𝐵) (𝑘 = 1, 2, . . . , 𝑛) and 𝐴 be an operator defined
by the equality

𝐴 =

©«

𝐼 0 . . . 0 𝐷1

0 𝐼 . . . 0 𝐷2

. . . . . . . . . . . . . . .

0 0 . . . 𝐼 𝐷𝑛

𝐶1 𝐶2 . . . 𝐶𝑛 𝐴0

ª®®®®®®®¬
. (6)
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In this case, the following statements are true:

𝐴 ∈ 𝐺𝐿
(
𝐵𝑛+1

)
⇔ 𝐴 = 𝐴0 −

𝑛∑︁
𝑘=1

𝐶𝑘𝐷𝑘 ∈ 𝐺𝐿 (𝐵) .

Indeed, we note that

𝐴0 −
𝑛∑︁

𝑘=1
𝐵𝑘𝐶𝑘 = 𝑑𝑒𝑡𝐴

and the validity of the following equality is directly verified

©«

𝐼 0 . . . 0 𝐷1

0 𝐼 . . . 0 𝐷2

. . . . . . . . . . . . . . .

0 0 . . . 𝐼 𝐷𝑛

𝐶1 𝐶2 . . . 𝐶𝑛 𝐴0

ª®®®®®®®¬
=

©«

𝐼 0 . . . 0 0
0 𝐼 . . . 0 0
. . . . . . . . . . . . . . .

0 0 . . . 𝐼 0
𝐶1 𝐶2 . . . 𝐶𝑛 𝐼

ª®®®®®®®¬
×

×

©«

𝐼 0 . . . 0 𝐷1

0 𝐼 . . . 0 𝐷2

. . . . . . . . . . . . . . .

0 0 . . . 𝐼 𝐷𝑛

0 0 . . . 0 𝐴0 − Δ

ª®®®®®®®¬
×

©«

𝐼 0 . . . 0 𝐷1

0 𝐼 . . . 0 𝐷2

. . . . . . . . . . . . . . .

0 0 . . . 𝐼 𝐷𝑛

0 0 . . . 0 𝐼

ª®®®®®®®¬
, (7)

where Δ =
∑𝑛

𝑘=1𝐶𝑘𝐷𝑘 . Since the left and right factors of equality (7) are invertible
operators in the space 𝐵𝑛+1, then 𝐴 ∈ 𝐺𝐿

(
𝐵𝑛+1) ⇔ 𝐴0 −

∑𝑛
𝑘=1𝐶𝑘𝐷𝑘 .

Corollary 1.3. If the vector 𝜑 = (𝜑1, . . . , 𝜑𝑛+1) ∈ 𝐵𝑛+1 is a solution of the equation
𝐴𝜑 = 𝜓 with the right hand side 𝜓 = (0, 0, . . . , 𝜓) , then the equality 𝐴𝜑𝑛+1 = 𝜓 holds.
That is, the coordinate standing on 𝑛+1 place of the solution of the equation 𝐴𝜑 = 𝜓 with
the right hand side 𝜓 = (0, 0, . . . , 𝜓) is the solution of the equation 𝐴 𝑓 = 𝜓. Solutions of
this type exhaust all solutions of the equation 𝐴 𝑓 = 𝜓.

Indeed, from equality (6) it follows that the equation 𝐴𝜑 = 𝜓 is equivalent to the system
of equations: 

𝜑1 + 𝐷1𝜑𝑛+1 = 0,
𝜑2 + 𝐷2𝜑𝑛+1 = 0,

. . .

𝜑𝑛 + 𝐷𝑛𝜑𝑛+1 = 0,
𝐴𝜑𝑛+1 = 𝜓.

This implies the assertion of Corollary 1.3.
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Remark 1.1. It is clear that Theorem 1.1 and Corollary 1.3 can be effectively applied
only in the cases when the solvability criteria for the operators of the form (4) are known.
This is done in the cases when the operator 𝐴 is a singular integral operator.

2. Application to the solution of singular equations

We apply Theorem 1.1 and Corollary 1.3 to solve singular integral equations perturbed
by compact operators. Such equations are also called complete singular integral equations
(see [3]). We noted above that singular integral equations are solved in rather rare cases.
This problem becomes more complicated (see [1]) in the case of systems of singular
equations being related to the problem of the factorization of functional matrices and the
solution of the corresponding Riemann problem.Taking into account these difficulties, we
will study equations that can be reduced to systems of equations whose coefficients can
be effectively factorized.

Before we pass to solving the proposed equations, we pay our attention to an unexpected
result that is obtained by means of Theorem 1.1. It is known that the theory of singular
integral equations

𝑎 (𝑡) 𝜑 (𝑡) + 𝑏 (𝑡)
𝜋𝑖

∫
Γ

𝜑 (𝜏)
𝜏 − 𝑡 𝑑𝜏 = 𝑓 (𝑡) (8)

is well developed and presented in monographs [1]-[3] and others. Usually, the contour
of integration Γ is assumed to be of Lyapunov type, and in the case of a contour with
angular points, certain difficulties appear. Let Γ be a contour having an angular point of
size 𝜋

2 and consider the equation (8). After certain integral (equivalent) transformations,
the operator

𝑉𝜑 ≡ 𝑎 (𝑡) 𝜑 (𝑡) + 𝑏 (𝑡)
𝜋𝑖

∫
Γ

𝜑 (𝜏)
𝜏 − 𝑡 𝑑𝜏,

determined by the left hand side of equation (8), turns into the operator

𝑊𝜓 = �̃� (𝑡) 𝜓 (𝑡) + �̃� (𝑡)
𝜋𝑖

∫
Γ̃

𝜓 (𝜏)
𝜏 − 𝑡 𝑑𝜏 +

�̃� (𝑡)
2𝜋𝑖

[∫
Γ̃

( √
𝑡 + 1

(𝜏 − 𝑡)
√
𝜏 + 1

− 1
𝜏 − 𝑡

)
𝜓 (𝜏) 𝑑𝜏

]
,

where �̃�(𝑡) = 𝑎
√
𝑡 + 1, �̃�(𝑡) = 𝑏

√
𝑡 + 1 and Γ̃ is already a Lyapunov contour! The operator

𝑊 satisfies the conditions of Theorem 1.1 and Corollary 1.3 by means of which (we do not
dwell on the details) we have that the operator𝑉 is Noetherian if and only if the following
operator is Noetherian

𝑊0𝜓 = �̃� (𝑡) 𝜓 (𝑡) + �̃� (𝑡)
𝜋𝑖

∫
Γ̃

𝜓 (𝜏)
𝜏 − 𝑡 𝑑𝜏.

Thus, the study of a singular operator, in the case of the contour with an angular point,
is reduced to the study of a similar operator on a Lyapunov type contour. From these
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results it follows that the Noetherian conditions of the operator 𝑊0 do not change being
perturbed by the operators of the form

𝐻𝜓 =
�̃� (𝑡)
2𝜋𝑖

[∫
Γ̃

( √
𝑡 + 1

(𝜏 − 𝑡)
√
𝜏 + 1

− 1
𝜏 − 𝑡

)]
𝜓 (𝜏) 𝑑𝜏,

which is not compact!
Let Γ = {𝑡 ∈ C : |𝑡 | = 1} . In space 𝐵 = 𝐿𝑝 (Γ) (𝑝 > 1), we consider the equation

1
𝜋𝑖

∫
Γ

𝜏3 − 𝑡3

(𝜏 − 𝑡)2 𝜑(𝜏)𝑑𝜏 = 𝜓 (𝑡) . (9)

The left hand side of equation (9) corresponds to the operator, which can be written in
the following form

(𝐴𝜑) (𝑡) = 3𝑡2

𝜋𝑖

∫
Γ

𝜑(𝜏)
𝜏 − 𝑡 𝑑𝜏 + (𝑇𝜑) (𝑡) ,

where

(𝑇𝜑) (𝑡) = 1
𝜋𝑖

∫
Γ

(𝜏 + 2𝑡)𝜑(𝜏)𝑑𝜏.

The operator 𝑇 , being an integral operator with a continuous kernel, is compact in
𝐿𝑝 (Γ) . In the case of studying the Noetherian properties and the index of the operator
𝐴, the operator 𝑇 can be neglected, i.e. the operator 𝑇 does not affect the Noetherian
properties of the operator 𝐴. However, this does not happen if the operator 𝐴 is inverted
or in the case of solving the equation 𝐴𝜑 = 𝜓.

Let

(𝑆𝜑) (𝑡) = 1
𝜋𝑖

∫
Γ

(𝜏 − 𝑡)−1𝜑(𝜏)𝑑𝜏, (𝐵𝜑) (𝑡) = 𝑡𝜑(𝑡), (10)

then the operator 𝐴 can be written as follows

𝐴 = 𝑆𝐵2 + 𝐵𝑆𝐵 + 𝐵2𝑆,

and the corresponding operator 𝐴, defined by equality (6), of the operator 𝐴 has the form

𝐴 =
©«
𝐼 0 𝐵2

0 𝐼 𝐵

−𝑆 −𝐵𝑆 𝐵2𝑆

ª®®¬ .
By virtue of Corollary 1.3, any solution of equation (9) can be obtained as the last

coordinate 𝜑3 of the solution of equation 𝐴𝜑 = 𝜓 (𝜑 = (𝜑1, 𝜑2, 𝜑3) , 𝜓 = (0, 0, 𝜓)).
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The operator 𝐴 represents the characteristic singular operator with matrix coefficients:

𝐴 =
©«

1 0 𝑡2

0 1 𝑡

−1 −𝑡 𝑡2

ª®®¬ 𝑃 +
©«

1 0 𝑡2

0 1 𝑡

1 𝑡 −𝑡2

ª®®¬𝑄 =

=
©«

1 0 𝑡2

0 1 𝑡

1 𝑡 −𝑡2

ª®®¬

1
3

©«
1 −2𝑡 2𝑡2

−2𝑡−1 1 2𝑡
2𝑡−2 2𝑡−1 1

ª®®¬ 𝑃 +𝑄
 ,

where 𝑃 = 1
2𝑑𝑖𝑎𝑔(𝐼 + 𝑆) and 𝑄 = 1

2𝑑𝑖𝑎𝑔 (𝐼 − 𝑆) .
The matrix that is the coefficient of the operator 𝑃 can be factorized:

1
3

©«
1 −2𝑡 2𝑡2

−2𝑡−1 1 2𝑡
2𝑡−2 2𝑡−1 1

ª®®¬ =
©«

1 0 0
−2𝑡−1 1 0
2𝑡−2 2𝑡−1 1

ª®®¬
©«

1/3 −2𝑡/3 2𝑡2/3
0 −1 2𝑡
0 0 3

ª®®¬= 𝑐− · 𝑐+.

Since the partial indices under this factorization are equal to zero, the operator 𝐴 is
invertible in 𝐵3 [1] and its inverse operator is defined by the following equality:

𝐴−1 =


©«

1/3 −2𝑡/3 2𝑡−2/3
0 −1 2𝑡
0 0 3

ª®®¬
−1

𝑃 +
©«

1 0 0
−2𝑡−1 1 0
2𝑡−2 −2𝑡−1 1

ª®®¬𝑄
 ×

×
©«

1 0 0
−2𝑡−1 1 0
2𝑡−2 −2𝑡−1 1

ª®®¬
−1 ©«

1 0 𝑡2

0 1 𝑡

1 𝑡 𝑡2

ª®®¬ =

=


©«

3 −2𝑡 2𝑡2/3
0 −1 2𝑡/3
0 0 1/3

ª®®¬ 𝑃 +
©«

1 0 0
−2𝑡−1 1 0
2𝑡−2 −2𝑡−1 1

ª®®¬𝑄
 ·

©«
2/3 −𝑡/3 1/3
𝑡−1 0 𝑡−1

𝑡−2 𝑡−1 𝑡−2

ª®®¬ .
According to the scheme of inversion of the singular operator 𝐴, given in Corollary

1.3, we find

𝐴−1 ©«
0
0
𝜓

ª®®¬ =
©«

3𝑃 +𝑄 −2𝑡𝑃 2𝑡2/3𝑃
−2/𝑡𝑄 −𝑃 +𝑄 2𝑡/3𝑃
2/𝑡2𝑄 −2/𝑡𝑄 1/3𝑃 +𝑄

ª®®¬
©«

1/3𝜓
1/𝑡𝜓
1/𝑡2𝜓

ª®®¬ .
Hence

𝐴−1𝜓 =

(
2
𝑡2
𝑄

−2
𝑡
𝑄

1
3
𝑃 +𝑄

) ©«
1/3𝜓
1/𝑡𝜓
1/𝑡2𝜓

ª®®¬ =
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=

(
−1

3
𝑆𝐵−2 + 𝐵−1𝑆𝐵−1 − 2

3
𝐵−2𝑆

)
𝜓.

Thus, equation (9) is uniquely solvable and its solution is found by the formula

𝜑 (𝑡) = 1
3𝜋𝑖

∫
Γ

3𝜏𝑡 − 2𝜏2 − 𝑡2
𝜏2𝑡2 (𝜏 − 𝑡)

𝜓 (𝜏) 𝑑𝜏. (11)

Consider two more equations

𝑡2 + 1
𝑡

𝜑 (𝑡) + 1
𝜋𝑖

∫
Γ

𝜏𝑡 − 1
𝜏 (𝜏 − 𝑡) 𝜑 (𝜏) 𝑑𝜏 = 𝜓(𝑡) (12)

and
𝑡2 + 1
𝑡

𝑓 (𝑡) + 1
𝜋𝑖

∫
Γ

1 − 𝜏𝑡
𝜏 (𝜏 − 𝑡) 𝑓 (𝜏) 𝑑𝜏 = 𝜓(𝑡). (13)

Let 𝐴 and 𝐶 be operators defined by the left hand sides of equalities (12) and (13),
respectively. It is directly verified that in this case the operators 𝐴 and 𝐶 differ from
the characteristic singular operators by compact terms, i.e., equations (12) and (13) are
complete singular equations. With the notation (10), the operators 𝐴 and 𝐵 can be written
in the following form

𝐴 = 𝐵 + 𝐵−1 + 𝐵𝑆 − 𝑆𝐵−1.

Since 𝑆∗ = 𝑆 and𝐶∗ = 𝐶−1, then𝐶 = 𝐴∗.As operators 𝐴 and𝐶, appearing in Corollary
1.2, we can take

𝐴 =

(
𝐼 𝐵−1

𝑆 𝐵 + 𝐵−1 + 𝐵𝑆

)
, �̃� =

(
𝐼 𝐵−1

−𝑆 𝐵 + 𝐵−1 − 𝐵𝑆

)
.

The operators 𝐴 and𝐶 (as in the previous example) are characteristic singular operators
with matrix coefficients:

𝐴 =

(
1 𝑡−1

−1 𝑡−1

) [(
0 −𝑡
𝑡 1 + 𝑡2

)
𝑃 +𝑄

]
,

𝐶 =

(
1 𝑡−1

1 2𝑡 + 𝑡−1

) [(
1 + 𝑡−2 𝑡−1

−𝑡−1 0

)
𝑃 +𝑄

]
.

However, unlike the previous example, the matrices-coefficients of 𝑃 have non-zero
partial indices. In the case of the operator 𝐴 this index is equal to 2, and in the case of 𝐶
it is equal to −2. This results from the factorization of the coefficients of the operator 𝑃 :(

0 −𝑡
𝑡 1 + 𝑡2

)
=

(
1 0

−𝑡−1 1

) (
𝑡 0
0 𝑡

) (
0 −1
1 𝑡

)
,(

1 + 𝑡−2 𝑡−1

−𝑡−1 0

)
=

(
𝑡−1 1
−1 0

) (
𝑡−1 0
0 𝑡−1

) (
1 0
𝑡 1

)
.
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By virtue of well-known results from the theory of singular equations with matrix
coefficients, the operator 𝐴 is left invertible, while the operator 𝐶 is left invertible. This
implies the operator 𝐴 to be left invertible and the operator 𝐶 to be right invertible. The
general solution of the equation 𝐶𝜑 = 0 is of the form (see [1]):(

𝜑1

𝜑2

)
=

(
𝛼

(
1 − 𝑡−1 − 𝑡−2)
𝛽(1 − 𝑡 + 𝑡−1)

)
and the particular solution of the equation 𝐶𝜑 = 𝜓 has de form(

𝜑1

𝜑2

)
=

(
0

(𝑡2𝑃 +𝑄)𝑡−1𝜓(𝑡)

)
.

Thus, equation (13) is solvable for any right hand side and its general solution is of the
form

𝑓 (𝑡) = 𝛽
(
1 − 𝑡 + 𝑡−1

)
+ 𝑡

2 + 1
4

𝜓 (𝑡) + 𝑡
2 − 1
4𝜋𝑖

∫
Γ

𝜓(𝜏)
𝜏(𝜏 − 𝑡) 𝑑𝜏,

where 𝛽 ∈ C. Equation (12) is not solvable for any right hand side. Since the operator 𝐴
is left invertible, it is normally solvable. For its solvability it is necessary and sufficient
that the right hand side of 𝜓 be orthogonal to each solution of the equation 𝐶𝜑 = 0, i.e.
to fulfill the condition ∫

Γ

(1 − 𝑡 + 𝑡−1)𝜓(𝑡) |𝑑𝑡 | = 0.

If this condition is satisfied, then equation (12) has a unique solution, which can be
found by formula

𝜑 (𝑡) = 𝑡 + 1
4𝑡

𝜓 (𝑡) + 1
4𝜋𝑖

∫
Γ

𝜏 + 𝑡 + 𝜏𝑡 − 𝜏2𝑡

𝜏2𝑡 (𝜏 − 𝑡)
𝜓 (𝜏) 𝑑𝜏.

This solution is obtained according to the scheme proposed in Corollaries 1.2 and 1.3.

3. Solution of integral equations by the regularization method

Let 𝐴 be some Noetherian operator. If the regularizing operator 𝑀 for 𝐴 is known,
then the solution of the equation

𝐴𝜑 = 𝑓 (14)

can be reduced to solving the equation

𝑀𝐴𝜑 = 𝑀 𝑓 , (15)

in which the operator 𝑀𝐴− 𝐼 is completely continuous. To equation (15) may be applied
many methods developed for inverting operators of the form 𝐼−𝑇,where𝑇 is a completely
continuous operator.
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A special interest is represented by the case when equations (14) and (15) are equivalent
for any vector 𝑓 , i.e., equations (14) and (15) are simultaneously solvable or unsolvable,
and in the case of solvability, they have the same solutions. This happens to be if and only
if 𝐾𝑒𝑟𝑀 = 0. Indeed, if 𝑀𝐴𝜑 = 0, then 𝐴𝜑 = ℎ, where ℎ ∈ 𝐾𝑒𝑟𝑀.

Assume that equations (14) and (15) are equivalent, then either 𝐾𝑒𝑟𝑀 = {0} , or
𝑑𝑖𝑚 𝐾𝑒𝑟𝑀 > 0 and 𝐾𝑒𝑟𝑀

⋂
𝐼𝑚𝐴 = {0}. The last assertion is impossible, since in this

case the equations 𝐴𝜑 = 𝑓 ( 𝑓 ∈ 𝐾𝑒𝑟𝑀) and 𝑀𝐴𝜑 = 𝑀 𝑓 = 0 are not equivalent.
Conversely, if 𝐾𝑒𝑟𝑀 = {0} , then it is obvious that equations (14) and (15) are equivalent.

We say that an operator 𝐴 admits equivalent regularization if it has a regularizing
operator 𝑀 for which equations (14) and (15) are equivalent for any vector 𝑓 . In this case,
the operator 𝑀 is called an equivalent regularizing operator for 𝐴.

It follows from the above that an operator 𝑀 is an equivalent regularizer for 𝐴 if it is a
regularizer for 𝐴 and also is left invertible.

Theorem 3.1. (see [11]) Operator 𝐴 admits an equivalent regularization if and only if

𝐼𝑛𝑑𝐴 ≥ 0. (16)

Indeed, if 𝑀 is an equivalent regularizer for 𝐴, then it is left invertible and, therefore,
𝐼𝑛𝑑𝑀 ≤ 0. Since 𝐼𝑛𝑑𝑀𝐴 = 𝐼𝑛𝑑𝑀 + 𝐼𝑛𝑑𝐴 = 0, then 𝐼𝑛𝑑𝐴 ≥ 0. Let condition (16) be
satisfied and 𝑀1 be a regularizer for 𝐴. Then 𝑀1 is Noetherian and 𝐼𝑛𝑑𝑀1 + 𝐼𝑛𝑑𝐴 = 0.
Hence, 𝐼𝑛𝑑𝑀1 ≤ 0. According to the results of [12], the operator 𝑀1 can be represented
as 𝑀1 = 𝑀 + 𝑇, where 𝑀 is left invertible. Obviously, 𝑀 is an equivalent regularizing
operator for 𝐴. Theorem 3.1 is proved.

We now consider the case when the Noetherian operator 𝐴 does not admit equivalent
regularization, that is, the following condition holds

𝐼𝑛𝑑𝐴 < 0. (17)

Let 𝑀1 be a regularizer for 𝐴. Since 𝐼𝑛𝑑𝑀1 > 0, then according to the results of work
[12] the operator 𝑀1 can be represented as 𝑀1 = 𝑀 +𝑇, where 𝑀 is right invertible. The
operator 𝑀 is also a regularizing operator for 𝐴 and all solutions of the equation

𝐴𝜑 = 𝑓 ( 𝑓 ∈ 𝐼𝑚𝐴)

can be obtained by formula 𝜑 = 𝑀𝜓, where 𝜓 runs through all solutions of the equation

𝐴𝑀𝜓 = 𝑓 .
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As an example, to illustrate the stated theory, let us regularize (see [2]) the following
singular integral equation

𝐴𝜑 ≡
(
𝑡 + 𝑡−1

)
𝜑 (𝑡) + 𝑡 − 𝑡

−1

𝜋𝑖

∫
Γ

𝜑 (𝜏)
𝜏 − 𝑡 𝑑𝜏 −

1
2𝜋𝑖

∫
Γ

(
𝑡 + 𝑡−1

) (
𝜏 + 𝜏−1

)
𝜑 (𝜏)𝑑𝜏 = 2𝑡2,

(18)
in various ways, where Γ is the unit circle.

The regular part of the kernel is degenerate. Therefore, in the same way that is used
in solving the Fredholm equations with the degenerate kernel, the equation (17) can be
reduced to a combination of the characteristic equation and a linear algebraic equation
and, it can be solved in the closed form. Thus, there is no necessity for regularization
here, but the equation under consideration is convenient for illustrating general methods
on it. Here all the calculations can be carried out to the end.

For further reasoning, we first solve this equation denoting
1

2𝜋𝑖

∫
Γ

(
𝜏 + 𝜏−1

)
𝜑 (𝜏)𝑑𝜏 = 𝐶, (19)

We write it in the characteristic form:(
𝑡 + 𝑡−1

)
𝜑 (𝑡) + 𝑡 − 𝑡

−1

𝜋𝑖

∫
Γ

𝜑 (𝜏)
𝜏 − 𝑡 𝑑𝜏 = 2𝑡2 + 𝐶

(
𝑡 + 𝑡−1

)
.

For the corresponding Riemann boundary value problem [2]

Φ+ (𝑡) = 𝑡−2Φ− (𝑡) + 𝑡 + 𝐶
2
(1 + 𝑡−2)

the index ^ = −2 and the solvability conditions will be satisfied only for 𝐶 = 0. In this
case

Φ+ (𝑧) = 𝑧, Φ− (𝑧) = 0.

From here we obtain the solution of equation (18):

𝜑 (𝑡) = Φ+ (𝑡) −Φ− (𝑡) = 𝑡.

Putting the last expression into the equality (19), we make sure that it is satisfied at
𝐶 = 0. Therefore, this equation is solvable and has a unique solution 𝜑 (𝑡) = 𝑡.

Regularization on the left. Since the index of the equation is ^ = −2 < 0, then any of its
regularizing operators will have eigenfunctions (at least two). Therefore, regularization
on the left leads, generally speaking, to an equation that is not equivalent to the original
one (regularization is not equivalent).

Consider first the regularization on the left using the regularizer 𝑅:

(𝑅ℎ) (𝑡) ≡
(
𝑡 + 𝑡−1

)
ℎ (𝑡) − 𝑡 − 𝑡−1

𝜋𝑖

∫
Γ

ℎ (𝜏)
𝜏 − 𝑡 𝑑𝜏. (20)
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The corresponding Riemann boundary value problem

𝐻+ (𝑡) = 𝑡2𝐻− (𝑡)

has now the index ^ = 2. Finding the eigenfunctions of the operator 𝑅, we obtain that

_1 (𝑡) = 1 − 𝑡−2, _2 (𝑡) = 𝑡 − 𝑡−1.

Based on the general theory, the regular equation 𝑅𝐴𝜑 = 𝑅 𝑓 will be equivalent to the
singular equation

𝐴𝜑 = 𝑓 + 𝛼1_1 + 𝛼2_2, (21)

where 𝛼1, 𝛼2 are some constants, which can be either arbitrary or defined. Taking into
account (19), we write equation (21) in the characteristic form:(
𝑡 + 𝑡−1

)
𝜑 (𝑡) + 𝑡 − 𝑡

−1

𝜋𝑖

∫
Γ

𝜑 (𝜏)
𝜏 − 𝑡 𝑑𝜏 = 2𝑡2 + 𝐶

(
𝑡 + 𝑡−1

)
+ 𝛼1

(
1 − 𝑡−2

)
+ 𝛼2

(
𝑡 − 𝑡−1

)
.

The corresponding Riemann boundary value problem for this equation is

Φ+ (𝑡) = 𝑡−2Φ− (𝑡) + 𝑡 + 𝐶
2

(
1 + 𝑡−2

)
+ 𝛼1

2

(
𝑡−1 − 𝑡−3

)
+ 𝛼2

2

(
1 − 𝑡−2

)
.

Its solution can be presented in the form

Φ+ (𝑧) = 𝑧 + 1
2
𝐶 + 1

2
𝛼2, Φ− (𝑡) = 1

2
𝑧2 [

𝛼1𝑧
−3 + (𝛼2 − 𝐶) 𝑧−2 − 𝛼1𝑧

−1] .
The solvability condition will give 𝛼1 = 0, 𝛼2 = 𝐶. Then, the solution of equation (21)

is determined by formula 𝜑 (𝑡) = Φ+ (𝑡) −Φ− (𝑡) = 𝑡 + 𝐶.
Substituting the found value of 𝜑 into equality (19), we obtain the identity 𝐶 = 𝐶.

Therefore, the constant 𝛼2 = 𝐶 remains to be arbitrary and the regularized equation is not
equivalent to the original equation, but to the equation

𝐴𝜑 = 𝑓 + 𝛼2_2,

having the solution 𝜑 (𝑡) = 𝑡 + 𝐶, where 𝐶 is an arbitrary constant. The last solution
satisfies the original equation only at 𝐶 = 0.

Regularization on the right. As a regularizer on the right, we take the operator 𝑅,
defined by equality (20). Assuming that

𝜑 (𝑡) = (𝑅ℎ) (𝑡) ≡
(
𝑡 + 𝑡−1

)
ℎ (𝑡) − 𝑡 − 𝑡−1

𝜋𝑖

∫
Γ

ℎ (𝜏)
𝜏 − 𝑡 𝑑𝜏 (22)

we obtain the Fredholm equation for the function ℎ (𝑡):

(𝐴𝑅ℎ) (𝑡) ≡

ℎ (𝑡) − 1
4𝜋𝑖

∫
Γ

[
𝑡

(
𝜏2 − 1 + 𝜏−2)+2𝜏−1 + 𝑡−1 (

𝜏2 + 3 + 𝜏−2
)
− 2𝑡−2𝜏−1

)]
ℎ (𝜏) 𝑑𝜏 = 𝑡2

2
.
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Solving the last equation as a degenerate one, we have

ℎ (𝑡) = 𝑡2

2
+ 𝛼

(
𝑡 − 𝑡−1

)
+ 𝛽

(
1 − 𝑡−2

)
,

where 𝛼, 𝛽 are arbitrary constants.
Thus, the regularized equation has two linearly independent solutions with respect to

ℎ (𝑡) while the original equation (18) was solved uniquely. Substituting the found value
ℎ (𝑡) in formula (22), we obtain that

𝜑 (𝑡) = 𝑅
[
𝑡2

2
+ 𝛼

(
𝑡 − 𝑡−1

)
+ 𝛽

(
1 − 𝑡−2

)]
= 𝑡

is the solution of the original singular equation. The result agrees with the general theory,
since the regularization on the right is equivalent for a negative index.
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Centers of cubic differential systems with the line at infinity of
maximal multiplicity

Alexandru Şubă

Abstract. We classify all cubic differential systems with a center-focus critical point
and the line at infinity of maximal multiplicity. It is proved that the critical point is of
the center type if and only if the divergence of the vector field associated to differential
system vanishes.
2010 Mathematics Subject Classification: 34C05.
Keywords: cubic differential system, multiple invariant line, center problem.

Centre ı̂n sistemele diferenţiale cubice ce au linia de la infinit de
multiplicitate maximală

Rezumat. Sunt clasificate sistemele diferenţiale cubice ce au puncte critice de tip
centru-focar şi infinitul e de multiplicitate maximală. Se arată că ı̂n punctul critic avem
centru, dacă şi numai dacă divergenţa câmpului vectorial asociat sistemului diferenţial se
anulează.
Cuvinte-cheie: sistem diferenţial cubic, linii invariante multiple, problema centrului.

1. Introduction

Consider the real cubic system of differential equations
¤𝑥 = 𝑦 + 𝑎𝑥2 + 𝑐𝑥𝑦 + 𝑓 𝑦2 + 𝑘𝑥3 + 𝑚𝑥2𝑦 + 𝑝𝑥𝑦2 + 𝑟𝑦3 ≡ 𝑝 (𝑥, 𝑦) ,
¤𝑦 = −(𝑥 + 𝑔𝑥2 + 𝑑𝑥𝑦 + 𝑏𝑦2 + 𝑠𝑥3 + 𝑞𝑥2𝑦 + 𝑛𝑥𝑦2 + 𝑙𝑦3) ≡ 𝑞 (𝑥, 𝑦) ,
gcd(𝑝, 𝑞) = 1, 𝑠𝑥4 + (𝑘 + 𝑞)𝑥3𝑦 + (𝑚 + 𝑛)𝑥2𝑦2 + (𝑙 + 𝑝)𝑥𝑦3 + 𝑟𝑦4 . 0.

(1)

The critical point (0, 0) of the system (1) is either a focus or a center. The problem of
distinguishing between a center and a focus is called the center problem. It is well known
that (0, 0) is a center if and only if the Lyapunov quantities 𝐿1, 𝐿2, ..., 𝐿 𝑗 , ... vanish (see,
for example, [2], [6], [7]). Also, the critical point (0, 0) is a center if the system (1) has
an analytic in (0, 0) first integral 𝐹 (𝑥, 𝑦).

The homogeneous system associated to the system (1) has the form{
¤𝑥 = 𝑦𝑍2 + (𝑎𝑥2 + 𝑐𝑥𝑦 + 𝑓 𝑦2)𝑍 + 𝑘𝑥3 + 𝑚𝑥2𝑦 + 𝑝𝑥𝑦2 + 𝑟𝑦3 ≡ 𝑃 (𝑥, 𝑦, 𝑍) ,
¤𝑦 = −(𝑥𝑍2 + (𝑔𝑥2 + 𝑑𝑥𝑦 + 𝑏𝑦2)𝑍 + 𝑠𝑥3 + 𝑞𝑥2𝑦 + 𝑛𝑥𝑦2 + 𝑙𝑦3) ≡ 𝑄 (𝑥, 𝑦, 𝑍) .
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Şubă A.

Denote X = 𝑝 (𝑥, 𝑦) 𝜕
𝜕𝑥

+ 𝑞 (𝑥, 𝑦) 𝜕
𝜕𝑦
, X∞ = 𝑃 (𝑥, 𝑦, 𝑍) 𝜕

𝜕𝑥
+ 𝑄 (𝑥, 𝑦, 𝑍) 𝜕

𝜕𝑦
and 𝐸∞ =

𝑃 · X∞(𝑄) −𝑄 · X∞(𝑃). The polynomial 𝐸∞ has the form 𝐸∞ = 𝐶2(𝑥, 𝑦) + 𝐶3(𝑥, 𝑦)𝑍 +
𝐶4(𝑥, 𝑦)𝑍2 + 𝐶5(𝑥, 𝑦)𝑍3 + 𝐶6(𝑥, 𝑦)𝑍4 + 𝐶7(𝑥,𝑌 )𝑍5 + 𝐶8(𝑥, 𝑦)𝑍6, where 𝐶 𝑗 (𝑥, 𝑦), 𝑗 =
2, ..., 8, are polynomial in 𝑥 and 𝑦. For example,

𝐶 𝑗 (𝑥, 𝑦) = 𝐷 𝑗 (𝑎, 𝑏, 𝑐, 𝑑, 𝑓 , 𝑔, 𝑘, 𝑙, 𝑚, 𝑛, 𝑝, 𝑞, 𝑟, 𝑠, 𝑥, 𝑦)
+𝐷 𝑗 (𝑏, 𝑎, 𝑑, 𝑐, 𝑔, 𝑓 , 𝑙, 𝑘, 𝑛, 𝑚, 𝑞, 𝑝, 𝑠, 𝑟, 𝑦, 𝑥), 𝑗 = 5, 6,

(2)

where

𝐷5(𝑎, 𝑏, 𝑐, 𝑑, 𝑓 , 𝑔, 𝑘, 𝑙, 𝑚, 𝑛, 𝑝, 𝑞, 𝑟, 𝑠, 𝑥, 𝑦) =
(𝑎𝑑𝑔 − 𝑐𝑔2 + 3𝑎𝑘 + 𝑑𝑘 − 2𝑔𝑚 + 𝑎𝑞 − 2𝑐𝑠 − 2𝑔𝑠)𝑥5

+(𝑎2𝑑 + 𝑎𝑑2 + 2𝑎𝑏𝑔 − 𝑎𝑐𝑔 − 𝑐𝑑𝑔 − 2 𝑓 𝑔2 + 2𝑏𝑘 + 2𝑐𝑘 − 𝑔𝑘
+2𝑎𝑚 − 𝑑𝑚 + 2𝑎𝑛 − 4𝑔𝑝 − 𝑐𝑞 − 𝑔𝑞 − 4𝑎𝑠 − 𝑑𝑠 − 4 𝑓 𝑠)𝑥4𝑦

+(2𝑎2𝑏 + 3𝑎𝑏𝑑 + 𝑎𝑐𝑑 − 𝑐2𝑔 − 2𝑎 𝑓 𝑔 − 3𝑑𝑓 𝑔 + 𝑑𝑘 + 𝑓 𝑘 + 3𝑎𝑙
+𝑐𝑚 − 2𝑔𝑚 + 𝑎𝑝 − 3𝑑𝑝 − 2𝑎𝑞 − 3 𝑓 𝑞 − 6𝑔𝑟 − 5𝑐𝑠)𝑥3𝑦2,

𝐷6(𝑎, 𝑏, 𝑐, 𝑑, 𝑓 , 𝑔, 𝑘, 𝑙, 𝑚, 𝑛, 𝑝, 𝑞, 𝑟, 𝑠, 𝑥, 𝑦) =
(𝑎2 + 𝑎𝑑 − 2𝑐𝑔 − 𝑔2 − 𝑚 − 2𝑠)𝑥4

+(2𝑎𝑏 + 𝑎𝑐 − 𝑐𝑑 − 2𝑎𝑔 − 𝑑𝑔 − 4 𝑓 𝑔 + 𝑘 − 2𝑝 − 𝑞)𝑥3𝑦 − 3(𝑐𝑔 + 𝑟)𝑥2𝑦2

We say that the line at infinity 𝑍 = 0 has multiplicity a if 𝐶2(𝑥, 𝑦) ≡ 0, ..., 𝐶a (𝑥, 𝑦) ≡
0, 𝐶a+1(𝑥, 𝑦) . 0, i.e. a − 1 is the greatest positive integer such that 𝑍a−1 divides 𝐸∞. In
particular, 𝑍 = 0 has multiplicity five if the following identity and non-identity in 𝑍:

𝐶2(𝑥, 𝑦) + 𝐶3(𝑥, 𝑦)𝑍 + 𝐶4(𝑥, 𝑦)𝑍2 + 𝐶5(𝑥, 𝑦)𝑍3 ≡ 0, 𝐶6(𝑥, 𝑦) . 0, (3)

holds, i.e. 𝐶2(𝑥, 𝑦) ≡ 0, 𝐶3(𝑥, 𝑦) ≡ 0, 𝐶4(𝑥, 𝑦) ≡ 0, 𝐶5(𝑥, 𝑦) ≡ 0 and 𝐶6(𝑥, 𝑦) . 0. If
𝐶2(𝑥, 𝑦) . 0, then we say that 𝑍 = 0 has the multiplicity one. Denote by 𝑚(𝑍∞) the
multiplicity of the line at infinity 𝑍 = 0.

The algebraic line 𝑓 (𝑥, 𝑦) = 0 is called invariant for (1) if there exists a polynomial
𝐾 𝑓 ∈ C[𝑥, 𝑦] such that the identity X( 𝑓 ) ≡ 𝑓 · 𝐾 𝑓 (𝑥, 𝑦) holds. In particular, a straight
line L ≡ 𝛼𝑥 + 𝛽𝑦 + 𝛾 = 0, 𝛼, 𝛽, 𝛾 ∈ C is called invariant for the system (1) if there
exists a polynomial 𝐾L ∈ C[𝑥, 𝑦] such that the identity 𝛼𝑝(𝑥, 𝑦) + 𝛽𝑞(𝑥, 𝑦) ≡ (𝛼𝑥 +
𝛽𝑦 + 𝛾)𝐾L (𝑥, 𝑦), (𝑥, 𝑦) ∈ R2, i.e. X(L) ≡ L(𝑥, 𝑦)𝐾L (𝑥, 𝑦), (𝑥, 𝑦) ∈ R2, holds. Some
notions on multiplicity (algebraic, integrable, infinitesimal, geometric) of an invariant
algebraic line and its equivalence for polynomial differential systems are given in [1].

The cubic differential systems with multiple invariant straight lines (including the line
at infinity) were studied in [11], [14], and the center problem for (1) with invariant straight
lines was considered in [2], [3], [4], [5], [8], [10], [12], [13], [15].
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2. Cubic systems (1) with the line at infinity of maximal multiplicity

Let X = (𝑥, 𝑦), A2 = (𝑎, 𝑏, 𝑐, 𝑑, 𝑓 , 𝑔), A3 = (𝑘, 𝑙, 𝑚, 𝑛, 𝑝, 𝑞, 𝑟, 𝑠), U = (𝑢, 𝑣), B2 =

(𝐴, 𝐵, 𝐶, 𝐷, 𝐹, 𝐺),B3 = (𝐾, 𝐿, 𝑀, 𝑁, 𝑃, 𝑄, 𝑅, 𝑆) and X = 2−1𝑀1U,

A2 = 2−3M2B2, A3 = 2−4M3B3, (4)

where

M1 =

(
1 1
𝑖 −𝑖

)
, M2 =

©«

−𝑖 𝑖 −𝑖 𝑖 −𝑖 𝑖

−1 −1 1 1 −1 −1
−2 −2 0 0 2 2
−2𝑖 2𝑖 0 0 2𝑖 −2𝑖
𝑖 −𝑖 −𝑖 𝑖 𝑖 −𝑖
1 1 1 1 1 1

ª®®®®®®®®®®¬
,

M3 =

©«

−𝑖 𝑖 −𝑖 𝑖 −𝑖 𝑖 −𝑖 𝑖

𝑖 −𝑖 −𝑖 𝑖 𝑖 −𝑖 −𝑖 𝑖

−3 −3 −1 −1 1 1 3 3
−3 −3 1 1 1 1 −3 −3
3𝑖 −3𝑖 −𝑖 𝑖 −𝑖 𝑖 3𝑖 −3𝑖
−3𝑖 3𝑖 −𝑖 𝑖 𝑖 −𝑖 3𝑖 −3𝑖
1 1 −1 −1 1 1 −1 −1
1 1 1 1 1 1 1 1

ª®®®®®®®®®®®®®®®¬

,

detM1 = −2𝑖, detM2 = −29𝑖, detM3 = 216, 𝑖2 = −1.
We remark that, in general, the elements U, B2, B3 are complex and 𝑣 = 𝑢,

𝐵 = 𝐴, 𝐷 = 𝐶, 𝐺 = 𝐹, 𝐿 = 𝐾, 𝑁 = 𝑀, 𝑄 = 𝑃, 𝑆 = 𝑅. (5)

In 𝑢, 𝑣, 𝐴, 𝐵, ..., 𝑅, 𝑆 the identity (3), up to a non zero factor, looks as

𝑀2(𝑢, 𝑣) + 𝑀3(𝑢, 𝑣)𝑍 + 𝑀4(𝑢, 𝑣)𝑍2 + 𝑀5(𝑢, 𝑣)𝑍3 ≡ 0,

where

𝑀 𝑗 (𝑢, 𝑣)=2 𝑗−12(𝑁 𝑗 (𝑢, 𝑣) + 𝑁 𝑗 (𝑢, 𝑣)), 𝑗=2, 3, 4, 5,
𝑁5(𝑢, 𝑣) = 𝑢3((𝐴2𝐷 − 𝐴𝐶𝐺 − 2𝐶𝐾 + 4𝐺𝐾 − 2𝐴𝑀 − 2𝐴𝑆)𝑢2

+(2𝐴2𝐵 + 𝐴𝐶𝐷 − 𝐶2𝐺 + 𝐴𝐷𝐺 − 2𝐴𝐹𝐺 − 𝐶𝐺2 + 10𝐷𝐾 − 4𝐹𝐾
−4𝐶𝑀 − 2𝐺𝑀 − 4𝐴𝑃 + 4𝐴𝑄 − 8𝐶𝑆 − 10𝐺𝑆)𝑢𝑣 + (3𝐴𝐵𝐶 + 𝐴𝐷2

+2𝐴𝐵𝐺 − 𝐶𝐷𝐺 − 3𝐶𝐹𝐺 − 2𝐹𝐺2 + 16𝐵𝐾 + 4𝐷𝑀 − 6𝐹𝑀
+10𝐴𝑁 − 6𝐶𝑃 − 8𝐺𝑃 − 2𝐶𝑄 − 8𝐺𝑄 − 6𝐴𝑅 − 8𝐷𝑆 − 14𝐹𝑆)𝑣2),
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and for 𝐶6(𝑥, 𝑦) we have 𝑀6(𝑢, 𝑣) = 2−5(𝑁6(𝑢, 𝑣) + 𝑁6(𝑢, 𝑣)),

𝑁6(𝑢, 𝑣) = 𝑢2((𝐴𝐶 − 2𝐾)𝑢2 + (𝐶2 − 3𝐴𝐷 + 2𝐴𝐹 + 3𝐶𝐺 + 2𝐺2 + 2𝑀 + 10𝑆)𝑢𝑣
+3(𝐶𝐹 − 𝐴𝐵 + 𝐹𝐺 + 2𝑃)𝑣2).

Solving the series of identities

{𝑀2(𝑢, 𝑣) ≡ 0, 𝑀3(𝑢, 𝑣) ≡ 0, 𝑀4(𝑢, 𝑣) ≡ 0}

the following Theorem is obtained in [9]:

Theorem 2.1. The line at infinity has for cubic system (1) the multiplicity:
- at least two (𝑚(𝑍∞) ≥ 2 : 𝑀2(𝑢, 𝑣) ≡ 0) if and only if the coefficients of (1) verify

one of the following three sets of conditions:

2.1)𝐾 = 𝐿 = 𝑅 = 𝑆 = 0, 𝑃 = 𝛼𝑀,𝑄 = 𝑁/𝛼, 𝑀𝑁 ≠ 0, 𝛼 ∈ C, 𝛼𝛼 = 1;

2.2)𝑀 = 𝑁 = 𝑃 = 𝑄 = 0, 𝑅 = 𝛽𝐾, 𝑆 = 𝐿/𝛽, 𝐾𝐿 ≠ 0, 𝛽 ∈ C, 𝛽𝛽 = 1;

2.3)𝑃 = 𝛾𝑁, 𝑄 = 𝑀/𝛾, 𝑅 = 𝛾𝐿, 𝑆 = 𝐾/𝛾, 𝐾𝐿𝑀𝑁 ≠ 0, 𝛾 ∈ C, 𝛾𝛾 = 1;

-at least three (𝑚(𝑍∞) ≥ 3 : {𝑀2(𝑢, 𝑣) ≡ 0, 𝑀3(𝑢, 𝑣) ≡ 0}) iff

3.1)𝐾 = 𝐿 = 𝑅 = 𝑆 =0, 𝐹 = 𝐵/𝛼, 𝐺 =𝛼𝐴, 𝑁 =𝛼2𝑀,

𝑃=𝛼𝑀,𝑄 =𝛼𝑀, 𝑀 ≠ 0, 𝛼𝛼=1;

3.2)𝐾 = 𝐿 = 𝑅 = 𝑆 = 0, 𝐷 = 𝐶𝑁/(𝛼𝑀), 𝐹 = 𝛼𝐵𝑀/𝑁, 𝐺 = 𝐴𝑁/(𝛼𝑀),
𝑃 = 𝛼𝑀,𝑄 = 𝑁/𝛼, 𝑀 (𝑁 − 𝛼2𝑀) ≠ 0, 𝛼𝛼 = 1;

3.3)𝑀 = 𝑁 = 𝑃 = 𝑄 = 0, 𝐶 = 𝛽𝐷𝐾/𝐿, 𝐹 = 𝛽𝐵𝐾/𝐿,
𝐺 = 𝐴𝐿/(𝛽𝐾), 𝑅 = 𝛽𝐾, 𝑆 = 𝐿/𝛽, 𝛽𝛽 = 1;

3.4)𝑀 = 𝑁 = 𝑃 = 𝑄 = 0, 𝐹 = 𝐷 + (𝛽2𝐵𝐾2 − 𝐶𝐿2)/(𝛽𝐾𝐿),
𝐺 = 𝐶 + (𝐴𝐿2 − 𝛽2𝐷𝐾2)/(𝛽𝐾𝐿), 𝑅 = 𝛽𝐾, 𝑆 = 𝐿/𝛽,
𝐿3 − 𝛽4𝐾3 = 0, 𝛽𝛽 = 1;

3.5)𝐷 = 𝐶/𝛾, 𝐹 = 𝐵𝛾, 𝐺 = 𝐴/𝛾, 𝑃 = 𝛾𝑁, 𝑅 = 𝛾𝐿,

𝑄 = 𝑀/𝛾, 𝑆 = 𝐾/𝛾, 𝐾𝑀 ≠ 0, 𝛾𝛾 = 1;

3.6)𝐷 = (𝐶𝐿𝛾3 + (𝐹 − 𝐵𝛾) (𝐾 − 𝑀𝛾))/(𝐿𝛾4), 𝑄 = 𝑀/𝛾, 𝑆 = 𝐾/𝛾,
𝐺 = (𝐾 (𝐵𝛾 − 𝐹) + 𝐴𝐿𝛾2)/(𝐿𝛾3), 𝑁 = (−𝐾 + 𝑀𝛾 + 𝐿𝛾4)/𝛾3,

𝑃 = (−𝐾 + 𝑀𝛾 + 𝐿𝛾4)/𝛾2, 𝑅 = 𝐿𝛾, 𝑀 (𝐹 − 𝐵𝛾) ≠ 0, 𝛾𝛾 = 1.

(In the cases 3.1) − 3.4) the multiplicity is exactly three);
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- at least four (𝑚(𝑍∞) ≥ 4 : {𝑀2(𝑢, 𝑣) ≡ 0, 𝑀3(𝑢, 𝑣) ≡ 0, 𝑀4(𝑢, 𝑣) ≡ 0}) iff

4.1)𝐷 = 𝐶𝑆/𝐾, 𝐹 = 𝐵𝐾/𝑆, 𝐺 = 𝐴𝑆/𝐾, 𝐿 = −𝑆4/𝐾3,

𝑀 = 𝑆, 𝑁 = 𝑅 = −𝑆3/𝐾2, 𝑄 = −𝑃 = 𝑆2/𝐾;

4.2)𝐴 = 2(𝐾3𝐿 + 𝑆4)/(𝑆2(𝐵𝐾 − 𝐹𝑆)) − 𝑆(𝐵𝐾 − 2𝐹𝑆)/(𝐾𝐿),
𝑅 = 𝐾𝐿/𝑆, 𝐶 = 2(𝐾3𝐿 + 𝑆4)/(𝐾𝑆(𝐵𝐾 − 𝐹𝑆))
−(𝐵𝐾4𝐿 − 2𝐹𝐾3𝐿𝑆 − 𝐹𝑆5)/(𝐾2𝐿𝑆2),
𝐷 = (𝐹𝐾2𝐿 + 𝐵𝑆3)/(𝐾2𝐿) + 2(𝐾3𝐿 + 𝑆4)/(𝐾2(𝐵𝐾 − 𝐹𝑆)),
𝐺 = 𝐹𝑆3/(𝐾2𝐿) + 2(𝐾3𝐿 + 𝑆4)/(𝐾𝑆(𝐵𝐾 − 𝐹𝑆)),
𝑀 = (𝐾3𝐿 + 2𝑆4)/𝑆3, 𝑁 = (2𝐾3𝐿 + 𝑆4)/(𝐾2𝑆),
𝑃 = (2𝐾3𝐿 + 𝑆4)/(𝐾𝑆2), 𝑄 = (𝐾3𝐿 + 2𝑆4)/(𝐾𝑆2).

Solving in each of conditions 4.1) and 4.2) the identity 𝑀5(𝑢, 𝑣) ≡ 0, we obtain

Theorem 2.2. The system (1) has the line at infinity of multiplicity five if and only if its
coefficients verify one of the following three sets of conditions:

𝐵 = −𝐴𝑆3/𝐾3, 𝐶 = 𝐷 = 0, 𝐹 = −𝐴𝑆2/𝐾2, 𝐺 = 𝐴𝑆/𝐾, 𝐿 = −𝑆4/𝐾3,

𝑀 = 𝑆, 𝑁 = −𝑆3/𝐾2, 𝑃 = −𝑆2/𝐾, 𝑅 = −𝑆3/𝐾2, 𝑄 = 𝑆2/𝐾;
(6)

𝐴 = 5𝐹3/𝐵2, 𝐶 = −6𝐹2/𝐵, 𝐷 = 2𝐹, 𝐺 = −3𝐹2/𝐵, 𝐾 = 𝐹5/𝐵3,

𝐿 = 𝐵𝐹, 𝑀 = −3𝐹4/𝐵2, 𝑁 = −3𝐹2, 𝑃 = 3𝐹3/𝐵, 𝑄 = 3𝐹3/𝐵,
𝑅 = −𝐹2, 𝑆 = −𝐹4/𝐵2, 𝐹 ≠ 0;

(7)

𝐴 = (𝐹3𝐾2 + 8𝐵𝐾𝑆2 + 4𝐹𝑆3)/(𝐵2𝐾2), 𝐷 = 2𝐹, 𝐿 = 𝑆4/𝐾3,

𝐶 = 2(𝐹2𝐾2 + 4𝑆3)/(𝐵𝐾2), 𝐺 = (𝐹2𝐾2 + 4𝑆3)/(𝐵𝐾2), 𝑀 = 3𝑆,
𝑁 = 3𝑆3/𝐾2, 𝑃 = 3𝑆2/𝐾, 𝑄 = 3𝑆2/𝐾, 𝑅 = 𝑆3/𝐾2,

𝐾2(𝐵𝐾 − 𝐹𝑆)2 + 4𝑆5 = 0.

(8)

Theorem 2.3. In the class of cubic differential systems of the form (1) the maximal
multiplicity of the line at infinity is five.

Indeed, under the conditions (6), (7) and (8) the polynomial 𝑀6(𝑢, 𝑣) becomes, respec-
tively:

(𝐾𝑢 − 𝑆𝑣) (𝐾𝑢 + 𝑆𝑣) (𝐾2𝑢2 − 6𝐾𝑆𝑢𝑣 + 𝑆2𝑣2)/𝐾3 . 0;
𝐹2𝑢(𝐵𝑣 − 4𝐹𝑢) (𝐵𝑣 − 𝐹𝑢)2/𝐵3 . 0;
(𝐵3𝐾5 − 𝐹5𝐾4 − 8𝐵𝐹2𝐾3𝑆2 − 8𝐹3𝐾2𝑆3 − 32𝐵𝐾𝑆5 − 16𝐹𝑆6)𝑢4

−4𝐵(𝐹4𝐾4 + 2𝐵2𝐾4𝑆 − 4𝐵𝐹𝐾3𝑆2 + 10𝐹2𝐾2𝑆3 + 24𝑆6)𝑢3𝑣

+6𝐵2𝐾2(𝐵𝐾𝑆2 − 𝐹3𝐾2 − 4𝐹𝑆3)𝑢2𝑣2 − 4𝐵3𝐹2𝐾4𝑢𝑣3

−𝐵3𝐾 (𝐵𝐹𝐾3 − 𝑆4)𝑣4 . 0.
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In the expressions of 𝑀6(𝑢, 𝑣) we have neglected non-zero numerical factors.
Taking into account (4) and (5), the equalities (6) give us the following four series of

conditions in the real coefficient of system (1):

𝑎 = 𝑏 = 𝑐 = 𝑓 = 𝑔 = 𝑘 = 𝑙 = 0, 𝑚 = 𝑛 = 𝑝 = 𝑟 = 𝑠 = 0, 𝑞 ≠ 0; (9)

𝑏 = −𝑎𝑠/𝑘, 𝑐 = 𝑎(𝑘2 − 𝑠2)/(𝑘𝑠), 𝑑 = 𝑎(𝑘2 − 𝑠2)/𝑘2,

𝑓 = −𝑎, 𝑔 = 𝑎𝑠/𝑘, 𝑙 = −𝑘, 𝑚 = (2𝑘2 − 𝑠2)/𝑠, 𝑛 = (𝑘2 − 2𝑠2)/𝑠,
𝑝 = 𝑘 (𝑘2 − 2𝑠2)/𝑠2, 𝑞 = (2𝑘2 − 𝑠2)/𝑘, 𝑟 = −𝑘2/𝑠;

(10)

𝑎 = 𝑏 = 𝑑 = 𝑓 = 𝑔 = 𝑘 = 𝑙 = 0, 𝑚 = 𝑛 = 𝑞 = 𝑟 = 𝑠 = 0, 𝑝 ≠ 0; (11)

𝑎 = −𝑏𝑟/𝑙, 𝑐 = 𝑏(𝑙2 − 𝑟2)/𝑙2, 𝑑 = 𝑏(𝑙2 − 𝑟2)/(𝑙𝑟),
𝑓 = 𝑏𝑟/𝑙, 𝑔 = −𝑏, 𝑘 = −𝑙, 𝑚 = (𝑙2 − 2𝑟2)/𝑟, 𝑛 = (2𝑙2 − 𝑟2)/𝑟,
𝑝 = (2𝑙2 − 𝑟2)/𝑙, 𝑞 = 𝑙 (𝑙2 − 2𝑟2)/𝑟2, 𝑠 = −𝑙2/𝑟,

(12)

and the equalities (8) give us eight real series of conditions:

𝑏 = 𝑐 = 0, 𝑑 = 2𝑎, 𝑓 = 𝑘 = 𝑙 = 𝑚 = 𝑛 = 𝑝 = 𝑞 = 𝑟 = 0, 𝑠 = 𝑎2, 𝑎 ≠ 0; (13)

𝑎 = 0, 𝑏 = −𝑔𝑘2/𝑠2, 𝑐 = −2𝑔𝑘2/𝑠2, 𝑑 = 0, 𝑓 = −2𝑔𝑘3/𝑠3, 𝑙 = 𝑘3/𝑠2,

𝑚 = 𝑛 = 3𝑘2/𝑠, 𝑝 = 3𝑘3/𝑠2, 𝑞 = 3𝑘, 𝑟 = 𝑘4/𝑠3, 𝑔2𝑘2 − 𝑘2𝑠 − 𝑠3 = 0;
(14)

𝑐 = 2𝑏 = −2𝑎𝑠/𝑘, 𝑓 = −𝑎(𝑘2 + 2𝑠2)/𝑠2, 𝑔 = (𝑘2 + 𝑎2𝑠)/(𝑎𝑘),
𝑚 = 𝑛 = 3𝑘2/𝑠, 𝑝 = 3𝑙 = 3𝑘3/𝑠2, 𝑞 = 3𝑘, 𝑟 = 𝑘4/𝑠3, 𝑑 = 2𝑎,
𝑘4 − 𝑎2𝑘2𝑠 − 𝑎2𝑠3 = 0;

(15)

𝑏 = 𝑘 (−𝑎𝑔𝑘 + 𝑘2 + 𝑎2𝑠 + 𝑠2)/(𝑠(𝑎𝑠 − 𝑔𝑘)), 𝑐 = 2𝑘 (2𝑎𝑠 − 𝑔𝑘)/𝑠2,

𝑑 = 2𝑎, 𝑓 = 𝑘2(3𝑎𝑠 − 2𝑔𝑘)/𝑠3, 𝑙 = 𝑘3/𝑠2, 𝑚 = 3𝑘2/𝑠, 𝑛 = 3𝑘2/𝑠,
𝑝 = 3𝑘3/𝑠2, 𝑞 = 3𝑘, 𝑟 = 𝑘4/𝑠3, 𝑔2𝑘2 − 2𝑎𝑔𝑘𝑠 − 𝑘2𝑠 + 𝑎2𝑠2 − 𝑠3 = 0.

(16)

𝑎 = 𝑑 = 0, 𝑐 = 2𝑏, 𝑔 = 𝑘 = 𝑙 = 𝑚 = 𝑛 = 𝑝 = 𝑞 = 𝑠 = 0, 𝑟 = 𝑎2, 𝑏 ≠ 0; (17)

𝑏 = 𝑐 = 0, 𝑎 = − 𝑓 𝑙2/𝑟2, 𝑑 = −2 𝑓 𝑙2/𝑟2, 𝑔 = −2 𝑓 𝑙3/𝑟3, 𝑘 = 𝑙3/𝑟2,

𝑚 = 𝑛 = 3𝑙2/𝑟, 𝑝 = 3𝑙, 𝑞 = 3𝑙3/𝑟2, 𝑠 = 𝑙4/𝑟3, 𝑓 2𝑙2 − 𝑙2𝑟 − 𝑟3 = 0;
(18)

𝑑 = 2𝑎 = −2𝑏𝑟/𝑙, 𝑓 = (𝑙2 + 𝑏2𝑟)/(𝑏𝑙), 𝑔 = −𝑏(𝑙2 + 2𝑟2)/𝑟2,

𝑚 = 𝑛 = 3𝑙2/𝑟, 𝑝 = 3𝑙, 𝑞 = 3𝑘 = 3𝑙3/𝑟2, 𝑠 = 𝑙4/𝑟3, 𝑐 = 2𝑏,
𝑙4 − 𝑏2𝑙2𝑟 − 𝑏2𝑟3 = 0;

(19)

𝑎 = 𝑙 (−𝑏 𝑓 𝑙 + 𝑙2 + 𝑏2𝑟 + 𝑟2)/(𝑟 (𝑏𝑟 − 𝑓 𝑙)), 𝑑 = 2𝑙 (2𝑏𝑟 − 𝑓 𝑙)/𝑟2,

𝑐 = 2𝑏, 𝑔 = 𝑙2(3𝑏𝑟 − 2 𝑓 𝑙)/𝑟3, 𝑘 = 𝑙3/𝑟2, 𝑚 = 3𝑙2/𝑟, 𝑛 = 3𝑙2/𝑟,
𝑝 = 3𝑙, 𝑞 = 3𝑙3/𝑟2, 𝑠 = 𝑙4/𝑟3, 𝑓 2𝑙2 − 2𝑏 𝑓 𝑙𝑟 − 𝑙2𝑟 + 𝑏2𝑟2 − 𝑟3 = 0.

(20)
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Remark 2.1. 1) The set of equalities (7) is not satisfied in the real coefficients of cubic
system (1).

2) The transformation 𝑥 ↔ 𝑦, 𝑡 → −𝑡 reduce the system {(1), (11)} (respectively,
{(1), (12)} {(1), (17)} {(1), (18)} {(1), (19)} {(1), (20)} to the system {(1), (9)}
(respectively, {(1), (10) {(1),(13)} {(1), (14)} {(1), (15)} {(1), (16)}).

Theorem 2.4. The real cubic system (1) has the line at infinity of multiplicity five if and
only if one of the following twelve sets of conditions (13) − (20) holds.

3. Solution of the center problem for cubic systems with the line at
infinity of maximal multiplicity.

In each of the series of conditions (6), (7) and (8) we calculate the first Lyapunov
quantity 𝐿1. In the cases (7) and (8) this quantity vanishes and the divergence of vector
field X associated to system (1) also vanishes.

In the case (6) we have 𝐿1 = 2𝑖𝑆2/𝐾 ≠ 0 (see, (5), (6)) and therefore, (0, 0) is a focus.
In this way we prove the statements of the following two theorem.

Theorem 3.1. The cubic system (1) with the line at infinity of maximal multiplicity has a
center at the origin (0, 0) if and only if the first Lyapunov quantity vanishes 𝐿1 = 0.

Theorem 3.2. The cubic system (1) with the line at infinity of maximal multiplicity has a
center at the origin (0, 0) if and only if the divergence of the vector field X associated to
system (1) vanishes, i.e. iff (1) has a polynomial first integral.

In the cases of real conditions (9)-(12) we have, respectively, 𝐿1 = 𝑞 ≠ 0, 𝐿1 =

−(𝑘2 + 𝑠2)2/(𝑘𝑠2) ≠ 0, 𝐿2 = −𝑝 ≠ 0, 𝐿1 = (𝑙2 + 𝑟2)2/(𝑙𝑟2) ≠ 0. Therefore, in each of
the cases (9)-(12) the origin is a focus for (1).

In each of the cases (13)-(20) the first Lyapunov quantity and the divergence vanishes.
The first integrals F of the systems {(1),(13)} − {(1),(20)} are, respectively,

F = 6(𝑥2 + 𝑦2) + 4𝑔𝑥3 + 12𝑎𝑥2𝑦 + 3𝑎2𝑥4;

F = 6𝑠3(𝑥2 + 𝑦2) + (𝑠𝑥 + 𝑘𝑦)2(4𝑔𝑠𝑥 − 8𝑔𝑘𝑦 + 3𝑠2𝑥2 + 6𝑘𝑠𝑥𝑦 + 3𝑘2𝑦2);

F = 6𝑎𝑘𝑠3(𝑥2 + 𝑦2) + 4𝑠3(𝑘2 + 𝑎2𝑠)𝑥3 + 12𝑎2𝑠3𝑥𝑦(𝑘𝑥 − 𝑠𝑦)
−4𝑎2𝑘𝑠(𝑘2 + 2𝑠2)𝑦3 + 3𝑎𝑘 (𝑠𝑥 + 𝑘𝑦)4;

F = 6𝑠3(𝑥2 + 𝑦2) + (𝑠𝑥 + 𝑘𝑦)2(4(𝑔𝑠𝑥 − 2𝑔𝑘𝑦 + 3𝑎𝑠𝑦) + 3(𝑠𝑥 + 𝑘𝑦)2);

F = 6(𝑥2 + 𝑦2) + 12𝑏𝑥𝑦2 + 4 𝑓 𝑦3 + 3𝑏2𝑦4;
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F = 6𝑟3(𝑥2 + 𝑦2) − (𝑙𝑥 + 𝑟𝑦)2(8 𝑓 𝑙𝑥 − 4 𝑓 𝑟𝑦 − 3𝑙2𝑥2 − 6𝑙𝑟𝑥𝑦 − 3𝑟2𝑦2);

F = 6𝑏𝑙𝑟3(𝑥2 + 𝑦2) − 4𝑏2𝑙𝑟 (𝑙2 + 2𝑟2)𝑥3 − 12𝑏2𝑟3𝑥𝑦(𝑟𝑥 − 𝑙𝑦)
+4𝑟3(𝑙2 + 𝑏2𝑟)𝑦3 + 3𝑏𝑙 (𝑙𝑥 + 𝑟𝑦)4;

F = 6𝑟3(𝑥2 + 𝑦2) + (𝑙𝑥 + 𝑟𝑦)2(4(3𝑏𝑟𝑥 − 2 𝑓 𝑙𝑥 + 𝑓 𝑟𝑦) + 3(𝑙𝑥 + 𝑟𝑦)2).
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[15] Şubă, A. and Vacaraş, O. Center problem for cubic differential systems with the line at infinity and
an affine real invariant straight line of total multiplicity four. Bukovinian Math. Journal, 2021, vol. 9,
no. 2, 1–17.

Received: October 15, 2022 Accepted: December 06, 2022
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Schröder T-cvasigrupuri de asociativitate generalizată
Rezumat. Se extinde cercetarea quasigrupurilor de tip Schröder şi a T-quasigrupurilor
de tip Schröder [14].
Cuvinte-cheie: quasigrup, buclă, grupoid, quasigrupuri de tip Schröder, identitatea
Schröder.

1. Introduction

Necessary definitions can be found in [1, 3, 2, 7, 10, 15].

Definition 1.1. Binary groupoid (𝑄, ◦) is called a left quasigroup if for any ordered pair
(𝑎, 𝑏) ∈ 𝑄2 there exist the unique solution 𝑥 ∈ 𝑄 to the equation 𝑎 ◦ 𝑥 = 𝑏 [1].

Definition 1.2. Binary groupoid (𝑄, ◦) is called a right quasigroup if for any ordered pair
(𝑎, 𝑏) ∈ 𝑄2 there exist the unique solution 𝑦 ∈ 𝑄 to the equation 𝑦 ◦ 𝑎 = 𝑏 [1].

Definition 1.3. A quasigroup (𝑄, ·) with an element 1 ∈ 𝑄, such that 1 · 𝑥 = 𝑥 · 1 = 𝑥 for
all 𝑥 ∈ 𝑄, is called a loop.

Definition 1.4. Binary groupoid (𝑄, ·) is called medial if this groupoid satisfies the
following medial identity:

𝑥𝑦 · 𝑢𝑣 = 𝑥𝑢 · 𝑦𝑣 (1)

for all 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑄 [1].

We recall

Definition 1.5. Quasigroup (𝑄, ·) is a T-quasigroup if and only if there exists an abelian
group (𝑄, +), its automorphisms 𝜑 and 𝜓, and a fixed element 𝑎 ∈ 𝑄 such that 𝑥 · 𝑦 =

𝜑𝑥 + 𝜓𝑦 + 𝑎 for all 𝑥, 𝑦 ∈ 𝑄 [8].
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A T-quasigroup with the additional condition 𝜑𝜓 = 𝜓𝜑 is medial.

Definition 1.6. Garrett Birkhoff [2] has defined an equational quasigroup as an algebra
with three binary operations (𝑄, ·, /, \) that satisfies the following six identities:

𝑥 · (𝑥\𝑦) = 𝑦, (2)

(𝑦/𝑥) · 𝑥 = 𝑦, (3)

𝑥\(𝑥 · 𝑦) = 𝑦, (4)

(𝑦 · 𝑥)/𝑥 = 𝑦, (5)

𝑥/(𝑦\𝑥) = 𝑦, (6)

(𝑥/𝑦)\𝑥 = 𝑦. (7)

Ernst Schröder (a German mathematician mainly known for his work on algebraic
logic) introduced and studied the following identity of generalized associativity [13]:

(𝑦 · 𝑧)\𝑥 = 𝑧(𝑥 · 𝑦). (8)

In the quasigroup case the identity (8) is equivalent to the following identity [11]:

(𝑦 · 𝑧) · (𝑧 · (𝑥 · 𝑦)) = 𝑥 (9)

If in the idempotent quasigroup (𝑄; ·), the identity (9), we put 𝑥 = 𝑦, then we obtain
the following standard Schröder’s identity:

(𝑥 · 𝑦) · (𝑦 · 𝑥) = 𝑥. (10)

Definition 1.7. Any quasigroup with the identity (10) is called a Schröder quasigroup.

So we have different objects that have name Schröder. Namely,
(i) the following identity of generalized associativity on groupoids [13]:
(𝑦 · 𝑧)\𝑥 = 𝑧(𝑥 · 𝑦) (8);
(ii) the Schröder’s identity of generalized associativity in quasigroups (9);
(iii) the Schröder’s identity (Schröder’s 2-nd identity [12]) (𝑥 · 𝑦) · (𝑦 · 𝑥) = 𝑥 (10);
(iv) identity

(𝑥 · 𝑦) · (𝑦 · 𝑥) = 𝑦 (11)

is named by Albert Sade [12] as Stein’s 3-rd identity.
Many information about these identities is given in articles [4, 5]. We tried do not

repeat information from these articles here.
Each of these identities deserves a separate study in the class of groupoids, left (right)

quasigroups; in the classes of quasigroups and of T-quasigroups.
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1.1. Schröder’s identity of generalized associativity in quasigroups

It is convenient to call this identity the Schröder’s identity of generalized associativity.
Often various variants of associative identity, which are true in a quasigroup, guarantee

that this quasigroup is a loop.
It is not so in the case with the identity. We give an example of quasigroup which is

not a loop with the identity (9) [11]. See also [15]. A quasigroup from this example does
not have left and right identity element.

Quasigroups with Schröder’s identity of generalized associativity are not necessary
idempotent and associative. See the following example [11].

· 0 1 2 3 4 5 6 7
0 1 4 7 0 6 5 2 3
1 5 2 3 6 0 1 4 7
2 0 7 4 1 5 6 3 2
3 6 3 2 5 1 0 7 4
4 4 1 0 7 3 2 5 6
5 3 6 5 2 4 7 0 1
6 7 0 1 4 2 3 6 5
7 2 5 6 3 7 4 1 0

The left cancellation (left division) groupoid with the identity (9) and with the identity
(𝑥/𝑥 = 𝑦/𝑦) (in a quasigroup this identity guarantees existence of the left identity element)
is a commutative group of exponent two [11].

The similar results are true for the right case [11]. In this case we use the identity

(𝑥\𝑥 = 𝑦\𝑦).

It is clear that this result is true for any quasigroup with the left or right identity element.
Notice, any 2-group (𝐺, +) (in such group 𝑥 + 𝑥 = 0 for any 𝑥 ∈ 𝐺) satisfies Schröder’s

identity of generalized associativity.

2. Schröder’s identity of generalized associativity in T-quasigroups

Theorem 2.1. In T-quasigroup (𝑄, ·) of the form 𝑥 · 𝑦 = 𝜑𝑥 + 𝜓𝑦 Schröder’s identity of
generalized associativity is true if and only if 𝜑𝑥 = 𝜓−2𝑥, Y = 𝜑7, Y = 𝜓14, 𝜑𝜓𝑧+𝜓𝜑𝑧 = 0.

Proof. We rewrite identity (9) in the following form:

𝜑2𝑦 + 𝜓3𝑦 + 𝜑𝜓𝑧 + 𝜓𝜑𝑧 + 𝜓2𝜑𝑥 = 𝑥. (12)
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If we substitute in equality (12) 𝑦 = 𝑧 = 0, then we have

𝜑𝑥 = 𝜓−2𝑥. (13)

If we substitute in equality (12) 𝑥 = 𝑧 = 0, then we have

𝜑2𝑦 + 𝜓3𝑦 = 0. (14)

Taking into consideration equality (13), we can re-write equality (14) in the form

𝜓−4𝑦 + 𝜓3𝑦 = 0, (15)

or in the form

𝜓3 = 𝐼𝜓−4, (16)

where 𝐼𝑥 = −𝑥 for all 𝑥 ∈ 𝑄. Notice, the permutation 𝐼 is an automorphism of the group
(𝑄, +) here. Therefore, we can rewrite previous equalities in the form

Y = 𝐼𝜓−7, 𝐼 = 𝜓−7, Y = 𝜓−14, Y = 𝜓14, Y = 𝜑7. (17)

If we substitute in equality (12) 𝑥 = 𝑦 = 0 then we have

𝜑𝜓𝑧 + 𝜓𝜑𝑧 = 0. (18)

Converse. If we substitute in identity (9) the expression 𝑥 · 𝑦 = 𝜑𝑥 +𝜓𝑦, then we obtain
equality (12), which is true taking into consideration the equalities (13), (14), (18). Then
we obtain, that identity (9) is true in this case. □

Corollary 2.1. In medial quasigroup (𝑄, ·) of the form 𝑥 · 𝑦 = 𝜑𝑥+𝜓𝑦 Schröder’s identity
of generalized associativity is true if and only if the group (𝑄, +) is an abelian 2-group
(i.e. 𝑥 + 𝑥 = 0 for any 𝑥 ∈ 𝑄), 𝜑𝑥 = 𝜓−2𝑥, Y = 𝜑7, Y = 𝜓14.

Proof. From the identity of mediality it follows that 𝜑𝜓𝑧 + 𝜓𝜑𝑧 = 2 · 𝜑𝜓𝑧 = 0 for all
𝑧 ∈ 𝑄, i.e., the group (𝑄, +) is an abelian 2-group. □
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Example 2.1. We present elements of the group (𝑍3
2 , +) in the following form: 1 =

(000), 2 = (001), 3 = (010), 4 = (011), 5 = (100), 6 = (101), 7 = (110), 8 = (111).

+ 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 1 4 3 6 5 8 7
3 3 4 1 2 7 8 5 6
4 4 3 1 1 8 7 6 5
5 5 6 7 8 1 2 3 4
6 6 5 8 7 2 1 4 3
7 7 8 5 6 3 4 1 2
8 8 7 6 5 4 3 2 1

We can see on the group 𝐴𝑢𝑡 (𝑍3
2 , +) as on the group 𝐺𝐿 (3, 2). This group is the group

of non-degenerate matrices of size 3 × 3 over the field of order 2 relatively to standard
multiplication of matrices [7].

The group 𝑃𝑆𝐿 (2, 7) is the group of non-degenerate matrices of size 2 × 2 over the
field of order 7. These groups are isomorphic, i.e., 𝐴𝑢𝑡 (𝑍3

2 , +) � 𝐺𝐿 (3, 2) � 𝑃𝑆𝐿 (2, 7).
Notice | (𝐺𝐿 (3, 2) | = 168 = 3 × 7 × 8 [7].

We have the following automorphisms of the group 𝐴𝑢𝑡 (𝑍3
2 , +) � 𝐺𝐿 (3, 2):

𝜑 =
©«
1 1 0
1 0 1
0 1 0

ª®®¬, 𝜓 =
©«
0 1 0
1 1 1
0 1 1

ª®®¬.

Notice that 𝜑7 = 𝜓7 = Y, 𝜑 = 𝜓−2, 𝜑𝜓 = 𝜓𝜑. Therefore, Schröder’s medial quasigroup
(𝑄, ◦) of generalized associativity can have the form 𝑥 ◦ 𝑦 = 𝜑𝑥 + 𝜓𝑦:

◦ 1 2 3 4 5 6 7 8
1 1 4 8 5 3 2 6 7
2 3 2 6 7 1 4 8 5
3 6 7 3 2 8 5 1 4
4 8 5 1 4 6 7 3 2
5 7 6 2 3 5 8 4 1
6 5 8 4 1 7 6 2 3
7 4 1 5 8 2 3 7 6
8 2 3 7 6 4 1 5 8
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On regular operators on Banach Lattices

Omer Gok

Abstract. Let 𝐸 and 𝐹 be Banach lattices and 𝑋 and 𝑌 be Banach spaces. A linear
operator 𝑇 : 𝐸 → 𝐹 is called regular if it is the difference of two positive operators.
𝐿𝑟 (𝐸, 𝐹) denotes the vector space of all regular operators from 𝐸 into 𝐹. A continuous
linear operator 𝑇 : 𝐸 → 𝑋 is called 𝑀-weakly compact operator if for every disjoint
bounded sequence (𝑥𝑛) in 𝐸 , we have 𝑙𝑖𝑚𝑛→∞∥𝑇𝑥𝑛∥ = 0. 𝑊𝑟

𝑀
(𝐸, 𝐹) denotes the reg-

ular 𝑀-weakly compact operators from 𝐸 into 𝐹. This paper is devoted to the study of
regular operators and 𝑀-weakly compact operators on Banach lattices. We show that 𝐹
has a b-property if and only if 𝐿𝑟 (𝐸, 𝐹) has b-property. Also,𝑊𝑟

𝑀
(𝐸, 𝐹) is a 𝐾𝐵-space

if and only if 𝐹 is a 𝐾𝐵-space.
2010 Mathematics Subject Classification: 46B25, 46B42, 47B60, 47B65.
Keywords: Banach lattice, regular operators, M-weakly compact operators, order con-
tinuous norm.

Operatori regulari pe latice Banach
Rezumat. Fie 𝐸 şi 𝐹 latice Banach, iar 𝑋 şi𝑌 spaţii Banach. Operatorul linear𝑇 : 𝐸 → 𝐹

se numeşte regular dacă reprezintă diferenţa a doi operatori pozitivi. 𝐿𝑟 (𝐸, 𝐹) este spaţiul
vectorial al operatorilor regulari din 𝐸 ı̂n 𝐹. Operatorul linear şi continuu 𝑇 : 𝐸 → 𝑋

se numeşte operator 𝑀-slab compact dacă pentru orice şiruri mărginite şi disjuncte (𝑥𝑛)
din 𝐸 , urmează că 𝑙𝑖𝑚𝑛→∞∥𝑇𝑥𝑛∥ = 0. 𝑊𝑟

𝑀
(𝐸, 𝐹) reprezintă operatorii regulari 𝑀-slab

compacţi din 𝐸 ı̂n 𝐹. Lucrarea este dedicată studiului operatorilor regulari şi operatorilor
𝑀-slab compacţi pe latice Banach. Se demonstrează că 𝐹 posedă b-proprietate dacă şi
numai dacă 𝐿𝑟 (𝐸, 𝐹) are b-proprietate. La fel,𝑊𝑟

𝑀
(𝐸, 𝐹) este 𝐾𝐵-spaţiu dacă şi numai

dacă 𝐹 este 𝐾𝐵-spaţiu.
Cuvinte-cheie: latice Banach, operatori regulari, operatori M-slab compacţi, norma
continue de ordine.

1. Introduction

Let 𝑋 be a Banach space and 𝐸 be a Banach lattice. 𝐸+ denotes the positive cone
of 𝐸 . That is, 𝐸+ = {𝑥 : 0 ≤ 𝑥}. We denote 𝐸∼ by the set of all order bounded linear
functionals on 𝐸 , and 𝐸∼∼ by the set of all second order dual of 𝐸 , [7]. By 𝑋 ′ we denote
the set of all continuous linear functionals on 𝑋 . Since 𝐸 is a Banach lattice, order dual
and continuous dual coincide [1, 5].
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A set [𝑥, 𝑦] = {𝑧 ∈ 𝐸 : 𝑥 ≤ 𝑧 ≤ 𝑦} in a Banach lattice 𝐸 is called an order interval.
Let 𝐴 be a subset of 𝐸 . The set 𝐴 is called order bounded if 𝐴 ⊆ [𝑥, 𝑦] for some 𝑥, 𝑦 ∈ 𝐸 .
𝐴 is called a b-order bounded if 𝐴 is an order bounded in the second order dual 𝐸 ′′ of 𝐸 .

A Banach lattice is said to have b-property if every b-order bounded set is an order
bounded set in 𝐸 [2, 3]. Order dual of a Banach lattice has b-property. The space 𝐶 (𝐾)
of all continuous real valued functions defined on a compact Hausdorff space 𝐾 has
b-property.

A Banach lattice 𝐸 is called a 𝐾𝐵-space if every positive increasing norm bounded
sequence in 𝐸 converges. A Banach lattice 𝐸 is a 𝐾𝐵 space if and only if it has an
order continuous norm and with property (b) [2]. Reflexive Banach lattice, AL spaces are
examples of KB spaces. There are a lot of 𝐾𝐵 spaces in Banach lattices[1, 5].

A Banach lattice 𝐸 is said to have an order continuous norm if 𝑥𝑛 ↓ 0 in 𝐸 implies
∥ 𝑥𝑛 ∥→ 0 as 𝑛→ ∞. For example, Banach space 𝑐0 of all sequences converging to zero
has an order continuous norm. Let 𝐸 be a Banach lattice. 𝐸 ′ is a KB space if and only if
𝐸 has an order continuous norm.

A Banach lattice 𝐸 is called Dedekind complete if every non empty subset of 𝐸 , which
is bounded from above, has a supremum. Alternatively, every non empty subset of 𝐸 ,
which is bounded from below, has an infimum.

2. KB space of M-weakly compact operators

Definition 2.1. [1, 5] Let 𝑋 be a Banach space and 𝐸 be a Banach lattice. A continuous
linear operator 𝑇 : 𝑋 → 𝐸 is called 𝐿-weakly compact if 𝑇 (𝑏𝑎𝑙𝑙 (𝑋)) is an 𝐿-weakly
compact set. A subset 𝐴 of 𝐸 is called 𝐿-weakly compact if ∥ 𝑥𝑛 ∥→ 0 as 𝑛 → ∞ for
every disjoint sequence (𝑥𝑛) in the solid hull of 𝐴, where 𝑏𝑎𝑙𝑙 (𝑋) denotes the clesed unit
ball of 𝑋 .

By𝑊𝐿 (𝐸, 𝐹) we denote the set of all L-weakly compact operators.

Definition 2.2. ([1, 5]) A continuous linear operator 𝑇 : 𝐸 → 𝑋 is called 𝑀-weakly
compact if 𝑙𝑖𝑚𝑛→∞ ∥ 𝑇𝑥𝑛 ∥= 0 for every disjoint sequence (𝑥𝑛) in the closed unit ball of
𝐸 .

By 𝑊𝑀 (𝐸, 𝐹) we denote the set of all M-weakly compact operators from a Banach
lattice 𝐸 into a Banach lattice 𝐹. If 𝐹 is a Dedekind complete Banach lattice, then it is
a Banach lattice. We denote the linear span of the positive operators in 𝑊𝑀 (𝐸, 𝐹) by
𝑊𝑟

𝑀
(𝐸, 𝐹). If 𝐹 is a Dedekind complete Banach lattice, then 𝑊𝑟

𝑀
(𝐸, 𝐹) is a Dedekind

complete Banach lattice under the regular norm.
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Adjoint of an M-weakly compact operator is an L-weakly compact and adjoint of
an L-weakly compact operator is an M-weakly compact. Every L-weakly compact and
M-weakly compact operators are weakly compact.

Definition 2.3. A Banach lattice 𝐸 is called an AL space if the norm

∥ 𝑥 + 𝑦 ∥=∥ 𝑥 ∥ + ∥ 𝑦 ∥

holds for every 𝑥, 𝑦 ∈ 𝐸 .

A linear operator 𝑇 from a 𝐸 Banach lattice to a Banach lattice 𝐹 is called regular if
it is the difference of two positive operators from 𝐸 into 𝐹. By 𝐿𝑟 (𝐸, 𝐹) we denote the
vector space of all regular operators from 𝐸 into 𝐹, [6]. Every positive linear operator
from a Banach lattice 𝐸 into a Banach lattice 𝐹 is continuous. By 𝐿 (𝐸, 𝐹) we denote the
vector space of all linear continuous operators from 𝐸 into 𝐹.

A linear operator 𝑇 from a Banach lattice 𝐸 into a Banach lattice 𝐹 is called order
bounded if it sends an order bounded set in 𝐸 to an order bounded set in 𝐹. 𝐿𝑏 (𝐸, 𝐹)
denotes the vector space of all order bounded linear operators from 𝐸 into 𝐹. The
following inclusions hold: 𝐿𝑟 (𝐸, 𝐹) ⊆ 𝐿𝑏 (𝐸, 𝐹) ⊆ 𝐿 (𝐸, 𝐹).

Let 𝑇 ∈ 𝐿𝑟 (𝐸, 𝐹). The regular operator norm of 𝑇 is given by

∥𝑇 ∥ = 𝑖𝑛 𝑓 {∥𝑆∥ : |𝑇 | ≤ 𝑆 for 0 ≤ 𝑆 ∈ 𝐿𝑟 (𝐸, 𝐹)}.

Theorem 2.1. ([2, 3]) Let 𝐸, 𝐹 be Banach lattices with 𝐹 Dedekind complete. Then,
𝐿𝑟 (𝐸, 𝐹) has b-property if and only if 𝐹 has b-property.

Proof. Take a sequence (𝑥𝑛) in 𝐹 with the property 𝑥𝑛 ↑ 𝑦 in 𝐹′′. Let us choose
0 ≠ 𝑓 ∈ 𝐸 ′. We define the map 𝜓 : 𝐹 → 𝐿𝑟 (𝐸, 𝐹), 𝜓(𝑦) = 𝑓 ⊗ 𝑦, which is given by
( 𝑓 ⊗ 𝑦) (𝑥) = 𝑓 (𝑥)𝑦 for all 𝑥 ∈ 𝐸 . 𝜓(𝑥𝑛) is b-order bounded in 𝐿𝑟 (𝐸, 𝐹). So, there is a
𝑇 ∈ 𝐿𝑟 (𝐸, 𝐹) such that 0 ≤ 𝑓 ⊗ 𝑥𝑛 ≤ 𝑇 . There is an 𝑥 ∈ 𝐸 such that 0 ≤ 𝑥𝑛 ≤ 𝑇 (𝑥) in
𝐹. It means 𝐹 has b-property.

Suppose that 𝐹 has b-property. Assume that (𝑇𝑛) in 𝐿𝑟 (𝐸, 𝐹) such that 0 ≤ 𝑇𝑛 ↑ 𝑇
in 𝐿𝑟 (𝐸, 𝐹)′′. Let us choose 0 ≠ 𝑥 ∈ 𝐸+. We define a map 𝜑 : 𝐹′ → 𝐿𝑟 (𝐸, 𝐹)′ which
is defined by 𝜑( 𝑓 )𝑇 = 𝑓 (𝑇𝑥) for 𝑇 ∈ 𝐿𝑟 (𝐸, 𝐹).This mapping is one-one and positive.
From here, for every 𝑥 ∈ 𝐸+, we have that 𝑇𝑛 (𝑥) is b-order bounded in 𝐹. That is,
𝑇𝑛 (𝑥) is order bounded in 𝐹. By Kantorovich lemma, we extend the mapping defined by
𝑇 (𝑥) = 𝑠𝑢𝑝{𝑇𝑛 (𝑥) : 𝑛 = 1, 2, 3, ...}. Therefore, 𝐿𝑟 (𝐸, 𝐹) has b-property.

Let 𝐸 be a Banach lattice. By 𝐸𝑎, we denote the maximal ideal space on which the
norm is order continuous. Equivalently,

𝐸𝑎 = {𝑥 : 𝑎𝑛𝑦 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 (𝑥𝑛) 𝑖𝑛 [0, | 𝑥 |] 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠}.
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Theorem 2.2. ([4]) Let 𝐸, 𝐹 be Banach lattices with (𝐸 ′)𝑎 ≠ {0}. Then,𝑊𝑟
𝑀
(𝐸, 𝐹) has

order continuous norm if and only if 𝐹 has an order continuous norm.

Let 𝑋 and 𝑌 be Banach spaces and 𝑇 : 𝑋 → 𝑌 be a continuous linear operator.The
adjoint operator 𝑇 ′ of 𝑇 is defined from 𝑌 ′ into 𝑋 ′ by 𝑇 ′( 𝑓 ) (𝑥) = 𝑓 (𝑇𝑥) for every 𝑓 ∈ 𝑌 ′

and for every 𝑥 ∈ 𝑋 .

Theorem 2.3. Let 𝐸, 𝐹 be Banach lattices. Then, 𝑊𝑟
𝑀
(𝐸, 𝐹) has b-property if and only

if 𝐹 has b-property.

Proof. Proof is similar to the proof of Theorem 2.4. So, it is omitted.

Theorem 2.4. Let 𝐸, 𝐹 be Banach lattices. Then,𝑊𝑟
𝑀
(𝐸, 𝐹) is a KB space if and only if

𝐹 is a KB space.

Proof. It is proved this result by using the fact that a Banach lattice is a 𝐾𝐵 space if and
only if it has an order continuous norm and it has b-property [2].
𝑊𝑟

𝐿
(𝐸, 𝐹) denotes the vector space of all regular L-weakly compact operators. It is a

Banach lattice.

Theorem 2.5. Let 𝐸, 𝐹 be Banach lattices and (𝐸 ′)𝑎 ≠ {0} and 𝐹𝑎 ≠ {0}. Then, the
following claims are equivalent:

(i)𝑊𝑟
𝐿
(𝐸, 𝐹) has order continuous norm.

(ii) 𝐸 ′ has order continuous norm.

(iii)𝑊𝑟
𝑀
(𝐹′, 𝐸 ′) is a KB space.

Proof. Proof is done by using [4].
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Stability of unperturbed motion governed by the ternary
differential system of Lyapunov-Darboux type with
nonlinearities of degree four

Natalia Neagu , Mihail Popa , and Victor Orlov

Abstract. For the ternary differential system of Lyapunov-Darboux type with nonlin-
earities of degree four, using the Lie algebra admitted by this system, was obtained the
analytic first integral, determined the Lyapunov function and the conditions of stability
of the unperturbed motion.
2010 Mathematics Subject Classification: Primary 30E201; Secondary 30E202.
Keywords: differential systems, stability of unperturbed motion, center-affine comitant
and invariant, Lia algebra, first integral, Lyapunov function.

Stabilitatea mişcării neperturbate guvernate de sistemul
diferenţial ternar de tip Lyapunov-Darboux cu nelinearităţi
de gradul patru

Rezumat. Pentru sistemul difereţial ternar de tip Lyapunov-Darboux cu nelinearităţi de
gradul patru, utilizând algebra Lie admisă de acest sistem, s-a obţinut integrala primă
analitică, determinată funcţia Lyapunov şi condiţiile de stabilitate a mişcării neperturbate.
Cuvinte-cheie: sistem diferenţial, stabilitatea mişcării neperturbate, comitant şi invariant
centroafin, algebră Lie, integrală primă, funcţie Lyapunov.

1. Notion of comitant and invariant for ternary differential system

We examine the differential system of the unperturbed motion [1, 2] with nonlinearities
of degree four 𝑠3(1, 4), written in the tensorial form [3, 4]

𝑑𝑥 𝑗

𝑑𝑡
= 𝑎

𝑗
𝛼𝑥

𝛼 + 𝑎
𝑗

𝛼𝛽𝛾𝛿
𝑥𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 ( 𝑗 , 𝛼, 𝛽, 𝛾, 𝛿 = 1, 2, 3) (1)

where 𝑎
𝑗

𝛼𝛽𝛾𝛿
is a symmetric tensor in lower indices in which the total convolution is

done. The centro-affine group 𝐺𝐿 (3,R) is given by transformations 𝑞:

𝑥 𝑗 = 𝑞
𝑗
𝛼𝑥

𝛼 (Δ = 𝑑𝑒𝑡 (𝑞 𝑗
𝛼) ≠ 0) ( 𝑗 , 𝛼 = 1, 2, 3). (2)

In the theory of invariants [5] the vector 𝑥 = (𝑥1, 𝑥2, 𝑥3), which is changed by formulas
(2), is usually called contravariant. The vector 𝑢 = (𝑢1, 𝑢2, 𝑢3), which is changed by
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formulas �̄�𝑟 = 𝑝
𝑗
𝑟𝑢 𝑗 (𝑟, 𝑗 = 1, 2, 3), where 𝑝𝑟

𝑗
𝑞
𝑗
𝑠 = 𝛿𝑟𝑠 is the Kroniker’s symbol, is

call covariant. Any other vector 𝑦 = (𝑦1, 𝑦2, 𝑦3), different from 𝑥, which is changed
by formulas (2) �̄� 𝑗 = 𝑞

𝑗
𝛼𝑦

𝛼 ( 𝑗 , 𝛼 = 1, 2, 3), is call cogradient with the vector 𝑥. The
coefficients of the system (1) and the coordinates of the vectors 𝑥, 𝑢, 𝑦 take values from
the field of real numbers R.

Observe that the transformation (2) preserves the form of the system (1)

𝑑𝑥 𝑗

𝑑𝑡
= �̄�

𝑗
𝛼𝑥

𝛼 + �̄�
𝑗

𝛼𝛽𝛾𝛿
𝑥𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 ( 𝑗 , 𝛼, 𝛽, 𝛾, 𝛿 = 1, 2, 3), (3)

where the coordinates of the vector 𝑥 = (𝑥1, 𝑥2, 𝑥3) are determined by the relations (2).
The coefficients �̄� 𝑗

𝛼 şi �̄� 𝑗

𝛼𝛽𝛾𝛿
from the right–hand sides of (3) are some linear functions

in the coefficients of system (1) and rational in the parameters 𝑞 𝑗
𝛼 of transformations (2).

We will denote the set of coefficients (1) by 𝑎 and of the system (3) by �̄�.

Definition 1.1. According to [3, 4, 5], we say that the polynomial 𝜘(𝑥, 𝑦, 𝑢, 𝑎) of the
coefficients of system (1) and of the coordinates of vectors 𝑥, 𝑦 and 𝑢 is called center-
affine mixt comitant of the system (1) with respect to 𝐺𝐿 (3,R) group, if the following
identity holds

𝜘(𝑥, �̄�, �̄�, �̄�) = Δ−𝑔𝜘(𝑥, 𝑦, 𝑢, 𝑎) (4)

for all 𝑞 from 𝐺𝐿 (3,R) and for every coordinates of vectors 𝑥, 𝑦 and 𝑢, as well as all the
coefficients of the system (1).

Size 𝑔 is an integer number called the weight of comitant.
If the mixt comitant 𝜘 does not depend of the coordinates of the vector 𝑢, then according

to [3, 4, 5], we call it simply comitant; but if 𝜘 does not depend of the coordinates of the
vectors 𝑥 and 𝑦, we call it contravariant according to [5]. If 𝜘 does not depend of the
coordinates of the vectors 𝑥, 𝑦 and 𝑢, then we will call it invariant of the system (1) with
respect to 𝐺𝐿 (3,R) group.

For simplicity, in some cases, we will omit the words “center-affine” or “with respect
to 𝐺𝐿 (3,R) group” for comitants (invariants).

From [5] it is known that the alternation operation, in the case of ternary tensors, is
performed by means of the unit trivector Y𝑝𝑞𝑟 (Y𝛼𝛽𝛾) with coordinates Y123 = −Y132 =

Y312 = −Y321 = Y231 = −Y213 = 1 (Y123 = −Y132 = Y312 = −Y321 = Y231 = −Y213 = 1)
and Y𝑝𝑞𝑟 = 0 (Y𝛼𝛽𝛾 = 0) (𝑝, 𝑞, 𝑟 = 1, 2, 3) ((𝛼, 𝛽, 𝛾 = 1, 2, 3)) in the other cases.

From [3, 4, 5] results the following assertion

Theorem 1.1. The expressions obtained by the product of the coefficients of the tensors 𝑎 𝑗
𝛼

and 𝑎
𝑗

𝛼𝛽𝛾𝛿
, of system (1), as well as the coordinates 𝑥𝑖 , 𝑦 𝑗 , 𝑢𝑟 of the vectors 𝑥, 𝑦, 𝑢, using
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the alternation operation followed by the total convolution, form the basis of the comitants
(mixed), contravariants and invariants of the system (1) with respect to 𝐺𝐿 (3,R) group.

Using Theorem 1.1 it is easy to see that the expressions

𝜘1 = 𝑥𝛼𝑢𝛼, 𝜘2 = 𝑎𝛼
𝛽 𝑥

𝛽𝑢𝛼, 𝜘3 = 𝑎𝛼
𝛾 𝑎

𝛽
𝛼𝑥

𝛾𝑢𝛽 (5)

form the mixed comitants, and

𝛿1 = 𝑎𝛼
𝛾 𝑎

𝛽
𝑝𝑎

𝛾
𝑞𝑢𝛼𝑢𝛽𝑢𝑟Y

𝑝𝑞𝑟 (6)

is a contravariant of the system (1) with respect to 𝐺𝐿 (3,R) group.
Likewise the expressions

𝜎1 = 𝑎𝛼
`𝑎

𝛽

𝛿
𝑎
𝛾
𝛼𝑥

𝛿𝑥`𝑥aY𝛽𝛾a ,

[1 = 𝑎𝛼
𝛽𝛾𝛿`𝑥

𝛽𝑥𝛾𝑥 𝛿𝑥`𝑥a𝑦\Y𝛼a\ ,
(7)

are comitants of the system (1) with respect to 𝐺𝐿 (3,R) group.
Some of the invariants of the system (1), with respect to 𝐺𝐿 (3,R) group, are the

expressions
\1 = 𝑎𝛼

𝛼, \2 = 𝑎𝛼
𝛽 𝑎

𝛽
𝛼, \3 = 𝑎𝛼

𝛾 𝑎
𝛽
𝛼𝑎

𝛾

𝛽
. (8)

We will mention that the expressions 𝜘𝑖 (𝑖 = 1, 2, 3), 𝛿1, 𝜎1 and \𝑖 (𝑖 = 1, 2, 3) are
known from [6, 7].

If we examine the differential system of the first approximation [1, 2] for system (1),
written in the expanded form

𝑑𝑥1

𝑑𝑡
= 𝑎1

1𝑥
1 + 𝑎1

2𝑥
2 + 𝑎1

3𝑥
3,

𝑑𝑥2

𝑑𝑡
= 𝑎2

1𝑥
1 + 𝑎2

2𝑥
2 + 𝑎2

3𝑥
3,

𝑑𝑥3

𝑑𝑡
= 𝑎3

1𝑥
1 + 𝑎3

2𝑥
2 + 𝑎3

3𝑥
3,

(9)
then it can be easily verified the following assertion

Lemma 1.1. The expression 𝜎1 = 0 forms a 𝐺𝐿 (3,R) particular invariant integral for
system (9).

The proof follows directly from the equality

(𝑎1
1𝑥

1 + 𝑎1
2𝑥

2 + 𝑎1
3𝑥

3) 𝜕𝜎1

𝜕𝑥1 + (𝑎2
1𝑥

1 + 𝑎2
2𝑥

2 + 𝑎2
3𝑥

3) 𝜕𝜎1

𝜕𝑥2 + (𝑎3
1𝑥

1 + 𝑎3
2𝑥

2 + 𝑎3
3𝑥

3) 𝜕𝜎1

𝜕𝑥3 = \1𝜎1.

Lemma 1.2. Let 𝛿1 ≡ 0 in (6). Then we obtain the following relations between the
coefficients of the system (9):

𝑎) 𝑎2
1 = 𝑎3

1 = 0; 𝑎3
2 ≠ 0; 𝑎1

3 =
𝑎1

2(𝑎
3
3 − 𝑎1

1)
𝑎3

2
; 𝑎2

3 =
(𝑎1

1 − 𝑎2
2) (𝑎

1
1 − 𝑎3

3)
𝑎3

2
;
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𝑏) 𝑎3
1 = 𝑎3

2 = 0; 𝑎2
1 ≠ 0; 𝑎1

2 =
(𝑎1

1 − 𝑎3
3) (𝑎

2
2 − 𝑎3

3)
𝑎2

1
; 𝑎1

3 =
𝑎2

3(𝑎
1
1 − 𝑎3

3)
𝑎2

1
;

𝑐) 𝑎2
1 = 𝑎3

1 = 𝑎3
2 = 0; 𝑎1

2 ≠ 0; 𝑎1
1 = 𝑎3

3; ; 𝑎2
3 =

𝑎1
3(𝑎

2
2 − 𝑎3

3)
𝑎1

2

𝑑) 𝑎2
1 = 𝑎2

3 = 𝑎3
1 = 𝑎3

2 = 0; 𝑎1
2 ≠ 0; 𝑎2

2 = 𝑎3
3;

𝑒) 𝑎1
2 = 𝑎2

1 = 𝑎3
1 = 𝑎3

2 = 0; 𝑎1
3 ≠ 0; 𝑎1

1 = 𝑎2
2;

𝑓 ) 𝑎1
2 = 𝑎2

1 = 𝑎2
3 = 𝑎3

1 = 𝑎3
2 = 0; 𝑎1

3 ≠ 0; 𝑎2
2 = 𝑎3

3;

𝑔) 𝑎1
2 = 𝑎1

3 = 𝑎2
1 = 𝑎3

1 = 𝑎3
2 = 0; 𝑎2

3 ≠ 0; 𝑎1
1 = 𝑎2

2;

ℎ) 𝑎1
2 = 𝑎1

3 = 𝑎2
1 = 𝑎3

1 = 𝑎3
2 = 0; 𝑎2

3 ≠ 0; 𝑎1
1 = 𝑎3

3;

𝑖) 𝑎1
2 = 𝑎1

3 = 𝑎2
1 = 𝑎2

3 = 𝑎3
1 = 𝑎3

2 = 0; 𝑎1
1 = 𝑎2

2;

𝑗) 𝑎1
2 = 𝑎1

3 = 𝑎2
1 = 𝑎2

3 = 𝑎3
1 = 𝑎3

2 = 0; 𝑎1
1 = 𝑎3

3;

𝑘) 𝑎1
2 = 𝑎1

3 = 𝑎2
1 = 𝑎2

3 = 𝑎3
1 = 𝑎3

2 = 0; 𝑎2
2 = 𝑎3

3. (10)

Proof. From 𝛿1 ≡ 0 we get the equalities:

(𝑎1
2)

2𝑎2
3 − 𝑎1

2𝑎
1
3𝑎

2
2 + 𝑎1

2𝑎
1
3𝑎

3
3 − (𝑎1

3)
2𝑎3

2 = 0,

−2𝑎1
1𝑎

1
2𝑎

2
3 + 𝑎1

1𝑎
1
3𝑎

2
2 − 𝑎1

1𝑎
1
3𝑎

3
3 + 𝑎1

2𝑎
1
3𝑎

2
1 + 𝑎1

2𝑎
2
2𝑎

2
3 + 𝑎1

2𝑎
2
3𝑎

3
3 + (𝑎1

3)
2𝑎3

1 − 𝑎1
3(𝑎

2
2)

2+

+𝑎1
3𝑎

2
2𝑎

3
3 − 2𝑎1

3𝑎
2
3𝑎

3
2 = 0,

(𝑎1
1)

2𝑎2
3 − 𝑎1

1𝑎
1
3𝑎

2
1 − 𝑎1

1𝑎
2
2𝑎

2
3 − 𝑎1

1𝑎
2
3𝑎

3
3 − 𝑎1

2𝑎
2
1𝑎

2
3 + 2𝑎1

3𝑎
2
1𝑎

2
2 − 𝑎1

3𝑎
2
1𝑎

3
3 + 2𝑎1

3𝑎
2
3𝑎

3
1+

+𝑎2
2𝑎

2
3𝑎

3
3 − (𝑎2

3)
2𝑎3

2 = 0,

𝑎1
1𝑎

1
2𝑎

2
2 − 𝑎1

1𝑎
1
2𝑎

3
3 + 2𝑎1

1𝑎
1
3𝑎

3
2 − (𝑎1

2)
2𝑎2

1 − 𝑎1
2𝑎

1
3𝑎

3
1 − 𝑎1

2𝑎
2
2𝑎

3
3 + 2𝑎1

2𝑎
2
3𝑎

3
2 + 𝑎1

2(𝑎
3
3)

2−

−𝑎1
3𝑎

2
2𝑎

3
2 − 𝑎1

3𝑎
3
2𝑎

3
3 = 0,

−(𝑎1
1)

2𝑎2
2 + (𝑎1

1)
2𝑎3

3 + 𝑎1
1𝑎

1
2𝑎

2
1 − 𝑎1

1𝑎
1
3𝑎

3
1 + 𝑎1

1(𝑎
2
2)

2 − 𝑎1
1(𝑎

3
3)

2 − 𝑎1
2𝑎

2
1𝑎

2
2 − 3𝑎1

2𝑎
2
3𝑎

3
1 + 3𝑎1

3𝑎
2
1𝑎

2
2+

+𝑎1
3𝑎

3
1𝑎

3
3 − (𝑎2

2)
2𝑎3

3 + 𝑎2
2𝑎

2
3𝑎

3
2 + 𝑎2

2(𝑎
3
3)

2 − 𝑎2
3𝑎

3
2𝑎

3
3 = 0,

−(𝑎1
1)

2𝑎3
2 + 𝑎1

1𝑎
1
2𝑎

3
1 + 𝑎1

1𝑎
2
2𝑎

3
2 + 𝑎1

1𝑎
3
2𝑎

3
3 − 2𝑎1

2𝑎
2
1𝑎

3
2 + 𝑎1

2𝑎
2
2𝑎

3
1 − 2𝑎1

2𝑎
3
1𝑎

3
3 + 𝑎1

3𝑎
3
1𝑎

3
2−

−𝑎2
2𝑎

3
2𝑎

3
3 + 𝑎2

3(𝑎
3
2)

2 = 0,

𝑎1
1𝑎

2
1𝑎

2
3 − 𝑎1

3(𝑎
2
1)

2 − 𝑎2
1𝑎

2
3𝑎

3
3 + (𝑎2

3)
2𝑎3

1 = 0,

−𝑎1
1𝑎

2
1𝑎

2
2 + 𝑎1

1𝑎
2
1𝑎

3
3 + 𝑎1

1𝑎
2
3𝑎

3
1 + 𝑎1

2(𝑎
2
1)

2 − 2𝑎1
3𝑎

2
1𝑎

3
1 + 𝑎2

1𝑎
2
2𝑎

3
3 + 𝑎2

1𝑎
2
3𝑎

3
2 − 𝑎2

1(𝑎
3
3)

2−

−2𝑎2
2𝑎

2
3𝑎

3
1 + 𝑎2

3𝑎
3
1𝑎

3
3 = 0,

−𝑎1
1𝑎

2
1𝑎

3
2 − 𝑎1

1𝑎
2
2𝑎

3
1 + 𝑎1

1𝑎
3
1𝑎

3
3 + 2𝑎1

2𝑎
2
1𝑎

3
1 − 𝑎1

3(𝑎
3
1)

2 − 𝑎2
1𝑎

2
2𝑎

3
2 + 2𝑎2

1𝑎
3
2𝑎

3
3 + (𝑎2

2)
2𝑎3

1−

−𝑎2
2𝑎

3
1𝑎

3
3 − 𝑎2

3𝑎
3
1𝑎

3
2 = 0,

−𝑎1
1𝑎

3
1𝑎

3
2 + 𝑎1

2(𝑎
3
1)

2 − 𝑎2
1(𝑎

3
2)

2 + 𝑎2
2𝑎

3
1𝑎

3
2 = 0. (11)
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Without loss of generality we can assume that

𝑎3
1 = 0, (12)

because, otherwise, we can obtain this equality by transformation

𝑥1 = 𝑥2, 𝑥2 = 𝑥1 +
𝑎3

2

𝑎3
1
𝑥2, 𝑥3 = 𝑥3. (13)

Substituting 𝑎3
1 = 0 in (11), from the last equality, we get 𝑎2

1𝑎
3
2 = 0. This implies the

following cases: 1) 𝑎3
1 = 𝑎2

1 = 0, 𝑎3
2 ≠ 0; 2) 𝑎3

1 = 𝑎3
2 = 0, 𝑎2

1 ≠ 0; 3) 𝑎3
1 = 𝑎2

1 = 𝑎3
2 = 0.

Calculating the other coefficients by means of the equalities (11) from 1), we obtain the
case 𝑎) from (10). From 3) we get the cases 𝑐) − 𝑘), from (10).

Lemma 1.2 is proved. □

Lemma 1.3. Assume that 𝜎1 ≡ 0 in (7). Then we get the relation (10).

The proof of Lemma 1.3 is analogous to the proof of Lemma 1.2.
Using Lemmas 1.2 and 1.3, it is obtained

Theorem 1.2.
𝜎1(𝑥) ≡ 0 ⇔ 𝛿1(𝑢) ≡ 0 (14)

and conversely
𝜎1(𝑥) ≠ 0 ⇔ 𝛿1(𝑢) ≠ 0. (15)

2. Notions of stability of unperturbed motion and the Lyapunov
function

Let the differential system of the perturbed motion [2] be given in the form (1). Then,
according to [2], the zero values of the variables 𝑥 𝑗 ( 𝑗 = 1, 2, 3) correspond to the
unperturbed motion.

Definition of stability by Lyapunov [2]. Let for any small number Y, there exists a
positive number 𝛿 such that for any perturbation 𝑥 𝑗 (𝑡0) is satisfied the condition

3∑︁
𝑗=1

(𝑥 𝑗 (𝑡0))2 ≤ 𝛿, (16)

and for any 𝑡 ≥ 𝑡0 is satisfied the condition
3∑︁
𝑗=1

(𝑥 𝑗 (𝑡))2 < Y.

Then the unperturbed motion 𝑥 𝑗 = 0 ( 𝑗 = 1, 2, 3) is called stable, otherwise unstable.
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If the unperturbed motion is stable and the value 𝛿 can be found however small such
that for any perturbed motions satisfying (16) the condition

lim
𝑡→+∞

3∑︁
𝑗=1

(𝑥 𝑗 (𝑡))2 = 0

is valid, then the unperturbed motion is called asymptotically stable.
We will examine the system (9). The characteristic equation of this system is

𝜚3 + 𝐿1𝜚
2 + 𝐿2𝜚 + 𝐿3 = 0, (17)

where the coefficients of this equation are expressed by center-affine invariants (8), and
have the form

𝐿1 = −\1, 𝐿2 =
1
2
(\2 − \2

1), 𝐿3 = −1
6
(\3

1 − 3\1\2 + 2\3). (18)

Using the Lyapunov’s theorems on stability of unperturbed and perturbed motion in the
first approximation [2], and the Hurwitz’s theorem [2], we obtain the following theorems:

Theorem 2.1. Assume that the center-affine invariants (18) of the system (1) satisfy the
inequalities

𝐿1 > 0, 𝐿2 > 0, 𝐿3 > 0, 𝐿1𝐿2 − 𝐿3 > 0,

then the unperturbed motion 𝑥1 = 𝑥2 = 𝑥3 = 0 of the system (1) is asymptotically stable.

Theorem 2.2. If at least one of the center-affine invariant expressions (18) of system (1)
has the sign less than zero, then the unperturbed motion 𝑥1 = 𝑥2 = 𝑥3 = 0, of the system
(1), is unstable.

Following [2], we consider the real function 𝑉 (𝑥) = 𝑉 (𝑥1, 𝑥2, 𝑥3), which is defined in
the domain

3∑︁
𝑗=1

(𝑥 𝑗)2 ≤ `, (19)

where ` is a positive numerical constant.
In this domain, the function 𝑉 (𝑥) is unique and continuous and is vanishing for

𝑥1 = 𝑥2 = 𝑥3 = 0, i.e.
𝑉 (0) = 0. (20)

If in the domain (19) this function takes values of the same sign, then it is called of
constant sign (respectively positive or negative). If the function of constant sign vanishes
only when 𝑥1, 𝑥2, 𝑥3 are zero, then 𝑉 is called of determined sign. The introduction of
such functions𝑉 , in the research of the stability of motion, are called Lyapunov functions.

Later on, we will use the following Lyapunov Theorem:

62



Neagu N., Popa M., and Orlov V.

Theorem 2.3. [1, 2] Let for equations of the perturbed motion can be found a function
𝑉 (𝑥) = 𝑉 (𝑥1, 𝑥2, 𝑥3) of the determined sign such that its derivative ¤𝑉 , by virtue of the
system (45) from [1], with 𝑠 = 1, would be of constant sign, opposite to the sign of the
function 𝑉 or identically zero. Then the unperturbed motion is stable.

3. Invariant conditions for obtaining the Lyapunov form of
differential system (1)

Lemma 3.1. Suppose that 𝜎1 . 0 in (7). Then system (1), by means of a centro-affine
transformation, can be brought to the form

𝑑𝑥1

𝑑𝑡
= 𝑥2 + 𝑎1

𝛼𝛽𝛾𝛿𝑥
𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 ,

𝑑𝑥2

𝑑𝑡
= 𝑥3 + 𝑎2

𝛼𝛽𝛾𝛿𝑥
𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 ,

𝑑𝑥3

𝑑𝑡
= −𝐿3𝑥

1 − 𝐿2𝑥
2 − 𝐿1𝑥

3 + 𝑎3
𝛼𝛽𝛾𝛿𝑥

𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 ,

(21)

where 𝐿𝑖 (𝑖 = 1, 2, 3) are from (18).

Proof. Consider the substitution

𝑥1 = 𝜘1, 𝑥2 = 𝜘2, 𝑥3 = 𝜘3, (22)

where 𝜘𝑖 (𝑖 = 1, 2, 3) are given in (5). From (22), by means of expressions 𝜘𝑖 , it is
obtained (in 𝜘2 the index 𝛼 is renotated by 𝛼1)

Δ ≡ 𝑑𝑒𝑡 (𝜘1, 𝜘2, 𝜘3) =

�������
𝑢1 𝑢2 𝑢3

𝑎
𝛼1
1 𝑢𝛼1 𝑎

𝛼1
2 𝑢𝛼1 𝑎

𝛼1
3 𝑢𝛼1

𝑎𝛼
1 𝑎

𝛽
𝛼𝑢𝛽 𝑎𝛼

2 𝑎
𝛽
𝛼𝑢𝛽 𝑎𝛼

3 𝑎
𝛽
𝛼𝑢𝛽

������� = 𝛿1, (23)

where 𝛿1 is from (6) and

𝑥1 =
1
𝛿1

[(𝑎𝛼1
2 𝑎𝛼

3 𝑎
𝛽
𝛼𝑢𝛼1𝑢𝛽 − 𝑎

𝛼1
3 𝑎𝛼

2 𝑎
𝛽
𝛼𝑢𝛼1)𝑥1 + (𝑎𝛼

2 𝑎
𝛽
𝛼𝑢𝛼𝑢𝛽 − 𝑎𝛼

3 𝑎
𝛽
𝛼𝑢𝛽𝑢2)𝑥2+

+(𝑎𝛼1
3 𝑢𝛼1𝑢2 − 𝑎

𝛼1
2 𝑢𝛼1𝑢3)𝑥3],

𝑥2 =
1
𝛿1

[(𝑎𝛼1
3 𝑎𝛼

1 𝑎
𝛽
𝛼𝑢𝛼1𝑢𝛽 − 𝑎

𝛼1
1 𝑎𝛼

3 𝑎
𝛽
𝛼𝑢𝛼1𝑢𝛽)𝑥1 + (𝑎𝛼

3 𝑎
𝛽
𝛼𝑢𝛽𝑢1 − 𝑎𝛼

1 𝑎
𝛽
𝛼𝑢𝛽𝑢3)𝑥2+

+(𝑎𝛼1
1 𝑢𝛼1𝑢3 − 𝑎

𝛼1
3 𝑢𝛼1𝑢1)𝑥3],

𝑥3 =
1
𝛿1

[(𝑎𝛼1
1 𝑎𝛼

2 𝑎
𝛽
𝛼𝑢𝛼1𝑢𝛽 − 𝑎

𝛼1
2 𝑎𝛼

1 𝑎
𝛽
𝛼𝑢𝛼1𝑢𝛽)𝑥1 + (𝑎𝛼

1 𝑎
𝛽
𝛼𝑢𝛽𝑢2 − 𝑎𝛼

2 𝑎
𝛽
𝛼𝑢𝛽𝑢1)𝑥2+

+(𝑎𝛼1
2 𝑢𝛼1𝑢1 − 𝑎

𝛼1
1 𝑢𝛼1𝑢2)𝑥3] .

(24)
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Considering (5) and substitutions (22)-(24), then from the system (1) we obtain the
system (21) with 𝛿1 . 0, which according to Theorem 1.2 is equivalent to 𝜎1 . 0. Lemma
3.1 is proved. □

Using Lemma 1.3, it can easily be verified that the following assertion is proved:

Remark 3.1. If for ystem (9) of the first approximation, the condition 𝜎1 ≡ 0 holds from
(7), then the characteristic equation (17) has only real roots.

Taking into consideration Remark 3.1, it can easily be verified that the following
assertion is proved:

Lemma 3.2. The characteristic equation of system (21), with 𝜎1 . 0, has purely imagi-
nary eigenvalues if and only if the system has the form

𝑑𝑥1

𝑑𝑡
= 𝑥2 + 𝑎1

𝛼𝛽𝛾𝛿𝑥
𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 ,

𝑑𝑥2

𝑑𝑡
= 𝑥3 + 𝑎2

𝛼𝛽𝛾𝛿𝑥
𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 ,

𝑑𝑥3

𝑑𝑡
= −𝐿1𝐿2𝑥

1 − 𝐿2𝑥
2 − 𝐿1𝑥

3 + 𝑎3
𝛼𝛽𝛾𝛿𝑥

𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 , (𝐿1, 𝐿2 > 0),

(25)

where 𝐿𝑖 (𝑖 = 1, 2) are of the form (18).

Theorem 3.1. Let 𝜎1 . 0 in (7). Then, by a centro-affine transformation, the system (21)
can be brought to the form

𝑑𝑥1

𝑑𝑡
= −_𝑥2 + 𝑎1

𝛼𝛽𝛾𝛿𝑥
𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 ,

𝑑𝑥2

𝑑𝑡
= _𝑥1 + 𝑎2

𝛼𝛽𝛾𝛿𝑥
𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 ,

𝑑𝑥3

𝑑𝑡
= 𝑥2 − 𝐿1𝑥

3 + 𝑎3
𝛼𝛽𝛾𝛿𝑥

𝛼𝑥𝛽𝑥𝛾𝑥 𝛿 ,

(26)

with the linear parts of the first two equations in the Lyapunov form, where 𝐿1, 𝐿3 are
from (18) and _2 = 𝐿3 (𝐿1, 𝐿3 > 0).

Proof. We will examine the system (21). According to Lyapunov system (45) from [1],
the linear part of this system must have the form

𝑑𝑋1

𝑑𝑡
= −_𝑋2 + ...,

𝑑𝑋2

𝑑𝑡
= _𝑋1 + ...,

𝑑𝑋3

𝑑𝑡
= 𝑎𝑋1 + 𝑏𝑋2 + 𝑐𝑋3 + ..., (27)

where by dots we mean the homogeneities of the fourth order with respect to 𝑋1, 𝑋2, 𝑋3.
The coefficients _, 𝑎, 𝑏, 𝑐 are expressions in 𝐿𝑖 (𝑖 = 1, 2, 3) and the new variables
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𝑋1, 𝑋2, 𝑋3 have the form

𝑋1 = 𝛼1𝑥
1 + 𝛼2𝑥

2 + 𝛼3𝑥
3, 𝑋2 = 𝛽1𝑥

1 + 𝛽2𝑥
2 + 𝛽3𝑥

3, 𝑋3 = 𝛾1𝑥
1 + 𝛾2𝑥

2 + 𝛾3𝑥
3, (28)

where

Δ =

�������
𝛼1 𝛼2 𝛼3

𝛽1 𝛽2 𝛽3

𝛾1 𝛾2 𝛾3

������� ≠ 0. (29)

Unde the conditions (29), we observe that the substitution (28) forms a centro-affine
transformation. Substituting (28) in the linear part of the system (27) and comparing
with the system (25), we obtain a system of nine algebraic equation in 12 unknowns
𝑎, 𝑏, 𝑐, 𝛼𝑖 , 𝛽 𝑗 , 𝛾𝑘 (𝑖, 𝑗 , 𝑘 = 1, 2, 3). Solving this system, we have

𝑋1 = −𝐿2
1_𝑥

1 + _𝑥3, 𝑋2 = 𝐿1𝐿2𝑥
1 + (𝐿2

1 + 𝐿2)𝑥2 + 𝐿1𝑥
3, 𝑋3 = 2𝐿2𝑥

1 + 𝐿1𝑥
2 + 𝑥3,

where _2 = 𝐿2, and the determinant of this transformation is

Δ = −2𝐿2_(𝐿2
1 + 𝐿2) ≠ 0 (𝐿2 > 0).

This transformation brings the system (25) to a system with the linear part in the
Lyapunov form (26) for which the initial notations of the phase variables are preserved.
The form of the fourth-degree homogeneity does not change, apart from the coefficients
and the phase variables. Theorem 3.1 is proved. □

4. Lyapunov-Darboux form of system (1) and stability conditions of
unperturbed motion

Remark 4.1. For [1 ≡ 0, from (7), the system (1) will get the following Darboux form

𝑑𝑥 𝑗

𝑑𝑡
= 𝑎

𝑗
𝛼𝑥

𝛼 + 4𝑥 𝑗𝑅(𝑥) ( 𝑗 = 1, 2, 3), (30)

where 𝑅(𝑥) is a homogeneous polynomial of the third degree with respect to the vector
coordinates 𝑥 = (𝑥1, 𝑥2, 𝑥3).

Remark 4.2. The system (30) has as 𝐺𝐿 (3,R)-invariant integral the expression 𝜎1 . 0.

This affirmation results from the identity

[𝑎1
𝛼𝑥

𝛼+4𝑥1𝑅(𝑥)] 𝜕𝜎1

𝜕𝑥1 +[𝑎
2
𝛼𝑥

𝛼+4𝑥2𝑅(𝑥)] 𝜕𝜎1

𝜕𝑥2 +[𝑎
3
𝛼𝑥

𝛼+4𝑥3𝑅(𝑥)] 𝜕𝜎1

𝜕𝑥3 = [\1+12𝑅(𝑥)]𝜎1,

where \1 is from (8).
Taking into consideration that the system (26) was obtained using the invariant condi-

tion 𝜎1 . 0 by means of the centro-affine transformations (22), and the Darboux system
(30) is governed by the invariant condition [1 ≡ 0, we obtain
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Lemma 4.1. Let 𝜎1 . 0, [1 ≡ 0 in (7) and 𝐿1, 𝐿2 > 0 in (18). Then system (1), by the
centro-affine transformations, can be brought to the following Lyapunov-Darboux form

𝑑𝑥

𝑑𝑡
= −_𝑦 + 4𝑥𝑅(𝑥, 𝑦, 𝑧),

𝑑𝑦

𝑑𝑡
= _𝑥 + 4𝑦𝑅(𝑥, 𝑦, 𝑧),

𝑑𝑧

𝑑𝑡
= 𝑦 − 𝐿1𝑧 + 4𝑧𝑅(𝑥, 𝑦, 𝑧),

(31)

where 𝑥 = 𝑥1, 𝑦 = 𝑥2, 𝑧 = 𝑥3, and

𝑅(𝑥, 𝑦, 𝑧) = 𝑎1𝑥
3 + 𝑎2𝑦

3 + 𝑎3𝑧
3 + 3𝑎4𝑥

2𝑦 + 3𝑎5𝑥
2𝑧 + 3𝑎6𝑥𝑦

2 + 3𝑎7𝑥𝑧
2+

+3𝑎8𝑥𝑦𝑧 + 3𝑎9𝑦
2𝑧 + 3𝑎10𝑦𝑧

2.
(32)

By means of the determining equations, from [7], we construct the Lie algebra admitted
by the system (31)-(32). Using Lie algebra for the mentioned system, we obtain the
analytic first integral of the form

𝐹 (𝑥, 𝑦, 𝑧) ≡
ℎ3

1
(𝐽 + ℎ2)2 = 0 (33)

governed by the condition
𝐽 (𝐽 + ℎ2) ≠ 0, (34)

where
ℎ1 = 𝑥2 + 𝑦2, 𝐽 = −𝐿1_

2(4𝐿2
1 + _2) (𝐿2

1 + 4_2),

ℎ2 = _[4(8𝑎3𝐿
2
1 + 24𝑎10𝐿

3
1 + 12𝑎5𝐿

4
1 + 24𝑎9𝐿

4
1 + 8𝑎2𝐿

5
1 + 12𝑎4𝐿

5
1 − 24𝑎7𝐿

2
1_ + 22𝑎3_

2−

−12𝑎8𝐿
3
1_ + 66𝑎10𝐿1_

2 + 75𝑎5𝐿
2
1_

2 + 78𝑎9𝐿
2
1_

2 + 34𝑎2𝐿
3
1_

2 + 51𝑎4𝐿
3
1_

2 − 36𝑎7_
3−

−3𝑎8𝐿1_
3 + 18𝑎5_

4 + 18𝑎9_
4 + 8𝑎2𝐿1_

4 + 12𝑎4𝐿1_
4)𝑥3 − 4𝐿1(12𝑎7𝐿

2
1 + 12𝑎8𝐿

3
1+

+8𝑎1𝐿
4
1 + 12𝑎6𝐿

4
1 + 10𝑎3_ + 30𝑎10𝐿1_ − 24𝑎5𝐿

2
1_ + 24𝑎9𝐿

2
1_ − 12𝑎7_

2+

+3𝑎8𝐿1_
2 + 34𝑎1𝐿

2
1_

2 + 51𝑎6𝐿
2
1_

2 − 6𝑎5_
3 + 6𝑎9_

3 + 8𝑎1_
4 + 12𝑎6_

4)𝑦3+

+4𝑎3_(4𝐿2
1 + _2) (𝐿2

1 + 4_2)𝑧3 − 12𝑎1𝐿1(4𝐿2
1 + _2) (𝐿2

1 + 4_2)𝑥2𝑦+

+12_(12𝑎5𝐿
4
1 + 12𝑎7𝐿

2
1_ + 12𝑎8𝐿

3
1_ + 10𝑎3_

2 + 30𝑎10𝐿1_
2 + 27𝑎5𝐿

2
1_

2+

+24𝑎9𝐿
2
1_

2 − 12𝑎7_
3 + 3𝑎8𝐿1_

3 + 6𝑎5_
4 + 6𝑎9_

4)𝑥2𝑧 + 12(4𝑎3𝐿
2
1 + 12𝑎10𝐿

3
1+

+12𝑎9𝐿
4
1 + 4𝑎2𝐿

5
1 − 18𝑎7𝐿

2
1_ − 12𝑎8𝐿

3
1_ + 6𝑎3_

2 + 18𝑎10𝐿1_
2 + 24𝑎5𝐿

2
1_

2+

+27𝑎9𝐿
2
1_

2 + 17𝑎2𝐿
3
1_

2 − 12𝑎7_
3 − 3𝑎8𝐿1_

3 + 6𝑎5_
4 + 6𝑎9_

4 + 4𝑎2𝐿1_
4)𝑥𝑦2+

+12_(6𝑎7𝐿
2
1 + 𝑎3_ + 3𝑎10𝐿1_) (𝐿2

1 + 4_2)𝑥𝑧2 + 12𝐿1_(12𝑎7𝐿
2
1 + 12𝑎8𝐿

3
1+

+10𝑎3_ + 30𝑎10𝐿1_ − 24𝑎5𝐿
2
1_ + 24𝑎9𝐿

2
1_ − 12𝑎7_

2 + 3𝑎8𝐿1_
2 − 6𝑎5_

3 + 6𝑎9_
3)𝑥𝑦𝑧+
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+12_(4𝑎3𝐿
2
1 + 12𝑎10𝐿

3
1 + 12𝑎9𝐿

4
1 − 18𝑎7𝐿

2
1_ − 12𝑎8𝐿

3
1_ + 6𝑎3_

2 + 18𝑎10𝐿1_
2+

+24𝑎5𝐿
2
1_

2 + 27𝑎9𝐿
2
1_

2 − 12𝑎7_
3 − 3𝑎8𝐿1_

3 + 6𝑎5_
4 + 6𝑎9_

4)𝑦2𝑧+

+12𝐿1_(2𝑎3 + 6𝑎10𝐿1 − 3𝑎7_) (𝐿2
1 + 4_2)𝑦𝑧2] .

Analyzing the first integral (33), we notice that if the inequality (34) holds, then the
function 𝐹 (𝑥, 𝑦, 𝑧) forms the Lyapunov function. According to Theorem 2.3, we have

Theorem 4.1. Let for system of the Lyapunov-Darboux type (31)-(32) the inequality (34)
holds. Then the unperturbed motion 𝑥 = 𝑦 = 𝑧 = 0, governed by this system, is stable.

Remark 4.3. For the first time, a problem analogous to that examined in this paper was
investigated for ternary system with quadratic nonlinearities in [8]. Here, the invariant
centro-affine conditions of stability or instability of unperturbed motion were obtained.
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de la stabilité de mouvement. Annales de la Faculté des sciences de l’Université de Toulouse, Ser. 2,
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Phase portraits of some polynomial differential systems with
maximal multiplicity of the line at the infinity

Vadim Repes, co

Abstract. The present study delves into the investigation of phase portraits of poly-
nomial differential systems, which are systems of differential equations of the form
𝑑𝑥
𝑑𝑡

= 𝑃(𝑥, 𝑦), 𝑑𝑦
𝑑𝑡

= 𝑄(𝑥, 𝑦), where 𝑥 and 𝑦 are the dependent variables and 𝑡 is the
independent variable. The functions 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) are polynomials in 𝑥 and 𝑦. The
main objective of this research is to obtain the phase portraits of polynomial differential
systems of degree 𝑛 ∈ {3, 4, 5} and having an invariant straight line at the infinity of
maximal multiplicity.
2010 Mathematics Subject Classification: 34C05.
Keywords: phase portrait, singular point, Poincaré transformation.

Tablouri fazice ale unor sisteme diferent, iale polinomiale cu
dreapta de la infinit de multiplicitate maximală

Rezumat. Prezentul studiu se aprofundează ı̂n investigarea portretelor de fază ale
sistemelor diferent,iale polinomiale, care sunt sisteme de ecuat,ii diferent,iale de forma
𝑑𝑥
𝑑𝑡

= 𝑃(𝑥, 𝑦), 𝑑𝑦
𝑑𝑡

= 𝑄(𝑥, 𝑦), unde 𝑥 s, i 𝑦 sunt variabilele dependente s, i 𝑡 este variabila
independentă. Funct,iile 𝑃(𝑥, 𝑦) s, i 𝑄(𝑥, 𝑦) au polinoame ı̂n 𝑥 s, i 𝑦. Obiectivul principal al
acestei cercetări este obt,inerea portretelor de fază ale sistemelor diferent,iale polinomiale
de grad 𝑛 ∈ {3, 4, 5} s, i având o dreaptă invariantă la infinit de multiplicitate maximală.
Cuvinte-cheie: portret fazic, punct singular, transformarea Poincaré.

1. Introduction

Phase portraits are graphical representations of the behaviour of a system of differential
equations over time and they can be used to visualize the long-term behaviour of a system.
Overall, the phase portrait of a polynomial differential system with maximal multiplicity of
the line at infinity can be quite complex and may exhibit a variety of different behaviours.

The study of invariant algebraic curves plays a crucial role in the qualitative analysis
of dynamical systems. The problem of determining the maximum number of invariant
straight lines present in a polynomial differential system is explored in [1]. Additionally,
the utilization of invariant straight lines in the calculation of Darboux first integrals is a
significant area of study, as outlined in [2], where it is demonstrated that a Darboux first
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integral can be calculated for a polynomial differential system if it possesses a sufficient
number of invariant straight lines, taking into account their multiplicities.

In this article, we will focus on phase portraits of polynomial differential systems,
which are systems of differential equations of the form:

𝑑𝑥

𝑑𝑡
= 𝑃(𝑥, 𝑦), 𝑑𝑦

𝑑𝑡
= 𝑄(𝑥, 𝑦),

where 𝑥 and 𝑦 are the dependent variables and 𝑡 is the independent variable. The functions
𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) are polynomials in 𝑥 and 𝑦. We will obtain the phase portraits of
polynomial differential systems of degree 𝑛 ∈ {3, 4, 5} and having the invariant straight
line at the infinity of the maximal multiplicity.

2. Cubic polynomial differential systems

According to [3], the maximal multiplicity of the line at infinity for the cubic systems
is equal to seven and the systems can be brought to the following two forms:{

¤𝑥 = 1,
¤𝑦 = 𝑥3 + 𝑎𝑥,

𝑎 ∈ R; (1)

and {
¤𝑥 = −𝑥,
¤𝑦 = 𝑥3 + 2𝑦.

(2)

The system (1) does not possess any singular points within the finite region of the phase
plane. However, at infinity, there exist 𝐼∞1,2(0,±1, 0), which are multiple singular points.
In order to analyze the behavior of trajectories in proximity to these points, we shall
employ the first Poincaré transformation. Prior to this, we shall utilize the transformation
𝑥 → 𝑦, 𝑦 → 𝑥 to relocate these points to opposite sides of the 𝑂𝑥 axis:{

¤𝑥 = 𝑦3 + 𝑎𝑦,

¤𝑦 = 1,
𝑎 ∈ R. (3)

By effecting the transformation 𝑥 → 1/𝑦, 𝑦 → 𝑥/𝑦, the system represented by equation
(3) is transformed into the following form:{

¤𝑥 = −𝑥4 + 𝑎𝑥2𝑦2 + 𝑦3,

¤𝑦 = −𝑥𝑦(𝑥2 + 𝑎𝑦2).
(4)

This system possesses a single singular point 𝐼1(0, 0) which corresponds to the singular
points 𝐼∞1,2(±1, 0, 0) of the original system represented by equation (3).
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The singular point 𝐼1 is a multiple one, thus we shall utilize the blow-up method. This
results in the following differential system:{

¤𝑥 = − 1
4𝑥 sin 𝑦 (2(𝑎 + 1)𝑥 + 2𝑥(𝑎 − 1) cos(2𝑦) − 3 cos 𝑦 − cos(3𝑦)) ,

¤𝑦 = cos4 𝑦.
(5)

The system at hand possesses the singular points 𝑆1(0, 𝜋
2 ) and 𝑆2(0, 3𝜋

2 ), both of which
are multiple. Thus, we shall utilize the transformation 𝑥 → 𝑥, 𝑦 → 𝑦 − 𝜋/2 to relocate
the point 𝑆1 to the origin. Then by expanding the right-hand sides in a Taylor series about
𝑦 = 0, and retaining only a subset of the first monomials, we obtain the following system:

¤𝑥 = −𝑥𝑦3 + 𝑥2
(
−𝑎𝑦2 + 3𝑦2

2 − 1
)
,

¤𝑦 = 𝑦4 − 2𝑦6

3 .
(6)

Using the blow-up method we get that the singular point 𝑆1 decompose in 4 singular
points 𝑁1(0, 0), 𝑁2(0, 𝜋

2 ), 𝑁3(0, 𝜋) and 𝑁4(0, 3𝜋
2 ) of the following system:

¤𝑥 = − 1
6𝑥

(
6𝑎𝑥2 sin2 𝑦 cos3 𝑦 + 4𝑥4 sin7 𝑦 − 6𝑥2 sin5 𝑦 + 6𝑥2 sin3 𝑦 cos2 𝑦−

−9𝑥2 sin2 𝑦 cos3 𝑦 + 6 cos3 𝑦
)
,

¤𝑦 = 1
6 sin 𝑦 cos 𝑦

(
6𝑎𝑥2 sin2 𝑦 cos 𝑦 − 4𝑥4 sin5 𝑦 + 12𝑥2 sin3 𝑦−

−9𝑥2 sin2 𝑦 cos 𝑦 + 6 cos 𝑦
)
.

(7)

The singular points 𝑁1 and 𝑁3 are of saddle type, while the singular points 𝑁2 and 𝑁4 are
multiple. By utilizing the transformation 𝑥 → 𝑥, 𝑦 → 𝑦− 𝜋/2, we reposition the point 𝑁2

to the origin of coordinates. Subsequently, by expanding the right-hand sides in a Taylor
series in the vicinity of 𝑦 = 0, and discarding all terms of higher order, we arrive at the
system: {

¤𝑥 = 𝑥𝑦3 + 𝑥3
(
1 − 7𝑦2

2

)
,

¤𝑦 = 1
6 𝑦

(
6𝑎𝑥2𝑦 − 9𝑥2𝑦 + 4𝑥4 − 12𝑥2 + 6𝑦

)
.

(8)

By utilizing the blow-up method, we obtain the following system:

¤𝑥 = − 1
24𝑥

(
−6𝑎𝑥2 sin 𝑦 sin2(2𝑦) + 3𝑥2 sin 𝑦 sin2(2𝑦) + 68𝑥3 sin2 𝑦 cos4 𝑦+

+12𝑥 sin2(2𝑦) − 24𝑥 cos4 𝑦 − 24 sin3 𝑦
)
,

¤𝑦 = 1
6 sin 𝑦 cos 𝑦

(
6𝑎𝑥2 sin 𝑦 cos2 𝑦 − 6𝑥2 sin3 𝑦 + 4𝑥3 cos4 𝑦 + 21𝑥3 sin2 𝑦·

· cos2 𝑦 − 9𝑥2 sin 𝑦 cos2 𝑦 − 18𝑥 cos2 𝑦 + 6 sin 𝑦
)
.

(9)

By solving the equation 𝑄(0, 𝑦) = 0, it follows that the point 𝑁2 decomposes into the
following four points 𝑃1(0, 0), 𝑃2(0, 𝜋

2 ), 𝑃3(0, 𝜋), 𝑃4(0, 3𝜋
2 ), wherein 𝑃1 and 𝑃3 are

multiple, while 𝑃2 and 𝑃4 are saddles.
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Once more, we shall expand the right-hand sides in a Taylor series in the vicinity of the
point 𝑦 = 0, and subsequently apply the blow-up method. This results in the following
system:

¤𝑥 = − 1
6𝑥

(
−6𝑎𝑥2 sin3 𝑦 cos2 𝑦 + 20𝑥2 sin2 𝑦 cos3 𝑦 + 3𝑥2 sin3 𝑦 cos2 𝑦−

−6 sin3 𝑦 − 6 cos3 𝑦 + 18 sin2 𝑦 cos 𝑦
)

¤𝑦 = 1
6 sin 𝑦 cos 𝑦

(
6𝑎𝑥2 sin 𝑦 cos2 𝑦 − 6𝑥2 sin3 𝑦 + 4𝑥2 cos3 𝑦 − 9𝑥2 sin 𝑦·

· cos2 𝑦 + 24𝑥2 sin2 𝑦 cos 𝑦 + 6 sin 𝑦 − 24 cos 𝑦
)
,

(10)

which possesses 6 singular points. The coordinates and types of these singular points are
listed in Table 1.

Table 1. Blow up for point 𝑃1

S.P. 𝑂1(0, 0) 𝑂2(0, arctg 4) 𝑂3(0, 𝜋
2 ) 𝑂4(0, 𝜋) 𝑂5(0, 𝜋 + arctg 4) 𝑂6(0, 3𝜋

2
_1,2 −4; 1 1√

17
; 4√

17
±1 −1; 4 − 4√

17
; − 1√

17
±1

Type 𝑆 𝑁𝑢 𝑆 𝑆 𝑁𝑠 𝑆

a) b)

Figure 1. Blow-up for the point 𝑃1 (0, 0).

By constructing all these points on a circle, and plotting their behaviour in proximity
to them (Figure 1 a)), followed by compressing the circle into a single point, we can
obtain the behaviour of the trajectories in the vicinity of the singular point 𝑃1 of the
system represented by equation (9). To determine the type of the singular point 𝑁2 of the
system represented by equation (7), we shall only utilize the portion of the phase plane
corresponding to 𝑥 > 0 (as depicted in Figure 1 b)).
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By utilizing 𝑃1, we can construct the phase portrait for the singular point 𝑁2 (Figure
2 a), b)). The phase portrait of the singular point 𝑁4(0, 3𝜋

2 ) is also depicted in Figure 2

a) b) c) d)

Figure 2. Blow-up for the points 𝑁2
(
0, 𝜋

2
)

and 𝑁4 (0, 3𝜋
2 ).

c) d), which is obtained in an analogous manner, with the only difference being that the
direction of the trajectories is inverted.

We can now construct the trajectories for the singular point 𝑆1, which was decomposed
into the points 𝑃1, 𝑃2, 𝑃3 and 𝑃4 (see Figure 3 a)). Since we only require the half-plane
𝑥 > 0, we obtain Figure 3 b).

a) b)

Figure 3. Blow-up for the point 𝑆1
(
0, 𝜋

2
)
.

By executing the same procedure (applying the blow-up method three times) for the
point 𝑆2(0, 3𝜋

2 ), we obtain the representation illustrated in Figure 4.
Ultimately, by utilizing 𝑆1 and 𝑆2, we can construct the phase portrait for the point

𝐼1(0, 0) of the system represented by equation (4) (see Figure 5).
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a) b)

Figure 4. Blow-up for the point 𝑆2

(
0, 3𝜋

2

)
.

a) b)

Figure 5. Blow-up for the point 𝐼1 (0, 0).

Having now determined the behaviour of trajectories in the proximity of 𝐼∞1,2, we can
construct the phase portrait for the polynomial differential system represented by equation
(3). By applying the transformation 𝑥 → 𝑦, 𝑦 → 𝑥, we can obtain the phase portrait for
the system represented by equation (1) (see Figure 6 a)). By following a similar procedure,
we can construct the phase portrait for the system represented by equation (2) (see Figure
6 b)).
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a) b)

Figure 6. The phase portraits for the cubic differential systems (1) and (2).

3. Quartic polynomial differential systems

According to [4], a quartic polynomial differential system with maximal multiplicity
can be brought into the following form:{

¤𝑥 = −3𝑥 + 𝑎𝑦4,

¤𝑦 = 𝑦, 𝑎 > 0.
(11)

This system has an invariant line at infinity with multiplicity equal to 10. By referring to
[5], we can construct its phase portrait. However, we first need to relocate the singular
points at infinity to be situated at the ends of the 𝑂𝑦 axis by applying the transformation
𝑥 → 𝑦, 𝑦 → 𝑥 (see Figure 7).

Figure 7. The phase portrait for the quartic differential system (11).
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4. Quintic polynomial differential systems

As stated in [6], a quintic polynomial differential system with the line at infinity of
maximal multiplicity can be transformed into the following form:{

¤𝑥 = 𝑥, 𝑎 ≠ 0,
¤𝑦 = −4𝑦 + 𝑎𝑥5.

(12)

The transformations 𝑥 → 𝑥, 𝑦 → −𝑦, 𝑎 → −𝑎 do not alter the form of the system,
in order to maintain its generality, the condition 𝑎 > 0 is imposed. Furthermore, it is
apparent that the transformations 𝑥 → −𝑥, 𝑦 → −𝑦 does not affect the form of the system,
thus the trajectories of the system are symmetric with respect to the origin of coordinates.

By applying the transformation 𝑥 → 𝑦, 𝑦 → 𝑥, the system (12) can be transformed
into the following system: {

¤𝑥 = −4𝑥 + 𝑎𝑦5,

¤𝑦 = 𝑦, 𝑎 ≠ 0.
(13)

The system (13) can be transformed into the following form by applying the Poincaré
transformation 𝑥 → 1

𝑥
, 𝑦 → 𝑦

𝑥
: {

¤𝑥 = 𝑥(4𝑥4 − 𝑎𝑦5),
¤𝑦 = 𝑦(5𝑥4 − 𝑎𝑦5)

(14)

By utilizing a blow-up transformation on the system (13), we are able to perform a
detailed analysis of the phase space behaviour in the vicinity of the multiple singular
point at the origin for the system (14), which corresponds to the points 𝐼∞1,2(±1, 0, 0) of
the system (13).{

¤𝑥 = 𝑥

(
𝑎𝑥 sin7 𝑦 + 𝑎𝑥 sin5 𝑦 cos2 𝑦 − 4 cos6 𝑦 − 5 sin2 𝑦 cos4 𝑦

)
,

¤𝑦 = sin 𝑦 cos5 𝑦
(15)

Specifically, by solving the equation 𝑄(0, 𝑦) = 0, we can identify the coordinates and
topological classification of the resulting singular points 𝑀1, 𝑀2, 𝑀3, and 𝑀4. Of these,
𝑀1 and 𝑀3 are classified as nodal singularities, with 𝑀1 being an unstable node and 𝑀3

being a stable node. On the other hand, 𝑀2 and 𝑀4 are multiple singular points.
We translate the singular point 𝑀2 to the origin of coordinates, then we expand the

right-hand sides in a Taylor series in the neighbourhood of 𝑦 = 0, and retain only the
terms of low degree, we obtain the system:

¤𝑥 = 5
2𝑎𝑥

2𝑦2 − 𝑎𝑥2 + 𝑥𝑦4
(
5 − 65𝑎𝑥

24

)
,

¤𝑦 =
4𝑦7

3 − 𝑦5,
(16)
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Subsequently, by utilizing the blow-up method, we derive the following system:

¤𝑥 = 1
24𝑥

(
−65𝑎𝑥4 sin4 𝑦 cos3 𝑦 + 60𝑎𝑥2 sin2 𝑦 cos3 𝑦 − 24𝑎 cos3 𝑦+

+32𝑥5 sin8 𝑦 − 24𝑥3 sin6 𝑦 + 120𝑥3 sin4 𝑦 cos2 𝑦
)
,

¤𝑦 = 1
24 sin 𝑦 cos 𝑦

(
65𝑎𝑥4 sin4 𝑦 cos 𝑦 − 60𝑎𝑥2 sin2 𝑦 cos 𝑦 +

+ 24𝑎 cos 𝑦 + 32𝑥5 sin6 𝑦 − 144𝑥3 sin4 𝑦
)
,

(17)

We resolve the equation 𝑄(0, 𝑦) = 0, resulting in the identification of the singular
points 𝑁1(0, 0), 𝑁2(0, 𝜋

2 ), 𝑁3(0, 𝜋) and 𝑁4(0, 3𝜋
2 ). The points 𝑁1 and 𝑁3 are classified

as saddle singularities, while 𝑁2 and 𝑁4 are classified as compound singularities.
Subsequently, we effect a translation of 𝑁2 to the origin of coordinates, followed by an

expansion in a Taylor series in the vicinity of 𝑦 = 0, and a blow-up transformation. This
results in the decomposition of the singularity into four distinct points: 𝑅1(0, 0), 𝑅2(0, 𝜋

2 ),
𝑅3(0, 𝜋) and 𝑅4(0, 3𝜋

2 ). The points 𝑅2 and 𝑅4 are classified as saddle singularities, while
the points 𝑅1 and 𝑅3 are compound singularities.

Employing the blow-up technique on 𝑅1, results in the decomposition of this point into
four distinct singularities: 𝑆1(0, 0), 𝑆2(0, 𝜋

2 ), 𝑆3(0, 𝜋) and 𝑆4(0, 3𝜋
2 ). The points 𝑆2 and

𝑆4 are classified as hyperbolic saddle singularities, while the singularities 𝑆1 and 𝑆3 are
classified as non-hyperbolic multiple singularities.

Finally, by utilizing the blow-up method on 𝑆1, we obtain a further decomposition of
this point into six distinct singularities: 𝑄1(0, 0), 𝑄2(0, 𝜋

2 ), 𝑄3(0, 𝜋−𝑎𝑟𝑐𝑡𝑔 9
𝑎
), 𝑄4(0, 𝜋),

𝑄5(0, 3𝜋
2 ) and 𝑄6(0, 𝑎𝑟𝑐𝑡𝑔 9

𝑎
), their eigenvalues and types are tabulated in Table 2.

Table 2. Blow up for point 𝑆1

S.P. 𝑄1 𝑄2 𝑄3 𝑄4 𝑄5 𝑄6

_1,2 −1, 9 ±𝑎 𝑎√
81+𝑎2 , 9𝑎√

81+𝑎2 −9, 1 −𝑎, 𝑎 − 𝑎√
81+𝑎2 , − 9𝑎√

81+𝑎2 ,

Type 𝑆 𝑆 𝑁𝑢 𝑆 𝑆 𝑁𝑠

By leveraging the data presented in Table 2, we are able to construct the phase portrait
in the vicinity of the singular point 𝑆1 (Figure 8). Utilizing this information, we can then
graphically depict the qualitative behaviour of the trajectories in the immediate vicinity
of 𝑅1 (as illustrated in Figure 9).

Utilizing the information obtained from the analysis of the type of singularity at 𝑅1,
we are able to construct the local phase portrait for the point 𝑁2 (as depicted in Figure 10
a), b)). By applying a similar procedure, we are able to construct the phase portrait for
the point 𝑁4 (depicted in Figure 10 c), d)).
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a) b)

Figure 8. Blow-up for the point 𝑆1 (0, 0).

a) b)

Figure 9. Blow-up for the point 𝑅1 (0, 0).

a) b) c) d)

Figure 10. Blow-up for the points 𝑁2
(
0, 𝜋

2
)

and 𝑁4

(
0, 3𝜋

2

)
.
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Through the utilization of blow-up techniques, we previously decomposed the singular
point 𝑀2(0, 𝜋

2 ) into the points 𝑁1, 𝑁2, 𝑁3 and 𝑁4. Given that 𝑁1 and 𝑁4 are classified
as saddle singularities, we are able to construct the phase portrait for 𝑀2 as depicted in
Figure 11.

a) b)

Figure 11. Blow-up for the points 𝑀2
(
0, 𝜋

2
)

.

By applying similar techniques, we can construct the phase portrait for the point 𝑀4

(as illustrated in Figure 12).

a) b)

Figure 12. Blow-up for the point 𝑀4

(
0, 3𝜋

2

)
.

By utilizing the information obtained from the phase portraits of 𝑀2 and 𝑀4 in conjunc-
tion with the fact that 𝑀1 is an unstable node and 𝑀2 is a stable node, we can construct the
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local phase portrait (as depicted in Figure 13) in the vicinity of the origin of coordinates
for the system (14), which corresponds to the points 𝐼∞1,2(±1, 0, 0) of the system (13).

a) b)

Figure 13. Blow-up for the points 𝐼∞1,2 (±1, 0, 0).

Taking into account that the singular point in the finite portion of the phase space is
of saddle type, upon application of the transformation 𝑥 → 𝑦, 𝑦 → 𝑥, we obtain the
phase portrait (Figure 14) for the quintic differential system (12) which possesses a line
of maximal multiplicity at infinity.

Figure 14. The phase portrait for the quartic differential system (11).

5. Conclusion

This article has provided an in-depth analysis of the phase portraits of polynomial
differential systems of degree at most five and having the invariant straight line at the
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infinity of the maximal multiplicity. By using the blow-up method, we were able to
decompose singular points, transform the systems, and obtain the phase portraits for the
systems. This understanding of polynomial differential systems is valuable in many fields
including physics, engineering, and biology.

References

[1] Artes, J.; Grunbaum, B.; Llibre, J. On the number of invariant straight lines for polynomial differential
systems. Pacific Journal of Mathematics, 1998, 184, No. 2, 207–230.

[2] Llibre, J.; Xiang, Z., On the Darboux Integrability of Polynomial Differential Systems, Qual. Theory
Dyn. Syst., 2012,
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The left product, the right product and the theories of
relative torsion
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Abstract. It is demonstrated that any theory of relative torsion is defined by the left and
the right products.
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subcategories, the relative torsions theories.

Produsul de stânga, produsul de dreapta şi teorii de
torsiune relative

Rezumat. Se demonstrează că orice teorie de torsiuni relative este descrisă de produsele
de stânga şi de dreapta.
Cuvinte-cheie: subcategorii reflexive şi coreflexive, produsul de dreapta şi de stânga a
două subcategorii, teorii de torsiune relative.

1. Introduction

The paper is a continuation (with notations and terminology) of the article [6] (see also
[4]). Note by C2V the category of topological vector locally convex Hausdorff spaces
(see [9]), where you can also find all the notions referred totopologies. We will use the
following notation.

Factorization structures (see [4]):
B the class of factorization structures;
(E𝑝𝑖,M 𝑓 ) - (the class of epimorphisms, the class of kernels) = (the class of morphisms

with dense image, the class of topological inclusions with closed images);
(E𝑢,M𝑝)=(the class of universal epimorphisms, the class of exact monomorphisms)=(the

class of surjective morphisms, the class of topological inclusions);
(E𝑝,M𝑢)=(the class of exact epimorphisms, the class of universal monomorphisms);
(E 𝑓 ,M𝑜𝑛𝑜)=(the class of cokernels, the class of monomorphisms)=(the class of fac-

torial morphisms, the class of injective morphisms);
The properties of factorization structures (E 𝑓 ,M𝑜𝑛𝑜) and (E𝑝𝑖,M 𝑓 ) characterize

the category C2V as a semiabelian category. The factorization structures (E𝑢,M𝑝)
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and (E𝑝,M𝑢) play an important role in the study of the reflective and coreflective
subcategories. We need some notions and results from [3], [4] and [6].

We use the following notations for some subcategories of the category C2V.
R - the class of non-zero reflective subcategories;
K - the class of nonzero coreflective subcategories;
Π - the subcategory of complete spaces with a weak topology and with respective

functor 𝜋 : C2V → Π;
S - the subcategory of spaces endowed with a weak topology, 𝑠 : C2V → S;
Γ0 - the subcategory of complete spaces, 𝑔𝑜 : C2V → Γ𝑜;
Σ - the coreflective subcategory of spaces with the strongest locally convex topology,

𝜎 : C2V → Σ;
M̃ - the subcategory of spaces endowed with the Mackey topology, 𝑚 : C2V → M̃.
Let A and B be two classes of morphisms of the category C2V. We will use the

notations:
1. A ◦ B = {𝑎 · 𝑏 | 𝑎 ∈ A, 𝑏 ∈ B and there is the composition 𝑎 · 𝑏}.
2. The class A is called B-hereditary if from the fact that 𝑓 · 𝑔 ∈ A and 𝑓 ∈ B, it

follows that 𝑔 ∈ A. The class E𝑝𝑖 is M𝑢-hereditary ([4], Lemma 2.6);
2∗. The class A is called B-cohereditary if from the fact that 𝑓 · 𝑔 ∈ A and 𝑔 ∈ B, it

follows that 𝑓 ∈ A.
If R ∈ R, then (P′′(R),I′′(R)) = ((YR) ◦ E𝑝, (YR)⊥ ∩M𝑢).
If K ∈ K, then (P′(K),I′(K)) = ((`K)⊤ ∩ E𝑢,M𝑝 ◦ (`K)) (see [5]).
We will show the application of left and right products to the description of relative

torsion theories.

2. The right and left product of two subcategories

Definition 2.1 ([1]). Let K be a coreflective subcategory, and R a reflective subcategory
of category C. The pair (K,R) is called relative torsion theory (TTR), that is, relative to
the subcategory K ∩ R, if the functors 𝑘 : C → K and 𝑟 : C → R verify the following
two relations:

1. The functors 𝑘 and 𝑟 commute: 𝑘 · 𝑟 = 𝑟 · 𝑘;
2. For any object 𝑋 of category C the square

𝑟𝑋 · 𝑘𝑋 = 𝑘𝑟𝑋 · 𝑟𝑘𝑋 (1)

is puschout and pullback.
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Remark 2.1. In abelian categories a theory of torsion (T , F ) is a TTR relative to
intersections T ∩ F = 0 [2].

Theorem 2.1. ([3], Theorem 2.1). Let K be a non-zero coreflective subcategories, and
R be a non-zero reflective subcategories of category C2V and R ∈ R(M𝑝). The pair
(K,R) forms a TTR if and only if the coreflector functor 𝑘 : C2V −→ K and reflector
𝑟 : C2V −→ R commute: 𝑘 · 𝑟 = 𝑟 · 𝑘 .

In the work [3] this theorem is without proof, therefore, for completeness, the proof
will be included here.

Proof. Let the respective functors commute: 𝑘 · 𝑟 = 𝑟 · 𝑘 and we will prove that for any
object 𝑋 of the category C2V the square

𝑟𝑋 · 𝑘𝑋 = 𝑘𝑟𝑋 · 𝑟𝑘𝑋 (2)

is puschout and pullback. Indeed, either

𝑢𝑋 · 𝑘𝑋 = 𝑣𝑋 · 𝑟𝑘𝑋 (3)

the puschout built on the morphisms 𝑘𝑋 and 𝑟𝑘𝑋. Then

𝑟𝑋 = 𝑡𝑋 · 𝑢𝑋, (4)

𝑘𝑟𝑋 = 𝑡𝑋 · 𝑣𝑋 (5)

for a morphism 𝑡𝑋. Since 𝑟𝑘𝑋 is an epi, according to construction, we deduce that 𝑢𝑋 is
also an epi. Moreover, 𝑟𝑋 ∈ M𝑝, 𝑢𝑋 ∈ E𝑝𝑖 and the class M𝑝 is E𝑝𝑖-cohereditary. So
from equality (5) it turns out that 𝑡𝑋 ∈ M𝑝. Also 𝑘𝑟𝑋 ∈ E𝑢. Thus from equality (5) we
deduce as 𝑡𝑋 ∈ E𝑢. Finally 𝑣𝑋 ∈ E𝑢 ∩M𝑝 = I𝑠𝑜.

This is how we proved that the square (2) is puschout. The class A is called B-
hereditary if from the fact that 𝑓 · 𝑔 ∈ A and 𝑓 ∈ B, it follows that 𝑔 ∈ A. Let’s prove
that it is also pullback. Let

𝑟𝑋 · 𝑙𝑋 = 𝑘𝑟𝑋 · 𝑚𝑋 (6)

the pullback built on morphisms 𝑟𝑋 and 𝑘𝑟𝑋. Then

𝑘𝑋 = 𝑙𝑋 · 𝑝𝑋, (7)
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𝑟𝑘𝑋 = 𝑚𝑋 · 𝑝𝑋 (8)
for un morphism 𝑝𝑋. Since 𝑘𝑟𝑋 ∈ E𝑢 ∩M𝑜𝑛𝑜, it turns out that 𝑙𝑋 ∈ E𝑢 ∩M𝑜𝑛𝑜.

Thus in equality (7) the morphisms 𝑘𝑋 and 𝑙𝑋 belong to the class E𝑢 ∩M𝑜𝑛𝑜. So also
𝑝𝑋 belongs to this class. From equality (8) it follows that 𝑝𝑋 ∈ M𝑝, because 𝑟𝑘𝑋 ∈ M𝑝.
So 𝑝𝑋 ∈ E𝑢 ∩M𝑝 = I𝑠𝑜.

Remark 2.2. Regarding examples of TTR (see [1-3]).

Since K-coreplica for any object of the category C2V is a bijective application, we get:

Lemma 2.1. Let R ∈ R𝑠 (`K). Then for any object (𝐸, 𝑢) of it and any locally convex
topology 𝑣 with the property 𝑢 ≤ 𝑣 ≤ 𝑘 (𝑢), where (𝐸, 𝑘 (𝑢)) is K-core replica of the
object (𝐸, 𝑢), the object (𝐸, 𝑣) also belongs to the subcategory R.

Lemma 2.2. For the subcategoriesK andR of the category C2V the following statements
are equivalent:

1. K ∗𝑠 R = K.
2. K ∈ K 𝑓 (YR).
If the subcategory K contains the subcategory M̃ of spaces with Mackey topology,

then the previous conditions are equivalent to the condition:
3. The subcategory K is I′′(R)-coreflective.

Proof. 1 ⇒ 2. Let 𝐴 ∈ |K| and

𝑟𝐴 = 𝑓 · 𝑔 (9)

be a decomposition of the morphism 𝑟𝐴 with 𝑔 as an epi. We will prove that 𝑋 ∈ |K|.
Since 𝑔 is an epi, we deduce that 𝑓 is the R-replica of object 𝑋 . Let 𝑘𝑋 be the K-coreplica
of the object 𝑋 . We have 𝐴 ∈ |K|, so

𝑔 = 𝑘𝑋 · ℎ (10)

for a morphism ℎ. We examine the left product diagram for the object 𝑋 .
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Thus we have equality
𝑟𝑋 · 𝑘𝑋 = 𝑟 (𝑘𝑋) · 𝑟𝑘𝑋 (11)

For the morphism 𝑟𝑘𝑋 · ℎ there is a morphism 𝑤 as follows

𝑤 · 𝑟𝐴 = 𝑟𝑘𝑋 · ℎ (12)

We have

𝑟 (𝑘𝑋) · 𝑤 · 𝑟𝐴 = (𝑑𝑖𝑛(14)) = 𝑟 (𝑘𝑋) · 𝑟𝑘𝑋 · ℎ = (𝑑𝑖𝑛(13)) = 𝑟𝑋 · 𝑘𝑋 · ℎ =

= (𝑑𝑖𝑛(12)) = 𝑟𝑋 · 𝑔 = 𝑟𝐴

i.e.
𝑟 (𝑘𝑋) · 𝑤 · 𝑟𝐴 = 𝑟𝐴 (13)

Since 𝑟𝐴 is an epi, it follows that

𝑟 (𝑘𝑋) · 𝑤 = 1 (14)

According to the first hypothesis, the square (10) is pullback, and the morphism 𝑟 (𝑘𝑋) is
a retraction, it turns out that 𝑘𝑋 is the same. But 𝑘𝑋 is also a mono. Thus we proved that
𝑋 ∈ |K|.

2 ⇒ 1. Let 𝑋 be an arbitrary object of the category C2V. We construct the left product
diagram for it.

We examine the equality
𝑟𝑘𝑋 = 𝑓 𝑋 · 𝑡𝑋 . (15)

Because the class E𝑝𝑖 is M𝑢-hereditary ([4], Lemma 2.6), the morphism 𝑡𝑋 is an epi.
Thus according to hypothesis (2) 𝑙𝑋 is an object of the subcategory K. Therefore, 𝑡𝑋 is
an iso, and K ∗𝑠 R = K.
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3 ⇐⇒ 1. For an arbitrary object of the category C2V we examine the commutative
square:

𝑟𝑋 · 𝑘𝑋 = 𝑟 (𝑘𝑋) · 𝑟𝑘𝑋 (16)

Since M̃ ⊂ K, it follows that K is a M𝑢-coreflective subcategory. Thus 𝑘𝑋 ∈ M𝑢.
According to Theorem 2.12 [4] the square (16) is pullback if and only if 𝑘𝑋 ∈ I′′(R).

We formulate the dual statement.

Lemma 2.3. For the subcategoriesK andR of the category C2V the following statements
are equivalent:

1. K ∗𝑑 R = R.
2. R ∈ R𝑠 (`K).
If the subcategory R contains the subcategory S of spaces with weak topology, then

the previous conditions are equivalent to the condition:
3. The subcategory R is E′(K)-reflective.

The proven Lemmas allow us to formulate the following result. From Theorem 2.1
and Lemmas 2.2, 2.3 we obtain:

Theorem 2.2. Let K ∈ K(M𝑢), i.e. K is a M𝑢- coreflective subcategory of the category
C2V (M̃ ⊂ K), and R ∈ R(M𝑝), i.e. R is a M𝑝-reflective subcategory (Γ0 ⊂ R). Then:

1. The subcategory K is closed in relation to (E𝑝𝑖 ∩ M𝑝)-factorobjects. In other
words, the subcategory K is closed in relation to the extensions.

2. R ∈ R𝑠 (`K).

Remark 2.3. For some subcategories K of the class K(M𝑢), in particular, for the
subcategory M̃, it is well known that they are closed in relation to extensions ([9],
Assertion IV.3.5.)

2. Any fully convex local space (𝐸, 𝑡) remains complete in any topology 𝑢 finer than 𝑡

and compatible with the same duality:

𝑡 ≤ 𝑢 ≤ 𝑚(𝑡),

910], VI, Proposition 5). This result was generalized for any M𝑝-reflective subcategory
by D. Botnaru and O. Cerbu [6], Theorem 1.12.
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3. The theories of relative torsion

Theorem 3.1. Let K be a coreflective subcategory, and R - a nonzero reflective subcate-
gory of the category C2V. The following statements are equivalent:

1. The pair (K,R) forms a TTR.
2. a) The coreflector function 𝑘 : C2V −→ K and reflector 𝑟 : C2V −→ R commute

𝑘 · 𝑟 = 𝑟 · 𝑘; b) K ∗𝑠 R = K; c) K ∗𝑑 R = R.
3. a) The functors 𝑘 and 𝑟 commute 𝑘 ·𝑟 = 𝑟 · 𝑘; b) K ∈ K 𝑓 (YR); c) R ∈ R𝑠 (`K).
If M̃ ⊂ K and S ⊂ R then the preceding conditions are equivalent to the following:
4. a) The functors 𝑘 and 𝑟 commute 𝑘 · 𝑟 = 𝑟 · 𝑘; b) The subcategory K is

I′′(R)-coreflective; c) The subcategory R is E′(K)-reflective.

Remark 3.1. In the previous Theorem p.2 and p.3 condition a) is not a consequence of
conditions b) and c).
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Center conditions for a cubic system with two homogeneous
invariant straight lines and exponential factors

Dumitru Cozma

Abstract. In this paper for a cubic differential system with a singular point 𝑂 (0, 0) of a
center or a focus type, having two homogeneous invariant straight lines and exponential
factors, we determine conditions under which the singular point is a center.
2010 Mathematics Subject Classification: 34C05.
Keywords: cubic differential system, the problem of the center, invariant algebraic curve,
exponential factor.

Condiţii de existenţă a centrului pentru un sistem cubic cu două
drepte invariante omogene şi factori exponenţiali

Rezumat. În această lucrare pentru un sistem diferenţial cubic cu punctul singular𝑂 (0, 0)
de tip centru sau focar, care are două drepte invariante omogene şi factori exponenţiali,
sunt determinate condiţiile ı̂ncât punctul singular să fie centru.
Cuvinte-cheie: sistem diferenţial cubic, problema centrului şi focarului, curbă algebrică
invariantă, factor exponenţial.

1. Introduction

We consider the cubic differential system of the form{
¤𝑥 = 𝑦 + 𝑎𝑥2 + 𝑐𝑥𝑦 + 𝑓 𝑦2 + 𝑘𝑥3 + 𝑚𝑥2𝑦 + 𝑝𝑥𝑦2 + 𝑟𝑦3 ≡ 𝑃(𝑥, 𝑦),
¤𝑦 = −(𝑥 + 𝑔𝑥2 + 𝑑𝑥𝑦 + 𝑏𝑦2 + 𝑠𝑥3 + 𝑞𝑥2𝑦 + 𝑛𝑥𝑦2 + 𝑙𝑦3) ≡ 𝑄(𝑥, 𝑦),

(1)

in which 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) are real and coprime polynomials in the variables 𝑥 and 𝑦.
The origin 𝑂 (0, 0) is a singular point of a center or a focus type for (1). The problem
arises of distinguishing between a center and a focus, i.e. of finding the coefficient
conditions under which 𝑂 (0, 0) is, for example, a center. These conditions are called the
center conditions and the problem - the problem of the center. When the cubic system (1)
contains both quadratic and cubic nonlinearities, the problem of finding a finite number
of necessary and sufficient conditions for the center is still open.

It is well known that 𝑂 (0, 0) is a center for system (1) if and only if the Lyapunov
quanities 𝐿1, 𝐿2, . . . , 𝐿𝑘 , . . . vanish [5], [18].
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The problem of finding the center conditions for system (1) has a long history and a
variety of methods have been developed. An approach to the problem of the center is to
study the local integrability of the system (1) in some neighborhood of the singular point
𝑂 (0, 0). It is known that a singular point𝑂 (0, 0) is a center for system (1) if and only if it
has a holomorphic first integral of the form 𝐹 (𝑥, 𝑦) = 𝐶 in some neighborhood of𝑂 (0, 0)
[17]. Also, 𝑂 (0, 0) is a center if and only if the system (1) has a holomorphic integrating
factor of the form ` = 1 +∑

` 𝑗 (𝑥, 𝑦) in some neighborhood of 𝑂 (0, 0) [1].
The problem of the center was solved for some families of cubic differential systems

having invariant algebraic curves (invariant straight lines, invariant conics, invariant
cubics) in [5], [7], [9], [10], [12], [13], [16], [19], [20], [21]. Center conditions were
determined for some cubic systems having integrating factors in [8], [11], [14], for some
reversible cubic systems in [2] and for a few families of the complex cubic system in [15].

In this paper we determine the center conditions for cubic differential system (1)
assuming that the system has invariant straight lines and exponential factors. The paper
is organized as follows. In Section 2 we present the results concerning the existence of
invariant straight lines and exponential factors. In Section 3 we find conditions under
which the cubic system has exponential factors. In Section 4 we obtain center conditions
for system (1) with two homogeneous invariant straight lines and one exponential factor.

2. Invariant straight lines and exponential factors

We study the problem of the center for cubic differential system (1) assuming that the
system has invariant algebraic curves and exponential factors.

Definition 2.1. An algebraic curve Φ(𝑥, 𝑦) = 0 in C2 with Φ ∈ C[𝑥, 𝑦] is said to be an
invariant algebraic curve of system (1) if

𝜕Φ

𝜕𝑥
𝑃(𝑥, 𝑦) + 𝜕Φ

𝜕𝑦
𝑄(𝑥, 𝑦) = Φ(𝑥, 𝑦)𝐾 (𝑥, 𝑦), (2)

for some polynomial 𝐾 (𝑥, 𝑦) ∈ C[𝑥, 𝑦], called the cofactor of the invariant algebraic
curve Φ(𝑥, 𝑦) = 0.

By the above definition, a straight line

𝐶 + 𝐴𝑥 + 𝐵𝑦 = 0, 𝐴, 𝐵, 𝐶 ∈ C, (𝐴, 𝐵) ≠ (0, 0), (3)

is an invariant straight line for system (1) if and only if there exists a polynomial 𝐾 (𝑥, 𝑦)
such that the following identity holds

𝐴 · 𝑃(𝑥, 𝑦) + 𝐵 · 𝑄(𝑥, 𝑦) ≡ (𝐶 + 𝐴𝑥 + 𝐵𝑦) · 𝐾 (𝑥, 𝑦). (4)
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If the cubic system (1) has complex invariant straight lines then obviously they occur
in complex conjugated pairs [5]

𝐶 + 𝐴𝑥 + 𝐵𝑦 = 0 and 𝐶 + 𝐴𝑥 + 𝐵𝑦 = 0.

According to [6] the cubic system (1) cannot have more than four nonhomogeneous
invariant straight lines, i.e. invariant straight lines of the form

1 + 𝐴𝑥 + 𝐵𝑦 = 0, (𝐴, 𝐵) ≠ (0, 0). (5)

As homogeneous invariant straight lines 𝐴𝑥 + 𝐵𝑦 = 0, the system (1) can have only the
lines 𝑥 ∓ 𝑖𝑦 = 0, 𝑖2 = −1.

Lemma 2.1. The cubic system (1) has the invariant straight lines 𝑥 ∓ 𝑖𝑦 = 0 if and only
if the following set of conditions holds

𝑑 = 𝑓 − 𝑎, 𝑐 = 𝑔 − 𝑏, 𝑘 − 𝑙 = 𝑝 − 𝑞, 𝑟 + 𝑠 = 𝑚 + 𝑛. (6)

Proof. By Definition 2.1, the straight lines 𝑥 ∓ 𝑖𝑦 = 0 are invariant for (1) if and only if

𝑃(𝑥, 𝑦) ∓ 𝑖𝑄(𝑥, 𝑦) ≡ (𝑥 ∓ 𝑖𝑦) (𝑐00 + 𝑐10𝑥 + 𝑐01𝑦 + 𝑐20𝑥
2 + 𝑐11𝑥𝑦 + 𝑐02𝑦

2). (7)

Identifying the coefficients of the monomials 𝑥 𝑗 𝑦ℎ in (7), we find that

𝑐00 = ±𝑖, 𝑐10 = 𝑎 ± 𝑖𝑔, 𝑐02 = 𝑝 − 𝑘 − 𝑞 ± 𝑖(𝑚 + 𝑛 − 𝑠),
𝑐01 = 𝑐 − 𝑔 ± 𝑖(𝑎 + 𝑑), 𝑐20 = 𝑘 ± 𝑖𝑠, 𝑐11 = 𝑚 − 𝑠 ± 𝑖(𝑘 + 𝑞)

and
𝑓 − 𝑎 − 𝑑 ± 𝑖(𝑏 + 𝑐 − 𝑔) = 0, 𝑟 + 𝑠 − 𝑚 − 𝑛 ± 𝑖(𝑙 − 𝑘 + 𝑝 − 𝑞) = 0.

The last identities yield the set of conditions (6). □

The cofactors of the invariant straight lines 𝑥 ∓ 𝑖𝑦 = 0 are

𝐾1(𝑥, 𝑦) = 𝑖 + (𝑎 + 𝑖(𝑏 + 𝑐))𝑥 + (−𝑏 + 𝑖(𝑎 + 𝑑))𝑦 + (𝑘 + 𝑖𝑠)𝑥2 +
+ (𝑚 − 𝑠 + 𝑖(𝑘 + 𝑞))𝑥𝑦 + (𝑝 − 𝑘 − 𝑞 + 𝑖(𝑚 + 𝑛 − 𝑠))𝑦2,

𝐾2(𝑥, 𝑦) = 𝐾1(𝑥, 𝑦).

(8)

Denote 𝑘 = 𝑢+ 𝑙, 𝑝 = 𝑢+𝑞, 𝑠 = 𝑣−𝑟, 𝑛 = 𝑣−𝑚, where 𝑢, 𝑣 are some real parameters.
Assume that the conditions (6) are fulfilled, then system (1) can be written as follows

¤𝑥 = 𝑦 + 𝑎𝑥2 + (𝑔 − 𝑏)𝑥𝑦 + 𝑓 𝑦2 + (𝑢 + 𝑙)𝑥3 + 𝑚𝑥2𝑦 +
+ (𝑢 + 𝑞)𝑥𝑦2 + 𝑟𝑦3 ≡ 𝑃(𝑥, 𝑦),

¤𝑦 = −(𝑥 + 𝑔𝑥2 + ( 𝑓 − 𝑎)𝑥𝑦 + 𝑏𝑦2 + (𝑣 − 𝑟)𝑥3 + 𝑞𝑥2𝑦 +
+ (𝑣 − 𝑚)𝑥𝑦2 + 𝑙𝑦3) ≡ 𝑄(𝑥, 𝑦).

(9)

90



Cozma D.

The problem of the center was solved for system (9) with: one invariant straight line
1 + 𝐴𝑥 + 𝐵𝑦 = 0 in [20], two invariant straight lines of the form (5) in [5], one invariant
conic 𝑎20𝑥

2 + 𝑎11𝑥𝑦 + 𝑎02𝑦
2 + 𝑎10𝑥 + 𝑎01𝑦 + 1 = 0 in [7]. By using the method of Darboux

integrability and rational reversibility, the center conditions were found for (9) in [8].

In this Section, we investigate the problem of the existence of exponential factors for
cubic differential system (9).

Definition 2.2. Let ℎ, 𝑔 ∈ C[𝑥, 𝑦] be relatively prime in the ring C[𝑥, 𝑦]. The function
Φ = exp(𝑔/ℎ) is called an exponential factor of a system (1) if for some polynomial
𝐾 ∈ C[𝑥, 𝑦] of degree at most two it satisfies the equation

𝜕Φ

𝜕𝑥
𝑃(𝑥, 𝑦) + 𝜕Φ

𝜕𝑦
𝑄(𝑥, 𝑦) ≡ Φ𝐾 (𝑥, 𝑦). (10)

As before, we say that 𝐾 is the cofactor of the exponential factor exp(𝑔/ℎ).
This means that if we have a cubic differential system (1) with an exponential factor

of the form exp(𝑔/ℎ), then there is a 1-parameter perturbation of system (1), given by a
small Y, with two invariant algebraic curves, namely ℎ = 0 and ℎ + Y𝑔 = 0. Hence, when
Y = 0, these two curves coalesce giving the exponential factor exp(𝑔/ℎ) for the system
with Y = 0 (the invariant algebraic curve ℎ = 0 has geometric multiplicity larger than
one), as well as the invariant algebraic curve ℎ = 0 which does not disappear [3].

Since the exponential factor cannot vanish, it does not define invariant curves of the
cubic system (1). The next theorem, proved in [3], gives the relationship between the
notion of invariant algebraic curve and exponential factor.

Theorem 2.1. If exp(𝑔/ℎ) is an exponential factor with cofactor 𝐾 for a cubic system (1)
and if ℎ is not a constant, then ℎ = 0 is an invariant algebraic curve with cofactor 𝐾ℎ,
and 𝑔 satisfies the equation X(𝑔) = 𝑔𝐾ℎ + ℎ𝐾 .

Eventually Φ = exp(𝑔) can be an exponential factor coming from the multiplicity of
the infinite invariant straight line.

3. Cubic differential systems with exponential factors

In this Section, we consider the cubic differential system (9) with two homogeneous
invariant straight lines 𝑥 ∓ 𝑖𝑦 = 0. We determine the conditions under which the system
(9) has exponential factors of the form

Φ = exp (𝑔(𝑥, 𝑦)) , Φ = exp
(
𝑔(𝑥, 𝑦)
𝑥2 + 𝑦2

)
, (11)

where 𝑔(𝑥, 𝑦) is a real polynomial with degree(𝑔) ≤ 2.
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Lemma 3.1. The cubic differential system (9) has an exponential factor of the form
Φ = exp (𝑎10𝑥 + 𝑎01𝑦) if and only if one the following two sets of conditions holds:

(𝑖1) 𝑚 = 𝑟, 𝑞 = 𝑙, 𝑙 = (𝑟𝑎10)/𝑎01, 𝑣 = (𝑟𝑎2
01 + 𝑢𝑎01𝑎10 + 𝑟𝑎2

10)/𝑎
2
01;

(𝑖2) 𝑚 = 𝑟 = 0, 𝑞 = 𝑙, 𝑢 = −𝑙.

Proof. By Definition 2.2, the function Φ = exp (𝑎10𝑥 + 𝑎01𝑦) is an exponential factor for
system (9) if there exists numbers 𝑐10, 𝑐01, 𝑐20, 𝑐11, 𝑐02 such that

𝑎10𝑃(𝑥, 𝑦) + 𝑎01𝑄(𝑥, 𝑦) = 𝑐10𝑥 + 𝑐01𝑦 + 𝑐20𝑥
2 + 𝑐11𝑥𝑦 + 𝑐02𝑦

2. (12)

Substituting 𝑃(𝑥, 𝑦), 𝑄(𝑥, 𝑦) in (12) and identifying the coefficients of the monomials
𝑥𝑖𝑦 𝑗 , 𝑖 + 𝑗 = 1, 2, 3, we find that 𝑐01 = 𝑎10, 𝑐10 = −𝑎01, 𝑐20 = 𝑎𝑎10 − 𝑔𝑎01, 𝑐11 =

(𝑎 − 𝑓 )𝑎01 + (𝑔 − 𝑏)𝑎10, 𝑐02 = 𝑓 𝑎10 − 𝑏𝑎01 and 𝑎10, 𝑎01 satisfy the system of equations:

𝑈30 ≡ (𝑙 + 𝑢)𝑎10 + (𝑟 − 𝑣)𝑎01 = 0,
𝑈21 ≡ 𝑚𝑎10 − 𝑞𝑎01 = 0,
𝑈12 ≡ (𝑞 + 𝑢)𝑎10 + (𝑚 − 𝑣)𝑎01 = 0,
𝑈03 ≡ 𝑟𝑎10 − 𝑙𝑎01 = 0.

(13)

Assume that 𝑎01 ≠ 0. Then the equations of (13) yield

𝑚 = 𝑟, 𝑞 = 𝑙, 𝑙 = (𝑟𝑎10)/𝑎01, 𝑣 = (𝑟𝑎2
01 + 𝑢𝑎01𝑎10 + 𝑟𝑎2

10)/𝑎
2
01.

We obtain the set of conditions (𝑖1) of Lemma 3.1. The system (9) has the exponential
factor Φ = exp (𝑎10𝑥 + 𝑎01𝑦) with cofactor 𝐾 (𝑥, 𝑦) = (𝑎𝑎10 − 𝑔𝑎01)𝑥2 + (𝑎𝑎01 − 𝑓 𝑎01 −
𝑏𝑎10 + 𝑔𝑎10)𝑥𝑦 + ( 𝑓 𝑎10 − 𝑏𝑎01)𝑦2 − 𝑎01𝑥 + 𝑎10𝑦.

Assume that 𝑎01 = 0, then 𝑎10 ≠ 0. In this case the equations of (13) imply 𝑚 = 𝑟 =

0, 𝑞 = 𝑙, 𝑢 = −𝑙. We obtain the set of conditions (𝑖2) of Lemma 3.1. The system (9) has
the exponential factor Φ = exp (𝑥) with cofactor 𝐾 (𝑥, 𝑦) = 𝑎𝑥2 − 𝑏𝑥𝑦 +𝑔𝑥𝑦 + 𝑓 𝑦2 + 𝑦. □

Lemma 3.2. The cubic system (9) has an exponential factor of the form

Φ = exp (𝑎20𝑥
2 + 𝑎11𝑥𝑦 + 𝑎02𝑦

2 + 𝑎10𝑥 + 𝑎01𝑦 + 𝑎00) (14)

if and only if one the following three sets of conditions holds:

(𝑖1) 𝑐 = 𝑑 = 0, 𝑓 = 𝑎, 𝑔 = 𝑏, 𝑘 = 𝑝 = 𝑞 = 𝑙, 𝑟 = 𝑚, 𝑠 = 𝑛;
(𝑖2) 𝑐 = 𝑑 = 0, 𝑓 = 𝑎, 𝑔 = 𝑏, 𝑘 = 𝑝, 𝑝 = 𝑙 + 𝑢, 𝑟 = 𝑚, 𝑚 = (𝑎𝑙)/𝑏, 𝑠 = 𝑛,

𝑛 = ((𝑙 + 𝑢)𝑏)/𝑎, 𝑞 = 𝑙;
(𝑖3) 𝑐 = 𝑔 − 𝑏, 𝑑 = 𝑓 − 𝑎, 𝑘 = 𝑙 = 𝑝 = 𝑞 = 0, 𝑚 = 𝑛 = 𝑠 = 𝑟.
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Proof. By Definition 2.2, the function (14) is an exponential factor for cubic system (9)
if there exist numbers 𝑐20, 𝑐11, 𝑐02, 𝑐10, 𝑐01 such that

(2𝑎20𝑥 + 𝑎11𝑦 + 𝑎10)𝑃(𝑥, 𝑦) + (2𝑎02𝑦 + 𝑎11𝑥 + 𝑎01)𝑄(𝑥, 𝑦) =
= 𝑐20𝑥

2 + 𝑐11𝑥𝑦 + 𝑐02𝑦
2 + 𝑐10𝑥 + 𝑐01𝑦.

(15)

Substituting 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) in (15) and identifying the coefficients of the mono-
mials 𝑥𝑖𝑦 𝑗 , we reduce this identity to a system of fourteen equations

{𝑈𝑖 𝑗 = 0, 𝑖 + 𝑗 = 1, 2, 3, 4} (16)

for the unknowns 𝑎𝑖 𝑗 , 𝑐𝑖 𝑗 and the coefficient of system (9).
When 𝑖 + 𝑗 = 1, 2, from the equations of (16) we get

𝑐01 = 𝑎10, 𝑐10 = −𝑎01, 𝑐02 = 𝑎11 − 𝑏𝑎01 + 𝑓 𝑎10,
𝑐20 = 𝑎𝑎10 − 𝑔𝑎01 − 𝑎11, 𝑐11 = (𝑎 − 𝑓 )𝑎01 + 2𝑎20 − 2𝑎02 + (𝑔 − 𝑏)𝑎10.

1. Assume that 𝑎11 ≠ 0. In this case the equations𝑈40 = 0,𝑈22 = 0 and𝑈04 = 0 of (16)
yield 𝑣 = (𝑟𝑎11 + 2𝑙𝑎20 + 2𝑢𝑎20)/𝑎11, 𝑟 = (2𝑙𝑎02)/𝑎11, 𝑚 = ((𝑙 + 𝑞)𝑎02 + (𝑙 − 𝑞)𝑎20)/𝑎11.
The resultant of the polynomials 𝑈31 and 𝑈13 with respect to 𝑞 is 𝑅𝑒𝑠(𝑈31,𝑈13, 𝑞) =

2𝑢 𝑓1 𝑓2, where 𝑓1 = 4𝑎02𝑎20 − 𝑎2
11, 𝑓2 = (𝑎02 − 𝑎20)2 + 𝑎2

11 ≠ 0.
Let 𝑢 = 0. Then𝑈31 = 0 and𝑈13 = 0 imply 𝑞 = 𝑙. From the equations𝑈30 = 0,𝑈03 = 0

of (16) we express 𝑓 , 𝑔 and calculate the resultant of the polynomials 𝑈21 and 𝑈12 with
respect to 𝑏. We obtain that 𝑅𝑒𝑠(𝑈21,𝑈12, 𝑏) = −4𝑎11𝑔1𝑔2𝑔3, where 𝑔1 = 𝑎𝑎11 − 𝑙𝑎01,
𝑔2 = 4𝑎02𝑎20 − 𝑎2

11, 𝑔3 = (𝑎02 − 𝑎20)2 + 𝑎2
11 ≠ 0.

If 𝑔1 = 0, then 𝑎01 = (𝑎𝑎11)/𝑙 and 𝑎10 = (𝑏𝑎11)/𝑙. In this case we obtain the set of
conditions (𝑖1) of Lemma 3.2. The exponential factor is

Φ = exp(2𝑏𝑥 + 2𝑎𝑦 + 2𝑙𝑥𝑦 + 𝑛𝑥2 + 𝑚𝑦2)
having the cofactor 𝐾 (𝑥, 𝑦) = 2(−𝑎𝑥 + 𝑏𝑦 − 𝑙𝑥2 + 𝑙𝑦2 − 𝑚𝑥𝑦 + 𝑛𝑥𝑦).

If 𝑔1 ≠ 0 and 𝑔2 = 0, then 𝑎20 = 𝑎2
11/(4𝑎02), 𝑎10 = [(𝑙𝑎01−𝑎𝑎11+2𝑏𝑎02)𝑎11]/(2𝑙𝑎02).

This case is contained in Lemma 3.2, (𝑖1) (𝑛 = 𝑙2/𝑚).
Assume that 𝑢 ≠ 0 and let 𝑓1 = 0. Then 𝑈31 = 0 and 𝑈13 = 0 yield 𝑞 = 𝑙. From the

equations𝑈30 = 0,𝑈03 = 0 we express 𝑎, 𝑓 and calculate the resultant of the polynomials
𝑈21 and 𝑈12 with respect to 𝑏. We obtain that 𝑅𝑒𝑠(𝑈21,𝑈12, 𝑏) = 𝑎11𝑢ℎ1ℎ2, where
ℎ1 = 𝑎01𝑎11 − 2𝑎02𝑎10, ℎ2 = 4𝑎2

02 + 𝑎
2
11 ≠ 0, 𝑎11𝑢 ≠ 0.

Let ℎ1 = 0. Then 𝑎10 = (𝑎01𝑎11)/(2𝑎02) and 𝑔 = 𝑏. In this case we get the set of
conditions (𝑖2) of Lemma 3.2. The exponential factor is

Φ = exp((𝑏𝑥 + 𝑎𝑦) (2𝑏𝑎01 + 𝑏𝑎11𝑥 + 𝑎𝑎11𝑦)/(2𝑎𝑏))
having the cofactor 𝐾 (𝑥, 𝑦) = (𝑏𝑦 − 𝑎𝑥) (𝑏𝑎01 + 𝑏𝑎11𝑥 + 𝑎𝑎11𝑦)/(𝑎𝑏).

2. Assume that 𝑎11 = 0 and let 𝑎02 = 0. This case is contained in Lemma 3.2, (𝑖1)
(𝑙 = 𝑛 = 0).
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3. Assume that 𝑎11 = 0 and let 𝑎02 ≠ 0. In this case 𝑙 = 0 and𝑈40 ≡ 𝑢𝑎20 = 0.
If 𝑢 = 0, then 𝑎20 = 𝑎02, 𝑣 = 𝑚 + 𝑟 . The equations 𝑈𝑖 𝑗 = 0, 𝑖 + 𝑗 = 3 of (16) yield

𝑚 = 𝑟 , 𝑞 = 0, 𝑎01 = (2𝑎𝑎02)/𝑟 , 𝑎10 = (2𝑏𝑎02)/𝑟 . We obtain the set of conditions (𝑖3) of
Lemma 3.2. The exponential factor is

Φ = exp(2𝑏𝑥 + 2𝑎𝑦 + 𝑟𝑥2 + 𝑟𝑦2)

with cofactor 𝐾 (𝑥, 𝑦) = 2(𝑎𝑥 − 𝑏𝑦) (𝑎𝑦 + 𝑏𝑥 − 𝑓 𝑦 − 𝑔𝑥 − 1).

If 𝑎20 = 0 and 𝑢 ≠ 0, then 𝑞 = 0, 𝑚 = 𝑣 = 𝑟 . The equations 𝑈𝑖 𝑗 = 0, 𝑖 + 𝑗 = 3 of (16)
yield 𝑎10 = 0, 𝑏 = 𝑔 = 0, 𝑓 = 𝑎. In this case 𝑃(𝑥, 𝑦) = −𝑥 is not a cubic polynomial. □

Lemma 3.3. The cubic system (9) has an exponential factor of the form

Φ = exp((𝑎10𝑥 + 𝑎01𝑦 + 𝑎00)/(𝑥2 + 𝑦2)) (17)

if and only if the following set of conditions holds

𝑙 = 𝑏(𝑎 + 𝑓 ), 𝑚 = 2𝑎2 +2𝑎 𝑓 −2𝑏2 −2𝑏𝑔 + 𝑟, 𝑞 = −3𝑎𝑏−2𝑎𝑔− 𝑏 𝑓 , 𝑢 = 𝑎𝑔− 𝑏 𝑓 ,
𝑣 = 𝑚 + 𝑟 − 𝑎2 − 𝑎 𝑓 + 𝑏2 + 𝑏𝑔.

Proof. By Definition 2.2, the function (17) is an exponential factor for cubic system (9)
if there exist numbers 𝑐10, 𝑐01 such that

(−𝑎10𝑥
2 + 𝑎10𝑦

2 − 2𝑎01𝑥𝑦 − 2𝑎00𝑥)𝑃(𝑥, 𝑦)+
+ (𝑎01𝑥

2 − 𝑎01𝑦
2 − 2𝑎10𝑥𝑦 − 2𝑎00𝑦)𝑄(𝑥, 𝑦) = (𝑥2 + 𝑦2)2(𝑐10𝑥 + 𝑐01𝑦).

(18)

Substituting 𝑃(𝑥, 𝑦), 𝑄(𝑥, 𝑦) in (18) and identifying the coefficients of the monomials
𝑥𝑖𝑦 𝑗 , we reduce this identity to a system of nine equations

{𝑈𝑖 𝑗 = 0, 𝑖 + 𝑗 = 1, 2, 3} (19)

for the unknowns 𝑎10, 𝑎01, 𝑎00, 𝑐10, 𝑐01 and the coefficient of system (9).
From the equations𝑈30 = 0,𝑈03 = 0 of (19), we find that

𝑐01 = 𝑙𝑎01 + 𝑟𝑎10, 𝑐10 = (𝑟 − 𝑣)𝑎01 − (𝑙 + 𝑢)𝑎10.
When 𝑖 + 𝑗 = 1, we obtain that 𝑎10 = −2𝑏𝑎00 and 𝑎01 = −2𝑎𝑎00. Then the equations

𝑈20 = 0,𝑈11 = 0,𝑈02 = 0 of (19) yield
𝑙 = 𝑏(𝑎 + 𝑓 ), 𝑢 = 𝑎𝑔 − 𝑏 𝑓 , 𝑣 = 𝑚 + 𝑟 − 𝑎2 − 𝑎 𝑓 + 𝑏2 + 𝑏𝑔.

The equations𝑈21 = 0,𝑈12 = 0 of (19) imply
𝑚 = 2𝑎2 + 2𝑎 𝑓 − 2𝑏2 − 2𝑏𝑔 + 𝑟, 𝑞 = −3𝑎𝑏 − 2𝑎𝑔 − 𝑏 𝑓 .

In this case we determine the exponential factor

Φ = exp((1 − 2𝑏𝑥 − 2𝑎𝑦)/(𝑥2 + 𝑦2))

with cofactor 𝐾3(𝑥, 𝑦) = 2(𝑎2 + 𝑎 𝑓 + 𝑟) (𝑎𝑥 − 𝑏𝑦). □
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Lemma 3.4. The cubic system (9) has an exponential factor of the form

Φ = exp((𝑎20𝑥
2 + 𝑎11𝑥𝑦 + 𝑎02𝑦

2 + 𝑎10𝑥 + 𝑎01𝑦 + 𝑎00)/(𝑥2 + 𝑦2)) (20)

if and only if one of the following two sets of conditions holds:

(𝑖1) 𝑙 = 𝑏 𝑓 , 𝑚 = 𝑟 + 𝑎 𝑓 − 𝑏𝑔, 𝑞 = −𝑎𝑔, 𝑣 = 2𝑟 , 𝑢 = 𝑎𝑔 − 𝑏 𝑓 ;
(𝑖2) 𝑓 = −𝑎, 𝑔 = −𝑏, 𝑞 = −𝑙, 𝑣 = 2𝑟 , 𝑢 = 0.

Proof. By Definition 2.2, the function (20) is an exponential factor for cubic differential
system (9) if there exist numbers 𝑐20, 𝑐11, 𝑐02, 𝑐10, 𝑐01 such that

(2𝑎20𝑥𝑦
2 − 2𝑎02𝑥𝑦

2 − 𝑎11𝑥
2𝑦 + 𝑎11𝑦

3 − 𝑎10𝑥
2 − 2𝑎01𝑥𝑦 +

+ 𝑎10𝑦
2 − 2𝑎00𝑥)𝑃(𝑥, 𝑦) + (𝑎11𝑥

3 + 2𝑎02𝑥
2𝑦 − 2𝑎20𝑥

2𝑦 − 𝑎11𝑥𝑦
2 +

+ 𝑎01𝑥
2 − 𝑎01𝑦

2 − 2𝑎10𝑥𝑦 − 2𝑎00𝑦)𝑄(𝑥, 𝑦) =
= (𝑥2 + 𝑦2) (𝑐20𝑥

2 + 𝑐11𝑥𝑦 + 𝑐02𝑦
2 + 𝑐10𝑥 + 𝑐01𝑦).

(21)

Substituting the polynomials 𝑃(𝑥, 𝑦), 𝑄(𝑥, 𝑦) from (9) in (21) and identifying the
coefficients of the monomials 𝑥𝑖𝑦 𝑗 , we reduce (21) to a system of fourteen equations

{𝑈𝑖 𝑗 = 0, 𝑖 + 𝑗 = 1, 2, 3, 4} (22)

for the unknowns 𝑎20, 𝑎11, 𝑎02, 𝑎10, 𝑎01, 𝑎00, 𝑐20, 𝑐11, 𝑐02, 𝑐10, 𝑐01 and the coefficient of
system (9). From the equations𝑈04 = 0,𝑈13 = 0,𝑈40 = 0 of (22), we obtain that

𝑐02 = 𝑟𝑎11, 𝑐11 = 2𝑟 (𝑎20 − 𝑎02) + (𝑙 + 𝑞 + 𝑢)𝑎11, 𝑐20 = (𝑟 − 𝑣)𝑎11

and from the equations𝑈03 = 0,𝑈30 = 0, we get that
𝑐01 = 𝑙𝑎01 + 𝑟𝑎10 + 𝑓 𝑎11, 𝑐10 = (𝑟 − 𝑣)𝑎01 − (𝑙 + 𝑢)𝑎10 − 𝑔𝑎11.

The equations𝑈10 = 0,𝑈01 = 0 and𝑈20 = 0 yield
𝑎01 = −2𝑎𝑎00, 𝑎10 = −2𝑏𝑎00, 𝑎11 = 2𝑎00(𝑎𝑏 + 𝑎𝑔 − 𝑙 − 𝑢)

and the equations𝑈02 = 0,𝑈11 = 0 imply
𝑢 = 𝑎𝑔 − 𝑏 𝑓 , 𝑎02 = (𝑎2 + 𝑎 𝑓 − 𝑏2 − 𝑏𝑔 − 𝑚 − 𝑟 + 𝑣)𝑎00 + 𝑎20.

Then the system of equations (22) becomes

𝑈21 = 0,𝑈12 = 0,𝑈31 = 0,𝑈22 = 0. (23)

The resultant of the polynomials𝑈22,𝑈31 with respect to𝑚 is 𝑅𝑒𝑠(𝑈22,𝑈31, 𝑚) = 𝑓1 𝑓2,
where 𝑓1 = 𝑎𝑏 + 𝑏 𝑓 − 𝑙, 𝑓2 = (𝑎𝑔 − 𝑏 𝑓 + 𝑙 + 𝑞)2 + (2𝑟 − 𝑣)2.

1. Assume that 𝑓1 = 0, then 𝑙 = 𝑏(𝑎 + 𝑓 ) and𝑈31 ≡ 𝑔1𝑔2 = 0, where
𝑔1 = 𝑎2 + 𝑎 𝑓 − 𝑏2 − 𝑏𝑔 − 𝑚 − 𝑟 + 𝑣, 𝑔2 = 2𝑟 − 𝑣.

When 𝑔1 = 0 we obtain that 𝑈31 ≡ 0, 𝑈22 ≡ 0. The resultant of the polynomials
𝑈21,𝑈12 with respect to 𝑞 is 𝑅𝑒𝑠(𝑈21,𝑈12, 𝑞) = ℎ1ℎ2, where

ℎ1 = 2𝑎2 + 2𝑎 𝑓 − 2𝑏2 − 2𝑏𝑔 − 𝑚 + 𝑟, ℎ2 = 𝑎2 + 𝑏2.
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If ℎ1 = 0, then we have the exponential factor Φ = exp((1 − 2𝑏𝑥 − 2𝑎𝑦)/(𝑥2 + 𝑦2))
obtained in Lemma 3.3. If ℎ1 ≠ 0 and 𝑎 = 𝑏 = 0, then the right hand sides of (9) have a
common factor 𝑟𝑥2 + 𝑟𝑦2 + 𝑞𝑥𝑦 + 𝑔𝑥 + 𝑓 𝑦 + 1.

Assume that 𝑔1 ≠ 0 and let 𝑔2 = 0. Then 𝑣 = 2𝑟 , 𝑈31 ≡ 0 and the equation 𝑈22 = 0
yields 𝑞 = −𝑎(𝑏 + 𝑔). The resultant of the polynomials𝑈21,𝑈12 with respect to 𝑚 is

𝑅𝑒𝑠(𝑈21,𝑈12, 𝑚) = −2𝑎𝑏((𝑎 + 𝑓 )2 + (𝑏 + 𝑔)2).
If 𝑓 = −𝑎 and 𝑔 = −𝑏, then we obtain the set of conditions (𝑖2) (𝑙 = 0), Lemma 3.4.
Suppose that (𝑎 + 𝑓 )2 + (𝑏 + 𝑔)2 ≠ 0. If 𝑎 = 0, then𝑈21 = 0,𝑈12 = 0 imply 𝑚 = 𝑟 − 𝑏𝑔

and we get set of conditions (𝑖1) (𝑎 = 0). If 𝑎 ≠ 0 and 𝑏 = 0, then we have the set of
conditions (𝑖1) (𝑏 = 𝑓 = 0).

2. Assume that 𝑓1 ≠ 0 and let 𝑓2 = 0. Then 𝑞 = 𝑏 𝑓 − 𝑙 − 𝑎𝑔 and 𝑣 = 2𝑟 . In this
case 𝑈22 ≡ 0, 𝑈31 ≡ 0 and the resultant of the polynomials 𝑈21, 𝑈12 with respect to 𝑚 is
𝑅𝑒𝑠(𝑈21,𝑈12, 𝑚) = 𝑒1𝑒2, where 𝑒1 = 𝑙 − 𝑏 𝑓 , 𝑒2 = (𝑎 + 𝑓 )2 + (𝑏 + 𝑔)2.

If 𝑒1 = 0, then 𝑚 = 𝑟 + 𝑎 𝑓 − 𝑏𝑔. We get the condition (𝑖1). The exponential factor is

Φ = exp((𝑏2𝑥2 − 𝑎2𝑥2 + 2𝑎𝑏𝑥𝑦 − 2𝑏𝑥 − 2𝑎𝑦 + 1)/(𝑥2 + 𝑦2))
and have the cofactor 𝐾3(𝑥, 𝑦) = 2𝑟 (𝑏𝑦 − 𝑎𝑥) (𝑎𝑦 + 𝑏𝑥 − 1).

If 𝑒1 ≠ 0 and 𝑒2 = 0, then 𝑓 = −𝑎, 𝑔 = −𝑏. We obtain the set of conditions (𝑖2),
Lemma 3.4. The exponential factor is

Φ = exp((𝑚𝑥2 − 𝑟𝑥2 − 2𝑙𝑥𝑦 − 2𝑏𝑥 − 2𝑎𝑦 + 1)/(𝑥2 + 𝑦2))
and have the cofactor 𝐾3(𝑥, 𝑦) = 2𝑟 (𝑎𝑥 − 𝑏𝑦 + 𝑙𝑥2 − 𝑙𝑦2 + 𝑚𝑥𝑦 − 𝑟𝑥𝑦). □

4. The problem of the center

We are interested in the algebraic integrability of a cubic differential system (1) with
two homogeneous invariant straight lines 𝑥 ∓ 𝑖𝑦 = 0 and an exponential factor of the
form (11), called the Darboux integrability [4], [22]. It consists in constructing of a first
integral or an integrating factor of the Darboux form

𝑓
𝛼1

1 𝑓
𝛼2

2 Φ𝛼3 , (24)

where 𝛼 𝑗 ∈ C, 𝑓1 = 𝑥 − 𝑖𝑦, 𝑓2 = 𝑥 + 𝑖𝑦 and Φ is of the form (11).
By [18, pag. 141], if for the cubic system (1) we can construct an integrating factor (a

first integral) of the form (24), then 𝑂 (0, 0) is a center.

Definition 4.1. An integrating factor for system (1) on some open set 𝑈 of R2 is a 𝐶1

function ` defined on𝑈, not identically zero on𝑈 such that

𝑃(𝑥, 𝑦) 𝜕`
𝜕𝑥

+𝑄(𝑥, 𝑦) 𝜕`
𝜕𝑦

+ `
(
𝜕𝑃

𝜕𝑥
+ 𝜕𝑄
𝜕𝑦

)
≡ 0. (25)
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Lemma 4.1. The following three sets of conditions are sufficient conditions for the origin
to be a center for system (1):

(i) 𝑐 = 𝑔 − 𝑏, 𝑑 = 𝑙 = 𝑚 = 𝑞 = 𝑟 = 0, 𝑓 = 𝑎, 𝑘 = 𝑝 = 𝑎(𝑔 − 𝑏), 𝑠 = 𝑛;
(ii) 𝑐 = 𝑔 − 𝑏, 𝑑 = 𝑓 − 𝑎, 𝑔 = (𝑎𝑏 𝑓 − 𝑏 𝑓 2 + 𝑓 𝑙 − 𝑎𝑙 + 𝑏𝑟)/(𝑎2 − 𝑎 𝑓 + 𝑟), 𝑠 = 𝑛,

𝑛 = (𝑝𝑙)/𝑟 , 𝑘 = 𝑝 = [𝑟 (𝑎𝑏 − 𝑏 𝑓 + 𝑙)]/(𝑎2 − 𝑎 𝑓 + 𝑟), 𝑞 = 𝑙, 𝑚 = 𝑟;
(iii) 𝑐 = 𝑔 − 𝑏, 𝑑 = 𝑓 − 𝑎, 𝑘 = 𝑚 = 𝑝 = 𝑟 = 0, 𝑞 = 𝑙, 𝑙 = 𝑏 𝑓 − 𝑎𝑔, 𝑠 = 𝑛,

(𝑎𝑔 − 𝑏 𝑓 ) (𝑏 − 𝑔) + (𝑎 − 𝑓 )𝑛 = 0.

Proof. Let the conditions (𝑖1) and (𝑖2) of Lemma 3.1 be fulfilled. By Definition 4.1, the
cubic system (1) has an integrating factor of the form (24) if and only if the identity (25)
holds. Identifying the coefficients of the monomials 𝑥𝑖𝑦 𝑗 in (25), we obtain that 𝛼1 = 𝛼2

and 𝛼2, 𝛼3 are the solutions of the system

{𝐹𝑖 𝑗 = 0, 𝑖 + 𝑗 = 1, 2}. (26)

In Case (𝑖1), from the equations 𝐹10 = 0 and 𝐹02 = 0 of (26) we express 𝛼3 and 𝑢.
Then we reduce the equations 𝐹20 = 0, 𝐹11 = 0 by 𝑔 from 𝐹01 = 0. If 𝑟 = 𝑎( 𝑓 − 𝑎),
then 𝑓 = 𝑎 and we get the condition (i) of Lemma 4.1. We obtain the exponential factor
Φ = exp ((𝑎𝑏𝑦 − 𝑎𝑔𝑦 − 𝑛𝑥)/(𝑎(𝑏 − 𝑔))) and the system (1) has the integrating factor

` = (𝑥2 + 𝑦2) (4𝑏𝑔−3𝑏2−𝑔2−2𝑛)/(2(𝑏2−𝑏𝑔+𝑛) ) exp
(
(𝑏 − 𝑔) (𝑛𝑥 − 𝑎𝑏𝑦 + 𝑎𝑔𝑦)

𝑏2 − 𝑏𝑔 + 𝑛

)
.

If 𝑟 ≠ 𝑎( 𝑓−𝑎), then𝛼2 = (4𝑎 𝑓−3𝑎2− 𝑓 2−2𝑟)/[(𝑎2−𝑎 𝑓 +𝑟)]. In this case we determine
the condition (ii) of Lemma 4.1. We have the exponential factor Φ = exp ((𝑙𝑥 + 𝑟𝑦)/𝑟)
and the system (1) has the integrating factor

` = (𝑥2 + 𝑦2) (4𝑎 𝑓 −3𝑎2− 𝑓 2−2𝑟 )/(2(𝑎2−𝑎 𝑓 +𝑟 ) ) exp
(
(𝑎 − 𝑓 ) (𝑙𝑥 + 𝑟𝑦)
𝑎2 − 𝑎 𝑓 + 𝑟

)
.

In Case (𝑖2), the equations 𝐹20 = 0, 𝐹02 = 0, 𝐹01 = 0 of (26) yield 𝛼3 = 𝑙/𝑎,
𝛼2 = ( 𝑓 − 3𝑎)/(2𝑎), 𝑙 = 𝑓 (𝑏 − 𝑎). In this case we get the condition (iii) of Lemma 4.1.
The system (1) has the exponential factor Φ = exp (𝑥) and the functon

` = (𝑥2 + 𝑦2) ( 𝑓 −3𝑎)/(2𝑎) exp
(
(𝑏 𝑓 − 𝑎𝑔)𝑥

𝑎

)
.

is an integrating factor for system (1). □

Lemma 4.2. The following four sets of conditions are sufficient condition for the origin
to be a center for system (1).

(i) 𝑐 = 𝑑 = 0, 𝑓 = 𝑎, 𝑔 = 𝑏, 𝑘 = 𝑝 = 𝑞 = 𝑙, 𝑟 = 𝑚, 𝑠 = 𝑛;

97



CENTER CONDITIONS FOR A CUBIC SYSTEM WITH TWO HOMOGENEOUS
INVARIANT STRAIGHT LINES AND EXPONENTIAL FACTORS

(ii) 𝑐 = 𝑔 − 𝑏, 𝑑 = 𝑓 − 𝑎, 𝑘 = 𝑙, 𝑞 = 𝑝, 𝑛 = 2𝑟 − 𝑠, 𝑚 = 2𝑠 − 𝑟 , 𝑝 = −3𝑙, 𝑙 = 𝑏(𝑎 + 𝑓 ),
𝑠 = 𝑎2 + 𝑎 𝑓 − 𝑏2 − 𝑏𝑔 + 𝑟 , 𝑎𝑔 − 𝑏 𝑓 = 0;

(iii) 𝑐 = 𝑔 − 𝑏, 𝑑 = 𝑓 − 𝑎, 𝑘 = 𝑎𝑔, 𝑙 = 𝑏 𝑓 , 𝑚 = 𝑎 𝑓 − 𝑏𝑔 + 𝑟 , 𝑛 = −𝑚, 𝑝 = −𝑏 𝑓 ,
𝑞 = −𝑎𝑔, 𝑠 = 𝑟;

(iv) 𝑐 = −2𝑏, 𝑑 = −2𝑎, 𝑓 = −𝑎, 𝑔 = −𝑏, 𝑘 = 𝑙, 𝑛 = 2𝑟 − 𝑚, 𝑝 = −𝑙, 𝑞 = −𝑙, 𝑠 = 𝑟 .

Proof. In each of the cases (i) – (iv) the cubic differential system (1) has two homogeneous
invariant straight lines 𝑥 ∓ 𝑖𝑦 = 0 and an exponential factor Φ.

In Case (i), we find the exponential factor Φ = exp(2𝑏𝑥 + 2𝑎𝑦 + 2𝑙𝑥𝑦 + 𝑛𝑥2 +𝑚𝑦2) and
the system (1) has the first integral

(𝑥2 + 𝑦2) exp(2𝑏𝑥 + 2𝑎𝑦 + 2𝑙𝑥𝑦 + 𝑛𝑥2 + 𝑚𝑦2) = 𝐶.

In Case (ii), we have Φ = exp((1 − 2𝑏𝑥 − 2𝑎𝑦)/(𝑥2 + 𝑦2)). We can construct an
integrating factor of the form

` = (𝑥2 + 𝑦2)−3 exp
(
(3𝑏 + 𝑔) (1 − 2𝑏𝑥 − 2𝑎𝑦)
2𝑏(𝑎2 + 𝑎 𝑓 + 𝑟) (𝑥2 + 𝑦2)

)
.

In Case (iii), we determine Φ = exp((𝑏2𝑥2 −𝑎2𝑥2 +2𝑎𝑏𝑥𝑦−2𝑏𝑥−2𝑎𝑦 +1)/(𝑥2 + 𝑦2)).
We can construct an integrating factor of the form

` = (𝑥2 + 𝑦2)−3/2 exp
(
𝑔(𝑏2𝑥2 − 𝑎2𝑥2 + 2𝑎𝑏𝑥𝑦 − 2𝑏𝑥 − 2𝑎𝑦 + 1)

2𝑏𝑟 (𝑥2 + 𝑦2)

)
.

In Case (iv), we have Φ = exp((𝑚𝑥2 − 𝑟𝑥2 − 2𝑙𝑥𝑦 − 2𝑏𝑥 − 2𝑎𝑦 + 1)/(𝑥2 + 𝑦2)). We
can construct the first integral

(𝑥2 + 𝑦2)−𝑟 exp
(
𝑚𝑥2 − 𝑟𝑥2 − 2𝑙𝑥𝑦 − 2𝑏𝑥 − 2𝑎𝑦 + 1

𝑥2 + 𝑦2

)
= 𝐶.

□

Theorem 4.1. The cubic system (1) with two invariant straight lines 𝑥 ∓ 𝑖𝑦 = 0 and an
exponential factor of the form (14) has a center at the origin𝑂 (0, 0) if and only if the first
Lyapunov quantity vanishes.

Proof. We compute the first Lyapunov quantities 𝐿1 for cubic system (9) assuming that
the conditions of Lemma 3.2 hold.

In Case (𝑖1) the first Lyapunov quantity vanishes. We have Lemma 4.2, (i).
In Case (𝑖2) we find that 𝐿1 = 𝑢 ≠ 0. Therefore, the origin is a focus.
In Case (𝑖3) the first Lyapunov quantity is 𝐿1 = 𝑎𝑔 − 𝑏 𝑓 . If 𝐿1 = 0, then we have

Lemma 2.2.2, (iv) (𝑙 = 0, 𝑛 = 𝑟) from [5] and the origin is a center. □
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Theorem 4.2. The cubic system (1) with two invariant straight lines 𝑥 ∓ 𝑖𝑦 = 0 and an
exponential factor Φ = exp((1− 2𝑏𝑥 − 2𝑎𝑦)/(𝑥2 + 𝑦2)) has a center at the origin𝑂 (0, 0)
if and only if the first two Lyapunov quantities vanish.

Proof. We compute the first two Lyapunov quantities 𝐿1, 𝐿2 for cubic system (9) assuming
that the set of conditions of Lemma 3.3 is fulfilled. The vanishing of the first Lyapunov
quantity gives 𝑢 = 𝑎𝑔 − 𝑏 𝑓 . The second Lyapunov quantity looks

𝐿2 = 48(𝑎2 + 𝑎 𝑓 + 𝑟) (𝑎𝑔 − 𝑏 𝑓 ).
Let 𝑟 = −𝑎2 − 𝑎 𝑓 . Then the right hand sides of (1) have a common factor ℎ(𝑥, 𝑦) =

𝑎𝑦 + 𝑏𝑥 + 𝑓 𝑦 + 𝑔𝑥 + 1. Assume that 𝑟 ≠ −𝑎2 − 𝑎 𝑓 and let 𝑎𝑔− 𝑏 𝑓 = 0. In this case 𝐿2 = 0
and we have Lemma 4.2, (ii). □

Theorem 4.3. The cubic system (1) with two invariant straight lines 𝑥 ∓ 𝑖𝑦 = 0 and an
exponential factor of the form (20) has a center at the origin𝑂 (0, 0) if and only if the first
two Lyapunov quantities vanish.

Proof. We compute the first two Lyapunov quantities 𝐿1, 𝐿2 for cubic system (9) assuming
that the conditions of Lemma 3.4 hold.

In Case (𝑖1) we have 𝐿1 = 0 and the second Lyapunov quanity is 𝐿2 = 48𝑟 (𝑎𝑔 − 𝑏 𝑓 ).
If 𝑟 = 0, then the right hand sides of (1) have a common factor ℎ(𝑥, 𝑦) = 𝑔𝑥 + 𝑓 𝑦 + 1.

Assume that 𝑟 ≠ 0 and let 𝑎𝑔 − 𝑏 𝑓 = 0. In this case 𝐿2 = 0 and we have Lemma 4.2, (iii).
In Case (𝑖2) we find that 𝐿1 = 𝐿2 = 0. Then Lemma 4.2, (iv). □
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[6] Cozma, D., Şubă, A. Conditions for the existence of four invariant straight lines in a cubic differential
system with a singular point of a center or a ficus type. Bul. Acad. de Şt. a Republicii Moldova.
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Finding N bits using 𝑂 ( 𝑁
log 𝑁

) sums

Sergiu Corlat , Veaceslav Guzun , and Victor Vorona

Abstract. The problem we are trying to solve sounds as follows: You are given 𝑁 bits.
Find the value of each bit. We will show a technique which enables finding the values of
𝑁 bits using 𝑂 ( 𝑁

log 𝑁
) subsequence-sum queries. The algorithm consists of two phases:

Constructing the queries for each layer and using the queries for a particular layer to get
the value of every bit. We described the following technique in this blog [1], which was
inspired by this article [2]. It should be noted that this number of queries is indeed the
optimal one for finding all 𝑁 bits of a binary array, since each subsequence-sum queries
offers us at most log2 𝑁 bits of information.
Keywords: binary array, query problem, divide et impera, optimization.

Aflarea a N biţi folosind 𝑂 ( 𝑁
log 𝑁

) sume
Rezumat. Problema pe care ı̂ncercăm să o rezolvăm sună astfel: vi se oferă 𝑁 bit,i.
Găsit,i valoarea fiecărui bit. Vom prezenta o tehnică care permite aflarea valorilor a 𝑁 bit,i
folosind 𝑂 ( 𝑁

log 𝑁
) interogări de sume pe subsecvent,e. Algoritmul se divide ı̂n două faze:

construirea interogărilor pentru fiecare strat s, i utlizarea acestora pentru un strat particular
pentru a obt,ine valoarea fiecărui bit. Am descris această tehnică ı̂n articolul de blog
[1], care dezvoltă rezultatele din articolul lui Zhenting Zhu din universitatea Tsinghua
[2]. Trebuie să mentionăm faptul că acest număr de interogări este ı̂ntr-adevăr optimal
pentru găsirea tuturor 𝑁 bit,ilor unui s, ir binar, deoarece fiecare interogare de sumă de
subsecvent,e ne oferă cel mult log2 𝑁 bit,i de informat,ie.
Cuvinte-cheie: s, ir binar, problemă de interogare, divide et impera, optimizare.

1. Introduction

1.1. Core of the Problem

Finding the whole array of elements by knowing some information about some of its
subsequences is a popular problem in computer science and can be found in many forms.
In this case, we will explain how to find each element in a binary array (an array consisting
only of zeroes and ones) by only being able to query the sums of some subsequences of
it and try to minimize the number of queries we perform.
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We will treat the problem as an interactive one. Initially, the only information about
the binary array 𝑏 we have is its size, and we can ask the interactor several questions in
the following format:

What is the sum of the subsequence of the values on positions: 𝑝1, 𝑝2, ..., 𝑝𝑘 . In other
words, you will give the sequence 𝑝1, 𝑝2, ..., 𝑝𝑘 to the interactor and it will return you the
value of

∑𝑘
𝑖=1 𝑏𝑝𝑖 .

After querying some number of sums, we should be able to tell the value of the element
on each position.

1.2. Main Idea

The main idea of the algorithm involves a divide-and-conquer-like approach [3] which
will work in two phases. In the first phase, the set of queries will be constructed, and
the second phase will reconstruct the array values. We will show that it is possible to
reconstruct the whole array using 𝑂 ( 𝑁

log 𝑁
) [4] well-built queries, and will also explain

how the queries should be constructed.

2. Overview

2.1. Notations

In the coming explanation we will use the following notations:

• 𝑥𝑖 – refers to the position 𝑖

• 𝐴 – any capital letter (except S) refers to a set of points 𝑥𝑖
• 𝑣𝐴 =

∑
𝑏𝑥𝑖 for 𝑥𝑖 ∈ 𝐴

• 𝑘 – the layer we are currently considering
• 𝑆𝑖 – A set of queries

We will also use 0-indexing when talking about the array’s elements’ positions.

2.2. Explanation

The idea is to use a divide-and-conquer-like approach but in two phases. The first
phase will be the construction of the queries we will ask at the end and the second phase
will reconstruct the array of elements by having the answers to the relevant subsequences
already obtained after the first phase.

The first phase
As it is a divide-and-conquer-like idea, we are going to work with layers. Let’s say that

for the 𝑘 𝑡ℎ layer we use 2𝑘 queries and that by using them we can find out the value of 𝑓𝑘

elements.
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Using the idea that is described below we will be able to make the following recurrence
possible: 𝑓𝑘+1 = 2 · 𝑓𝑘 + 2𝑘 − 1.

Firstly, we will need to set our base case, which is 𝑘 = 0. So, for 𝑘 = 0, we will have
𝑓0 = 1 and the query set will be 1. This means we will find out the value of a single
element using a query.

Now, what we are trying to achieve in order to make the recurrence possible is to form
the new block ( 𝑓𝑘+1), using two blocks of size 𝑓𝑘 , and find 2𝑘 − 1 additional elements in
the process. Let’s say 𝑘1 will denote the first block of the 𝑓𝑘 elements we will use, and 𝑘2

the second such block.
The first query is used to get the sum on [ 𝑓𝑘 , 2 · 𝑓𝑘) – the sum of the second block. Then

we add two new queries for each non-last query in 𝑆𝑘1 and 𝑆𝑘2 . First one is 𝑆𝑘1 [𝑖]∪𝑆𝑘2 [𝑖].
Second one is 𝑆𝑘1 [𝑖] ∪ ([ 𝑓𝑘 , 2 · 𝑓𝑘)/𝑆𝑘2 [𝑖]) ∪ 𝑥 (2· 𝑓𝑘+𝑖) .

The last query is for the entire range [0, 𝑓𝑘+1). It’s easy to see that now, we have used
exactly 2𝑘+1 queries. Now, why don’t we lose any value in the process? And how will
we be able to recursively [5] obtain the elements back? This will be clear in the second
phase of the algorithm.

The second phase
Having answered all the 𝑆𝑘+1 queries, we can calculate all the 𝑣𝑆𝑘1 [𝑖 ] and 𝑣𝑆𝑘2 [𝑖 ] .
Now, when we reach a 𝑘 with a value of 𝑓𝑘 >= 𝑛 we can stop there. Let’s assume

𝑛 = 𝑓𝑘 since it will be easier to work with it (when 𝑛 is smaller than 𝑓𝑘 we can just think
of it as appending 𝑓𝑘 − 𝑛 zeroes at the end since they won’t influence the sum at all).
Using the set of queries responsible for the 𝑘 𝑡ℎ layer we can in fact now reconstruct the
whole sequence, recursively going from the 𝑘 𝑡ℎ layer to the (𝑘 − 1)𝑡ℎ one (but consider
each layer can have multiple blocks).

First of all, the only information relevant for the 𝑘 𝑡ℎ layer are:

• The query set for the corresponding block of the corresponding layer.
• The block we are currently at (can be dealt with using an offset value in the

recursion).

So we will store them when going recursively.
Firstly, let’s set our base case: 𝑘 = 0. We are now sure that only one element is

responsible for this block from this layer, so we can just set the value of the 𝑏𝑥-th bit
(where 𝑥 is some offset value we use to keep track of the block) to 𝑣𝑆0 (since that’s the
sum for a single element which we’ve seen at the build-up).

Now, since the base case is already dealt with, here’s how we will go to the (𝑘 − 1)𝑡ℎ

layer:
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We will need to reconstruct the previous query sets for the first block and the second
block of size 𝑓𝑘−1, and set the values for the other 2(𝑘−1) − 1 values respectively (since
they aren’t part of any of the blocks they shouldn’t be part of the recursion either).

Let’s denote the numbers of 1-s in [ 𝑓𝑘 , 2 · 𝑓𝑘) with 𝑐. It’s obvious that 𝑐 = 𝑣𝑆 [0] .
We will now go through every pair of queries, starting from 1. That means we will be
analyzing queries 𝑆1 [𝑖] ∪ 𝑆2 [𝑖] and 𝑆1 [𝑖] ∪ ([ 𝑓𝑘−1, 2 · 𝑓𝑘−1)/𝑆2 [𝑖]) ∪ 𝑥 (2· 𝑓𝑘−1+𝑖) .

• 𝑣𝑆 [2·𝑖+1] = 𝑣𝑆1 [𝑖 ] + 𝑣𝑆2 [𝑖 ]

• 𝑣𝑆 [2·𝑖+2] = 𝑣𝑆1 [𝑖 ] + 𝑐 − 𝑣𝑆2 [𝑖 ] + 𝑏2· 𝑓𝑘−1+𝑖

In this case we will calculate 3 values: 𝑣𝑆1 [𝑖 ] , 𝑣𝑆2 [𝑖 ] , 𝑏2· 𝑓𝑘−1+𝑖 .

• 𝑣𝑆1 [𝑖 ] = ⌊ 𝑣𝑆 [2·𝑖+1]+𝑣𝑆 [2·𝑖+2]−𝑐
2 ⌋

• 𝑣𝑆2 [𝑖 ] = ⌈ 𝑣𝑆 [2·𝑖+1]−𝑣𝑆 [2·𝑖+2]+𝑐
2 ⌉

• 𝑏2· 𝑓𝑘−1+𝑖 = (𝑣𝑆 [2·𝑖+1] + 𝑣𝑆 [2·𝑖+2] − 𝑐) ∧ 1

The only remaining queries to answer are 𝑣𝑆1 [2𝑘−1 ] and 𝑣𝑆2 [2𝑘−1 ] as they were not added
in 𝑆.

• 𝑣𝑆2 [2𝑘−1 ] = 𝑐 = 𝑣𝑆 [0]

• 𝑣𝑆1 [2𝑘−1 ] = 𝑣𝑆 [2𝑘 ] − 𝑐 −∑2𝑘−1−1
𝑖=0 𝑏2· 𝑓𝑘−1+𝑖

After calculating this, we could use the divide-and-conquer property specified earlier and
go down a layer. We are going to do this recursively from layer 𝑘 til layer 0. The last
layer will consist of only 1 bit and only 1 sum, the value of said bit.

3. Visual Representation

Representation of how the algorithm works for 𝑘 = 3 (Figure 1). Here is the color
coding we used:

(1) The green squares represent the queries responsible for the first block of the
previous layer.

(2) The orange squares represent the queries responsible for the second block of the
previous layer.

(3) The blue squares represent the queries that query the whole second block exclud-
ing the elements from the query of the second block.

(4) The red squares represent the last 2𝑘 − 1 bits.
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Figure 1. The second phase for 𝑘 = 3
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On determination of some exact solutions of the stationary
Navier-Stokes equations
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Abstract. In this paper, various exact solutions of the stationary Navier-Stokes equations,
which describe the planar flow of an incompressible liquid (or gas), are determined, i.e.,
solutions containing the components of the velocity of flow - the functions 𝑢, 𝑣 and the
created pressure 𝑃. We mention that in the paper a series of exact solutions is obtained,
in which the viscosity coefficient _ participates explicitly.
2010 Mathematics Subject Classification: 35Q30.
Keywords: stationary two-dimensional Navier-Stokes equations, exact solutions, method
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Determinarea unor solut, ii exacte ale ecuaţiilor staţionare
Navier-Stokes

Rezumat. În această lucrare se determină diverse solut,ii exacte ale ecuat,iilor stat,ionare
Navier-Stokes, care descriu curgerea plană a unui lichid (sau gaz) incompresibil, s, i anume
solut,ii ce cont,in componentele vitezei fluxului de curgere - funct,iile 𝑢, 𝑣 şi presiunea
creată 𝑃. Ment,ionăm, că ı̂n lucrare sunt obt,inute un s, ir de solut,ii exacte, ı̂n care participă
ı̂n mod explicit coeficientul vâscozităt,ii _.
Cuvinte-cheie: ecuaţii staţionare bidimensionale Navier-Stokes, soluţii exacte, metoda
separării variabilelor, vâscozitate, presiune, viteza fluxului de curgere plană a unui lichid
sau gaz.

1. Introduction

In the present paper, the Navier-Stokes equations are studied in the two-dimensional
case. In this case the Navier-Stokes equations represent a system, containing three
differential equations with partial derivatives with three unknown functions. Until today,
the examined problem has not been definitively solved even in the case of stationary
equations, that is, equations that describe the processes of the planar flow of a liquid or
gas that do not vary in time. The complexity of the problem lies in the fact that the first
two equations in the system are non-linear. It has been developed a method that would
allow us to determine all the solutions of this system. Determining the solutions of the
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system of Navier-Stokes equations is an important mathematical problem and has various
applications in fluid and gas mechanics.

In this paper it is examined the following system of partial differential equations:


𝑃𝑥

`
+ 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = _(𝑢xx + 𝑢yy) + 𝐹𝑥 ,

𝑃𝑦

`
+ 𝑢𝑣𝑥 + 𝑣𝑣𝑦 = _(𝑣xx + 𝑣yy) + 𝐹𝑦 ,

𝑢𝑥 + 𝑣𝑦 = 0,
(1)

where 𝑥, 𝑦∈𝑅; 𝑃 = 𝑃 (𝑥, 𝑦) ; 𝐹 = 𝐹 (𝑥; 𝑦) ; 𝑢 = 𝑢 (𝑥, 𝑦) , 𝑣 = 𝑣 (𝑥, 𝑦) ; 𝑢𝑥 = 𝜕𝑢
𝜕𝑥

.

The system (1) describes the stationary processes of planar flow of an incompressible
liquid or gas. Regarding the derivation of the equations of system (1) and the meaning of
the physical processes described by this system, consult the works [1], [2], [3].

The unknowns of the system (1) are the following three functions: 𝑃, which represents
the created pressure; 𝑢 and 𝑣, which represent the components of the flow velocity of
a liquid or gas. The given exterior force is 𝐹 and has a potential nature, that is, its
components are equal to the partial derivatives of this force - 𝐹𝑥 and 𝐹𝑦 . The constants
_ > 0 and ` > 0 are the parameters determined by the viscosity and density of the
examined liquid or gas. We mention here, that the viscosity parameter has the form
_ = 𝐶0/𝑅𝑒, where 𝑅𝑒 is the Reinolds number and 𝐶0 is a constant.

Some exact solutions of the system (1) are obtained in the papers [4] - [7]. In [8] a
series of solutions of the examined system are indicated only for the components of the
flow velocity, without determining the pressure.

2. Equations for determining the velocity and pressure components.
Solutions that do not depend on the viscosity parameter

The system (1) is equivalent to the following system:
𝑃𝑥

`
− 𝐹𝑥 + 𝑢𝑢𝑥 + 𝑣𝑣𝑥 = _𝛥u − 𝑣

(
𝑢𝑦 − 𝑣𝑥

)
,

𝑃𝑦

`
− 𝐹𝑦 + 𝑢𝑢𝑦 + 𝑣𝑣𝑦 = _𝛥v + 𝑢

(
𝑢𝑦 − 𝑣𝑥

)
,

𝑢𝑥 + 𝑣𝑦 = 0,
(2)

where Δ𝑢 = 𝑢xx + 𝑢yy, Δ𝑣 = 𝑣xx + 𝑣yy. Denote

𝐺 =
1
`
𝑃 − 𝐹 + 0, 5

(
𝑢2 + 𝑣2

)
. (3)

Then from (2) it follows that{
𝐺𝑥 = _𝛥u − 𝑣

(
𝑢𝑦 − 𝑣𝑥

)
,

𝐺𝑦 = _𝛥v + 𝑢
(
𝑢𝑦 − 𝑣𝑥

)
.

(4)
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Since 𝐺xy = 𝐺yx, we differentiate the first equation from (4) with respect to 𝑦 and
the second one with respect to 𝑥. Then we equalize the right hand sides of the obtained
equations. As a result, we obtain the following equation for determining the functions 𝑢
and 𝑣:

_Δ(𝑢𝑦 − 𝑣𝑥) − 𝑢(𝑢𝑦 − 𝑣𝑥)𝑥 − 𝑣(𝑢𝑦 − 𝑣𝑥)𝑦 = 0. (5)

In addition, 𝑢 and 𝑣 must also check the last equation in the system (2):

𝑢𝑥 + 𝑣𝑦 = 0. (6)

Thus, firstly the components of the flow velocity from the system formed by equations
(5) and (6) are determined, then the function 𝐺 from the system (4), and finally the
pressure 𝑃 from the equation (3).

The following Theorem generates a series of solutions of the system (1).

Theorem 2.1. Let 𝐷 be a connected domain in the coordinate plane𝑂𝑋𝑌 , and let 𝑢, 𝑣 and
𝑃 be functions that in this domain admit continuous partial derivatives up to and including
the second order. If 𝑓 (𝑧) is a function of complex variable 𝑧 = 𝑥 + 𝑖𝑦, differentiable at any
interior point (𝑥; 𝑦) of the domain 𝐷, then system (1) admits solutions of the following
form in this domain:

𝑢 = Imf , 𝑣 = Ref ; 𝑃 =

[
𝐹 − 0, 5

(
𝑢2 + 𝑣2

)
+ 𝐶

]
`, (7)

where 𝐶 is an arbitrary constant.

Proof. May it be 𝑢 = Imf , 𝑣 = Ref , 𝑓 = 𝑣 (𝑥; 𝑦) + iu (𝑥; 𝑦) , where 𝑓 (𝑧) is a function
of complex variable 𝑧 = 𝑥 + 𝑖𝑦, differentiable at any interior point (𝑥; 𝑦) of the domain 𝐷.
Then from Cauchy – Riemann conditions [9] we obtain:{

𝑣𝑥 = 𝑢𝑦 ,

𝑣𝑦 = −𝑢𝑥 ,
⇔

{
𝑢𝑦 − 𝑣𝑥 = 0,
𝑢𝑥 + 𝑣𝑦 = 0.

(8)

The second equation in (8) coincides with (6), and from the first it follows that these
functions verify the equation (5). It remains to determine the pressure 𝑃. Since the
functions 𝑢 and 𝑣 admit continuous derivatives up to the second order, inclusively in 𝐷,
we have that

𝑢𝑥𝑦 = 𝑢𝑦𝑥 , 𝑣𝑥𝑦 = 𝑣𝑦𝑥 .

Differentiating the first equation from (8) with respect to 𝑦 and the second one with respect
to 𝑥, and adding the results, we will obtain that Δ𝑢 = 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0. Then, differentiating
the second equation from (8) with respect to 𝑦 and the first one with respect to 𝑥, and
subtracting the results, we obtain that Δ𝑣 = 0.
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Then from (4) we obtain that

{
𝐺𝑥 = 0,
𝐺𝑦 = 0,

⇒ 𝐺 (𝑥; 𝑦) = 𝐶 − const.

We substitute this result in (3) and express the pressure 𝑃. Theorem 2.1 is proved.
Below we will give one example of determining the solutions of the system (1) accord-

ing to Theorem 2.1. If 𝑓 (𝑧) = (𝑧 − 𝑧0)−1, 𝑧0 = 𝑥0 + 𝑖𝑦0, then
𝑢 =

𝐶0 (𝑦0−𝑦)
(𝑥−𝑥0 )2+(𝑦−𝑦0 )2 ; 𝑣 =

𝐶0 (𝑥−𝑥0 )
(𝑥−𝑥0 )2+(𝑦−𝑦0 )2 ,

𝑃 =

[
𝐹 − 0,5𝐶0

2

(𝑥−𝑥0 )2+(𝑦−𝑦0 )2 + 𝐶

]
`,

𝐷 = 𝑂𝑋𝑌\ {𝑀 (𝑥0; 𝑦0)} . (9)

In the solutions (9), 𝐶 and 𝐶0 are arbitrary constants.
Next, to determine the solutions of the system (1), we will apply the method of

separation of variables.

3. Method of Separation of Variables

We look for the velocity components in the following form:

𝑢 = 𝑔 (𝑥) 𝑓1 (𝑦) ; 𝑣 = 𝑓 (𝑦)𝑔1 (𝑥) , (10)

where the functions 𝑓 and 𝑔 are differentiable up to the fourth order while the functions
𝑓1 and 𝑔1 up to and including the third order.

From the equation (6) we deduce that

𝑔′ (𝑥) 𝑓1 (𝑦) + 𝑔1 (𝑥) 𝑓 ′ (𝑦) = 0 ⇒ 𝑔′

𝑔1
=
− 𝑓 ′

𝑓1
=

1
𝐶

⇒ 𝑔1 = 𝐶𝑔′, 𝑓1 = −𝐶 𝑓 ′.

From here we obtain, that:

𝑢 = −Cg (𝑥) 𝑓 ′ (𝑦) ; 𝑣 = Cf (𝑦) 𝑔′ (𝑥) ; 𝑢𝑦 − 𝑣𝑥 = −𝐶 (𝑔 𝑓 ′′ + 𝑓 𝑔′′) . (11)

In the equations (11) 𝐶 is an arbitrary non-zero constant.
We will consider the case when the functions 𝑔(𝑥) and 𝑓 (𝑦) are not constant because,

if one of these functions is constant, then from (10) it follows that one of the functions 𝑢
or 𝑣 is equal to zero. In this case, the well-known Poiseuille or Couette ([2], [10]) type
flows are obtained.

By replacing (10) into equation (5), we get:

_

(
𝑔 (4) 𝑓 + 2𝑔′′ 𝑓 ′′ + 𝑔 𝑓 (4)

)
+ 𝐶𝑔 𝑓 ′

(
𝑔′ 𝑓 ′′ + 𝑔 (3) 𝑓

)
− 𝐶𝑔′ 𝑓 (𝑔 𝑓 (3) + 𝑔′′ 𝑓 ′) = 0 ⇒

_

[
𝑔 (4)

𝑔
+ 2𝑔′′ 𝑓 ′′

𝑔 𝑓
+ 𝑓 (4)

𝑓

]
+ 𝐶

[
𝑔′

(
𝑓 ′ 𝑓 ′′

𝑓
− 𝑓 (3)

)
+ 𝑓 ′

(
𝑔 (3) − 𝑔′𝑔′′

𝑔

)]
= 0. (12)
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We will study firstly the case when the expressions from the square brackets in the
equation (12) are equal to zero. After we equalize to zero the expression next to 𝐶 and
applying the method of separation of variables, we get:

𝑔′
(
𝑓 ′ 𝑓 ′′

𝑓
− 𝑓 (3)

)
+ 𝑓 ′

(
𝑔 (3) − 𝑔′𝑔′′

𝑔

)
= 0 ⇒

𝑓

𝑓 ′

(
𝑓 ′ 𝑓 ′′ − 𝑓 𝑓 (3)

𝑓 2

)
+ 𝑔

𝑔′

(
𝑔𝑔 (3) − 𝑔′𝑔′′

𝑔2

)
= 0 ⇒

𝑔

𝑔′

(
𝑔′′

𝑔

) ′
=

𝑓

𝑓 ′

(
𝑓 ′′

𝑓

) ′
= 𝑘 − const. (13)

From (13) it follows that the functions 𝑔(𝑥) and 𝑓 (𝑦) are determined in the same way.
Let us first examine the case 𝑘 = 0. From (13) we deduce, that{

𝑔′′ = 𝑎𝑔,

𝑓 ′′ = 𝑏 𝑓 ,
⇒

{
𝑔 (4) = 𝑎𝑔′′,

𝑓 (4) = 𝑏 𝑓 ′′,
(14)

where 𝑎 and 𝑏 are arbitrary constants.
We replace (14) in the equality (12) while the expression in the second square bracket

cancels, and in the first square bracket in (12) we obtain 𝑎2 +2𝑎𝑏 + 𝑏2. Thus, the equation
(12) takes the following form: _(𝑎2 + 2𝑎𝑏 + 𝑏2) = 0. Because _ > 0, it follows that
𝑏 = −𝑎. Therefore, the following three situations are possible:

(1) 𝑎 = 𝑐2, 𝑏 = −𝑐2, 𝑐 ≠ 0.Then

{
𝑔′′ = 𝑐2𝑔,

𝑓 ′′ = −𝑐2 𝑓 ,
⇒

{
𝑔 = 𝑎1𝑒

𝑐𝑥 + 𝑎2𝑒
−𝑐𝑥 ,

𝑓 = 𝑏1 cos (𝑐𝑦) + 𝑏2 sin (𝑐𝑦) .

(2) 𝑎 = −𝑐2, 𝑏 = 𝑐2, 𝑐 ≠ 0. Then

{
𝑔′′ = −𝑐2𝑔,

𝑓 ′′ = 𝑐2 𝑓 ,
⇒

{
𝑔 = 𝑎1 cos (𝑐𝑥) + 𝑎2 sin (𝑐𝑥) ,
𝑓 = 𝑏1𝑒

𝑐𝑦 + 𝑏2𝑒
−𝑐𝑦 .

(3) 𝑎 = 0, 𝑏 = 0. Then

{
𝑔′′ = 0,
𝑓 ′′ = 0,

⇒
{

𝑔 = 𝑎1𝑥 + 𝑎2,

𝑓 = 𝑏1𝑦 + 𝑏2.

In the all three cases 𝑐, 𝑎1, 𝑎2, 𝑏1, 𝑏2 are arbitrary constants.
According to the equalities (10), we have that{

𝑢 = −Cg(𝑥) 𝑓 ′(𝑦),
𝑣 = 𝐶𝑔′ (𝑥) 𝑓 (𝑦),

(15)

with 𝑔(𝑥) and 𝑓 (𝑦) determined in cases (1), (2) and (3).
From (15) and (14) we obtain in these cases, that 𝑢𝑦 − 𝑣𝑥 = 0,Δ𝑢 = 0,Δ𝑣 = 0. Then,

from (4) we easily determine that 𝐺 = 𝐶0 – constant and then, from relation (3) we find
that the pressure is

𝑃 =

(
𝐹 − 0, 5𝐶2

[
(𝑔 𝑓 ′)2 + (𝑔′ 𝑓 ) 2

]
+ 𝐶0

)
`. (16)
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Thus, in the case 𝑘 = 0 the solutions of the system (1) are given in the formulas (15) and
(16).

Therefore, the following theorem is proved:

Theorem 3.1. If the functions 𝑓 and 𝑔 are differentiable up to the fourth order on any
interval of the real axis, then system (1) admits solutions of form (15), (16) where the
functions 𝑔(𝑥) and 𝑓 (𝑦) are determined according to cases (1), (2) or (3) above.

We will investigate the case 𝑘 ≠ 0. Let us find 𝑔(𝑥). Regarding the solution of different
ordinary differential equations, consult [11]. From (13) we deduce that(

𝑔′′

𝑔

) ′
= 𝑘

𝑔′

𝑔
⇒ 𝑔′′

𝑔
= 𝑘 ln 𝑔 + 𝑐.

Denote 𝑔′ = 𝑝(𝑔), then 𝑔′′ = 𝑝′𝑝. As a result we obtain a first order differential
equation:

𝑝′𝑝 = 𝑘 ·𝑔 ln 𝑔 + 𝑐𝑔 ⇒ 0, 5𝑝2 = 0, 5𝑘
(
𝑔2 ln 𝑔 − 𝑔2

2

)
+ 0, 5𝑐𝑔2 + 𝑐1.

If 𝑐1 = 0, then 𝑔′ = ±𝑔
√︁
𝑘 (ln 𝑔 − 0, 5) + 𝑐 ⇒ 𝑔 = 𝑒 [

𝑘
4 (𝑐2±𝑥 )2+𝑐3 ] .

Analogously, we obtain that 𝑓 = 𝑒 [
𝑘
4 (𝑐4±𝑦)2+𝑐5 ] .

But in this case the equality (12) in not fulfilled because in the equality (12) the
expression in the second square bracket cancels and the expression in the parenthesis next
to _ is different of zero. Thus, in the case 𝑘 ≠ 0 the solutions of the equation (12) cannot
be determined.

4. The case when one of the functions 𝑔(𝑥) or 𝑓 (𝑦) is linear. Solutions
in which the viscosity parameter participates explicitly

We return to the equality (12) and now we are studying the situation when the ex-
pressions in the square brackets are not equal to zero. We examine the case when the
derivative of the function 𝑓 or the derivative of the function 𝑔 is constant. That is, we
will examine the case when one of the functions 𝑔(𝑥) or 𝑓 (𝑦) is linear.

Let 𝑓 (𝑦) = 𝑏𝑦 + 𝑚, with 𝑏 ≠ 0 and 𝑚 arbitrary constants, then 𝑓 ′(𝑦) = 𝑏. From the
equality (12) we obtain a fourth-order non-linear differential equation, containing only
the function 𝑔(𝑥):

_𝑔 (4) + 𝐶𝑏

(
𝑔𝑔 (3) − 𝑔′𝑔′′

)
= 0. (17)
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We integrate the equation (17), taking into account that (𝑔𝑔′′)′ = 𝑔′𝑔′′ + 𝑔𝑔 (3) , and we
obtain the following third-order differential equation:

_𝑔 (3) + Cb
(
𝑔𝑔′′ − 2

∫
𝑔′𝑔′′𝑑𝑥

)
= 𝐶1 ⇒

_𝑔 (3) + 𝐶𝑏

(
𝑔𝑔′′ − (𝑔′)2

)
= 𝐶1 (18)

where 𝐶1 is an arbitrary constant.
We notice that in the case 𝐶1 = −𝐶𝑏𝑎2 this equation admits solutions of the form

𝑔 = 𝑎𝑥 + 𝑑 for any reals constants 𝑎 and 𝑏. Then, according to the formulas (15), the
solutions of system (1) will be:

𝑢 = −𝐶𝑏 (𝑎𝑥 + 𝑑) ; 𝑣 = 𝐶𝑎 (𝑏𝑦 + 𝑚) , (19)

with 𝑎, 𝑏, 𝐶, 𝑚, 𝑑 – arbitrary constants. The pressure 𝑃 is determined from the relation
(16):

𝑃 =

(
𝐹 − 0, 5𝐶2 [𝑏2(𝑎𝑥 + 𝑑)2 + 𝑎2(𝑏𝑦 + 𝑚)2] + 𝐶0

)
`. (20)

In the formula (20) and in all formulas that follow, 𝐶0 is an arbitrary constant. Thus,
we obtain solutions of the system (1) given by (19) and (20).

Next, we will look for solutions of the equation (18) of the form 𝑔 = 𝑎(𝑥 + 𝑑)𝑛 with
the constants 𝑎, 𝑑, 𝑛, 𝑛 ≠ 0, 𝑛 ≠ 1. Substituting in (18), we find that

𝑛 = −1, 𝐶1 = 0, 𝑎 =
6_
Cb

⇒ 𝑔 (𝑥) = 6_
Cb (𝑥 + 𝑑) .

Substituting the obtained function 𝑔(𝑥) and 𝑓 (𝑦) = 𝑏𝑦 +𝑚 into (15), we get the following
solutions of the system (1): {

𝑢 = − 6_
𝑥+𝑑 ,

𝑣 = − 6_(𝑏𝑦+𝑚)
𝑏 (𝑥+𝑑)2 ,

(21)

with the arbitrary constants 𝑏, 𝑑, 𝑚. We determine the function 𝐺 from the system (4):

𝐺 =
18_2(by + 𝑚)2

𝑏2(𝑥 + 𝑑)4 + 6_2

(𝑥 + 𝑑)2 + 𝐶0.

Then, we substitute the determined function 𝐺 in (3) and find the pressure in the case of
the solutions (21):

𝑃 =

(
𝐹 − 12_2

(𝑥 + 𝑑)2 + 𝐶0

)
` (22)

As a result, we obtain solutions of the system (1) in the form of the formulas (21), (22).
Next, we will look for solutions of the equation (14) of the form 𝑔 = 𝑎 + 𝑛𝑒𝑘𝑥 with the
constants 𝑎, 𝑛, 𝑘 . Substituting into (18), we obtain

𝐶1 = 0, 𝑎 = − 𝑘_

𝐶𝑏
⇒ 𝑔 (𝑥) = − 𝑘_

𝐶𝑏
+ 𝑛𝑒𝑘𝑥 ,
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with 𝑘 , 𝑏, 𝐶, 𝑛 – arbitrary real constants.
Substituting into (15), we obtain the following solutions of the system (1):{

𝑢 = _k − Cbn𝑒kx,

𝑣 = 𝐶 (by + 𝑚)nk𝑒kx,
(23)

𝐶, 𝑏, 𝑚, 𝑛, 𝑘 - arbitrary constants. We find the function 𝐺 from the system (4):

𝐺 =
(𝐶𝑛𝑘)2(𝑏𝑦 + 𝑚)2𝑒2𝑘𝑥

2
− _𝐶𝑏𝑛𝑘𝑒𝑘𝑥 + 𝐶0.

Then, we substitute the determined function 𝐺 in (3) and find the pressure corresponding
to the case of the solutions (23):

𝑃 =
[
𝐹 − 0, 5

[
(𝐶𝑏𝑛)2𝑒2𝑘𝑥 + (_𝑘)2] + 𝐶0

]
` (24)

Thus, we obtain solutions for the system (1) given by (23) and (24).
Now let 𝑔(𝑥) = 𝑏𝑥+𝑚, with 𝑏 ≠ 0 and𝑚 arbitrary constants; then 𝑔′(𝑥) = 𝑏. From (12)

we obtain a forth-order nonlinear differential equation which contains only the function
𝑓 (𝑦):

_ 𝑓 (4) − 𝐶𝑏

(
𝑓 𝑓 (3) − 𝑓 ′ 𝑓 ′′

)
= 0. (25)

We integrate the equation (25) and we obtain the following equation of order 3:

_ 𝑓 (3) − 𝐶𝑏

(
𝑓 𝑓 ′′ − ( 𝑓 ′)2

)
= 𝐶1, (26)

where 𝐶1 is an arbitrary constant.
We notice that in the case 𝐶1 = 𝐶𝑏𝑎2 the equation (25) admits solutions of the form

𝑓 = 𝑎𝑦 + 𝑑 for any real constants 𝑎 and 𝑑. According to the formulas (15), the solutions
of the system (1) are:

𝑢 = −𝐶𝑎 (𝑏𝑥 + 𝑚) ; 𝑣 = 𝐶𝑏 (𝑎𝑦 + 𝑑) (27)

with the arbitrary constants 𝑎, 𝑏, 𝐶, 𝑚, 𝑑. The pressure 𝑃 in this case is:

𝑃 =

(
𝐹 − 0, 5𝐶2 [𝑎2(𝑏𝑥 + 𝑚)2 + 𝑏2(𝑎𝑦 + 𝑑)2] + 𝐶0

)
`. (28)

Looking for solutions of this equation of the form 𝑓 = 𝑎(𝑦 + 𝑑)𝑛 with constants 𝑎, 𝑑 and
𝑛, we will obtain that

𝑛 = −1, 𝑎 = − 6_
𝐶𝑏

⇒ 𝑓 (𝑦) = − 6_
𝐶𝑏 (𝑦 + 𝑑) .

Substituting the determined function 𝑓 (𝑦) and 𝑔(𝑥) = 𝑏𝑥 + 𝑚 into (15), we obtain the
following solutions: {

𝑢 = −6_(𝑏𝑥+𝑚)
𝑏 (𝑦+𝑑)2 ,

𝑣 = − 6_
𝑦+𝑑 ,

(29)
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with the arbitrary constants 𝑏, 𝑑, 𝑚. The pressure, corresponding to the solution (26), is

𝑃 =

(
𝐹 − 12_2

(𝑦 + 𝑑)2 + 𝐶0

)
`. (30)

Thus, we obtain solutions for the system (1) given by (29) and (30).
Looking further for solutions of the equation (11) of the form 𝑓 = 𝑎 + 𝑛𝑒𝑘𝑦 with the
constants 𝑎, 𝑛, 𝑘 , we will find out that

𝐶1 = 0, 𝑎 =
k_
Cb

⇒ 𝑓 (𝑦) = k_
Cb

+ 𝑛𝑒ky.

Substituting into (15), we obtain the following solutions for the system (1):{
𝑢 = −𝐶 (𝑏𝑥 + 𝑚) 𝑘𝑛𝑒𝑘𝑦 ,
𝑣 = _𝑘 + 𝐶𝑏𝑛𝑒𝑘𝑦 ,

(31)

where 𝐶, 𝑏, 𝑚, 𝑛, 𝑘 are arbitrary constants.
The pressure corresponding to the solution (30) is

𝑃 =
[
𝐹 − 0, 5

[
(𝐶𝑏𝑛)2𝑒2𝑘𝑦 + (_𝑘)2] + 𝐶0

]
`. (32)

As a result, we obtain solutions of the system (1) in the form of the formulas (31), (32).
Based on what has been proved in this section, the following theorem results:

Theorem 4.1. If the function 𝑓 (𝑦) is linear, i.e. 𝑓 (𝑦) = 𝑏𝑦 + 𝑚, 𝑏 ≠ 0, then the function
𝑔(𝑥) is the solution of equation (18). In this case, the system (1) admits the exact solutions
(19), (20); (21), (22) and (23), (24). If 𝑔(𝑥) is linear, i.e. 𝑔(𝑥) = 𝑎𝑥 + 𝑑, 𝑎 ≠ 0, then
the function 𝑓 (𝑦) is the solution of equation (26). In this case, the system (1) admits the
exact solutions (27), (28); (29), (30) and (31), (32).

Remark 4.1. Unlike the solutions obtained in Theorems 2.1 and 3.1, Theorem 4.1 men-
tions solutions for the system (1) in which the viscosity parameter _ is explicitly indicated.

Remark 4.2. Equations (18) and (26) can be reduced to second-order differential equa-
tions.

Let us illustrate what was said, for example, for the equation (18). Then, making
the substitution 𝑔′ = 𝑝 (𝑔), 𝑔′′ = 𝑝′𝑝, we arrive at a second-order nonlinear differential
equation for determining the function 𝑝(𝑔):

_

(
𝑝𝑝′′ + (𝑝′)2

)
+ 𝐶𝑏 (𝑔𝑝′ − 𝑝) = 𝑐1𝑝

−1. (33)

However, the problem of determining the solutions of equation (33) is not simpler than
the problem of determining the solutions of equation (18). We observe in the case of
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𝑐1 ≠ 0, that particular solutions of equation (33) are the following constants:

𝑝 = 𝑎, 𝐶1 = −𝐶𝑏𝑎2;⇒ 𝑔 (𝑥) = 𝑎𝑥 + 𝑑.

In this case, we obtain solutions for the system (1) in the form of (19), (20).
In the case 𝑐1 = 0, we will look for particular solutions for the equation (33) of the

form 𝑝(𝑔) = 𝑎𝑔2 +𝑚𝑔 + 𝑘 , where 𝑎, 𝑚, 𝑘 are constants and 𝑎 ≠ 0 or 𝑚 ≠ 0. Substituting
into (33), we get:

_

[
2𝑎

(
𝑎𝑔2 + 𝑚𝑔 + 𝑘

)
+ (2𝑎𝑔 + 𝑚)2

]
+ 𝑐𝑏

[
𝑔 (2𝑎𝑔 + 𝑚) − 𝑎𝑔2 − 𝑚𝑔 − 𝑘

]
= 0. ⇒

𝑔2 [6_𝑎2 + 𝐶𝑏𝑎
]
+ 𝑔 [_𝑎𝑚] +

[
_

(
2𝑎𝑘 + 𝑚2

)
− 𝐶𝑏𝑘

]
= 0 (34)

Because the function 𝑔(𝑥) is not constant, the equality (34) can be fulfilled only when all
the expressions in the square brackets cancel, i.e. the following equalities are true:

6_𝑎2 + 𝐶𝑏𝑎 = 0 and _𝑎𝑚 = 0 and _

(
2𝑎𝑘 + 𝑚2

)
− 𝐶𝑏𝑘 = 0. (35)

The equalities (35) take place simultaneously in the following two cases:

(1) 𝑎 = 0, 𝑚 ≠ 0. Then the first two equalities are satisfied and from the third one we

have that 𝑘 =
_𝑚2

𝐶𝑏
⇒ 𝑝 (𝑔) = 𝑔′ = 𝑚𝑔 + 𝑘. From here we get

𝑔′ − 𝑚𝑔 = 𝑘 ⇒ 𝑔 (𝑥) = 𝑛𝑒mx − 𝑘

𝑚
⇒ 𝑔 (𝑥) = 𝑛𝑒mx − _m

Cb
.

In this case we obtain the solutions of the form (23), (24).
(2) 𝑚 = 0, 𝑎 ≠ 0. The second equality in (35) is satisfied. Then from the first and

the third equalities we find that 𝑎 = −𝐶𝑏
6_ , 𝑘 = 0 ⇒ 𝑝 (𝑔) = 𝑎𝑔2. In this case we

have that
𝑝 = 𝑔′ = 𝑎𝑔2 ⇒ 𝑔 (𝑥) = 6_

Cb(𝐶0 + 𝑥) .

Thus, we obtain the solutions of the form (21), (22).

Analogously reducing the equation (26) to a second-order differential equation and
studying it in the same way as the equation (33), we will obtain the solutions of the system
(1) of the form (27), (28); (29), (30) and (31), (32).

5. Conclusions

In the current article are determined a lot of exact solutions for the stationary bidimen-
sional Navier-Stokes equations. We mention, that the solutions obtained in Theorems
2.1 and 3.1 do not explicitly depend on the viscosity. This result occurs because the
expression 𝑢𝑦 − 𝑣𝑥 (the rotor), corresponding to these solutions, is constant and equal to
zero.
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In the other solutions obtained in Theorem 4.1 it is indicated the explicit dependence
on the viscosity coefficient _. In the case of these solutions, the rotor is not constant.
We also mention that several arbitrary constants participate in the expressions containing
the found solutions. The values of these constants can be determined based on initial
conditions and boundary conditions of the given physical problems.

Most of the results obtained in this work were presented and discussed during the 29th
International Conference on Applied and Industrial Mathematics held on August 25-27,
2022 at Tiraspol State University, Chisinau [12].
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Dedicated to the memory of Professor Alexandru Basarab

Encryption and decryption algorithm based on the Latin
groupoid isotopes

Liubomir Chiriac , Aurel Danilov , and Violeta Bogdanova

Abstract. This paper studies encryption and decryption algorithm, using isotopes of
Latin groupoid. Cryptographic algorithms are computationally intensive processes which
consume large amount of CPU time and space during the process of encryption and
decryption. The goal of this paper is to study the encryption and decryption algorithm with
the help of the concept of Latin groupoid and notion of isotopes. The proposed algorithm
is safe in the implementation process and can be verified without much difficulty. An
example of encryption and decryption based on the Latin groupoid and the concept of
isotopy is examined.
2010 Mathematics Subject Classification: 34C14, 34C40.
Keywords: Latin groupoid, isotopes, encryption and decryption algorithm.

Algoritmul de criptare s, i decriptare bazat pe izotopii
grupoidului latin

Rezumat. În lucrarea de faţă este dezvoltat un algoritm de criptare şi decriptare care
se bazează pe utilizarea grupoidului latin, concept care a fost introdus de autori, şi
a izotopilor grupoidului examinat. Implementarea algoritmilor criptografici reprezintă
procese intensive din punct de vedere computaţional şi presupune consumul unei cantităti
mari de timp pentru funţionarea procesorului, cât şi un volum important de spaţiu pentru
memoria calculatorului pe durata procesului de criptare şi decriptare. Scopul lucrării
este de a studia algoritmul de criptare şi decriptare conceput cu ajutorul conceptului de
grupoid latin şi noţiunii de izotop. Algoritmul propus de autori este sigur ı̂n procesul
de implementare şi poate fi verificat fără prea multe dificultăţi. Este soluţionat un
exemplu practic privind utilizarea algoritmului de criptare şi decriptare dezvoltat ı̂n baza
grupoidului latin şi a izotopiilor de grupoid.
Cuvinte-cheie: grupoid latin, izotopi, algoritm de criptare si decriptare.

1. Introduction

In cryptography the encryption and decryption procedures consist of a set of algorithms
and mathematical concepts and formulas that indicate the rules of conversion of plain
text to cipher text and vice versa combined with the secured key. In some encryption and
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decryption algorithms sender and receiver use the same key. While in other encryption
and decryption procedures sender and receiver use different keys. The major goal is
to develop any algorithmic encryption and decryption procedure to improve the level of
security. Therefore, this paper aims to propose a new encryption and decryption algorithm
to improve the secure level using, the concept of the Latin groupoid and notion of isotopes.

Our main results can be summarized as follows. In Section 2 we give the basic algebraic
notions. In Section 3 we propose an Algorithm to Encrypt and Decrypt message, using
isotopes of Latin groupoids. Finally, in Section 4 we give one example of Encryption and
Decryption algorithm based on the concept of Latin groupoid and isotopes.

We dedicate this paper to the memory of Professor Alexandru Basarab, who worked
for more than 50 years at the Faculty of Physics and Mathematics of Tiraspol State
University, Republic of Moldova and made many important contributions to theory of
loops and quasigroups.

2. Basic notions

In this section we recall some fundamental definitions and notations.
A non-empty set 𝐺 is said to be a groupoid with respect to a binary operation denoted

by {·}, if for every ordered pair (𝑎, 𝑏) of elements of 𝐺 there is a unique element 𝑎𝑏 ∈ 𝐺.
A quasigroup is a binary algebraic structure in which one-sided multiplication is a

bijection in that all equations of the form 𝑎𝑥 = 𝑏 and 𝑦𝑎 = 𝑏 have unique solutions.
An element 𝑒 ∈ 𝐺 is called an identity if 𝑒𝑥 = 𝑥𝑒 = 𝑥 every 𝑥 ∈ 𝐺.
A quasigroup with an identity is called a loop. The notion of quasigroup is hence a

generalization of the notion of group, in that it does not require the associativity law, nor
the existence of an identity element.

A groupoid 𝐺 is called medial if it satisfies the law 𝑥𝑦 · 𝑧𝑡 = 𝑥𝑧 · 𝑦𝑡 for all 𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝐺.
If a guasigroup 𝐺 contains an element 𝑒 such that 𝑒 · 𝑥 = 𝑥 (𝑥 · 𝑒 = 𝑥) for all 𝑥 in 𝐺,

then 𝑒 is called a left (right) identity element of 𝐺 and 𝐺 is called a left (right) loop.
In mathematical terms, a permutation of a set is defined as a bijective function

𝑝 : 𝑋 → 𝑋. For example, there are six permutations of the set {1, 2, 3}, namely
(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2) and (3, 2, 1).

It is called permutation of degree 𝑛 bijective function 𝑝 : 𝑁∗ → 𝑁∗ and is written in
the following form:

𝑝 =

(
1 2 ... 𝑛

𝑝(1) 𝑝(2) ... 𝑝(𝑛)

)
.
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Denote by 𝑆𝑛 the set of permutations of degree 𝑛 and card(𝑆𝑛) = 𝑛! Permutations can
be defined as bijections from a set 𝑆 onto itself. All permutations of a set with n elements
form a symmetric group, denoted 𝑆𝑛, where the group operation is function composition.
Thus, for two permutations, 𝛼 and 𝛽 in the group 𝑆𝑛, the four group axioms hold: closure,
associativity, identity and invertibility. For every permutation 𝛼, there exists an inverse
permutation 𝛼−1, so that 𝛼 ·𝛼−1 = 𝛼−1 ·𝛼= 𝑒, where 𝑒 is identity permutation. In general,
composition of two permutations is not commutative.

Let 𝐸 be a non-empty set. Then the set 𝑆(𝐸) = { 𝑓 : 𝐸 −→ 𝐸 : 𝑓 −𝑏𝑖 𝑗𝑒𝑐𝑡𝑖𝑣𝑒}, together
with the function composition operation, is a group, called the permutation group of the
set 𝐸 (or the symmetric group associated with the set 𝐸). If 𝐹 is a set with the property
that there is a bijection between 𝐹 and 𝐸 , then the groups 𝑆(𝐹) and 𝑆(𝐸) are isomorphic.

Permutations are used in almost every branch of mathematics and many other areas of
science. In computer science, they are used to analyze sorting algorithms; in quantum
physics, for describing the states of particles; and in biology, for example, for describing
RNA sequences.

Let (𝐺,★), (𝐻, ◦) be groupoids. An isotopy from (𝐺,★) to (𝐻, ◦) is an ordered triple:
𝜙 = ( 𝑓 , 𝑔, ℎ), of bijections from (𝐺,★) to (𝐻, ◦), such that 𝑓 (𝑎) ◦ 𝑔(𝑏) = ℎ(𝑎 ★ 𝑏) or
ℎ−1( 𝑓 (𝑎) ◦ 𝑔(𝑏)) = 𝑎 ★ 𝑏 for all 𝑎, 𝑏 ∈ 𝐺.

An (𝐻, ◦) is called an isotope of (𝐺,★), or (𝐻, ◦) is isotopic to (𝐺,★) if there is an
isotopy 𝜙 = ( 𝑓 , 𝑔, ℎ):(𝐺,★) → (𝐻, ◦).

Hereafter, we share some examples of isotopies. If 𝑓 : 𝐺 → 𝐻 is an isomorphism,
then ( 𝑓 , 𝑓 , 𝑓 ) : 𝐺 → 𝐻 is an isotopy. We can write 𝑓 = ( 𝑓 , 𝑓 , 𝑓 ) : 𝐺 → 𝐻. If all 3
permutations coincide: 𝑓 = 𝑔 = ℎ, then isotopy turns into isomorphism. In this case we
will write 𝑓 (𝑥) ◦ 𝑓 (𝑦) = 𝑓 (𝑥 ∗ 𝑦). In particular (1𝐺 , 1𝐺 , 1𝐺) : 𝐺 → 𝐺 is an isotopy
where 1𝐺 is the identity function on 𝐺.

If 𝜙 = ( 𝑓 , 𝑔, ℎ):(𝐺,★) → (𝐻, ◦) is an isotopy, then so is

𝜙−1 = ( 𝑓 −1, 𝑔−1, ℎ−1) : (𝐻, ◦) → (𝐺,★),

for if 𝑓 −1(𝑎) = 𝑐 and 𝑔−1(𝑏) = 𝑑, then 𝑎𝑏 = 𝑓 (𝑐)𝑔(𝑑) = ℎ(𝑐𝑑), so that

𝑓 −1(𝑎)𝑔−1(𝑏) = 𝑐𝑑 = ℎ−1(𝑎𝑏).

LetN = {1, 2, ...} and Z = {...,−3,−2,−1, 0, 1, 2, 3, ...}. We shall use the notations and
terminology from [1, 2, 3, 4, 5, 7]. The results established here are related to the work in
[8, 6, 9, 10, 11, 12].

Example 1. Let (𝑄,★) be a quasigroup, determined by the following Cayley table:
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★ 1 2 3 4
1 1 3 2 4
2 2 1 4 3
3 3 4 1 2
4 4 2 3 1

Let 𝛼, 𝛽, and 𝛾 be three arbitrary permutations of the set 𝑄. Then, applying the
permutation 𝛼 of the elements on the border line, the permutation 𝛽 of the elements on
the border column and the permutation 𝛾 of the elements inside the table, one obtains a
new law of composition (◦) on 𝑄 and it is clear that (𝑄, ◦) is isotopic to the quasigroup
(𝑄,★).

Thus, we consider:

𝛼 =

(
1 2 3 4
2 3 4 1

)
, 𝛽 =

(
1 2 3 4
4 3 2 1

)
, 𝛾 =

(
1 2 3 4
2 1 4 3

)
.

Applying the permutations 𝛼, 𝛽, and 𝛾, it is obtained the following:
★ 1 2 3 4
1 1 3 2 4
2 2 1 4 3
3 3 4 1 2
4 4 2 3 1

−→𝛼

· 1 2 3 4
1 2 1 4 3
2 3 4 1 2
3 4 2 3 1
4 1 3 2 4

−→
𝛽

∗ 1 2 3 4
1 3 4 1 2
2 2 1 4 3
3 1 3 2 4
4 4 2 3 1

−→𝛾

◦ 1 2 3 4
1 4 3 2 1
2 1 2 3 4
3 2 4 1 3
4 3 1 4 2

We note that the quasigroup (𝑄,★) is medial, non-associative, since (3 ★ 4) ★ 2 ≠

3★ (4★ 2) and 𝑒 = 1 is the right identity because 𝑥 ∗ 1 = 𝑥 for every 𝑥 ∈ (𝑄,★). Isotop
quasigroup (𝑄, ◦) is medial, non associative, but 𝑒 = 2 is the left identity because 2∗𝑥 = 𝑥
for every 𝑥 ∈ (𝑄, ◦). We conclude from this that, unlike isomorphism which preserves
all properties of an algebraic operation, an isotopism does not preserve all properties.

A Latin groupoid of order 𝑛 is a 𝑛×𝑛 array filled with 𝑠, distinct symbols (by convention
{𝑎𝑙1, ..., 𝑎𝑙𝑠}),where 𝑠 ≤ 𝑛2, such that there are symbols which are repeated twice or more
times, in rows or columns.

It should be mentioned that a Latin groupoid is a Latin square of order 𝑛, is a 𝑛 × 𝑛
array filled with 𝑛 = 𝑠 distinct symbols, such that no symbol is repeated twice in any row
or column.
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Two Latin groupoids are isotopic if each can be turned into the other by permuting
the rows and columns. This isotopy relation is an equivalence relation; the equivalence
classes are the isotopy classes.

During the exposition of the material we will use also and another definition.
A non-empty couple of sets (𝐺, 𝐴𝑙), where |𝐺 | = 𝑛 and |𝐴𝑙 | = 𝑠, is said to be a Latin

groupoid with respect to a composition or operation (•) that sends any two elements
𝑎, 𝑏 ∈ 𝐺 to another element, 𝑎 • 𝑏 = 𝑎𝑙𝑖 ∈ 𝐴𝑙, where 𝑖 = {1, ..., 𝑠} and the number of all
elements of the type 𝑎𝑙𝑖 ∈ 𝐴𝑙, which some of them can be repeated several times in rows
or columns, is equal to 𝑛2.

Denote a Latin groupoid by (𝐺, 𝐴𝑙, •).

Example 2. Let be 𝑄 = {1, 2, 3, 4, 5, 6} and 𝐴𝑙 = {space, S, !, B, V, R, H, G, O, D, H,
E, L, T, I, A, W,}. Let (•) be defined by the following Cayley table:

• 1 2 3 4 5 6
1 M G O D H E
2 L T I S B V
3 W A R O D
4 H E R L T I
5 S B ! W A M
6 O E A H T

Then (𝑄, 𝐴𝑙, •) is a Latin groupoid.

3. Encryption and Decryption Algorithm based on the Latin
Groupoid and Isotopes

Below we describe the respective algorithm.

3.1. Steps to Encrypt the message
1. Define the alphabet 𝐴𝑙 = {𝑎𝑙1, 𝑎𝑙2, ..., 𝑎𝑙𝑡 }, where 𝑡 is dimension of the set 𝐴𝑙 and

𝑡 ∈ 𝑁 .
2. Define a set of 𝑛 ordered elements 𝑄 = {1, 2, ..., 𝑛}, where 𝑛 ∈ 𝑁 and 𝑛2 > 𝑡.
3. Construct a Latin groupoid (𝑄, 𝐴𝑙, •).
The construction of the Latin groupoid begins with the definition of the composition

or operation on the set 𝑄. Define the operation (•) on the couple of sets (𝑄, 𝐴𝑙), taking
into account the following conditions:

3.1. The result of the operation 𝑎 • 𝑏 with respect to a operation (•) is an element
𝑎 • 𝑏 = 𝑎𝑙𝑖 ∈ 𝐴𝑙, for all 𝑎, 𝑏 ∈ 𝑄 and 𝑖 = 1, 𝑡.
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3.2. All results of the operations 𝑎 • 𝑏 = 𝑎𝑙𝑖 ∈ 𝐴𝑙, for all 𝑎, 𝑏 ∈ 𝑄 and 𝑖 = 1, 𝑡, made up
of the elements of the alphabet 𝐴𝑙, are placed in a Cayley table, which has the dimension
𝑛 × 𝑛.

3.3. The elements inside in the Cayley table 𝑎𝑙1, 𝑎𝑙2, ..., 𝑎𝑙𝑡 are placed randomly. The
important thing is that each element of the alphabet 𝑎𝑙𝑖 ∈ 𝐴𝑙, 𝑖 = 1, 𝑡 is found at least
once as a result of the operation 𝑎 • 𝑏 for all 𝑎, 𝑏 ∈ 𝐺. The number of all elements of the
type 𝑎𝑙𝑖 ∈ 𝐴𝑙, where some of them can be repeated several times, is equal to 𝑛2.

3.4. In this way we obtain a Latin groupoid (𝐺, 𝐴𝑙, •) in which the results of the
operation 𝑎 • 𝑏 for all 𝑎, 𝑏 ∈ 𝐺 are all the elements of the alphabet 𝐴𝑙 and some elements
can be repeated several times. There is no maximum limit for how many times an element
of the 𝐴𝑙 alphabet could be repeated as a result.

4. In the Cayley table, it is determined how many times each of the elements of the
Latin groupoid (𝑄, 𝐴𝑙, •) is repeated.

Denote by 𝐾 the set of the number of repetition of all elements in the alphabet 𝐴𝑙.
4.1. Let element 𝑎𝑙1 be repeated by 𝑘1 times, element 𝑎𝑙2 be repeated by 𝑘2

times,...,element 𝑎𝑙𝑡 be repeated by 𝑘𝑡 times. In this way we get the set𝐾 = {𝑘1, 𝑘2, ..., 𝑘𝑡 },
where 𝑘𝑠 indicates the number of repetitions of the element 𝑎𝑙𝑠 in the alphabet 𝐴𝑙, and
𝑠 = 1, 𝑡. By 𝑟 = 𝑚𝑎𝑥{𝑘1, 𝑘2, ..., 𝑘𝑡 } it is denoted the maximum number of repetitions of
the elements 𝑘𝑠 ∈ 𝐾 , 𝑠 = 1, 𝑡.

4.2. Then there are determined all the pairs 𝑖 • 𝑗 , where 𝑖, 𝑗 = 1, 𝑛, of the elements
which give us the same result for each of the elements 𝑎𝑙𝑠 ∈ 𝐴𝑙, 𝑠 = 1, 𝑡.

Denote by 𝑂 𝑝, where 𝑝 = 1, 2, ..., 𝑟 , the 𝑝-set of the results of the operations 𝑖 • 𝑗 =
𝑎𝑙𝑠 ∈ 𝐴𝑙 for all 𝑖, 𝑗 ∈ 𝑄 and 𝑠 = 1, 𝑡.

First, the set 𝑂1 is constructed by including only one result at a time of the operations
𝑖 • 𝑗 = 𝑎𝑙𝑠 for all 𝑖, 𝑗 ∈ 𝑄 and for all elements 𝑎𝑙𝑠 ∈ 𝐴𝑙 and 𝑠 = 1, 𝑡. For example, if
𝑎𝑙𝑠★ = 𝑖1 • 𝑗1 = 𝑖2 • 𝑗2 = ... = 𝑖𝑟 • 𝑗𝑟 then will be include in the set 𝑂1 only result of
the operation 𝑖1 • 𝑗1. It is obviously |𝑂1 | = 𝑚, where 𝑚 is the dimension of the secret
message.

Afterwards, the set 𝑂2 is constructed by counting and including only one result at a
time of the operations 𝑖 • 𝑗 = 𝑎𝑙𝑠 for all 𝑖, 𝑗 ∈ 𝑄 and for each element 𝑎𝑙𝑠 ∈ 𝐴𝑙,𝑠 = 1, 𝑡,
with the exception of the results that were already included in the set 𝑂1. For example, if
𝑎𝑙𝑠★ = 𝑖1 • 𝑗1 = 𝑖2 • 𝑗2 = ... = 𝑖𝑟 • 𝑗𝑟 then will be include in the set 𝑂2 only result of the
operation 𝑖2 • 𝑗2.

At the last stage the set𝑂𝑟 is constructed through identification and including all results
of the operations (with the exception of the results that were already included in the sets
𝑂1, ..., 𝑂𝑟−1) 𝑖 • 𝑗 = 𝑎𝑙𝑠 ∈ 𝐴𝑙 for all 𝑖, 𝑗 ∈ 𝑄 and 𝑠 = 1, 𝑡.
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For example, if 𝑎𝑙𝑠★ = 𝑖1 • 𝑗1 = 𝑖2 • 𝑗2 = ... = 𝑖𝑟 • 𝑗𝑟 then will be include in the set 𝑂𝑟

only result of the operation 𝑖𝑟 • 𝑗𝑟 .
It is important to note that

⋂𝑟
𝑝=1𝑂 𝑝 = ∅.

5. Define a set of 𝑛1 ordered elements 𝑄1 = {1, 2, ..., 𝑛1}, where 𝑛1 ≤ 𝑛.

6. Define the permutations 𝛼 and 𝛽 on the set 𝑄1.

7. Get the message for Encryption.
Let the secret text be𝑀1 = {𝑎𝑙1, 𝑎𝑙2, ..., 𝑎𝑙𝑚}, where𝑚 is the dimension of the message

and 𝑎𝑙𝑠 ∈ 𝐴𝑙, 𝑠 = 1, 𝑡.

8. In the next table we will construct:
8.1. The set 𝑀1 which represents the message to be encrypted. The elements of the

set 𝑀1 are the elements of the secret text and |𝑀1| = 𝑛2
1 = 𝑚.

8.2. The set 𝐾1 which indicates the number of repetitions of the elements of the secret
message 𝑀1. The number of elements in the set 𝐾1 coincides to the dimension 𝑚 of the
secret message 𝑀1. All the elements of the set 𝐾1 are one of the the numbers {1, ..., 𝑟}
which can be repeated several times.

8.3. The set 𝑃 where the elements of the set 𝑃 are formed by the numbers 𝑝 = 1, ..., 𝑟 .
Each element of the set 𝑃 indicates from which set 𝑂 𝑝 the corresponding element
𝑖 • 𝑗 = 𝑎𝑙𝑠 ∈ 𝐴𝑙 for all 𝑖, 𝑗 ∈ 𝑄 and 𝑠 = 1, 𝑡 is taken. The number of elements of the set 𝑃
coincides with the dimension 𝑚 of the secret message 𝑀1.

8.4. The set 𝑅 that includes all the element 𝑖 • 𝑗 = 𝑎𝑙𝑠 ∈ 𝑀1 for all 𝑖, 𝑗 ∈ 𝑄 and
𝑠 = 1, 𝑛2

1 is taken.
The set 𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑚} represents the secret message, where 𝑟𝑖 ∈ 𝑂 𝑝, 𝑝 = 1, ..., 𝑟

is determined by all pairs 𝑖 • 𝑗 = 𝑎𝑙𝑠 ∈ 𝑀1 for all 𝑖, 𝑗 ∈ 𝑄 and 𝑠 = 1, 𝑛2
1.

9. Construct the Latin groupoid (𝑄1, 𝑅, ◦).
In order to increase the degree of protection of the message 𝑅 we will construct the

Latin groupoid (𝑄1, 𝑅, ◦). All results of the operations 𝑖 • 𝑗 = 𝑟𝑠 ∈ 𝑅 for all 𝑖, 𝑗 ∈ 𝑄1

and 𝑠 = 1, 𝑛2
1, made up of the elements 𝑅, are placed in a Cayley table of a Latin groupoid

(𝑄1, 𝑅, ◦) which has the dimension 𝑛1 × 𝑛1, respects the order of the elements in the set
𝑅 and places them one by one in the table, starting with the first row, the second one and
so on until the last 𝑛1 − 𝑡ℎ row. In each row there will be exactly 𝑛1-elements.

10. The permutation 𝛼 is applied to the Latin groupoid (𝑄1, 𝑅, ◦). Get the Latin
groupoid (𝑄1, 𝑅, ◦𝛼).

11. The permutation 𝛽 is applied to the Latin groupoid (𝑄1, 𝑅, ◦𝛼). Get the Latin
groupoid (𝑄1, 𝑅, ◦𝛽). The Latin groupoid (𝑄1, 𝑅, ◦𝛽) is an isotope of the Latin groupoid
(𝑄1, 𝑅, ◦).
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The secret key for encryption is Latin groupoid (𝑄, 𝐴𝑙, •) and the permutations 𝛼 and
𝛽 on the set 𝑄1. The Latin groupoid (𝑄1, 𝑅, ◦𝛽) represents the secret message and will
be send to receiver.

3.2. Steps to Decrypt the message

1. The secret key for decryption is the Latin groupoid (𝑄, 𝐴𝑙, •) and the permutations
𝛼−1 and 𝛽−1 on the set 𝑄1.

2. Applying the permutation 𝛽−1 on the Latin groupoid (𝑄1, 𝑅, ◦𝛽), get the Latin
groupoid (𝑄1, 𝑅, ◦−1

𝛽
).

3. Applying the permutation 𝛼−1 on the Latin groupoid (𝑄1, 𝑅, ◦−1
𝛽
), get the Latin

groupoid (𝑄1, 𝑅, ◦−1
𝛼 ) which coincides to the Latin groupoid (𝑄1, 𝑅, ◦).

4. Using the Latin groupoid (𝑄, 𝐴𝑙, •) that was constructed at step 3 in the Encryption
Algorithm, we obtain the decrypted message.

4. Example of the use of the Encryption and Decryption Algorithm

Example. Interlocutor 𝐴 needs to sent a secret message to interlocutor 𝐵. For this
purpose, the following steps are undertaken:

Step 1. Interlocutor 𝐴 decides to determine the number of symbols of the alphabet 𝐴𝑙
according to the secret message
𝑀1 = {GOOD HEALTH IS ABOVE WEALTH! REMEMBER!}, where 𝑚 = 38 is the
number of all elements, inclusive empty space.

Thus, the alphabet, defined by interlocutor 𝐴 for message 𝑀1, is
𝐴𝑙 = {space, G, O, D, H, E, L, T, I, A, W, S, !, B, V, R, H}.

Since 𝐴𝑙 consists of 𝑡 = 17 elements, then the set 𝑄 will have 𝑛 = 6 elements. Hence,
𝑄 = {1, 2, 3, 4, 5, 6} and 𝑛2 = 36 ≥ 17 = 𝑡.

Step 2. Interlocutor 𝐴, taking into the consideration the conditions 3.1 − 3.4., defines
the operation (•) on the set 𝑄 and gets the Latin groupoid (𝑄, 𝐴𝑙, •).

Interlocutor 𝐴 defines the set 𝑄1= {1, 2, 3, 4, 5, 6} and the permutations 𝛼 and 𝛽 on
the set 𝑄1. Let:

𝛼 =

(
1 2 3 4 5 6
1 4 5 3 2 6

)
, 𝛽 =

(
1 2 3 4 5 6
1 4 5 6 3 2

)
.

The secret key for encryption is the Latin groupoid (𝑄, 𝐴𝑙, •) and the permutations 𝛼
and 𝛽.

Step 3. Interlocutor 𝐴 defines the operation (◦) on the set 𝑄1 and gets the Latin
groupoid (𝑄1, 𝑅, ◦), where 𝑅 is set which represents secret message with the elements
𝑖 • 𝑗 = 𝑎𝑙𝑠 ∈ 𝑀1 for all 𝑖, 𝑗 ∈ 𝑄 and 𝑠 = 1, 38.
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Step 4. Interlocutor 𝐴 applies the permutations 𝛼, 𝛽 for encrypting the secret message
and sends it to interlocutor 𝐵.

Step 5. Interlocutor 𝐵 receives the secret message (𝑄1, 𝑅, ◦) and secret keys: Latin
groupoid (𝑄, 𝐴𝑙, •) and permutations 𝛼 and 𝛽.

Step 6. Interlocutor 𝐵 computes and applies the permutations 𝛼−1 and 𝛽−1 for decrypt-
ing the secret message (𝑄1, 𝑅, ◦) and read it.

It is required to describe more detailed Steps 1 − 5 in accordance with the algorithm
presented above.

Solve.
Steps to Encrypt the message.
1. Define the alphabet 𝐴𝑙 = {space,G, O, D, H, E, L, T, I, A, W, S, !, B, V, R, H},

where numbers of characters 𝑡 = 17.
2. Define a set of n = 6 ordered elements𝑄 = {1, 2, 3, 4, 5, 6}, where 36 = 𝑛2 > 𝑡 = 17.
3. Construct a Latin groupoid (𝑄, 𝐴𝑙, •).
Define the operation (•) on the couple of sets (𝑄, 𝐴𝑙), taking into account the following

conditions:
3.1. The result of the operation 𝑖 • 𝑗 with respect to an operation (•) is an element

𝑖 • 𝑗 = 𝑎𝑙𝑠 ∈ 𝐴𝑙, for all 𝑖, 𝑗 ∈ 𝑄 and 𝑠 = 1, 17, where 𝐴𝑙 = {space, G, O, D, H, E, L, T, I,
A, W, S, !, B, V, R, H}.

3.2. All results of the operations 𝑖 • 𝑗 = 𝑎𝑙𝑠 ∈ 𝐴𝑙 = {space, G, O, D, H, E, L, T, I, A,
W, S, !, B, V, R, H} for all 𝑖, 𝑗 ∈ 𝑄 and 𝑠 = 1, 17, made up of the elements 𝐴𝑙, are placed
in a Cayley table of a Latin groupoid (𝑄, 𝐴𝑙, •), which has the dimension 6 × 6.

3.3. All elements 𝑎𝑙𝑠 ∈ 𝐴𝑙 inside the Cayley table are placed randomly. An important
rule is that each element of the alphabet 𝐴𝑙 is found at least once as a result of the operation
𝑖 • 𝑗 for all 𝑖, 𝑗 ∈ 𝑄. Number of all elements of the type 𝑎𝑙𝑖 ∈ 𝐴𝑙, which some of them
can be repeated several times, is equal to 62.

Below, can see the operation table of the Latin groupoid (𝑄, 𝐴𝑙, •).

• 1 2 3 4 5 6
1 G O D H E
2 L T I S B V
3 W A R O D
4 H E R L T I
5 S B ! W A M
6 O E A H T M
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4. In the Cayley table, it is determined how many times each of the elements of the
Latin groupoid (𝑄, 𝐴𝑙, •) is repeated.

In the tables below we will construct: the set𝐾 which indicates the number of repetition
of all elements in the alphabet 𝐴𝑙 and the sets 𝑂 𝑝, where 𝑝 = 1, 2, ..., 𝑟 , which indicate
the results of the operations 𝑖 • 𝑗 = 𝑎𝑙𝑠 ∈ 𝐴𝑙 for all 𝑖, 𝑗 ∈ 𝑄 and 𝑠 = 1, 17.

As the maximum number of repetitions of the elements in 𝐴𝑙 is 𝑟 = 3, then the set 𝐾
is formed from the elements 1, 2, 3. We will have the sets 𝑂1, 𝑂2 and 𝑂3.

It should be mentioned that
⋂3

𝑝=1𝑂 𝑝 = ∅.
In this way we obtain the tables below.

Al space G O D H E L T I A
K 2 1 3 2 3 3 2 3 2 3
𝑂1 1 • 1 1 • 2 1 • 3 1 • 4 1 • 5 1 • 6 2 • 1 2 • 2 2 • 3 3 • 2
𝑂2 3 • 4 3 • 5 3 • 6 4 • 1 4 • 2 4 • 4 4 • 5 4 • 6 5 • 5
𝑂3 6 • 1 6 • 4 6 • 2 6 • 5 6 • 3

Al W S ! B V R M
K 2 2 1 2 2 2 2
𝑂1 3 • 1 2 • 4 5 • 3 2 • 5 2 • 6 3 • 3 5 • 6
𝑂2 5 • 4 5 • 1 5 • 2 5 • 3 4 • 3 6 • 6

Each element 𝑘𝑖 ∈ 𝐾 = {2, 1, 3, 2, 3, 3, 2, 3, 2, 3, 2, 2, 1, 2, 2, 2, 2} indicates the number
of repetitions of the corresponding element 𝑎𝑙𝑖 ∈ 𝐴𝑙 = {space, G, O, D, H, E, L, T, I, A,
W, S, !, B, V, R, H}, where 𝑖 = 1, 17.

5. Define a set of 𝑛1=6 ordered elements 𝑄1 = {1, 2, 3, 4, 5, 6}.
6. Define the permutations 𝛼 and 𝛽 on the set 𝑄1 in the following way:

𝛼 =

(
1 2 3 4 5 6
1 4 5 3 2 6

)
, 𝛽 =

(
1 2 3 4 5 6
1 4 5 6 3 2

)
.

7. Get the message for Encryption. Let the secret text be 𝑀1 = {GOOD HEALTH IS
ABOVE WEALTH! REMEMBER!}, where 𝑚 = 38 is the dimension of the message. In
this message we have 5 empty spaces. To reduce the dimension of the message to 36 we
will omit 2 empty spaces. Therefore, the secret message will be 𝑀1 = {GOODHEALTH
IS ABOVE WEALTH!REMEMBER!}, where 𝑚 = 36.

8. In the tables below we will construct the sets: 𝑀1, 𝐾1, 𝑃 and 𝑅.
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𝑀1 G O O D H E A L T H
𝐾1 1 3 3 2 3 3 2 3 2 3
𝑃 1 1 2 1 1 1 1 1 1 2
𝑅 1 • 2 1 • 3 3 • 5 1 • 4 1 • 5 1 • 6 3 • 2 2 • 1 2 • 2 4 • 1

𝑀1 space I S space A B O V E space
𝐾1 2 2 2 2 3 2 3 2 3 2
𝑃 1 1 1 1 2 1 3 1 1 1
𝑅 1 • 1 2 • 3 2 • 4 1 • 1 5 • 5 2 • 5 6 • 1 2 • 6 4 • 2 3 • 4

𝑀1 W E A L T H ! R E M
𝐾1 2 3 3 2 3 3 1 2 3 2
𝑃 1 3 3 2 2 3 1 1 1 1
𝑅 3 • 1 6 • 2 6 • 3 4 • 4 4 • 5 6 • 4 5 • 3 3 • 3 1 • 6 5 • 6

𝑀1 E M B E R !
𝐾1 3 2 3 3 2 1
𝑃 2 2 3 3 2 1
𝑅 4 • 2 6 • 6 5 • 2 6 • 2 4 • 3 5 • 3

In the above tables it is show that the result of the operation 𝑖 • 𝑗 ∈ 𝑅, which determines
the corresponding element 𝑎𝑙𝑖 ∈ 𝑀1, is taken from the set 𝑂𝑟 , where 𝑟 = 1, 2, 3.

For example, the result of the binary operation 1 • 3 ∈ 𝑅, give us the element 𝑂 ∈ 𝑀1
which is repeated 3 times in the text, because corresponding element in the set 𝐾1 is
3 ∈ 𝐾1. The result 1 • 3 = 𝑂 is taken from the set𝑂1, because the corresponding element
in the set 𝑃 is 1 ∈ 𝑃. The set
𝑅 = {1 • 2, 1 • 3, 3 • 5, 1 • 4, 1 • 5, 1 • 6, 3 • 2, 2 • 1, 2 • 2, 4 • 1, 1 • 1, 2 • 3, 2 • 4,

1 • 1, 5 • 5, 2 • 5, 6 • 1, 2 • 6, 4 • 2, 3 • 4, 3 • 1, 6 • 2, 6 • 3, 4 • 4, 4 • 5, 6 • 4, 5 • 3,
3 • 3, 1 • 6, 5 • 6, 4 • 2, 6 • 6, 5 • 2, 6 • 2, 4 • 3, 5 • 3} determine the secret message. The
dimension of the set 𝑅 is 𝑚 = 36.

9. Construct the Latin groupoid (𝑄1, 𝑅, ◦).
In order to increase the degree of protection of the message 𝑅 we will construct the

Latin groupoid (𝑄1, 𝑅, ◦). All results of the operations 𝑖 • 𝑗 = 𝑟𝑠 ∈ 𝑅 for all 𝑖, 𝑗 ∈ 𝑄1 and
𝑠 = 1, 36, made up of the elements 𝑅, are placed in a Cayley table of a Latin groupoid
(𝑄1, 𝑅, ◦), which has the dimension 6 × 6.
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◦ 1 2 3 4 5 6
1 1 • 2 1 • 3 3 • 5 1 • 4 1 • 5 1 • 6
2 3 • 2 2 • 1 2 • 2 4 • 1 1 • 1 2 • 3
3 2 • 4 1 • 1 5 • 5 2 • 5 6 • 1 2 • 6
4 4 • 2 3 • 4 3 • 1 6 • 2 6 • 3 4 • 4
5 4 • 5 6 • 4 5 • 3 3 • 3 1 • 6 5 • 6
6 4 • 2 6 • 6 5 • 2 6 • 2 4 • 3 5 • 3

10. The permutation:

𝛼 =

(
1 2 3 4 5 6
1 4 5 3 2 6

)
is applied to the Latin groupoid (𝑄1, 𝑅, ◦). It is obtained the Latin groupoid (𝑄1, 𝑅, ◦𝛼).

◦𝛼 1 2 3 4 5 6
1 1 • 2 1 • 3 3 • 5 1 • 4 1 • 5 1 • 6
2 4 • 2 3 • 4 3 • 1 6 • 2 6 • 3 4 • 4
3 4 • 5 6 • 4 5 • 3 3 • 3 1 • 6 5 • 6
4 2 • 4 1 • 1 5 • 5 2 • 5 6 • 1 2 • 6
5 3 • 2 2 • 1 2 • 2 4 • 1 1 • 1 2 • 3
6 4 • 2 6 • 6 5 • 2 6 • 2 4 • 3 5 • 3

11. The permutation

𝛽 =

(
1 2 3 4 5 6
1 4 5 6 3 2

)
is applied to the Latin groupoid (𝑄1, 𝑅, ◦𝛼). It is obtained the Latin groupoid

(𝑄1, 𝑅, ◦𝛽).

◦𝛽 1 2 3 4 5 6
1 1 • 2 1 • 4 1 • 5 1 • 6 3 • 5 1 • 3
2 4 • 2 6 • 2 6 • 3 4 • 4 3 • 1 3 • 4
3 4 • 5 3 • 3 1 • 6 5 • 6 5 • 3 6 • 4
4 2 • 4 2 • 5 6 • 1 2 • 6 5 • 5 1 • 1
5 3 • 2 4 • 1 1 • 1 2 • 3 2 • 2 2 • 1
6 4 • 2 6 • 2 4 • 3 5 • 3 5 • 2 6 • 6

The Latin groupoid (𝑄1, 𝑅, ◦𝛽) is the isotope of the Latin groupoid (𝑄1, 𝑅, ◦). The
Latin groupoid (𝑄1, 𝑅, ◦𝛽) represents the encryption of the message 𝑀1 and will be sent
to receiver B.
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The secret key for the encryption message 𝑀1 is the Latin groupoid (𝑄, 𝐴𝑙, •) and the
permutations 𝛼 and 𝛽 on the set 𝑄1.

Steps to Decrypt the message
1. The secret key for decryption is Latin groupoid (𝑄, 𝐴𝑙, •) and the permutations

𝛼−1, 𝛽−1 on the set 𝑄1.
2. We compute the permutation 𝛽−1 and we get:

𝛽−1 =

(
1 2 3 4 5 6
1 6 5 2 3 4

)
.

Applying the permutation 𝛽−1 on the Latin groupoid (𝑄1, 𝑅, ◦𝛽), which represent
encryption of the message 𝑀1, it is got the Latin groupoid (𝑄1, 𝑅, ◦−1

𝛽
).

◦𝛽−1 1 2 3 4 5 6
1 1 • 2 1 • 3 3 • 5 1 • 4 1 • 5 1 • 6
2 3 • 2 3 • 4 3 • 1 6 • 2 6 • 3 4 • 4
3 4 • 5 6 • 4 5 • 3 3 • 3 1 • 6 5 • 6
4 2 • 4 1 • 1 5 • 5 2 • 5 6 • 1 2 • 6
5 3 • 2 2 • 1 2 • 2 4 • 1 1 • 1 2 • 3
6 4 • 2 6 • 6 5 • 2 6 • 2 4 • 3 5 • 3

3. We compute the permutation 𝛼−1 and we get:

𝛼−1 =

(
1 2 3 4 5 6
1 5 4 2 3 6

)
.

Applying the permutation 𝛼−1 on the Latin groupoid (𝑄1, 𝑅, ◦−1
𝛽
), it is obtained the

Latin groupoid (𝑄1, 𝑅, ◦−1
𝛼 ) which coincides to the groupoid (𝑄1, 𝑅, ◦).

◦ 1 2 3 4 5 6
1 1 • 2 1 • 3 3 • 5 1 • 4 1 • 5 1 • 6
2 3 • 2 2 • 1 2 • 2 4 • 1 1 • 1 2 • 3
3 2 • 4 1 • 1 5 • 5 2 • 5 6 • 1 2 • 6
4 4 • 2 3 • 4 3 • 1 6 • 2 6 • 3 4 • 4
5 4 • 5 6 • 4 5 • 3 3 • 3 1 • 6 5 • 6
6 4 • 2 6 • 6 5 • 2 6 • 2 4 • 3 5 • 3

4. Using the Latin groupoid (𝑄, 𝐴𝑙, •) that was constructed at step 3 in the Encryption
Algorithm, we obtain the decrypted message.
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◦ 1 2 3 4 5 6
1 G O O D H E
2 A L T H I
3 S A B O V
4 E W E A L
5 T H ! R E M
6 E M B E R !

In this way we obtained the secret message 𝑀1 = {GOODHEALTH IS ABOVE
WEALTH!REMEMBER!}.

4. Conclusion

We have proposed a simply and efficient Encryption and Decryption Algorithm based
on the Latin groupoid isotopes. Cryptographic developed algorithm does not consume
large amount of CPU time and space during in the process of encryption and decryption.
This cryptographic algorithm is safe in the process of the implementation and it is not
complicated to develop a program for the developed algorithm. In this sense, the authors,
based on the proposed algorithms, developed a program in the C++ programming language
that works quickly and efficiently.
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Book Review

Study Of Useful Properties Of Some Coordination Compounds Contain-
ing Oximic Ligands, by E. Coropceanu, A. Ciloci, A. Ştefı̂rţă, I. Bulhac,
ISBN 978-3-9402237-24-8, 266 p.

The monograph ”STUDY OF USEFUL PROPERTIES OF SOME COORDINA-
TION COMPOUNDS CONTAINING OXIMIC LIGANDS”, ISBN 978-3-9402237-24-8,
presents a study in the field of synthesis, determination of the composition and structure
of new coordination compounds based on ligands with various functional groups, as well
as the determination of the fields of practical utility of the new substances. The work
includes four chapters on 266 pages.

In chapter I. AN OVERVIEW OF THE PERSPECTIVES OF USING COORDINA-
TION COMPOUNDS BASED ON DIOXIME LIGANDS, studies in the field worldwide
are described, which served as the basis for initiating the cycle of studies described by
the authors. The most important research directions regarding the class of analyzed com-
pounds and the properties that served to establish areas of practical use are reflected. The
evolution of research in the field is briefly described, both from a chronological point of
view and the increase in the degree of complexity of the molecules synthesized based on
the ligands used for the assembly of metal-organic molecules.

In chapter II. THE INFLUENCE OF DIOXIME LIGANDS BASED COMPLEXES ON
THE BIOLOGICAL ACTIVITY OF SOME ENZYME-PRODUCING FUNGI STRAINS
describes the studies related to the use of coordinative compounds as an addition to the
cultivation medium of some enzyme-producing microorganisms. As enzymes are of
particular interest for the food, pharmaceutical and some branches of the agro-industrial
complex, it is important to develop new innovative technologies to increase productivity
and increase the profitability of economic processes. Studies have been carried out on
the genera of fungi Aspergillus, Rhizopus, Penicillium, Trichoderma, Fusarium, etc., in
which significant increases in enzyme genetic activity, biomass growth and reduction of
the technological cycle have been recorded, a fact that increases the yield of cultivation
methods and obtaining biologically active substances. Most of the results listed are
patented. A number of inventions have been awarded at international salons with gold
medals and other trophies.
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In chapter III. THE EFFECT OF SOME COORDINATION COMPOUNDS ON
PLANT PHYSIOLOGICAL PROCESSES UNDER THE IMPACT OF ECOLOGICAL
STRESS describes the influence of new coordination compounds on physiological pro-
cesses in higher crop plants. It was established that the analyzed compounds possess
properties of bioactive substances with a positive impact on the growth, development,
increasing resistance and productivity of plants. The treatment of the seeds for sowing
and the leaf apparatus during the vegetation, with aqueous solutions of some compositions
conditions the optimization of the functional state, growth and development of the plants
of some agricultural crops, both in favorable humidity conditions and in a moderate water
deficit. The coordinative compounds used have the property of activating vital processes
already at the initial stages of individual plant development, stimulate the growth of the
root system and the shoot.

In conditions of low humidity,
some compositions with coordinating
compounds have an influence of re-
ducing the effect of drought on the
formation of the assimilative appara-
tus, the accumulation of biomass and
the harvest of plants. The use of phys-
iologically active substances ensures
a stabilization of the plant production
process. Compositions based on coor-
dinating compounds possess antioxi-
dant properties that are manifested in
increasing the antioxidant protection
capacity of plants.

In chapter IV. PERSPECTIVES
OF USING COORDINATION COM-
POUNDS BASED ON DIOXIME
LIGANDS IN INDUSTRIAL PRO-
CESSES the fields of perspective for
the use of new coordination com-
pounds are presented. The compounds of some transition metals based on 𝛼-dioximes
show different useful properties: catalysts of different industrial processes; compounds
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with dual function properties of catalysts and stabilizers in polyurethane production reac-
tions; inhibitors of steel corrosion processes in the aquatic environment; materials with
dielectric properties, etc.

The monograph is valuable in that it describes the achievements of the schools of
coordinative chemistry, microbiology and plant physiology in the Republic of Moldova in
the last three decades. The work is elaborated in an academic style, presenting scientific
results obtained through the use of high-performance research equipment.

The monograph is recommended for students, master’s students, doctoral students, but
also for the general public of readers, who show interest in the subject addressed.
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