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PROFESSOR ALEXANDRU S, UBĂ ON HIS 70TH BIRTHDAY

Alexandru S, ubă is University Professor, Doctor Habilitatus in Mathematical and Phys-
ical Sciences. He is a Moldovan mathematician and a remarkable leader of the Moldovan
School of Differential Equations, who contributed a lot to the qualitative theory of differ-
ential equations and to the education of new generations of highly-qualified specialists.
On December 2, 2023, Professor Alexandru S, ubă celebrated his 70th anniversary.

He was born in the village of Dănceni from the district of Ialoveni, Republic of Moldova.
In 1969 he finished the elementary school from the village of Dănceni; then, in 1971 he
finished the secondary school from the town of Ialoveni and in 1976 he graduated from
the Faculty of Physics and Mathematics of Moldova State University from Chis, inău. At
the same time, in 1976 he started his Candidate Degree (equivalent of PhD Degree) at the
Institute of Mathematics and Computer Sciences of the Academy of Sciences of Moldova
(specialty 01.01.02 – Differential Equations).

In 1982, Alexandru S, ubă defended his Candidate Degree thesis in Mathematical and
Physical Sciences at the State University of Sankt-Petersburg, Russia. He did it under
the supervision of the well-known mathematician Academician Constantin Sibirschi. In
1999 he defended his Doctor Habilitatus Degree thesis (2nd PhD thesis) in Chis, inău at
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PROFESSOR ALEXANDRU S, UBĂ ON HIS 70TH BIRTHDAY

Moldova State University, Institute of Mathematics and Informatics of the Academy of
Science of Moldova.

The professional activity of Professor Alexandru S, ubă belongs to three institutions:
Institute of Mathematics and Informatics of the Academy of Sciences of Moldova
(1976–1990, 2010–present) which merged with State University of Moldova in 2022,
State University of Moldova (1990 – 2010) and from 1997 to Tiraspol State University,
located in Chis, inău, which merged with “Ion Creangă” State Pedagogical University in
2022.

Within the Institute of Mathematics and Informatics of the Academy of Sciences
of Moldova, the professional activity of Professor Alexandru S, ubă evolved as follows:
Collaborator of the Laboratory (1976–1981), Scientific Researcher (1981–1985), Senior
Scientific Researcher (1985–1990), Deputy Director (2010–2015), head of the Laboratory
of Differential Equations (2015–2019), Principal Scientific Researcher (2006–present),
while at Moldova State University (Chair of Differential Equations) his career took place
as follows: Associate Professor (1990–2000) and University Professor (2001–2010).

Since 1991, Professor Alexandru S, ubă has been working fruitfully at Tiraspol State
University / “Ion Creangă” State Pedagogical University and lectures to Bachelor, Master
and PhD Degree students. In 2006 he won by competition the position of Professor at
the Department of Mathematical Analysis and Algebra. The contribution of Professor
Alexandru S, ubă to the education of new generations of highly-qualified mathematicians
is enormous. He supervised scientifically one Doctor Habilitatus thesis in mathematics, 6
doctoral theses in physical and mathematical sciences and about 40 Bachelor and Master
Degree theses – all of them defended. In 2015 he was awarded Doctor Honoris Causa of
Tiraspol State University.

The scientific activity of Professor Alexandru S, ubă is related to dynamic systems: topo-
logical theory, integrability and special orbits. Within this research direction he studied
the following problems: the development and systematization of the topological theory
of dispersed and semi-dynamic systems; the Dulac integrability problem of dynamical
systems; GL(2,R)-orbits problem; the problem of distinguishing between a center and the
focus; the problem of classifying differential systems with invariant straight lines.

The main results concerning the topological theory of dynamical systems were pub-
lished in the monograph [1]. There were elaborated the axioms of dynamic systems
without uniqueness (dispersed systems) and systematized their topological theory. For
planar semi-dynamical systems, the existence of singular points in the presence of non-
wandering points is proved. The structure of minimal pseudo-invariant sets, periodic dot
sheets and the semi-dynamical systems of characteristic 0 was studied.
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Cozma D. and Popa M.

Another research direction of Professor Alexandru S, ubă concerns the problem of
distinguishing between a center and a focus (the problem of the center) for polynomial
differential systems

¤𝑥 = 𝑃(𝑥, 𝑦), ¤𝑦 = 𝑄(𝑥, 𝑦) (1)

having a singular point 𝑂 (0, 0) with pure imaginary eigenvalues (of a center or a focus
type), where 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) are real and coprime polynomials in the variables 𝑥 and
𝑦 of degree 𝑛, 𝑛 = max{deg 𝑃, deg𝑄}. The importance of this problem in the qualitative
theory of differential equations arose as part of the still unsolved 16th Hilbert problem
and it remains to be one of the most difficult problems to be solved of the list given by
Hilbert [2] at the beginning of the past century.

For the first time in the papers of Professor Alexandru S, ubă it was proposed a new
approach to the problem of the center by simultaneously taking into account the invariant
algebraic curves (exponential factors), the focus quantities and Darboux integrability [3],
[4]. This result is an improvement of the classical Darboux integrability theorem and
leads to the notion of a center sequence or, in a more general form, a center pair.

We say that a pair of two numbers (𝑀; 𝑁) is a center pair for (1) if the existence of 𝑀
invariant algebraic curves (exponential factors) and the vanishing of the focus quantities
𝐿𝑘 , 𝑘 = 1, . . . , 𝑁 imply the singular point 𝑂 (0, 0) to be a center for (1).

Till present, for polynomial differential systems with irreducible non-homogeneous
invariant algebraic curves (exponential factors) the following center sequences are known
[3], [4]: (

𝑛(𝑛 + 1)
2

; 0
)
,

(
𝑛(𝑛 + 1)

2
− 2; 1

)
, . . . ,

(
𝑛(𝑛 + 1)

2
−
[𝑛 + 1

2

]
;
[𝑛 − 1

2

] )
The problem of center sequences was solved completely for some classes of cubic

differential systems (𝑛 = 3) with a given number of invariant straight lines (𝑙 𝑗 ≡ 𝑎 𝑗𝑥 +
𝑏 𝑗 𝑦 + 𝑐 𝑗 = 0), four invariant straight lines ( 𝑗 = 1, 2, 3, 4), three invariant straight lines
( 𝑗 = 1, 2, 3). In this way, in the period 1992-2005 it is shown that (𝑙 𝑗 , 𝑗 = 1, 2, 3, 4; 𝑁 = 2)
and (𝑙 𝑗 , 𝑗 = 1, 2, 3; 𝑁 = 7) are center sequences [5], [6].

In the last years, this direction of investigation was highly appreciated by many mathe-
maticians and the obtained results were cited in several papers, see for instance Christopher
and Llibre [9], Chavarriga, Giacomini and Giné [7], Chavarriga and Grau [8], Cozma
[10], Garcia and Giné [11], Giné [12], Romanovski and Shafer [13].

Concerning the Dulac integrability problem of dynamical systems, the problem of the
existence of a center in the sense of Dulac was completely solved by Professor S, ubă for
plane cubic differential systems having a singular point with one zero eigenvalue [14].
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PROFESSOR ALEXANDRU S, UBĂ ON HIS 70TH BIRTHDAY

The investigation of the orbits of a differential system belongs to the theory elaborated
by Professor Mihail Popa, Doctor Honoris Causa of Tiraspol State University (2013) and
refers to the interaction of Lie algebras, systems of differential equations and their algebraic
invariants [15]. Professor Alexandru S, ubă proved that the 𝐺𝐿 (2, 𝑅)–orbit dimension of
any polynomial differential system is different from one. He proposed a classification of
polynomial differential systems with respect to the dimensions of 𝐺𝐿 (2, 𝑅)–orbits [16],
[17].

At present, the activity of Professor Alexandru S, ubă is focused on the study of poly-
nomial differential systems with multiple invariant straight lines (see, for example, [18],
[19]). In this direction, in addition to some important results, he also formulated some
problems to be solved in the future. Here we bring only a few of them.

Denote by 𝑀 (𝑛) (respectively, 𝑀∞(𝑛)) the maximal multiplicity of affine invariant
straight lines (respectively, the line at infinity) in the class of polynomial differential
systems of degree 𝑛. For affine invariant straight lines we have 𝑀 (2) = 4, 𝑀 (3) =

7, 𝑀 (4) = 10 and the evaluation [20]:

3𝑛 − 2 ≤ 𝑀 (𝑛) ≤ 3𝑛 − 1, 𝑛 ≥ 2

Problem 1 (Conjecture 1). 𝑀 (𝑛) = 3𝑛 − 2 ?

Problem 2. Is it linear the equation of trajectories of each polynomial differential system
(1) which has an affine invariant straight line of the maximal multiplicity 𝑀 (𝑛) ?

Problem 3. Is it true the following equality 𝑀∞(𝑛) = 3𝑛−2 ? Are linear and has only one
affine invariant straight line of multiplicity one the systems for which the line at infinity
L∞ is of maximal multiplicity (𝑀∞(𝑛) ≥ 3𝑛 − 2, 𝑛 > 3) ?

Problem 4. Is 𝑀∞(𝑛) = 2𝑛 + 1 the maximal multiplicity of the line at infinity in the class
of polynomial differential systems of degree 𝑛 without affine invariant straight lines ?

Professor Alexandru S, ubă is the author of over 160 scientific publications, published
in prestigious journals from the USA, Italy, Spain, Ukraine, Belarus, China, Romania,
among them being one monograph, four text books for Bachelor and Master Degree
students. He contributed to the organization and development of research in the field of
differential equations, founding, by training highly qualified personnel, a scientific school
related to the theory of integrability of systems of differential equations.

He worked within two international grants (Canada-France-Moldova, 1999–2001;
USA-Moldova, 2001–2003), one European project FP7-PEOPLE-2012-IRSES
(2012–2016) and two national projects (2011–2014, 2015–2019). Due to his prestige
in the field of mathematics, he became member of the editorial boards of four accred-
ited journals and co-president of the Seminar on Differential Equations and Algebras
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at Tiraspol State University/“Ion Creangă” State Pedagogical University. The Seminar
works on regular basis since 2002, and it is designed for Bachelor, Master and PhD Degree
students and scientific researches.

The special appreciation of his scientific work brings him several prizes, titles and
medals, namely: prize “Academician Constantin Sibirschi” (2013); Medal “Nicolae
Milescu Spătaru” (2019); Medal “Dimitrie Cantemir” (2023); Medal “Ion Creangă”
(2023) given by ”Ion Creangă” State Pedagogical University. Professor Alexandru S, ubă
is also Honorary citizen of the village of Dănceni from Ialoveni District (2023).

The present volume is dedicated to Professor Alexandru S, ubă at the age of 70, very
active in the academic community, full of vigor and optimism, who brought a significant
contribution to the development of mathematics in the Republic of Moldova.

On the occasion of his 70th birthday we congratulate Professor Alexandru S, ubă on his
achievements and we wish him many returns of the day, good health, all the blessings of
life, new scientific accomplishments and fruitful didactic activities.

Happy Anniversary, dear Professor Alexandru S, ubă!
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Averaging in multifrequency systems with multi-point
conditions and a delay
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Abstract. For multifrequency system of differential equations with a discrete and
integral delay we find conditions for the existence and uniqueness of the solution. Linear
multipoint conditions are set for the solution. An estimate of the error of the averaging
method is obtained, which clearly depends on the small parameter.
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Medierea ı̂n sistemele multifrecvenţă cu condiţii multi-punct
şi ı̂ntârziere

Rezumat. Pentru sistemul multifrecvenţă de ecuaţii diferenţiale cu o ı̂ntârziere integrală şi
discretă găsim condiţii pentru existenţa şi unicitatea soluţiei. Condiţiile liniare multipunct
sunt stabilite pentru soluţie. Se obţine o estimare a erorii metodei de mediere, care depinde
ı̂n mod clar de parametrul mic.
Cuvinte-cheie: sistem multifrecvenţă, metoda medierii, rezonanţă, ı̂ntârziere integrală,
argument transformat liniar.

1. Introduction

In many cases, mathematical models of oscillating systems are described with
differential equations of the form

𝑑𝑎

𝑑𝜏
= 𝑋 (𝜏, 𝑎, 𝜑), 𝑑𝜑

𝑑𝜏
=
𝜔(𝜏, 𝑎)

𝜀
+ 𝑌 (𝜏, 𝑎, 𝜑), (1)

where 0 ≤ 𝜀𝑡 = 𝜏 – slow time, 𝜀 – positive small parameter, 𝑎 ∈ D ⊂ R𝑛, 𝜑 ∈ R𝑚.
The system (1) is rigid, its research and construction of both analytical and numerical
solutions is a complex and not always solvable task. Therefore, to simplify the system (1),
the averaging procedure for fast variables 𝜑1, . . . , 𝜑𝑚 is used, which greatly simplifies it,
reducing it to the form

𝑑𝑎

𝑑𝜏
= 𝑋0(𝜏, 𝑎),

𝑑𝜑

𝑑𝜏
=
𝜔(𝜏, 𝑎)

𝜀
+ 𝑌0(𝜏, 𝑎). (2)
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In the general case, the deviation of solutions ∥𝑎(𝜏, 𝜀) − 𝑎(𝜏)∥ can become 𝑂 (1) on a
finite segment [0, 𝐿] or R+ = (0,∞) due to frequency resonance, the condition of which
is

(𝑘, 𝜔(𝜏, 𝑎)) := 𝑘1𝜔1(𝜏, 𝑎) + · · · + 𝑘𝑚𝜔𝑚(𝜏, 𝑎) ≃ 0, 𝑘 ≠ 0. (3)

Therefore, in order to justify the averaging method, additional conditions are imposed
on the frequency vector 𝜔(𝜏, 𝑎) for the system to exit from a small circumference of
resonance. The works of V. I. Arnold [1], E. O. Grebenikov [2], A. M. Samoilenko and
R. I. Petryshyn [3] and many others are devoted to this issue.

The monograph [3] presents a new method of studying multifrequency systems (1),
which is based on estimates of the corresponding oscillatory integrals, which made it
possible to justify a wide class of multifrequency systems with initial and boundary
conditions.

For adequate modeling of oscillating systems, it is also important to take into account
informational, technological and other delays. Multifrequency systems with constant and
variable delay were studied in the works [4, 5, 6]. In particular, systems in which the
delay is specified with a linearly transformed argument of the form 𝜆𝜏, 𝜏 > 0, 0 < 𝜆 ≤ 1
in [6, 7, 8]. A new resonance condition was obtained, including for systems with linearly
transformed arguments and a frequency vector 𝜔(𝜏) in fast variables 𝜑(𝜃𝜈𝜏) of the form

𝛾𝑘 (𝜏) :=
𝑞∑︁

𝜈=1
𝜃𝜈

(
𝑘𝜈 , 𝜔(𝜃𝜈𝜏)

)
= 0. (4)

The works [6, 7, 8, 9] are devoted to the substantiation of the averaging method for
such systems with initial multipoint and integral conditions.

This article considers systems with both point and integral delay, which allows taking
into account the background history of the process at some interval. Parabolic equations
with such a delay were studied in [9] for functional differential equations in the monograph
[11] and others.

2. Formulation of the problem

We investigate a system of differential equations with variable delay of the form

𝑑𝑎(𝜏)
𝑑𝜏

= 𝑋
(
𝜏, 𝑎(𝜏), 𝑎𝜆(𝜏),

𝜏∫
Δ𝜏

𝑔(𝑠)𝑎(𝑠)𝑑𝑠, 𝜑Θ(𝜏)
)
, (5)

𝑑𝜑(𝜏)
𝑑𝜏

=
𝜔(𝜏)
𝜀

+ 𝜀𝛽𝑌
(
𝜏, 𝑎(𝜏), 𝑎𝜆(𝜏),

𝜏∫
Δ𝜏

𝑔(𝑠)𝑎(𝑠)𝑑𝑠, 𝜑Θ(𝜏)
)
, (6)
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where 𝜏 ∈ [0, 𝐿], 𝜀 ∈ (0, 𝜀0], 𝑎 ∈ D ⊂ R𝑛, 𝜑 ∈ R𝑚; 0 < 𝜆 < 1, 𝑎𝜆(𝜏) = 𝑎(𝜆𝜏);
𝜑Θ =

(
𝜑(𝜃1𝜏), . . . , 𝜑(𝜃𝑞𝜏)

)
, 0 < 𝜃1 < · · · < 𝜃𝑞 ≤ 1, 0 < Δ < 1, 𝛽 > 0. Vector-functions

𝑋 and 𝑌 are 2𝜋-periodic by components of variables 𝜑𝜃𝜈 , 𝜈 = 1, 𝑞.
For the solution of the system (5), (6), multipoint conditions are set

𝑟∑︁
𝜈=1

𝐴𝜈 (𝜀)𝑎 |𝜏=𝜏𝜈 = 𝑑1, (7)

𝑟∑︁
𝜈=1

𝐵𝜈 (𝜀)𝜑 |𝜏=𝜏𝜈 = 𝑑2, (8)

where 0 ≤ 𝜏1 < 𝜏2 < · · · < 𝜏𝑟 ≤ 𝐿, 𝐴𝜈 (𝜀) and 𝐵𝜈 (𝜀) are given matrices of order 𝑛 and
𝑚, respectively, defined at 𝜀 ∈ [0, 𝜀0] and vectors 𝑑1 ∈ R𝑛, 𝑑2 ∈ R𝑚.

The corresponding system (5), (6) averaged over fast variables on the 𝑚𝑞-cube of
periods takes the form

𝑑𝑎(𝜏)
𝑑𝜏

= 𝑋0
(
𝜏, 𝑎(𝜏), 𝑎𝜆(𝜏),

𝜏∫
Δ𝜏

𝑔(𝑠)𝑎(𝑠)𝑑𝑠
)
, (9)

𝑑𝜑(𝜏)
𝑑𝜏

=
𝜔(𝜏)
𝜀

+ 𝜀𝛽𝑌0
(
𝜏, 𝑎(𝜏), 𝑎𝜆(𝜏),

𝜏∫
Δ𝜏

𝑔(𝑠)𝑎(𝑠)𝑑𝑠
)

(10)

with multipoint conditions
𝑟∑︁

𝜈=1
𝐴𝜈 (𝜀)𝑎 |𝜏=𝜏𝜈 = 𝑑1, (11)

𝑟∑︁
𝜈=1

𝐵𝜈 (𝜀)𝜑 |𝜏=𝜏𝜈 = 𝑑2, (12)

Now the problem (9), (11) can be solved separately and we can find the solution 𝑎 =

𝑎(𝜏; 𝑦, 𝜀), 𝑎(0; 𝑦, 𝜀) = 𝑦. Solving the multipoint problem (11) is reduced to integration if
the initial value for the solution component is known 𝜑 = 𝜑(𝜏; 𝑦, 𝜓, 𝜀), 𝜑(0; 𝑦, 𝜓, 𝜀) = 𝜓.

Suppose that the condition is satisfied:
Condition A. There is a unique solution of the averaged problem (9)–(12), whose

component is 𝑎(𝜏; 𝑦, 𝜀), 𝑦 ∈ D1 ⊂ D, at 𝜏 ∈ [0, 𝐿] and 𝜀 ∈ (0, 𝜀0] lies in the area D with
some 𝜌-circumference.

In the work, sufficient conditions are established, under which there is a unique differ-
entiable solution of the problem (5)–(8). The method of averaging is stipulated and the
estimate of the deviation error of the solutions is constructed, which clearly depends on
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the small parameter 𝜀 and has the form

𝑢(𝜏; 𝜀) := ∥𝑎(𝜏; 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀) − 𝑎(𝜏; 𝑦, 𝜀)∥+

+∥𝜑(𝜏; 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀) − 𝜑(𝜏; 𝑦, 𝜓, 𝜀)∥ ≤ 𝑐1𝜀
𝛼.

(13)

Here 𝛼 = 1/(𝑚𝑞), 𝑐1 > 0 and does not depend on 𝜀, 𝑎(0; 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀) = 𝑦 + 𝜇(𝜀),
𝜑(0; 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀) = 𝜓 + 𝜉 (𝜀).

3. Auxiliary Statements

Lemma 3.1. Let the matrix 𝐵(𝜀) :=
𝑟∑

𝜈=1
𝐵𝜈 (𝜀) be nondegenerate for 𝜀 ∈ [0, 𝜀0]. Then

there is a unique solution to the problem (10), (12).

Proof. From the equation (10) we have

𝜑(𝜏𝜈; 𝑦, 0, 𝜀) =
𝜏𝜈∫

0

(𝜔(𝑠)
𝜀

+ 𝑌0(𝑠, 𝑎, 𝑎𝜆, 𝑣Δ)
)
𝑑𝑠,

where

𝑣Δ(𝜏, 𝜀) =
𝜏∫

Δ𝜏

𝑔(𝑠)𝑎(𝑠; 𝑦, 𝜀)𝑑𝑠.

It follows from the condition (12) that

𝐵(𝜀)𝜓 = 𝑑2 −
𝑟∑︁

𝜈=1
𝜑(𝜏𝜈; 𝑦, 0, 𝜀),

wherefrom we find the initial value of 𝜓(𝑦, 𝜀). The solution to the problem (10), (12)
takes the form

𝜑(𝜏; 𝑦, 𝜓, 𝜀) = 𝜓(𝑦, 𝜀) + 𝜑(𝜏; 𝑦, 0, 𝜀).

□

Lemma 3.2. Let
1) number 𝑑 ≥ 0, 𝜆,Δ ∈ (0, 1);
2) 𝑓1, 𝑓2 and 𝑔 – continuous functions on [0,L] with value in R+ = [0,∞);

0 ≤ 𝑢(𝜏) ≤ 𝑑 +
𝜏∫

0

𝑓1(𝑠)𝑢(𝑠)𝑑𝑠 +
𝜆𝜏∫

0

𝑓2(𝑠)𝑢(𝑠)𝑑𝑠 +
𝜏∫

0

( 𝑠∫
Δ𝑠

𝑔(𝑧)𝑢(𝑧)𝑑𝑧
)
𝑑𝑠. (14)

Then

𝑢(𝜏) ≤ 𝑑 · 𝑒𝑥𝑝
( 𝜏∫

0

(
𝑓1(𝑠) + 𝜆 𝑓2(𝑠)

)
𝑑𝑠 +

𝜏∫
0

( 𝑠∫
Δ𝑠

𝑔(𝑧)𝑑𝑧
)
𝑑𝑠

)
, 0 ≤ 𝜏 ≤ 𝐿. (15)
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Proof. We denote by 𝑤(𝜏) the right-hand side of the inequality (14). Then 𝑤(0) = 𝑑,
𝑢(𝜏) ≤ 𝑤(𝜏) and 𝑤

′ (𝜏) ≥ 0 for 𝜏 ∈ [0, 𝐿].
Then we have

𝑣
′ (𝜏) = 𝑓1(𝜏)𝑢(𝜏) + 𝜆 𝑓2(𝜆𝜏)𝑢(𝜆𝜏) +

𝜏∫
𝜆𝜏

𝑔(𝑠)𝑢(𝑠)𝑑𝑠 ≤

≤ 𝑓1(𝜏)𝑣(𝜏) + 𝜆 𝑓2(𝜆𝜏)𝑣(𝜆𝜏) +
𝜏∫

𝜆𝜏

𝑔(𝑠)𝑣(𝑠)𝑑𝑠 ≤

≤
(
𝑓1(𝜏) + 𝜆 𝑓2(𝜆𝜏) +

𝜏∫
𝜆𝜏

𝑔(𝑠)𝑑𝑠
)
𝑣(𝜏).

After integrating the inequality, we obtain the solution (15) of the integral inequality
(14) □

The article [10] substantiates the averaging method for a system of equations of a more
general form than (5), (6) with initial conditions. The following condition is the condition
for exiting the (4) resonance small circumference.

Condition B. Let 𝜔 ∈ C𝑚𝑞 [0, 𝐿] and be constructed according to the 𝑚𝑞 system of
functions

{
𝜔(𝜃1𝜏), . . . , 𝜔(𝜃𝑞𝜏)

}
Wronskian

𝑊 (𝜑Θ) ≠ 0, 𝜏 ∈ [0, 𝐿] .

Theorem 3.1. Suppose that:
1) vector function 𝐹 (𝜏, 𝑎, 𝑎𝜆, 𝑤Δ, 𝜑Θ) :=

(
𝑋,𝑌

)
is twice continuously differentiable over

all arguments in the area 𝐺 = 𝐺1 × R𝑚𝑞, 𝐺1 = [0, 𝐿] × D × D × D𝜈 , 2𝜋-periodic in the
components of the vectors 𝜑𝜈 , 𝜈 = 1, 𝑞 and bounded together with the derivatives by the
constant 𝜎1;

2) conditions A and B are satisfied;
3) for the Fourier coefficients 𝐹𝑘 in the area 𝐺1 the evaluation is performed:∑︁

𝑘≠0

(
sup
𝐺1

∥𝐹𝑘 ∥ +
1

∥𝑘 ∥Θ
(
sup
𝐺1




𝜕𝐹𝑘

𝜕𝜏




 + sup
𝐺1




𝜕𝐹𝑘

𝜕𝑎




 + sup
𝐺1




𝜕𝐹𝑘

𝜕𝑎𝜆





+(1 − Δ𝜈) sup

𝐺1




𝜕𝐹𝑘

𝜕𝑣𝜆

𝜕𝑣𝜆

𝜕𝜏




)) ≤ 𝜎2

where ∥𝑘 ∥Θ =
𝑞∑

𝜈=1
𝜃𝜈 ∥𝑘𝜈 ∥.
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Then for sufficiently small 𝜀1 ∈ (0, 𝜀0] there exists a unique solution
(
𝑎(𝜏; 𝑦, 𝜓, 𝜀),

𝜑(𝜏; 𝑦, 𝜓, 𝜀)
)

with initial conditions (𝑦, 𝜓) and the evaluation is performed

𝑢(𝜏; 𝜀) := ∥𝑎 − 𝑎∥ + ∥𝑣 − 𝑣∥ ≤ 𝑐2𝜀
𝛼, (16)

for all (𝜏, 𝜀) ∈ [0, 𝐿] × (0, 𝜀1], 𝛼 = (𝑚𝑞)−1, 𝑐2 > 0 and does not depend on 𝜀.

Remark 3.1. If the vector functions 𝑋 and 𝑌 are continuously differentiable 𝑚𝑞 once
over the variable 𝜏 and 𝑚𝑞 + 1 the other time over the other variables, then condition 3)
of Theorem 3.1 is satisfied and the estimate of the form (16) is correct for the derivatives
of the deviation of the solutions for the initial variables 𝑦 and 𝜓 with the constant 𝑐2.

4. Justification of the Averaging Method

Let

𝐴(𝜀) =
𝑟∑︁

𝜈=1
𝐴𝜈 (𝜀)

𝜕𝑎(𝜏𝜈; 𝑦, 𝜀)
𝜕𝑦

.

Theorem 4.1. Suppose that:
1) condition 1) of Theorem 3.1 and conditions A and B are satisfied;
2) matrices 𝐴𝜈 (𝜀), 𝐵𝜈 (𝜀), 𝜈 = 1, 𝑟 are continuous at 𝜀 ∈ (0, 𝜀0], 𝐴(𝜀), 𝐵(𝜀) are non-
degenerate and ∥𝐴−1(𝜀)∥ ≤ 𝜎2, ∥𝐵−1(𝜀)∥ ≤ 𝜎3;

3) 𝑔 ∈ C[0, 𝐿].
Then there exists such 𝜀∗ ∈ (0, 𝜀0] that for each 𝜀 ∈ [0, 𝜀∗] there is a unique solution

to the problem (5)–(8) in the class C1 [0, 𝐿] and for all (𝜏, 𝜀) ∈ [0, 𝐿] × (0, 𝜀∗] evaluation
is performed (13).

Besides
∥𝜇∥ ≤ 𝑐3𝜀

𝛼, ∥𝜉∥ ≤ 𝑐4𝜀
𝛼, 𝛼 = 1/(𝑚𝑞). (17)

Proof. Let
2𝑐1𝜀

𝛼 ≤ 𝜌, ∥𝜇∥ ≤ 𝑐3𝜀
𝛼 ≤ 𝜌/2, (18)

where the constant 𝑐3 > 0 and will be determined further. Then based on the estimate
(16) for all 𝜓 ∈ R𝑚, (𝜏, 𝜀) ∈ (0, 𝜀2], 𝜀2 = 𝑚𝑖𝑛

(
𝜀1,

( 𝜌

2𝑐2

)𝑚𝑝
,
( 𝜌

2𝑐3

)𝑚𝑝
)

∥𝑎(𝜏; 𝑦 + 𝜇, 𝜓) − 𝑎(𝜏; 𝑦 + 𝜇, 𝜀)∥ ≤ 𝑐2𝜀
𝛼. (19)

From equation (9) we have

𝑣(𝜏, 𝜇, 𝜀) := ∥𝑎(𝜏; 𝑦 + 𝜇, 𝜀) − 𝑎(𝜏; 𝑦, 𝜀)∥ ≤

≤ ∥𝜇∥ + 𝜎1

𝜏∫
0

𝑣(𝑠, 𝜇, 𝜀)𝑑𝑠 + 𝜎1

𝜏∫
0

𝑣(𝜆𝑠, 𝜇, 𝜀)𝑑𝑠 + 𝜎1

𝜏∫
0

𝑠∫
Δ𝑠

|𝑔(𝑧) |𝑣(𝑧, 𝜇, 𝜀)𝑑𝑧𝑑𝑠.
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Applying the estimate (15) gives

𝑣(𝜏, 𝜇, 𝜀) ≤ ∥𝜇∥ exp
(
2𝜎1 +

𝜏∫
0

𝑠∫
Δ𝑠

|𝑔(𝑧) |𝑑𝑧𝑑𝑠
)
𝜏.

So for 𝜏 ∈ [0, 𝐿]
𝑣(𝜏, 𝜇, 𝜀) ≤ 𝑐5𝜀

𝛼,

where 𝑐5 = 𝑐3 exp
(
2𝜎1 +

𝐿∫
0

𝑠∫
Δ𝑠

|𝑔(𝑧) |𝑑𝑧𝑑𝑠
)
𝐿.

The solution 𝑎(𝜏; 𝑦 + 𝜇, 𝜓, 𝜀) under the conditions (18) lies in the 𝜌 circumference of
the solution 𝑎(𝜏; 𝑦, 𝜀) and the evaluation is performed

𝑤(𝜏; 𝜇, 𝜓, 𝜀) := ∥𝑎(𝜏; 𝑦 + 𝜇, 𝜓, 𝜀) − 𝑎(𝜏; 𝑦, 𝜀)∥ ≤

≤ ∥𝑎(𝜏; 𝑦 + 𝜇, 𝜓, 𝜀) − 𝑎(𝜏; 𝑦 + 𝜇, 𝜀)∥ + 𝑣(𝜏, 𝜇, 𝜀) ≤ 𝑐6𝜀
𝛼,

where 𝑐6 = 𝑐2 + 𝑐5.
We will show that there is 𝜇 that satisfies the condition (18) such that the solution 𝑎 of

the equation (5) satisfies the condition (7).
From the conditions (7) and (11) we have

𝑟∑︁
𝜈=1

𝐴𝜈 (𝜀)
(
𝑎(𝜏𝜈; 𝑦 + 𝜇, 𝜀) − 𝑎(𝜏𝜈; 𝑦, 𝜀)

)
=

−
𝑟∑︁

𝜈=1
𝐴𝜈 (𝜀)

( (
𝑎(𝜏𝜈; 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀) − 𝑎(𝜏𝜈; 𝑦 + 𝜇, 𝜀)

)
+ 𝑅1,𝜈 (𝜇, 𝜀)

)
,

(20)

where
𝑅1,𝜈 (𝜇, 𝜀) = 𝑎(𝜏𝜈; 𝑦 + 𝜇, 𝜀) − 𝑎(𝜏𝜈; 𝑦, 𝜀) − 𝜕𝑎(𝜏𝜈; 𝑦, 𝜀)

𝜕𝑦
𝜇.

From (19) we obtain the equation for 𝜇:

𝜇 =𝛷1(𝜇, 𝜉, 𝜀), (21)

where 𝛷1(𝜇, 𝜉, 𝜀) =

= −𝐴−1(𝜀)
( 𝑟∑︁
𝜈=1

(
𝐴𝜈 (𝜀)

(
𝑎(𝜏𝜈; 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀) − 𝑎(𝜏𝜈; 𝑦 + 𝜇, 𝜀)

)
+ 𝑅1,𝜈 (𝜇, 𝜀)

))
It follows from the differentiability of the solution 𝑎(𝜏; 𝜇, 𝜀) over the variable 𝑦 that

∥𝑅1,𝜈 (𝜇, 𝜀)∥ ≤ 𝑐7,𝜈 ∥𝜇∥2,


𝜕𝑅1,𝜈

𝜕𝜇



 ≤ 𝑐8,𝜈 ∥𝜇∥. (22)

Considering the estimates (16) and (19), when (𝜏, 𝜀) ∈ [0, 𝐿] × (0, 𝜀0] we obtain

𝛷1(𝜇, 𝜉, 𝜀)


 ≤ 𝜎2

𝑟∑︁
𝜈=1

max
[0, 𝜀0 ]



𝐴𝜈 (𝜀)


(𝑐2𝜀

𝛼 + 𝑐7,𝜈 ∥𝜇∥2
)
= 𝑐9𝜀

𝛼 + 𝑐10∥𝜇∥2.

19



AVERAGING IN MULTIFREQUENCY SYSTEMS WITH MULTI-POINT
CONDITIONS AND A DELAY

Let in condition (18) be

𝑐3 = 2𝑐9, 𝑐2
3𝑐10𝜀

𝛼
3 ≤ 𝑐9.

Then 

𝛷1(𝜇, 𝜉, 𝜀)


 ≤ 2𝑐9𝜀

𝛼

for 𝜇 ≤ 2𝑐9𝜀
𝛼, 𝜉 ∈ R𝑚 and 𝜀 ∈ (0, 𝜀3].

So, 𝛷1 : 𝑆1 → 𝑆1, 𝑆1 = {𝜇 : ∥𝜇∥ ≤ 𝑐3𝜀
𝛼}.

Then we have

𝜕𝛷1
𝜕𝜇

= −𝐴−1(𝜀)
𝑟∑︁

𝜈=1
𝐴𝜈 (𝜀)

𝜕

𝜕𝜇

(
𝑎(𝜏; 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀) − 𝑎(𝜏; 𝑦 + 𝜇, 𝜀)

)
−

−𝐴−1(𝜀)
𝑟∑︁

𝜈=1
𝐴𝜈 (𝜀)

𝜕𝑅1,𝜈 (𝜇, 𝜀)
𝜕𝜇

.

From Theorem 3.1, condition 2) of Theorem 4.1 and estimates (22), we obtain


𝜕𝛷1
𝜕𝜇




 ≤ 𝜎2𝑐2

𝑟∑︁
𝜈=1

max
[0, 𝜀0 ]



𝐴𝜈 (𝜀)


𝜀𝛼 + 𝜎2𝑐3

𝑟∑︁
𝜈=1

max
[0, 𝜀0 ]



𝐴𝜈 (𝜀)


 = 𝑐11𝜀

𝛼 <
1
4
, (23)

if 𝜀 ≤ 𝜀4 = (4𝑐11)𝑚𝑞.
Similarly, we have


𝜕𝛷1

𝜕𝜓




 = 


𝐴−1(𝜀)
𝑟∑︁

𝜈=1
𝐴𝜈 (𝜀)

𝜕

𝜕𝜓

(
𝑎(𝜏; 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀) − 𝑎(𝜏; 𝑦 + 𝜇, 𝜀)

)


 ≤
≤ 𝜎2𝑐2

𝑟∑︁
𝜈=1

max
[0, 𝜀0 ]



𝐴𝜈 (𝜀)


𝜀𝛼 = 𝑐12𝜀

𝛼 <
1
4
,

if 𝜀 ≤ 𝜀5 = (4𝑐12)𝑚𝑞.
Now from the conditions (8) and (12) we find

𝜉 =𝛷2(𝜇, 𝜉, 𝜀),

where

𝛷2(𝜇, 𝜉, 𝜀) = −𝐵−1(𝜀)
𝑟∑︁

𝜈=1
𝐵𝜈 (𝜀)

( (
𝜑(𝜏𝜈; 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀) − 𝜑(𝜏𝜈; 𝑦 + 𝜇, 𝜀)

)
+

+
(
𝜑(𝜏𝜈; 𝑦 + 𝜇, 𝜀) − 𝜑(𝜏𝜈; 𝑦, 𝜀)

) )
.
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Based on the estimates (15) and (19) and condition 2) of Theorem 4.1, we obtain

𝛷2(𝜇, 𝜉, 𝜀)


 ≤ (

𝜎3𝑐2

𝑟∑︁
𝜈=1

max
[0, 𝜀0 ]



𝐵𝜈 (𝜀)


 + 𝜎3𝑐5

𝑟∑︁
𝜈=1

max
[0, 𝜀0 ]



𝐵𝜈 (𝜀)


)𝜀𝛼 ≤

≤ 𝜎3(𝑐2 + 𝑐5)
( 𝑟∑︁
𝜈=1

max
[0, 𝜀0 ]



𝐵𝜈 (𝜀)


)𝜀𝛼 = 𝑐13𝜀

𝛼.

So 𝛷2 : 𝑆2 → 𝑆2, 𝑆2 = {𝜑 : ∥𝜑 − 𝜑∥ ≤ 𝑐13𝜀
𝛼}, if

∥𝜉∥ ≤ 𝑐13𝜀
𝛼. (24)

Then we have

𝜕𝛷2
𝜕𝜇

= −𝐵−1(𝜀)
𝑟∑︁

𝜈=1
𝐵𝜈 (𝜀)

( 𝜕

𝜕𝜇

(
𝜑(𝜏𝜈; 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀) − 𝜑(𝜏𝜈; 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀)

)
+

+ 𝜕

𝜕𝜇
𝜑(𝜏𝜈; 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀)

)
,




𝜕𝛷2
𝜕𝜇




 ≤ 𝜎3

𝑟∑︁
𝜈=1

max
[0, 𝜀0 ]



𝐵𝜈 (𝜀)


(𝑐2𝜀

𝛼 + 𝑐13𝜀
𝛽
)
≤ 𝑐14𝜀

𝛾 <
1
4
,

if 𝜀 ≤ 𝜀6 = (4𝑐14)−𝛾 , 𝛾 = min(𝛼, 𝛽).
Let 𝛷 = 𝑐𝑜𝑙 (𝛷1,𝛷2), 𝜂 = 𝑐𝑜𝑙 (𝜇, 𝜓). Then


𝜕𝛷

𝜕𝜂




 < 1,

from which, according to the fixed point theorem [13], it follows that there is a single
fixed point (𝜇∗, 𝜓∗) if 𝜀 < 𝜀∗ = min𝜈=1,6 𝜀𝜈 . Therefore, there exists a unique solution(
𝑎(𝜏; 𝑦 + 𝜇∗, 𝜓 + 𝜉∗, 𝜀), 𝜑(𝜏; 𝑦 + 𝜇∗, 𝜓 + 𝜉∗, 𝜀)

)
of the system (5), (6), which satisfies the

conditions (7), (8).
From the equation (9), estimates (16), (24) we obtain

𝑤(𝜏; 𝜇, 𝜉, 𝜀) = ∥𝜑(𝜏; 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀) − 𝜑(𝜏; 𝑦, 𝜓, 𝜀)∥ ≤

≤ ∥𝜉∥ + 𝜎1

𝜏∫
0

(
𝑤(𝑠, 𝜇, 𝜉, 𝜀) + 𝑤(𝜆𝑠, 𝜇, 𝜉, 𝜀) +

𝑠∫
Δ𝑠

|𝑔(𝑧) |𝑤(𝑧, 𝜇, 𝜉, 𝜀)𝑑𝑧
)
𝑑𝑠.

So,

𝑤(𝜏; 𝜇, 𝜉, 𝜀) =
(
𝑐12 + 𝜎1𝑐6

𝐿∫
0

(
2 + (1 − Δ) |𝑔(𝑠) |

)
𝑑𝑠

)
𝜀𝛼 = 𝑐14𝜀

𝛼. (25)
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Based on evaluations (18) we get

𝑢(𝜏, 𝜀) ≤ 𝑤(𝜏; 𝜇, 𝜉, 𝜀) + 𝑤(𝜏; 𝜇, 𝜉, 𝜀)+

+∥𝑎(𝜏; 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀) − 𝑎(𝜏; 𝑦, 𝜓, 𝜀)∥ + ∥𝜑(𝜏; 𝑦 + 𝜇, 𝜓 + 𝜉, 𝜀) − 𝜑(𝜏; 𝑦, 𝜓, 𝜀)∥ ≤

≤ (𝑐5 + 𝑐15)𝜀𝛼 + 𝑐2𝜀
𝛼 = 𝑐1𝜀

𝛼, (𝜏, 𝜀) ∈ [0, 𝐿] × (0, 𝜀∗),

where 𝑐1 = 𝑐2 + 𝑐5 + 𝑐15. □

Remark 4.1. If 𝛽 = 0 and no other conditions are imposed on the system (5), (6) or the
conditions (7), (8), then it is possible to prove only the existence of a solution based on
the Brouwer’s theorem [13].

5. Model Example

Consider a single-frequency system

𝑑𝑎(𝜏)
𝑑𝜏

= 𝑎(𝜆𝜏) +
𝜏∫

𝜆𝜏

𝑎(𝑠)𝑑𝑠 + cos(𝑘𝜑(𝜏) + 𝑙𝜑(𝜃𝜏)),

𝑑𝜑(𝜏)
𝑑𝜏

=
1 + 2𝜏

𝜀
, 0 ≤ 𝜏 ≤ 1,

where 0 < 𝜆 < 1, 0 < 𝜃 < 1; 𝑘, 𝑙 ∈ Z \ {0}, 𝑘 + 𝑙𝜃 = 0.
If 𝜑(0) = 0, then 𝜑(𝜏) = 𝜏(1 + 𝜏)/𝜀, 𝑘𝜑(𝜏) + 𝑙𝜑(𝜃𝜏) = 𝜅𝜏2/𝜀, 𝜅 = 𝑘 + 𝑙𝜃2 ≠ 0.
At the point 𝜏 = 0, the resonance condition is satisfied, since 𝛾𝑘𝑙 = 2𝜏𝜅.
Let us set the boundary condition

𝛼0𝑎 |𝜏=0 + 𝛼1𝑎 |𝜏=1 = 𝑑, |𝛼0 | + |𝛼1 | ≠ 0. (26)

The averaged equation for the slow variable

𝑑𝑎(𝜏)
𝑑𝜏

= 𝑎(𝜆𝜏) +
𝜏∫

𝜆𝜏

𝑎(𝑠)𝑑𝑠 (27)

with a boundary condition of the form (26) has a solution

𝑎(𝜏; 𝑦) = 𝑦𝑒𝜏 , 𝑦 = 𝑑/(𝛼0 + 𝛼1𝑒).

Let 𝑣(𝜏; 𝜇, 𝜀) = 𝑎(𝜏; 𝑦 + 𝜇, 𝜀) − 𝑎(𝜏; 𝑦 + 𝜇). Then

𝑣(𝜏; 𝜇, 𝜀) =
𝜏∫

0

𝑣(𝜆𝜏; 𝜇, 𝜀)𝑑𝑠 +
𝜏∫

0

𝑠∫
𝜆𝑠

𝑣(𝑧; 𝜇, 𝜀)𝑑𝑧𝑑𝑠 +
𝜏∫

0

cos
𝜅𝑠2

𝜀
𝑑𝑠.
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Applying the estimate of the Fresnel integral [12] we obtain
𝜏∫

0

cos
𝜅𝑠2

𝜀
𝑑𝑠 =

√
𝜀

√
𝜅

√
𝜋𝜏/

√
𝜀∫

0

cos 𝑥2𝑑𝑥 =

√
𝜋

2
√

2𝜅
√
𝜀 +𝑂 ( 4

√︁
𝜀3) ≤ 𝑐16

√
𝜀,

where 𝑐16 =
√
𝜋/

√
2𝜅, 𝜀 ≤ 4𝜅/𝜋2.

From the estimate for 𝑣(𝜏; 𝜇, 𝜀) and 𝜏 ∈ [0, 1] it follows

|𝑣(𝜏; 𝜇, 𝜀) | ≤
√
𝜀𝑐16 exp

(
1 + (1 − 𝜆)𝜏/2

)
𝜏 ≤ 𝑐17

√
𝜀,

where 𝑐17 = 𝑐16 exp(3 − 𝜆)/2.
From the boundary conditions for the solutions 𝑎(𝜏; 𝑦 + 𝜇, 𝜀) and 𝑎(𝜏; 𝑦) we find

𝜇 = −
(
𝛼1/(𝛼0 + 𝛼1𝑒)

) (
𝑎(1; 𝑦 + 𝜇, 𝜀) − 𝑎(1; 𝑦 + 𝜇, 𝜀)

)
,

hence it follows
|𝜇 | ≤

(
𝛼1𝑐17/(𝛼0 + 𝛼1𝑒)

)√
𝜀.

Based on the estimates for 𝑣(𝜏; 𝜇, 𝜀) and 𝜇, we obtain

|𝑎(𝜏; 𝑦 + 𝜇, 𝜀) − 𝑎(𝜏; 𝑦) | ≤ |𝑣(𝜏; 𝜇, 𝜀) | + |𝑎(𝜏; 𝑦 + 𝜇) − 𝑎(𝜏; 𝑦) | ≤ 𝑐18
√
𝜀,

where 𝑐18 = 𝑐17
(
1 + 𝛼1/(𝛼0 + 𝛼1𝑒)

)
.

6. Conclusions

In the article the existence and uniqueness of the solution in C1 [0, 𝐿] is proved for the
system of equations (5), (6) with linear multipoint conditions (7), (8) and an estimate of
the error of the method of averaging and deviation of the initial conditions for slow and
fast variables of order 𝜀𝛼, 𝛼 = 1/(𝑚𝑞) was obtained. The same result can be obtained
by more complex technical transformations for an arbitrary finite number of arguments
𝑎𝜆1 , . . . , 𝑎𝜆𝑝

and 𝑣Δ1 , . . . , 𝑣Δ𝑟
in vector functions 𝑋 and 𝑌 .
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Quartic differential systems with a non-degenerate
monodromic critical point and multiple line at infinity

Alexandru Şubă and Olga Vacaraş

Abstract. The quartic differential systems with a non-degenerate monodromic critical
point and non-degenerate infinity are considered. We show that in this family the maximal
multiplicity of the line at infinity is seven. Modulo the affine transformation and time
rescaling the classes of systems with the line of infinity of multiplicity two, three, . . . ,
seven are determined. In the cases when the quartic systems have the line at infinity of
maximal multiplicity the problem of the center is solved.
2010 Mathematics Subject Classification: 34C05.
Keywords: quartic differential system, multiple invariant line, monodromic critical point.

Sistemele diferenţiale cuartice ce au punct critic monodromic
nedegenerat şi linia de la infinit multiplă

Rezumat. În această lucrare sunt examinate sistemele diferenţiale cuartice cu un punct
critic monodromic nedegenerat şi infinitul nedegenerat. Se arată că ı̂n această familie de
sisteme multiplicitatea maximală a dreptei de la infinit este egală cu şapte. Cu exactitatea
unei transformări afine de coordonate şi rescalarea timpului sunt determinate clasele de
sisteme cu dreapta de la infinit de multiplicitatea doi, trei, . . . , şapte. În cazurile când
sistemele cuartice au linia de la infinit de multiplicitate maximală problema centrului este
rezolvată.
Cuvinte-cheie: sistem diferenţial cuartic, dreaptă invariantă multiplă, punct critic
monodromic.

1. Introduction

We consider real polynomial differential systems

¤𝑥 = 𝑝(𝑥, 𝑦), ¤𝑦 = 𝑞(𝑥, 𝑦), (1)

where ¤𝑥 = 𝑑𝑥/𝑑𝑡, ¤𝑦 = 𝑑𝑦/𝑑𝑡.
Let 𝑛 = 𝑚𝑎𝑥{𝑑𝑒𝑔(𝑝), 𝑑𝑒𝑔(𝑞)}. If 𝑛 = 2 (respectively, 𝑛 = 3, 𝑛 = 4), then system (1) is

called quadratic (respectively, cubic, quartic). Via an affine transformation of coordinates
and time rescaling each non-degenerate quartic system with a non-degenerate infinity and
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a center-focus critical point, i.e. a critical point with pure imaginary eigenvalues, can be
written in the form

¤𝑥 = 𝑦 + 𝑝2(𝑥, 𝑦) + 𝑝3(𝑥, 𝑦) + 𝑝4(𝑥, 𝑦) ≡ 𝑝(𝑥, 𝑦),
¤𝑦 = −(𝑥 + 𝑞2(𝑥, 𝑦) + 𝑞3(𝑥, 𝑦) + 𝑞4(𝑥, 𝑦)) ≡ 𝑞(𝑥, 𝑦),
gcd(𝑝, 𝑞) = 1, 𝑦𝑝4(𝑥, 𝑦) + 𝑥𝑞4(𝑥, 𝑦) . 0,

(2)

where 𝑝𝑖 (𝑥, 𝑦) =
∑𝑖

𝑗=0 𝑎𝑖− 𝑗 , 𝑗𝑥
𝑖− 𝑗 𝑦 𝑗 , 𝑞𝑖 (𝑥, 𝑦) =

∑𝑖
𝑗=0 𝑏𝑖− 𝑗 , 𝑗𝑥

𝑖− 𝑗 𝑦 𝑗 , 𝑖 = 2, 3, 4 are homo-
geneous polynomials in 𝑥 and 𝑦 of degree 𝑖 with real coefficients.

The eigenvalues 𝜆1, 𝜆2 of a critical point (0, 0) of system (2) are complex, 𝜆1𝜆2 ≠ 0,
𝜆2 = 𝜆1, and therefore (0, 0) is a non-degenerate monodromic critical point.

Remark 1.1. Via a transformation of the form

𝑥 → 𝜔(𝑥 cos 𝜑 − 𝑦 sin 𝜑)), 𝑦 → 𝜔(𝑥 sin 𝜑 + 𝑦 cos 𝜑)), 𝜔 ≠ 0,

and time rescaling we can make in (2)

𝑏40 = 1. (3)

The homogeneous system associated to the quartic system (2) look as{
¤𝑥 = 𝑦𝑍3 + 𝑝2(𝑥, 𝑦)𝑍2 + 𝑝3(𝑥, 𝑦)𝑍 + 𝑝4(𝑥, 𝑦) ≡ 𝑃(𝑥, 𝑦, 𝑍),
¤𝑦 = −(𝑥𝑍3 + 𝑞2(𝑥, 𝑦)𝑍2 + 𝑞3(𝑥, 𝑦)𝑍 + 𝑞4(𝑥, 𝑦)) ≡ 𝑄(𝑥, 𝑦, 𝑍).

(4)

Denote X∞ = 𝑃 (𝑥, 𝑦, 𝑍) 𝜕
𝜕𝑥

+𝑄 (𝑥, 𝑦, 𝑍) 𝜕
𝜕𝑦

and E∞ = 𝑃 · X∞(𝑄) −𝑄 · X∞(𝑃).
The polynomial E∞ has the form

E∞ = 𝐴2(𝑥, 𝑦) + 𝐴3(𝑥, 𝑦)𝑍 + 𝐴4(𝑥, 𝑦)𝑍2 + 𝐴5(𝑥, 𝑦)𝑍3

+𝐴6(𝑥, 𝑦)𝑍4 + 𝐴7(𝑥, 𝑦)𝑍5 + 𝐴8(𝑥, 𝑦)𝑍6 + 𝐴9(𝑥, 𝑦)𝑍7

+𝐴10(𝑥, 𝑦)𝑍8 + 𝐴11(𝑥, 𝑦)𝑍9,

(5)

where 𝐴𝑖 (𝑥, 𝑦), 𝑖 = 2, ..., 11, are polynomials in 𝑥 and 𝑦.
We say that for system (2) the line at infinity 𝑍 = 0 has multiplicity 𝜈 if 𝐴2(𝑥, 𝑦) ≡

0, ..., 𝐴𝜈 (𝑥, 𝑦) ≡ 0, 𝐴𝜈+1(𝑥, 𝑦) . 0, i.e. 𝜈 − 1 is the greatest positive integer such that
𝑍𝜈−1 divides E∞. If 𝐴2(𝑥, 𝑦) . 0, then we say that 𝑍 = 0 has multiplicity one. Denote
by 𝑚(𝑍) the multiplicity of the line at infinity 𝑍 = 0.

About the notion of multiplicity of an invariant algebraic line and, in particular, of the
line at infinity, we recommend the work [1] to the readers.

The quadratic (respectively, cubic; quartic) differential systems with multiple line at
infinity was examined in [2] (respectively, [3] − [9]; [10]).

In this paper we will show that the maximal multiplicity of the line at infinity for quartic
systems (2) is seven. Moreover, we determine the classes of systems {(2), (3)} having the
line at infinity of multiplicity two, three, ..., seven.
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2. Quartic systems {(2), (3)} with the line at infinity 𝑍 = 0 of
multiplicity 𝑚(𝑍) = 2, 3, 4, 5, 6

2.1. Systems {(2), (3)} with 𝑚(𝑍) ≥ 2.

The multiplicity of the line at infinity is at least two if the identity 𝐴2(𝑥, 𝑦) ≡ 0 holds.
The polynomial 𝐴2(𝑥, 𝑦) looks as 𝐴2(𝑥, 𝑦) = −𝐴21(𝑥, 𝑦)𝐴22(𝑥, 𝑦), where 𝐴21(𝑥, 𝑦) =

𝑥5 + (𝑎40 + 𝑏31)𝑥4𝑦 + (𝑎31 + 𝑏22)𝑥3𝑦2 + (𝑎22 + 𝑏13)𝑥2𝑦3 + (𝑎13 + 𝑏04)𝑥𝑦4 + 𝑎04𝑦
5, i.e.

𝐴21(𝑥, 𝑦) = 𝑦𝑝4(𝑥, 𝑦) + 𝑥𝑞4(𝑥, 𝑦),
and
𝐴22(𝑥, 𝑦) = (𝑎31 − 𝑎40𝑏31)𝑥6 + 2(𝑎22 − 𝑎40𝑏22)𝑥5𝑦 + (3𝑎13 − 3𝑎40𝑏13 − 𝑎31𝑏22 +

𝑎22𝑏31)𝑥4𝑦2 + 2(2𝑎04 − 2𝑎40𝑏04 − 𝑎31𝑏13 + 𝑎13𝑏31)𝑥3𝑦3 − (3𝑎31𝑏04 + 𝑎22𝑏13 − 𝑎13𝑏22 −
3𝑎04𝑏31)𝑥2𝑦4 − 2(𝑎22𝑏04 − 𝑎04𝑏22)𝑥𝑦5 − (𝑎13𝑏04 − 𝑎04𝑏13)𝑦6.

As 𝐴21 . 0, we require 𝐴22 to be identically equal to zero. Solving the identity 𝐴22 ≡ 0
we obtain the following result:

Lemma 2.1. The line at infinity has for quartic system {(2), (3)} the multiplicity at least
two if and only if the coefficients of {(2), (3)} verify the following conditions:

𝑎31 = 𝑎40𝑏31, 𝑎22 = 𝑎40𝑏22, 𝑎13 = 𝑎40𝑏13, 𝑎04 = 𝑎40𝑏04. (6)

2.2. Systems {(2), (3)} with 𝑚(𝑍) ≥ 3.

The multiplicity𝑚(𝑍∞) of the line at infinity is at least three if{𝐴2(𝑥, 𝑦) ≡ 0, 𝐴3(𝑥, 𝑦) ≡
0.} In the conditions of Lemma 2.1 the identity 𝐴3(𝑥, 𝑦) ≡ 0 leads us to the following
two series of conditions:

𝑎30 = 𝑎40𝑏30, 𝑎21 = 𝑎40𝑏21, 𝑎12 = 𝑎40𝑏12, 𝑎03 = 𝑎40𝑏03; (7)

𝑎03 = 𝑎40𝑏03 − 𝑎30𝑎
3
40 + 𝑎30𝑏13 − 𝑎30𝑎40𝑏22 + 𝑎4

40𝑏30 − 𝑎40𝑏13𝑏30

+𝑎2
40𝑏22𝑏30 + 𝑎30𝑎

2
40𝑏31 − 𝑎3

40𝑏30𝑏31, 𝑎12 = 𝑎30𝑎
2
40 + 𝑎40𝑏12 + 𝑎30𝑏22

−𝑎3
40𝑏30 − 𝑎40𝑏22𝑏30 − 𝑎30𝑎40𝑏31 + 𝑎2

40𝑏30𝑏31, 𝑎21 = 𝑎40𝑏21 − 𝑎30𝑎40

+𝑎2
40𝑏30 + 𝑎30𝑏31 − 𝑎40𝑏30𝑏31, 𝑏04 = 𝑎40(𝑏13 − 𝑎3

40 − 𝑎40𝑏22 + 𝑎2
40𝑏31).

(8)

Lemma 2.2. The line at infinity has for quartic system {(2), (3)} the multiplicity at least
three if and only if the coefficients of {(2), (3)} verify one of the following two sets of
conditions: 1) {(6), (7)}; 2) {(6), (8)}.

2.3. Systems {(2), (3)} with 𝑚(𝑍) ≥ 4.

In each of the sets of equalities 1) and 2) of Lemma 2.2, the identity 𝐴4(𝑥, 𝑦) ≡ 0
yields the following series of conditions, respectively:
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1) {(6), (7)}⇒ 𝐴4(𝑥, 𝑦) ≡ 0 ⇒

𝑎20 = 𝑎40𝑏20, 𝑎11 = 𝑎40𝑏11, 𝑎02 = 𝑎40𝑏02; (9)

𝑎11 = −2𝑎20𝑎40 + 𝑎40𝑏11 + 2𝑎2
40𝑏20 + 𝑎20𝑏31 − 𝑎40𝑏20𝑏31,

𝑎02 = 3𝑎20𝑎
2
40 + 𝑎40𝑏02 − 3𝑎3

40𝑏20 + 𝑎20𝑏22 − 𝑎40𝑏20𝑏22

−2𝑎20𝑎40𝑏31 + 2𝑎2
40𝑏20𝑏31, 𝑏13 = 𝑎40(4𝑎2

40 + 2𝑏22 − 3𝑎40𝑏31),
𝑏04 = 𝑎2

40(3𝑎
2
40 + 𝑏22 − 2𝑎40𝑏31), 𝑎20 ≠ 𝑎40𝑏20;

(10)

2) {(6), (8)} ⇒ 𝐴4(𝑥, 𝑦) ≡ 0 ⇒

𝑎11 = −𝑎2
30 − 2𝑎20𝑎40 + 𝑎40𝑏11 + 2𝑎2

40𝑏20 + 𝑎30𝑏21 + 3𝑎30𝑎40𝑏30

−𝑎40𝑏21𝑏30 − 2𝑎2
40𝑏

2
30 + 𝑎20𝑏31 − 𝑎40𝑏20𝑏31 − 𝑎30𝑏30𝑏31 + 𝑎40𝑏

2
30𝑏31,

𝑎02 = 3𝑎2
30𝑎40 + 3𝑎20𝑎

2
40 + 𝑎40𝑏02 + 𝑎30𝑏12 − 3𝑎3

40𝑏20 − 𝑎30𝑎40𝑏21

+𝑎20𝑏22 − 𝑎40𝑏20𝑏22 − 8𝑎30𝑎
2
40𝑏30 − 𝑎40𝑏12𝑏30 + 𝑎2

40𝑏21𝑏30

−𝑎30𝑏22𝑏30 + 5𝑎3
40𝑏

2
30 + 𝑎40𝑏22𝑏

2
30 − 𝑎

2
30𝑏31 − 2𝑎20𝑎40𝑏31

+2𝑎2
40𝑏20𝑏31 + 4𝑎30𝑎40𝑏30𝑏31 − 3𝑎2

40𝑏
2
30𝑏31,

𝑏13 = 𝑎40(4𝑎2
40 + 2𝑏22 − 3𝑎40𝑏31), 𝑏03 = 6𝑎30𝑎

2
40 + 𝑎40𝑏12

−𝑎2
40𝑏21 + 𝑎30𝑏22 − 5𝑎3

40𝑏30 − 𝑎40𝑏22𝑏30 − 3𝑎30𝑎40𝑏31 + 3𝑎2
40𝑏30𝑏31;

(11)

𝑎20 = 𝑎40𝑏20, 𝑎11 = 𝑎40𝑏11, 𝑎02 = 𝑎40𝑏02, 𝑎30 = 𝑎40𝑏30; (12)

𝑎11 = −2𝑎20𝑎40 + 𝑎40𝑏11 + 2𝑎2
40𝑏20 + 𝑎20𝑏31 − 𝑎40𝑏20𝑏31,

𝑎02 = 3𝑎20𝑎
2
40 + 𝑎40𝑏02 − 3𝑎3

40𝑏20 + 𝑎20𝑏22 − 𝑎40𝑏20𝑏22 − 2𝑎20𝑎40𝑏31

+2𝑎2
40𝑏20𝑏31, 𝑎30 = 𝑎40𝑏30, 𝑏13 = 𝑎40(4𝑎2

40 + 2𝑏22 − 3𝑎40𝑏31).
(13)

It is easy to see that the set of conditions {(6), (8), (12)} is a particular case for the set
of conditions {(6), (7), (9)}. The conditions {(6), (7), (10) } and {(6), (8), (13)} are the
same.

Lemma 2.3. The line at infinity has for quartic system {(2), (3)} the multiplicity at least
four if and only if the coefficients of {(2), (3)} verify one of the following three sets of
conditions: 1) {(6), (7), (9)}; 2) {(6), (7), (10)}; 3) {(6), (8), (11)}.

2.4. Systems {(2), (3)} with 𝑚(𝑍) ≥ 5.

In the conditions of Lemma 2.3 we solve the identity 𝐴5(𝑥, 𝑦) ≡ 0. We have, respec-
tively:

1) {(6), (7), (9)} ⇒ 𝐴5(𝑥, 𝑦) ≡ 0 ⇒

𝑏31 = (3𝑎2
40 − 1)/𝑎40, 𝑏22 = 3(𝑎2

40 − 1), 𝑏13 = 𝑎40(𝑎2
40 − 3),

𝑏04 = −𝑎2
40, 𝑎40 ≠ 0.

(14)
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2) {(6), (7), (10)}⇒ 𝐴5(𝑥, 𝑦) ≡ 0 ⇒

𝑏21 = (1 − 3𝑎2
40 − 𝑎20𝑎40𝑏30 + 𝑎2

40𝑏20𝑏30 + 𝑎40𝑏31 + 𝑎20𝑏30𝑏31

−𝑎40𝑏20𝑏30𝑏31)/(𝑎20 − 𝑎40𝑏20), 𝑏12 = (2𝑎40 + 𝑎40𝑏22

+𝑎20𝑎
2
40𝑏30 − 𝑎3

40𝑏20𝑏30 + 𝑎20𝑏22𝑏30 − 𝑎40𝑏20𝑏22𝑏30 − 𝑎2
40𝑏31

−𝑎20𝑎40𝑏30𝑏31 + 𝑎2
40𝑏20𝑏30𝑏31)/(𝑎20 − 𝑎40𝑏20),

𝑏03 = 𝑎40(𝑎40 + 3𝑎3
40 + 𝑎40𝑏22 + 3𝑎20𝑎

2
40𝑏30 − 3𝑎3

40𝑏20𝑏30

+𝑎20𝑏22𝑏30 − 𝑎40𝑏20𝑏22𝑏30 − 2𝑎2
40𝑏31 − 2𝑎20𝑎40𝑏30𝑏31

+2𝑎2
40𝑏20𝑏30𝑏31)/(𝑎20 − 𝑎40𝑏20).

(15)

3) {(6), (8), (11)} ⇒ 𝐴5(𝑥, 𝑦) ≡ 0 ⇒

𝑏22 = 3𝑎40(𝑏31 − 2𝑎40),
𝑏11 = (1 + 3𝑎20𝑎30 − 3𝑎2

40 − 5𝑎30𝑎40𝑏20 − 𝑎20𝑏21 + 𝑎40𝑏20𝑏21

−2𝑎2
30𝑏30 − 4𝑎20𝑎40𝑏30 + 6𝑎2

40𝑏20𝑏30 + 𝑎30𝑏21𝑏30 + 5𝑎30𝑎40𝑏
2
30

−𝑎40𝑏21𝑏
2
30 − 3𝑎2

40𝑏
3
30 + 𝑎40𝑏31 + 𝑎30𝑏20𝑏31 + 𝑎20𝑏30𝑏31

−2𝑎40𝑏20𝑏30𝑏31 − 𝑎30𝑏
2
30𝑏31 + 𝑎40𝑏

3
30𝑏31)/(𝑎30 − 𝑎40𝑏30),

𝑏12 = −8𝑎30𝑎40 + 2𝑎40𝑏21 + 5𝑎2
40𝑏30 + 2𝑎30𝑏31 − 2𝑎40𝑏30𝑏31,

𝑏02 = (−2𝑎3
30 + 𝑎40 − 𝑎20𝑎30𝑎40 − 3𝑎3

40 − 2𝑎30𝑎
2
40𝑏20 + 𝑎2

30𝑏21

−𝑎20𝑎40𝑏21 + 𝑎2
40𝑏20𝑏21 + 5𝑎2

30𝑎40𝑏30 + 3𝑎3
40𝑏20𝑏30

−𝑎30𝑎40𝑏21𝑏30 − 3𝑎30𝑎
2
40𝑏

2
30 + 𝑎20𝑎30𝑏31 + 𝑎2

40𝑏31 − 𝑎2
30𝑏30𝑏31

−𝑎2
40𝑏20𝑏30𝑏31 + 𝑎30𝑎40𝑏

2
30𝑏31)/(𝑎30 − 𝑎40𝑏30), 𝑎30 ≠ 𝑎40𝑏30.

(16)

Lemma 2.4. The line at infinity has for quartic system {(2), (3)} the multiplicity at least
five if and only if the coefficients of {(2), (3)} verify one of the following three sets of
conditions: 1) {(6), (7), (9), (14)}; 2) {(6), (7), (10), (15)}; 3) {(6), (8), (11), (16)}.

2.5. Systems {(2), (3)} with 𝑚(𝑍) ≥ 6.

In each of the conditions 1) - 3) of Lemma 2.4 we solve the identity 𝐴6(𝑥, 𝑦) ≡ 0. We
obtain the following results:

1) {(6), (7), (9), (14)} ⇒ 𝐴6(𝑥, 𝑦) ≡ 0 ⇒

𝑏03 = −𝑎40𝑏30, 𝑏12 = (𝑎2
40 − 2)𝑏30, 𝑏21 = (2𝑎2

40 − 1)𝑏30/𝑎40. (17)

2) {(6), (7), (10), (15)}⇒ 𝐴6(𝑥, 𝑦) ≡ 0 ⇒

𝑏02 = (𝑎2
40 − 3𝑎4

40 + 𝑎
3
40𝑏31 + 𝑎40𝑏30𝛼 − 3𝑎3

40𝑏30𝛼 + 𝑎2
40𝑏30𝑏31𝛼−

−3𝑎2
40𝑏20𝛼

2 + 𝑎40𝑏20𝑏31𝛼
2 − 6𝑎40𝛼

3 + 2𝑏31𝛼
3)/𝛼2,

𝑏11 = (𝑎40 − 3𝑎3
40 + 𝑎

2
40𝑏31 + 𝑏30𝛼 − 3𝑎2

40𝑏30𝛼 + 𝑎40𝑏30𝑏31𝛼−
−2𝑎40𝑏20𝛼

2 + 𝑏20𝑏31𝛼
2 + 2𝛼3)/𝛼2,

𝑏22 = 3𝑎40(𝑏31 − 2𝑎40), 𝛼 = 𝑎20 − 𝑎40𝑏20, 𝛼 ≠ 0.

(18)
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3) {(6), (8), (11), (16)}⇒ 𝐴6(𝑥, 𝑦) ≡ 0 ⇒

𝑎20 = (1 + 𝑎2
40 + 2𝑎30𝑎40𝑏20 + 𝑎2

30𝑏30 − 2𝑎2
40𝑏20𝑏30 − 2𝑎30𝑎40𝑏

2
30+

+𝑎2
40𝑏

3
30)/(2(𝑎30 − 𝑎40𝑏30)), 𝑏21 = 3𝑎30, 𝑏31 = 4𝑎40.

(19)

Lemma 2.5. The line at infinity has for quartic system {(2), (3)} the multiplicity at least
six if and only if the coefficients of {(2), (3)} verify one of the following sets of conditions:
1) {(6), (7), (9), (14), (17)}; 2) {(6), (7), (10), (15), (18)}; 3) {(6), (8), (11), (16), (19)}.

3. Quartic systems {(2), (3)} with the line at infinity 𝑍 = 0 of
multiplicity seven

To obtain the quartic systems {(2), (3)}, which have the line at infinity of multiplicity
seven, we solve the identity 𝐴7(𝑥, 𝑦) ≡ 0 in each of the series of conditions 1) – 3) of
Lemma 2.5.

1) {(6), (7), (9), (14), (17)} ⇒ 𝐴7(𝑥, 𝑦) ≡ 0 ⇒

𝑏11 = (𝑎2
40 − 1)𝑏20/𝑎40, 𝑏02 = −𝑏20. (20)

In this case the identity 𝐴8(𝑥, 𝑦) = −(𝑎40𝑥 − 𝑦) (𝑥 + 𝑎40𝑦)2((1 + 3𝑎2
40)𝑥

2 − 4𝑎40𝑥𝑦 + (3 +
𝑎2

40)𝑦
2)/𝑎40 . 0, therefore the multiplicity of the line at infinity is exactly seven.

2) {(6), (7), (10), (15), (18)} ⇒ 𝐴7(𝑥, 𝑦) ≡ 0 ⇒

𝑏20 = (2𝑎40 + 2𝑎3
40 − 2𝛼3 + 2𝑎2

40𝛽 + 2𝑎4
40𝛽 − 3𝑎40𝛼

3𝛽+
+𝛼3𝛽2)/(𝛼2(𝑎40 − 𝛽) (1 + 𝑎40𝛽)), 𝛽 = 𝑏31 − 3𝑎40, 𝛽 ≠ 0,
𝑏30 = (𝑎40𝛽 − 3𝑎2

40 − 2)/(𝛼(𝑎40 − 𝛽)), (𝑎40 − 𝛽) (1 + 𝑎40𝛽) ≠ 0.
(21)

Under these conditions the identity 𝐴8(𝑥, 𝑦) ≡ 0 does not give us real solutions, therefore
the multiplicity of the line at infinity is exactly seven.

3) {(6), (8), (11), (16), (19)}. In this case the identity 𝐴7(𝑥, 𝑦) ≡ 0 does not give us
real solutions, therefore the multiplicity of the line at infinity is exactly six.

Lemma 3.1. The line at infinity has for quartic system {(2), (3)} the multiplicity seven if
and only if the coefficients of {(2), (3)} verify one of the following sets of conditions:

1) {(6), (7), (9), (14), (17), (20)}; 2) {(6), (7), (10), (15), (18), (21)}.

In this way we prove the statement of the following theorem.

Theorem 3.1. In the class of quartic differential systems with a non-degenerate mon-
odromic critical point and non-degenerate infinity the maximal multiplicity of the line at
infinity is seven.
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4. Solution of the center problem for quartic systems {(2), (3)} with
the line at infinity of maximal multiplicity

Let 𝐹 (𝑥, 𝑦) = 𝑥2 + 𝑦2 + 𝐹3(𝑥, 𝑦) + 𝐹4(𝑥, 𝑦) + · · · + 𝐹𝑛 (𝑥, 𝑦) + · · · , where 𝐹𝑘 (𝑥, 𝑦) =∑
𝑖+ 𝑗=𝑘 𝑓𝑖 𝑗𝑥

𝑖𝑦 𝑗 , 𝑓0 𝑗 = 0 if 𝑗 is even, be a function such that

𝜕𝐹

𝜕𝑥
𝑝(𝑥, 𝑦) + 𝜕𝐹

𝜕𝑦
𝑞(𝑥, 𝑦) ≡

∞∑︁
𝑗=1

𝐿 𝑗 (𝑥2 + 𝑦2) 𝑗+1. (22)

In (22) 𝐿 𝑗 are polynomials in coefficients of (2) and are called Lyapunov quantities. The
critical point (0, 0) is a center for system (2) if and only if 𝐿 𝑗 = 0, 𝑗 = 1, 2, 3, . . . .

Using the identity (22) we calculate the first three Lyapunov quantities, i.e. we solve
in 𝑓𝑖 𝑗 and 𝐿𝑘 the following systems of identities:

2𝑥𝑝2 + 𝑦𝐹′
3𝑥 − 2𝑦𝑞2 − 𝑥𝐹′

3𝑦 ≡ 0,
2𝑥𝑝3 + 𝐹′

3𝑥 𝑝2 + 𝑦𝐹′
4𝑥 − 2𝑦𝑞3 − 𝐹′

3𝑦𝑞2 − 𝑥𝐹′
4𝑦 ≡ 𝐿1(𝑥2 + 𝑦2)2,

2𝑥𝑝4 + 𝐹′
3𝑥 𝑝3 + 𝐹′

4𝑥 𝑝2 + 𝑦𝐹′
5𝑥 − 2𝑦𝑞4 − 𝐹′

3𝑦𝑞3 − 𝐹′
4𝑦𝑞2 − 𝐹′

5𝑦𝑥 ≡ 0,
𝐹′

3𝑥 𝑝4 + 𝐹′
4𝑥 𝑝3 + 𝐹′

5𝑥 𝑝2 + 𝐹′
6𝑥𝑦 − 𝐹

′
3𝑦𝑞4 − 𝐹′

4𝑦𝑞3 − 𝐹′
5𝑦𝑞2 − 𝐹′

6𝑦𝑥 ≡ 𝐿2(𝑥2 + 𝑦2)3,

𝐹′
4𝑥 𝑝4 + 𝐹′

5𝑥 𝑝3 + 𝐹′
6𝑥 𝑝2 + 𝐹′

7𝑥𝑦 − 𝐹
′
4𝑦𝑞4 − 𝐹′

5𝑦𝑞3 − 𝐹′
6𝑦𝑞2 − 𝐹′

7𝑦𝑥 ≡ 0,
𝐹′

5𝑥 𝑝4 + 𝐹′
6𝑥 𝑝3 + 𝐹′

7𝑥 𝑝2 + 𝐹′
8𝑥𝑦 − 𝐹

′
5𝑦𝑞4 − 𝐹′

6𝑦𝑞3 − 𝐹′
7𝑦𝑞2 − 𝐹′

8𝑦𝑥 ≡ 𝐿3(𝑥2 + 𝑦2)4.

The first Lyapunov quantity looks as

𝐿1 = (𝑎12 −𝑎02𝑎11 −𝑎11𝑎20 +3𝑎30 +2𝑎02𝑏02 −3𝑏03 + 𝑏02𝑏11 −2𝑎20𝑏20 + 𝑏11𝑏20 − 𝑏21)/4.

The quantities 𝐿2 and 𝐿3 are very cumbersome and cannot be brought here.
In the following we will solve the center problem for the system (2) under the conditions

1) and 2) of Lemma 3.1, i.e. when the line at infinity is of the maximal multiplicity.
The conditins 1) of Lemma 3.1 are

𝑎20 = 𝑎40𝑏20, 𝑎11 = 𝑎40𝑏11, 𝑎02 = 𝑎40𝑏02, 𝑏11 = (𝑎2
40 − 1)𝑏20/𝑎40,

𝑏02 = −𝑏20, 𝑎30 = 𝑎40𝑏30, 𝑎21 = 𝑎40𝑏21, 𝑎12 = 𝑎40𝑏12, 𝑎03 = 𝑎40𝑏03,

𝑏21 = (2𝑎2
40 − 1)𝑏30/𝑎40, 𝑏12 = (𝑎2

40 − 2)𝑏30, 𝑏03 = −𝑎40𝑏30, 𝑎31 = 3𝑎2
40 − 1,

𝑎22 = 3𝑎40(𝑎2
40 − 1), 𝑎13 = 𝑎2

40(𝑎
2
40 − 3), 𝑎04 = −𝑎3

40, 𝑏40 = 1,
𝑏31 = (3𝑎2

40 − 1)/𝑎40, 𝑏22 = 3(𝑎2
40 − 1), 𝑏13 = 𝑎40(𝑎2

40 − 3), 𝑏04 = −𝑎2
40.

(23)

The first Lyapunov quantity calculated for system {(2), (23)} is 𝐿1 = (1+𝑎2
40)

2𝑏30/(4𝑎40)
and 𝐿1 = 0 gives us 𝑏30 = 0. The transformation 𝑋 = 𝑎40𝑥 − 𝑦, 𝑌 = 𝑥 + 𝑎40𝑦 reduces
system {(2), (23), 𝑏30 = 0} to the following system

¤𝑋 = 𝑌 (𝑎40 + 𝑏20𝑋 + 𝑎2
40𝑏20𝑋 + 𝑋𝑌2 + 𝑎2

40𝑋𝑌
2))/𝑎40,

¤𝑌 = −𝑋.
(24)
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For system (24) the straight line 𝑋 = 0 is an axis of symmetry. Therefore, the origin
(𝑋,𝑌 ) = (0, 0) (respectively, (𝑥, 𝑦) = (0, 0)) is for system (24) (respectively, {(2), (23),
𝑏30 = 0}) the critical point of a center type.

The exponential factors. Let ℎ, 𝑔 ∈ C[𝑥, 𝑦] be relatively prime in the ring C[𝑥, 𝑦] .
The function Φ = exp(𝑔/ℎ) is called an exponential factor of system (2) if for some
polynomial 𝐾 ∈ C[𝑥, 𝑦] of degree at most three it satisfies the identity

𝜕Φ

𝜕𝑥
𝑝(𝑥, 𝑦) + 𝜕Φ

𝜕𝑦
𝑞(𝑥, 𝑦) ≡ Φ · 𝐾 (𝑥, 𝑦).

We remark that the system {(2), (23)} has the following six exponential factors

Φ1 = exp(𝑥 + 𝑎40𝑦),
Φ2 = exp((𝑥 + 𝑎40𝑦)2),
Φ3 = exp((𝑥 + 𝑎40𝑦)3),
Φ4 = exp(−4𝑎40𝑦 + (𝑥 + 𝑎40𝑦)4),
Φ5 = exp(−5𝑎40𝑦(𝑥 + 𝑎40𝑦) + (𝑥 + 𝑎40𝑦)5),
Φ6 = exp(6𝑎40𝑏20𝑦 − 6𝑎40𝑦(𝑥 + 𝑎40𝑦)2 + (𝑥 + 𝑎40𝑦)6).

The conditions 2) of Lemma 3.1 are

𝑎20 = −(−2𝑎2
40 − 2𝑎4

40 + 𝑎40𝛼
3 − 2𝑎3

40𝛽 − 2𝑎5
40𝛽 + 𝛼

3𝛽+
2𝑎2

40𝛼
3𝛽)/(𝛼2(𝑎40 − 𝛽) (1 + 𝑎40𝛽)),

𝑎11 = (−2𝑎40 + 2𝑎5
40 + 𝑎

2
40𝛼

3 − 2𝑎2
40𝛽 + 2𝑎6

40𝛽 − 4𝑎40𝛼
3𝛽 − 𝛼3𝛽2−

4𝑎2
40𝛼

3𝛽2)/(𝛼2(𝑎40 − 𝛽) (1 + 𝑎40𝛽)),
𝑎02 = −(𝑎40(2𝑎40 + 2𝑎3

40 + 2𝑎2
40𝛽 + 2𝑎4

40𝛽 − 𝑎40𝛼
3𝛽 + 3𝛼3𝛽2+

2𝑎40𝛼
3𝛽3))/(𝛼2(𝑎40 − 𝛽) (1 + 𝑎40𝛽)),

𝑏20 = −(−2𝑎40 − 2𝑎3
40 + 2𝛼3 − 2𝑎2

40𝛽 − 2𝑎4
40𝛽 + 3𝑎40𝛼

3𝛽−
𝛼3𝛽2)/(𝛼2(𝑎40 − 𝛽) (1 + 𝑎40𝛽)),

𝑏11 = −(2 − 2𝑎4
40 + 2𝑎40𝛽 − 2𝑎5

40𝛽 + 4𝛼3𝛽 + 𝑎2
40𝛼

3𝛽 + 4𝑎40𝛼
3𝛽2−

𝛼3𝛽3)/(𝛼2(𝑎40 − 𝛽) (1 + 𝑎40𝛽)),
𝑏02 = −(2𝑎40 + 2𝑎3

40 + 2𝑎2
40𝛽 + 2𝑎4

40𝛽 + 2𝛼3𝛽2 + 𝑎2
40𝛼

3𝛽2+
𝑎40𝛼

3𝛽3)/(𝛼2(𝑎40 − 𝛽) (1 + 𝑎40𝛽)),
𝑎30 = −(𝑎40(2 + 3𝑎2

40 − 𝑎40𝛽))/(𝛼(𝑎40 − 𝛽)),
𝑎21 = −(3𝑎40(𝑎40 + 2𝑎3

40 + 𝛽))/(𝛼(𝑎40 − 𝛽)),
𝑎12 = −(3𝑎2

40(𝑎
3
40 + 2𝛽 + 𝑎2

40𝛽))/(𝛼(𝑎40 − 𝛽)),
𝑎03 = −(𝑎3

40(−𝑎40 + 3𝛽 + 2𝑎2
40𝛽))/(𝛼(𝑎40 − 𝛽)),

𝑏30 = −(2 + 3𝑎2
40 − 𝑎40𝛽)/(𝛼(𝑎40 − 𝛽)),

𝑏21 = −(3(𝑎40 + 2𝑎3
40 + 𝛽))/(𝛼(𝑎40 − 𝛽)),

𝑏12 = −(3𝑎40(𝑎3
40 + 2𝛽 + 𝑎2

40𝛽))/(𝛼(𝑎40 − 𝛽)),

(25)
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𝑏03 = −(𝑎2
40(−𝑎40 + 3𝛽 + 2𝑎2

40𝛽))/(𝛼(𝑎40 − 𝛽)),
𝑎31 = 𝑎40(3𝑎40 + 𝛽), 𝑎22 = 3𝑎2

40(𝑎40 + 𝛽),
𝑎13 = 𝑎3

40(𝑎40 + 3𝛽), 𝑎04 = 𝑎4
40𝛽,

𝑏40 = 1, 𝑏31 = 3𝑎40 + 𝛽, 𝑏04 = 𝑎3
40𝛽,

𝑏22 = 3𝑎40(𝑎40 + 𝛽), 𝑏13 = 𝑎2
40(𝑎40 + 3𝛽).

Direct calculations show that in coefficients of differential system {(2), (25)} the
algebraic system {𝐿1 = 0, 𝐿2 = 0, 𝐿3 = 0} is not compatible.

Example 4.1.

¤𝑥 = 𝑦 + (19𝑥(𝑥 − 2𝑦))/(61/3952/3),
¤𝑦 = −(𝑥 + (62/3951/3(19𝑥2 − 150𝑥𝑦 − 76𝑦2) − 3061/3952/3𝑥2(𝑥 − 3𝑦)+

570𝑥3(𝑥 − 2𝑦))/570).
(26)

The coefficients of system (26) verify the set of conditions (25). The first two Lyapunov
quantities vanish and the third one is not equal zero. This example shows that the ciclicity
of the focus (0, 0) in system {(2), (25)} is at most three.

The system {(2), (25)} has the following six exponential factors

Φ1 = exp(𝑥 + 𝑎40𝑦),
Φ2 = exp((𝑥 + 𝑎40𝑦)2),
Φ3 = exp((𝑥 + 𝑎40𝑦)3 + 3𝛼𝑦),
Φ4 = exp((𝑥 + 𝑎40𝑦)4 + 4𝑦(𝛼(𝑥 + 𝑎40𝑦) + (2(1 + 𝑎2

40))/(𝑎40 − 𝛽))),
Φ5 = exp((𝑥 + 𝑎40𝑦)5 + 5𝑦(𝛼(𝑥 + 𝑎40𝑦)2 + (2(1 + 𝑎2

40) (𝑥 + 𝑎40𝑦))/(𝑎40 − 𝛽)+
(4(1 + 𝑎2

40)
2(1 + 𝑎40𝛽) + 𝛼3(𝑎40 − 𝛽) (2 + 3𝑎40𝛽 − 𝛽2))

/(𝛼(𝑎40 − 𝛽)2(1 + 𝑎40𝛽)))),
Φ6 = exp((𝑥 + 𝑎40𝑦)6 + 𝑦(𝐴(𝑥 + 𝑎40𝑦)3 + 𝐵(𝑥 + 𝑎40𝑦)2 + 𝐶𝑥 + 𝐷𝑦 + 𝐹)),
where
𝐴 = 6𝛼, 𝐵 = (12(1 + 𝑎2

40))/(𝑎40 − 𝛽),
𝐶 = (6(4𝛽(1 + 𝑎2

40)
2(1 + 𝑎40) + 𝛼3(𝑎40 − 𝛽) (2 + 3𝑎40𝛽 − 𝛽2)))

/(𝛼(𝑎40 − 𝛽)2(1 + 𝑎40𝛽)),
𝐷 = (3(8𝑎40(1 + 𝑎2

40)
2(1 + 𝑎40𝛽) + (1 + 𝑎2

40)𝛼
3(5 + 7𝑎40𝛽 − 10𝛽2)+

𝛼3(𝑎40 − 𝛽)𝛽(−13 + 3𝛽2) + 𝛼3(1 + 𝛽2) (−5 + 3𝛽2)))
/(𝛼(𝑎40 − 𝛽)2(1 + 𝑎40𝛽)),

𝐹 = (6(14(1 + 𝑎2
40)

2𝛼3𝛽 + 8(1 + 𝑎2
40)

3(1 + 𝑎40𝛽) + 2𝛼3𝛽(1 + 𝛽2)+
𝛼3(𝑎40 − 𝛽) (−1 + 3𝛽2) + (1 + 𝑎2

40) (𝛼
3(𝑎40 − 𝛽) (9 − 20𝛽2)−

2𝛼3𝛽(8 + 7𝛽2))))/(𝛼2(𝑎40 − 𝛽)3(1 + 𝑎40𝛽)).
In this way, we have proved the following two Theorems.
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Theorem 4.1. The origin (0, 0) is a center for quartic differential systems (2) with the
line at infinity of maximal multiplicity if and only if the first three Lyapunov quantities
vanish 𝐿1 = 𝐿2 = 𝐿3 = 0.

Theorem 4.2. System (2) with the line at infinity of maximal multiplicity has a center at
the origin (0, 0) if and only if its coefficients verify the set of conditions {(23), 𝑏30 = 0}.
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[7] Şubă, A. and Turuta, S. Classification of cubic differential systems with a monodromic critical
point and multiple line at infinity. The Scientific Journal of Cahul State University “Bogdan Petriceicu
Hasdeu”, Economic and Engineering Studies, 2019, vol. 6, no. 2, 100–105.
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Perturbation of singular integral operators with piecewise
continuous coefficients

Vasile Neagu and Diana Bı̂clea

Abstract. In the paper it is shown that the property of singular integral operators with
piecewise continuous coefficients to be Noetherian is stable with respect to their pertur-
bation with certain non-compact operators. An example is constructed showing that the
corner points of the integration contour significantly affect the Noetherian property of
singular operators with translations. These results are obtained using the symbol of the
singular operators on contours with corner points, symbol, which is also determined.
2010 Mathematics Subject Classification: 34G10, 45E05.
Keywords: singular integral operators, Noetherian operators, symbol, piecewise
Lyapunov contour.

Perturbarea operatorilor integrali singulari cu coeficienţi
continui pe porţiuni

Rezumat. În lucrare se demonstrează că proprietatea operatorilor integrali singulari cu
coeficienţi continui pe porţiuni de a fi noetherieni este stabilă ı̂n raport cu perturbarea
lor cu anumiţi operatori necompacţi. Este construit un exemplu care demonstrează că
punctele unghiulare ale conturului de integrare afectează ı̂n mod semnificativ proprieta-
tea noetheriană a operatorilor singulari cu translaţii. Aceste rezultate sunt obţinute cu
ajutorul simbolului operatorilor singulari pe contururi cu puncte unghiulare, simbol, care
de asemenea este determinat.
Cuvinte cheie: operatori integrali singulari, operatori noetherieni, simbol, contur
Lyapunov pe porţiuni.

1. Introduction

In the well-known monographs of N. Mushelyishvili and F. Gahov, operators of the
form

(𝐴𝜑) (𝑡) = 𝑎(𝑡)𝜑(𝑡) +
∫
Γ

𝑘 (𝑡, 𝜏)𝜑(𝜏)
𝜏 − 𝑡 𝑑𝜏, (𝑡 ∈ Γ), (1)

are called complete singular integral operators. In relation (1) the functions 𝑎(𝑡) and
𝑘 (𝑡, 𝜏) are functions that verify Holder’s conditions on Γ, respectively on Γ × Γ, and the
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integral is considered in the principal value sense. The operator 𝐴, defined by equality
(1) can be represented as

𝐴 = 𝑎𝐼 + 𝑏𝑆 + 𝑇,

where 𝑏(𝑡) = 𝜋𝑖𝑘 (𝑡, 𝑡), 𝑆 is the singular integral operator on the contour Γ,

(𝑆𝜑) (𝑡) = 1
𝜋𝑖

∫
Γ

𝜑(𝜏)
𝜏 − 𝑡 𝑑𝜏,

and 𝑇 is the integral operator with the kernel

𝑘 (𝑡, 𝜏) = 𝑘 (𝜏, 𝑡) − 𝑘 (𝑡, 𝑡)
𝜏 − 𝑡 . (2)

When 𝑘 (𝑡, 𝜏) satisfies Holder’s conditions on Γ×Γ, the kernel (2) has weak singularities
and therefore the operator 𝑇 is compact on the spaces 𝐿𝑝 (Γ, 𝜌), where

𝜌(𝑡) =
𝑛∏

𝑘=1
|𝑡 − 𝑡𝑘 |𝛽𝑘 (1 < 𝑝 < +∞, −1 < 𝛽𝑘 < 𝑝 − 1, 𝑡𝑘 ∈ Γ).

It hence follows that the operator 𝐴 = 𝑎𝐼 + 𝑏𝑆 +𝑇 is normally solvable and Noetherian
if and only if this property is possessed by its characteristic part, 𝐴0 = 𝑎𝐼 + 𝑏𝑆. Moreover

𝑑𝑖𝑚𝑘𝑒𝑟𝐴 = 𝑑𝑖𝑚𝑘𝑒𝑟𝐴0 and 𝑑𝑖𝑚𝑘𝑒𝑟𝐴∗ = 𝑑𝑖𝑚𝑘𝑒𝑟𝐴∗
0.

Based on this statement Noether’s theory for singular integral operators developed
into the foundation for characteristic singular integral operators. Remarkable results
have been obtained in this direction: Noetherian criteria have been established for these
operators with continuous piecewise coefficients, with coefficients, which have almost
periodic discontinuities, with coefficients arbitrary (measurable and bounded). However,
in various problems of mechanics, physics and other fields, which reduce to singular
equations, it is not characteristic operators but complete operators that appear. In this
contest it arises the necessity to study complete singular operators with discontinuous
functions 𝑎(𝑡) s, i 𝑘 (𝑡, 𝜏). The main difficulty in this direction consists in the fact that the
operator 𝑇 with kernel (2) may not be compact and (more importantly) may not represent
a permissible perturbation for singular characteristic operators.

We will illustrate this with an example. Let Γ0 be the unit circle, 𝜒(𝑡) be the charac-
teristic function of the semicircle Γ+

0 = {𝑡 ∈ Γ0, 𝐼𝑚𝑡 ≥ 0}, 𝑘 (𝜏, 𝑡) = 𝜒(𝑡) − 𝜒(𝜏), 𝜆 ∈ 𝐶
and

(𝐴𝜑) (𝑡) = 𝜆𝜑(𝑡) +
∫
Γ

𝑘 (𝑡, 𝜏)
𝜏 − 𝑡 𝜑(𝜏)𝑑𝜏.

In this example 𝑘 (𝑡, 𝑡) = 0, therefore the characteristic part of the operator 𝐴 is the
scalar operator (𝐴0𝜑) (𝑡) = 𝜆𝜑(𝑡). In this example the operator can be represented as

𝐴 = 𝜆𝐼 + 𝜒𝑆 − 𝑆𝜒𝐼, (3)
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and it follows that it is contained in the algebra
∑

𝑝 (Γ0) generated by singular operators
with piecewise continuous coefficients. It is known that this algebra is a symbol algebra.
The symbol of the operators is determined from the equalities [5], [9].

𝑎(𝑡, 𝜉) =





 𝑎(𝑡 + 0) 𝑓 (𝜉) + (1 − 𝑓 (𝜉))𝑎(𝑡) ℎ(𝜉) (𝑎(𝑡 + 0) − 𝑎(𝑡))

ℎ(𝜉) (𝑎(𝑡 + 0) − 𝑎(𝑡)) (1 − 𝑓 (𝜉))𝑎(𝑡 + 0) + 𝑎(𝑡) 𝑓 (𝜉)






 , (4)

where

𝑓 (𝜉) =
[
1 − 𝑒𝑥𝑝

(
− 2𝜋

(
𝜉 + 𝑖

𝑝

))]−1
(−∞ ≤ 𝜉 ≤ +∞),

𝑆(𝑡, 𝜉) =





 1 0

0 −1






 . (5)

In particular, in the case of the operator 𝐴 = 𝜆𝐼 + 𝜒𝑆 − 𝑆𝜒𝐼 and 𝑝 = 2 we have:

𝑑𝑒𝑡𝐴(𝑡, 𝜉) = 𝜆2 𝑓 𝑜𝑟 𝑡 ≠ ±1

and

𝑑𝑒𝑡𝐴(𝑡, 𝜉) = 𝜆2 + 4
𝑒 𝜉

1 + 𝑒 𝜉 (−∞ ≤ 𝜉 ≤ +∞), for 𝑡 = ±1.

The operator 𝐴 is Noetherian in the space 𝐿2(Γ0) if and only if 𝜆2 + 4𝑒 𝜉/(1 + 𝑒 𝜉 ) ≠ 0
for any 𝜉, −∞ ≤ 𝜉 ≤ +∞. This is equivalent for 𝜆 ≠ 𝜇𝑖, where 𝜇 ∈ [−1, 1].

Hence, for 𝜆 = 𝜇𝑖, where 𝜇 ∈ [−1, 1] \ {0}, the operator 𝐴 is not Noetherian and its
characteristic part 𝐴0 = 𝜆𝐼 is Noetherian. It follows that the operator 𝑇 = 𝐴 − 𝐴0 is not
a permissible perturbation to the characteristic part of operator 𝐴. It also follows that the
operator 𝑇 = 𝜒𝑆 − 𝑆𝜒𝐼 is not compact.

From this reasoning and the examined example, the following problem comes apparent.
What (at least necessary) conditions should we impose on the operator kernel 𝑇 ,

𝑘 (𝑡, 𝜏) = 𝑘 (𝜏, 𝑡) − 𝑘 (𝑡, 𝑡)
𝜏 − 𝑡 ,

so that this operator does not influence the Noetherian conditions of the operator 𝐴 = 𝑎𝐼 +
𝑏𝑆, i.e. the operators 𝐴0 = 𝑎𝐼+𝑏𝑆 and 𝐴 = 𝑎𝐼+𝑏𝑆+𝑇 are or are not Noetherian conditions
and 𝐼𝑛𝑑𝐴0 = 𝐼𝑛𝑑𝐴. If the function 𝑘 (𝑡, 𝜏) is continuous or has weak singularities on
the integration contour then the operator 𝑇 is compact and it satisfies the conditions
enumerated above. In this paper a class of operators 𝑇 (non-compact) is described which
also possess this property. In the construction of this class of operators an important role
will be played by the symbol defined on algebra

∑
𝑝 (Γ0) .
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2. Perturbation of singular operators with operators from the set M

We denote by M the set of all operators in algebra
∑

𝑝 (Γ) with the following properties.
If 𝐻 ∈ M, then its symbol 𝐻 (𝑡, 𝜉) has the form

𝐻 (𝑡, 𝜉) =





 0 𝑚(𝑡, 𝜉)
𝑛(𝑡, 𝜉) 0






 ,
where 𝑚(𝑡, 𝜉) · 𝑛(𝑡, 𝜉) ≡ 0 and

𝑚(𝑡, 𝜉) = (𝜓(𝑡, 𝜉) − 1)ℎ(𝜉)
𝑓 (𝜉) + (1 − 𝑓 (𝜉))𝜓(𝑡, 𝜉)

and the real function 𝜓(𝑡, 𝜉) satisfies the following conditions. If 𝜓(𝑡0, 𝜉) ≠ 1 (𝑡0 ∈ Γ),
then the continuous function 𝜓(𝑡0, 𝜉) is decreasing and 𝜓(𝑡0, 𝜉) → +∞ for 𝜉 → −∞ and
𝜓(𝑡0, 𝜉) → 0 for 𝜉 → +∞. We mention that the set M includes all compact operators
acting on the space 𝐿𝑝 (Γ). It will be shown below that some non-compact operators of
the algebra

∑
𝑝 (Γ) also belong to the set M. Thus, it will be shown that the conditions for

singular integral operators to be Noetherian are stable with respect to their perturbations
by non-compact operators. This will follow from the next theorem.

Theorem 2.1. Let 𝐻 ∈ M. The operator

𝐴 = 𝑎𝑃 +𝑄 + 𝐻
(
𝑃 =

1
2
(𝐼 + 𝑆), 𝑄 =

1
2
(𝐼 − 𝑆), 𝑎 ∈ 𝑃𝐶 (Γ)

)
is Noetherian on the space 𝐿𝑝 (Γ), if and only if this property is held by the operator
𝐴0 = 𝑎𝑃 +𝑄.

Proof. The symbol 𝐴(𝑡, 𝜉) of the operator 𝐴 = 𝑎𝑃 +𝑄 + 𝐻 has the form

𝐴(𝑡, 𝜉) =





 𝑎(𝑡 + 0) 𝑓 (𝜉) + (1 − 𝑓 (𝜉))𝑎(𝑡) 𝑚(𝑡, 𝜉)
ℎ(𝜉) (𝑎(𝑡 + 0) − 𝑎(𝑡)) + 𝑛(𝑡, 𝜉) 1







and

𝑑𝑒𝑡𝐴(𝑡, 𝜉) = 𝑎(𝑡 + 0) 𝑓 (𝜉) + (1 − 𝑓 (𝜉))𝑎(𝑡)𝜓(𝑡, 𝜉)
𝑓 (𝜉) + (1 − 𝑓 (𝜉))𝜓(𝑡, 𝜉) . (6)

Let the operator 𝐴 be Noetherian, then 𝑎(𝑡 ± 0) ≠ 0 and

𝑎(𝑡 + 0) 𝑓 (𝜉) + (1 − 𝑓 (𝜉))𝑎(𝑡)𝜓(𝑡, 𝜉) ≠ 0 (7)

for all 𝑡 ∈ Γ and 𝜉 ∈ 𝑅̄. We admit that the operator 𝐴0 = 𝑎𝑃 + 𝑄 is not Noetherian, then
the determinant of its symbol cancels at a point (𝑡0, 𝜉0):

𝑎(𝑡0 + 0) 𝑓 (𝜉0) + (1 − 𝑓 (𝜉0))𝑎(𝑡0) = 0, (8)

where 𝑡0 ∈ Γ and 𝜉0 ∈ 𝑅̄. Therefore 𝜓(𝑡0, 𝜉) ≠ 1 and ratio 𝑎 (𝑡0 )
𝑎 (𝑡0+0) can be written as
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𝑎(𝑡0)
𝑎(𝑡0 + 0) = exp

(
2𝜋(𝜉0 + 𝑖/𝑝)

)
.

We will show that in this case 𝑑𝑒𝑡𝐴(𝑡0, 𝜉) vanishes at a point 𝜉1 ∈ 𝑅. Indeed, from the
relation (6) and condition (8) we get

𝑑𝑒𝑡𝐴(𝑡0, 𝜉) =
( 𝑓 (𝜉) − 1)𝑎(𝑡0)

𝑓 (𝜉) + (1 − 𝑓 (𝜉))𝜓(𝑡0, 𝜉)
[𝑒2𝜋 ( 𝜉−𝜉0 ) − 𝜓(𝑡0, 𝜉)] .

From the properties of the function 𝜓(𝑡0, 𝜉) follows that the equation 𝑒2𝜋 ( 𝜉−𝜉0 ) −
𝜓(𝑡0, 𝜉) possesses a solution 𝜉 = 𝜉1. Thus, 𝑑𝑒𝑡𝐴(𝑡0, 𝜉1) = 0, which is in contradiction
with conditions (7). Necessity is proved. Let 𝐴 not be Noetherian, then or 𝑎(𝑡+0) ·𝑎(𝑡) = 0
at a point 𝑡0 ∈ Γ or that

𝑎(𝑡 + 0) 𝑓 (𝜉) + (1 − 𝑓 (𝜉))𝑎(𝑡)𝜓(𝑡, 𝜉) = 0

at the point (𝑡0, 𝜉0) (𝑡0 ∈ Γ, 𝜉0 ∈ 𝑅̄). In the first case the operator 𝐴0 also is not
Noetherian, and in the second case we obtain that 𝑎 (𝑡0 )

𝑎 (𝑡0+0) = 2𝜋/𝑝. Then 𝑎(𝑡0 + 0) 𝑓 (𝜉) +
(1 − 𝑓 (𝜉))𝑎(𝑡0) = 0 at the point 𝜉1 ∈ 𝑅. Therefore, in this case also the operator 𝐴0 is
not Noetherian. □

Corollary 2.1. The property of singular integral operators with piecewise continuous
coefficients to be Noetherian is stable under the perturbation of these operators with the
operators of the set M.

3. Example of a non-compact operator from the set M

Let us consider operator 𝐻, defined by the equality

𝐻 = 𝑃 −
𝑚∑︁
𝑗=1

𝑛∑︁
𝑘=1

(𝑡 − 𝑡 𝑗)𝛼𝑘𝑃(𝑡 − 𝑡 𝑗)−𝛼𝑘 𝐼, (9)

where 𝑡1, 𝑡2, ..., 𝑡𝑚, are arbitrary, distinct points on Γ and 𝛼𝑘 = 𝑘−1
𝑛

+ 1−𝑛
𝑛𝑝

.
In this section we prove that the operator 𝐻 belongs to the set M and is not completely

continous on the space 𝐿𝑝 (Γ).

Lemma 3.1. Operator
𝐻 𝑗 ,𝑘 = (𝑡 − 𝑡 𝑗)𝛼𝑘𝑃(𝑡 − 𝑡 𝑗)−𝛼𝑘 𝐼

is bounded on the space 𝐿𝑝(Γ).

Proof. First we are going to show that the operator 𝐻 𝑗 ,𝑘 is bounded on the space 𝐿𝑝 (Γ) if
and only if the operator 𝑃 is bounded on the space 𝐿𝑝 with the weight 𝜌(𝑡) = |𝑡 − 𝑡 𝑗 |𝛼𝑘 𝑝.
Since −1 < 𝛼𝑘 𝑝 < 𝑝 − 1, then, from Theorem of B. Khvedelidze [8], the operator 𝑃 is
bounded on the space 𝐿𝑝 (Γ, |𝑡 − 𝑡 𝑗 |𝛼𝑘 𝑝). □
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Theorem 3.1. The operator

𝐻 𝑗 ,𝑘 = (𝑡 − 𝑡 𝑗)𝛼𝑘𝑃(𝑡 − 𝑡 𝑗)−𝛼𝑘 𝐼

belongs to algebra
∑

𝑝 (Γ) and its symbol has the form

𝐻 (𝑡, 𝜉) =








 1 0
0 0






 , for 𝑡 ≠ 𝑡 𝑗 ,




 1 −ℎ(𝜉) 1−exp(2𝜋𝑖𝛼𝑘 )
(1− 𝑓 ( 𝜉 ) ) (1−exp(2𝜋𝑖𝛼𝑘 ) )

0 0






 , for 𝑡 = 𝑡 𝑗 .

(10)

Proof. Let 𝜑𝑖,𝑘 (𝑧) be a fixed branch of the function 𝑧−𝛼𝑘 , defined on the complex plane
with the cut connecting the point 0 with ∞ and intersecting the contour Γ at a single point
𝑡 𝑗 . The function 𝜑 𝑗 ,𝑘 (𝑡) is continuous at every point Γ \ {𝑡 𝑗} and

𝜑𝑖,𝑘 (𝑡 𝑗)
𝜑𝑖,𝑘 (𝑡 𝑗 + 0) = 𝑒−2𝜋𝑖𝛼𝑘 .

Since 1/𝑝−1 < 𝛼𝑘 < 1/𝑝, the function 𝜑 𝑗 ,𝑘 (𝑡) admits a factorization on the space 𝐿𝑝 (Γ)
in the form

𝜑 𝑗 ,𝑘 (𝑡) = (𝑡 − 𝑡 𝑗)−𝛼𝑘

(
𝑡 − 𝑡 𝑗
𝑡

)𝛼𝑘

.

Let us consider the operator 𝐵 𝑗 ,𝑘 = 𝜑 𝑗 ,𝑘 (𝑡)𝑃 + 𝑄. This operator 𝐵 𝑗 ,𝑘 is invertible in
space 𝐿𝑝 (Γ) and its inverse is defined by the equality

𝐵−1
𝑗 ,𝑘 = (𝑡 − 𝑡 𝑗)𝛼𝑘𝑃

(
𝑡 − 𝑡 𝑗
𝑡

)−𝛼𝑘

𝐼 +
(
𝑡 − 𝑡 𝑗
𝑡

)𝛼𝑘

𝑄

(
𝑡 − 𝑡 𝑗
𝑡

)−𝛼𝑘

𝐼 .

It follows from this that

𝑃𝐵−1
𝑗 ,𝑘 = (𝑡 − 𝑡 𝑗)𝛼𝑘𝑃

(
𝑡 − 𝑡 𝑗
𝑡

)−𝛼𝑘

𝐼 .

Therefore,

(𝑡 − 𝑡 𝑗)𝛼𝑘𝑃

(
𝑡 − 𝑡 𝑗
𝑡

)−𝛼𝑘

𝐼 = 𝑃𝐵−1
𝑗 ,𝑘𝑡

−𝛼𝑘 𝐼 = 𝑃(𝑃 + 𝑡𝛼𝑘𝑄)−1. (11)

Because the operator 𝑃(𝑃+𝑡𝛼𝑘𝑄)−1 belongs to algebra
∑

𝑝 (Γ), then from (11) it results
that the operator 𝐻 𝑗 ,𝑘 = (𝑡− 𝑡 𝑗)𝛼𝑘𝑃(𝑡− 𝑡 𝑗)−𝛼𝑘 𝐼 also belongs to algebra

∑
𝑝 (Γ). By direct

calculations, taking into account the equality (11), we make sure that the operator symbol
𝐻 𝑗 ,𝑘 coincides with the right-hand side of the equality (10). □
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Corollary 3.1. The operator 𝐻, defined by equality (9), belongs to algebra
∑

𝑝 (Γ) and
its symbol has the form

𝐻 𝑗 ,𝑘 (𝑡, 𝜉) =








 0 0
0 0






 , for 𝑡 ≠ 𝑡 𝑗 ,




 1 ℎ(𝜉) 1−exp(2𝜋 (𝑛−1) 𝜉 )
(1− 𝑓 ( 𝜉 ) ) (1−exp(2𝜋 (𝑛𝜉+𝑖/𝑝) ) )

0 0






 , 𝑓 𝑜𝑟 𝑡 = 𝑡 𝑗 .
(12)

From the equality (12) it results.

Corollary 3.2. The operator 𝐻 is not compact. Moreover

𝜓(𝑡, 𝜉) =
{

1, for 𝑡 ≠ 𝑡 𝑗 ,
exp(−2𝜋(𝑛 − 1)𝜉), for 𝑡 = 𝑡 𝑗 .

From this and from Theorem 2.1 it results.

Theorem 3.2. The operator

𝐴 = (𝑎 + 1)𝑃 +𝑄 −
𝑚∑︁
𝑗=1

𝑛∑︁
𝑘=1

(𝑡 − 𝑡 𝑗)𝛼𝑘𝑃(𝑡 − 𝑡 𝑗)−𝛼𝑘 𝐼

is Noetherian on the space 𝐿𝑝 (Γ) if and only if the operator 𝐴0 = 𝑎𝑃 + 𝑄 has the same
property.

4. The symbol of singular operators on contours with angular points

Let the contour Γ consist of two semi-axes starting at the point 𝑧 = 0. We denote by
𝛼 (0 < 𝛼 ≤ 𝜋) the angle formed by these half lines. We will assume that one of these
half lines corresponds to the half axis 𝑅+ = [0, +∞) and that the contour Γ is oriented in
a such way that the orientation on Γ ∩ 𝑅+ coincide with the orientation on 𝑅+.

Let 𝐵 = 𝐿𝑝 (Γ, |𝑡 |𝛽) (−1 < 𝛽 < 𝑝 − 1). We denote by 𝜆0(Γ) the set of constant
piecewise functions that receives on Γ two values: a value on 𝑅+ and another value on
Γ \ 𝑅+. If ℎ ∈ 𝜆0, then we denote

ℎ(𝑡) =
{
ℎ1, for 𝑡 ∈ 𝑅+,

ℎ2, for 𝑡 ∈ Γ \ 𝑅+,
ℎ 𝑗 ∈ C.

Thus, ℎ(0) = ℎ2, ℎ(0 + 0) = ℎ1, ℎ(∞ − 0) = ℎ1, ℎ(∞ + 0) = ℎ2.
The contour Γ will be considered compactified with a point at infinity, whose neigh-

borhoods are complements of the neighborhoods of 𝑧0 = 0. Evidently, the contour Γ is
homeomorphic with an bounded contour Γ̃, having two angular points.
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We denote by 𝐾𝛼 the Banach algebra generated by the singular integration operator
𝑆Γ and all multiplication operators to the functions ℎ ∈ 𝜆0(Γ). By 𝐾+ we denote
the subalgebra of algebra 𝐿 (𝐿𝑝 (𝑅+, |𝑡 |𝛽)) generated by singular integral operators 𝑎𝐼 +
𝑏𝑆 (𝑆 = 𝑆𝑅+) with constant coefficients on 𝑅+. As 𝐾+ is commutative, then it possesses
[5] a sufficient system of multiplicative functionals. The operator 𝜈 is linear and bounded

(𝜈𝜑) (𝑥) = (𝜑(𝑥), 𝜑(𝑒𝑖𝛼𝑥)) (𝑥 ∈ 𝑅+),

acting from the space 𝐿𝑝 (Γ, |𝑡 |𝛽) on the space 𝐿2
𝑝 (𝑅+, 𝑡𝛽).

Let 𝜑 ∈ 𝐿𝑝 (Γ, |𝑡 |𝛽) and consider the equation

𝐴𝜑 = 𝑎𝜑 + 𝑏𝑆Γ𝜑 = 𝜓,

𝑎(𝑡) =
{
𝑎1, for 𝑡 ∈ 𝑅+,

𝑎2, for 𝑡 ∈ Γ \ 𝑅+,
𝑏(𝑡) =

{
𝑏1, for 𝑡 ∈ 𝑅+,

𝑏2, for 𝑡 ∈ Γ \ 𝑅+,
𝑎 𝑗 , 𝑏 𝑗 ∈ C.

This equation can be written as a system of two equations: in one equation 𝑡 ∈ Γ \ 𝑅+

and in the second equation 𝑡 ∈ 𝑅+. We get,


𝑎(𝑡)𝜑(𝑡) + 𝑏(𝑡)

𝜋𝑖

∫
𝑅+

𝜑(𝜏)
𝜏 − 𝑡 𝑑𝜏 +

𝑏(𝑡)
𝜋𝑖

∫
Γ\𝑅+

𝜑(𝜏)
𝜏 − 𝑡 𝑑𝜏 = 𝜓(𝑡), 𝑡 ∈ 𝑅

+,

𝑎(𝑡)𝜑(𝑡) + 𝑏(𝑡)
𝜋𝑖

∫
𝑅+

𝜑(𝜏)
𝜏 − 𝑡 𝑑𝜏 +

𝑏(𝑡)
𝜋𝑖

∫
Γ\𝑅+

𝜑(𝜏)
𝜏 − 𝑡 𝑑𝜏 = 𝜓(𝑡), 𝑡 ∈ Γ \ 𝑅+.

In the integral
∫
Γ\𝑅+

𝜑 (𝜏 )
𝜏−𝑡 𝑑𝜏 we change the variable 𝜏 → 𝑒𝑖𝛼𝜏 and in the second equation

of the obtained system, we change 𝑡 by 𝑒𝑖𝛼𝑡. We obtain:
𝑎1𝜑1(𝑡) +

𝑏1
𝜋𝑖

∫
𝑅+

𝜑1(𝜏)
𝜏 − 𝑡 𝑑𝜏 −

𝑏1
𝜋𝑖

∫
𝑅+

𝜑2(𝜏)
𝜏 − 𝑒−𝑖𝛼𝑡 𝑑𝜏 = 𝜓1(𝑡), 𝑡 ∈ 𝑅+,

𝑎2𝜑2(𝑡) +
𝑏2
𝜋𝑖

∫
𝑅+

𝜑2(𝜏)
𝜏 − 𝑒𝑖𝛼𝑡 𝑑𝜏 −

𝑏2
𝜋𝑖

∫
𝑅+

𝜑2(𝜏)
𝜏 − 𝑡 𝑑𝜏 = 𝜓2(𝑡), 𝑡 ∈ Γ \ 𝑅+,

in which the notations can be used: 𝑓1(𝑡) = 𝑓 (𝑡), 𝑓2(𝑡) = 𝑓 (𝑒𝑖𝛼𝑡) (𝑡 ∈ 𝑅+).
Thus, the operator 𝜈𝐴𝜈−1 has the form

𝜈𝐴𝜈−1 =






 𝑎1𝐼 + 𝑏1𝑆 −𝑏1𝑀

−𝑏2𝑁 𝑎2𝐼 + 𝑏2𝑆







where

(𝑆𝜑) (𝑡) = 1
𝜋𝑖

∫
𝑅+

𝜑(𝜏)
𝜏 − 𝑡 𝑑𝜏, (𝑀𝜑) (𝑡) =

1
𝜋𝑖

∫
𝑅+

𝜑(𝜏)
𝜏 − 𝑒−𝑖𝛼𝑡 𝑑𝜏,

(𝑁𝜑) (𝑡) = 1
𝜋𝑖

∫
𝑅+

𝜑(𝜏)
𝜏 − 𝑒𝑖𝛼𝑡 𝑑𝜏, 𝑡 ∈ Γ.
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From the results of the works [6], [7], [10], it appears that operators 𝑀 and 𝑁 belong
to the algebra 𝐾+ generated by the operator 𝑆 (= 𝑆𝑅+) and the multiplication operators
on constant functions. Therefore, 𝜈𝐾𝛼𝜈

−1 ⊂ (𝐾+)2×2.
Let {𝛾𝑀 } be the system of homeomorphisms determining the symbol on the algebra

𝐾+. For any operator 𝐴 ∈ 𝐾𝛼 we put

𝛾̃𝑀 (𝐴) = ∥𝛾𝑀 (𝐴 𝑗𝑘)∥2
𝑗 ,𝑘=1, where |𝐴 𝑗𝑘 ∥2

𝑗 ,𝑘=1 = 𝜈𝐴𝜈−1.

Theorem 4.1. The operator 𝐴 ∈ 𝐾 is Noetherian on the space 𝐿𝑝 (Γ, |𝑡 |𝛽) if and only if

𝑑𝑒𝑡𝛾̃𝑀 (𝐴) ≠ 0.

Proof. The factor algebra 𝐾̂+ is commutative with respect to all compact operators in
𝐿 (𝐿𝑝 (𝑅+, 𝑡𝛽)). Therefore, the elements of the matrix operator | |𝐴 𝑗𝑘 | |2𝑗 ,𝑘=1 = 𝜈𝐴𝜈−1

commute with the exactness of a compact. Then according to [1] the operator | |𝐴 𝑗𝑘 | |2𝑗 ,𝑘=1
is Noetherian in 𝐿𝑝 (𝑅+, 𝑡𝛽) if and only if the operator Δ = 𝑑𝑒𝑡 | |𝐴 𝑗𝑘 | | is Noetherian in
𝐿𝑝 (𝑅+, 𝑡𝛽). But the operator 𝑑𝑒𝑡 | |𝐴 𝑗𝑘 | | is Noetherina if and only if 𝛾𝑀 (𝑑𝑒𝑡 | | (𝐴 𝑗𝑘) | |) ≠ 0.
As 𝛾𝑀 (𝑑𝑒𝑡 | | (𝐴 𝑗𝑘) | |) = 𝑑𝑒𝑡 | |𝛾𝑀 (𝐴 𝑗𝑘) | |, it follows that 𝐴 is Noetherian, if and only if
𝑑𝑒𝑡𝛾̃𝑀 (𝐴) ≠ 0. □

Conclusion 4.1. Theorem 4.1 allows us to define the symbol on algebra 𝐾 . Namely, the
matrix 𝛾̃𝑀 (𝐴) is called the symbol of the operators 𝐴 ∈ 𝐾 . Then Theorem 4.1 can be
formulated as follows.

Theorem 4.2. The operator 𝐴 ∈ 𝐾 is Noetherian on the space 𝐿𝑝 (Γ, |𝑡 |𝛽) if and only if
the determinant of its symbol is non-zero.

Taking into account the results of the work [7], the symbol of the operators𝐻 = ℎ𝐼 (ℎ ∈
𝜆0(Γ)) and 𝑆Γ has the form:

𝛾̃𝑀 =






 ℎ1 0
0 ℎ2






 , 𝛾̃𝑀 (𝑆Γ) =





 𝑧 (𝑧 − 1)1− 𝛼

2𝜋 (𝑧 + 1) 𝛼
2𝜋

(𝑧 − 1) 𝛼
2𝜋 (𝑧 + 1)1− 𝛼

2𝜋 −𝑧






 .
The symbol of the operator 𝑆Γ can be written in a more convenient form. For this we put

𝑧 =
𝑒2𝜋 ( 𝜉+𝑖𝛾) + 1
𝑒2𝜋 ( 𝜉+𝑖𝛾) − 1

= 𝑐𝑡ℎ(𝜋(𝜉 + 𝑖𝛾))
(
−∞ ≤ 𝜉 ≤ +∞, 𝛾 =

1 + 𝛽
𝑝

)
.

Then

(𝑧 − 1)1− 𝛼
2𝜋 (𝑧 + 1) 𝛼

2𝜋 = 2
𝑒𝛼( 𝜉+𝑖𝛾)

𝑒𝛼( 𝜉+𝑖𝛾) − 1
=
𝑒 (𝛼−𝜋 ) ( 𝜉+𝑖𝛾)

𝑠ℎ𝜋(𝜉 + 𝑖𝛾) ,

(𝑧 − 1) 𝛼
2𝜋 (𝑧 + 1)1− 𝛼

2𝜋 = 2
𝑒 (2𝜋−𝛼) ( 𝜉+𝑖𝛾)

𝑒𝛼( 𝜉+𝑖𝛾) − 1
=
𝑒 (𝜋−𝛼) ( 𝜉+𝑖𝛾)

𝑠ℎ𝜋(𝜉 + 𝑖𝛾) .

Therefore the symbol of the operator can be written in the form
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𝛾̃𝑀 (𝑆Γ) =





 cth(𝜋(𝜉 + 𝑖𝛾)) 𝑒 (𝛼−𝜋) (𝜉+𝑖𝛾)

sh 𝜋 ( 𝜉+𝑖𝛾)
𝑒 (𝛼−𝜋) (𝜉+𝑖𝛾)

sh 𝜋 ( 𝜉+𝑖𝛾) − cth 𝜋(𝜉 + 𝑖𝛾)






 .
Remark 4.1. Let 𝛼 = 𝜋 , i.e. the contour Γ satisfies the Lyapunov conditions at the point
𝑧0 = 0. Then the symbol of the operator 𝐻 = ℎ𝐼 does not change and the symbol of the
operator 𝑆Γ has the form [1], [11]

𝛾̃𝑀 (𝑆Γ) =





 𝑧 −

√
𝑧2 − 1√

𝑧2 − 1 −𝑧






 =





 cth 𝜋(𝜉 + 𝑖𝛾) −(sh 𝜋(𝜉 + 𝑖𝛾))−1

(sh 𝜋(𝜉 + 𝑖𝛾))−1 − cth 𝜋(𝜉 + 𝑖𝛾)






 .
Now we can define the symbol of singular integral operators with coefficients from

𝐶𝑃(Γ) in the case of a piecewise Lyapunov contour.
Let Γ be a piecewise closed Lyapunov contour. We denote by 𝑡1, ..., 𝑡𝑛 all the corner

points with angles 𝛼𝑘 (0 < 𝛼 < 𝜋) (𝑘 = 1, ..., 𝑛) and

𝜌(𝑡) =
𝑛∏

𝑘=1
|𝑡 − 𝑡𝑘 |𝛽𝑘 (1 < 𝑝 < ∞, −1 < 𝛽𝑘 < 𝑝 − 1).

We denote by
∑(Γ, 𝜌) (⊂ 𝐿 (𝐿𝑝 (Γ, 𝜌)) the algebra generated by operators (𝐻𝜑) (𝑡) =

ℎ(𝑡)𝜑(𝑡), ℎ(𝑡) ∈ 𝐶𝑃(Γ) and the operator 𝑆Γ. We mention, that the ideal formed by
compact operators acting on the space 𝐿𝑝 (Γ, 𝜌) is contained in the algebra

∑(Γ, 𝜌). Let
us define the symbol of the operator from

∑(Γ, 𝜌). For this it is sufficient to define
the symbol of the operator ℎ𝐼 (ℎ ∈ 𝐶𝑃(Γ)) and the operator 𝑆Γ. We will use the local
principle of Simonenko [12]. The symbol 𝐻 (𝑡, 𝜉) (𝑡 ∈ Γ, 𝜉 ∈ 𝑅) of the operator ℎ𝐼 will
be defined as follows:

𝐻 (𝑡, 𝜉) =





 ℎ(𝑡 + 0) 0

0 ℎ(𝑡 − 0)






 . (13)

We define the symbol 𝑆Γ (𝑡, 𝜉) of the operator 𝑆Γ as follows:

𝑆(𝑡, 𝜉) =





 cth 𝜋(𝜉 + 𝑖𝛾) − exp( (𝛼(𝑡 )−𝜋 ) ( 𝜉+𝑖𝛾 (𝑡 ) ) )

𝑠ℎ𝜋 ( 𝜉+𝑖𝛾 (𝑡 ) )
exp( (𝜋−𝛼(𝑡 ) ) ( 𝜉+𝑖𝛾 (𝑡 ) ) )

𝑠ℎ𝜋 ( 𝜉+𝑖𝛾) − cth 𝜋(𝜉 + 𝑖𝛾(𝑡))






 , (14)

where

𝛼(𝑡) =
{
𝛼𝑘 , 𝑓 𝑜𝑟 𝑡 = 𝑡𝑘 (𝑘 = 1, 2, ..., 𝑛),
𝜋, 𝑓 𝑜𝑟 𝑡 ∈ Γ \ {𝑡1, 𝑡2, ..., 𝑡𝑛},

and

𝛾(𝑡) =
{ 1+𝛽𝑘

𝑝
, 𝑓 𝑜𝑟 𝑡 = 𝑡𝑘 (𝑘 = 1, 2, ..., 𝑛),

1
𝑝
, 𝑓 𝑜𝑟 𝑡 ∈ Γ \ {𝑡1, 𝑡2, ..., 𝑡𝑛}.
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Theorem 4.3. Let 𝐴 ∈ ∑(Γ, 𝜌) and 𝐴(𝑡, 𝜉) be its symbol. The operator 𝐴 is Noetherian
on the space 𝐿𝑝 (Γ, 𝜌) if and only if

𝑑𝑒𝑡𝐴(𝑡, 𝜉) ≠ 0 (𝑡 ∈ Γ, −∞ ≤ 𝜉 ≤ +∞). (15)

5. Singular operators with a shift on a piecewise Lyapunov contour

Let Γ be a closed piecewise Lyapunov contour, 𝜈 : Γ → Γ and (𝑉𝜑) (𝑡) = 𝜑(𝜈(𝑡)). On
the space 𝐿𝑝 (Γ), we consider a linear singular integral operator with a shift 𝜈(𝑡) of the
form

(𝐴𝜑) (𝑡) = 𝑎(𝑡)𝜑(𝑡) + 𝑏(𝑡)
𝜋𝑖

∫
Γ

𝜑(𝜏)
𝜏 − 𝑡 𝑑𝜏 + 𝑐(𝑡)𝜑(𝜈(𝑡)) +

𝑑 (𝑡)
𝜋𝑖

∫
Γ

𝜑(𝜈(𝑡))
𝜏 − 𝑡 𝑑𝜏, (16)

where 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡) and 𝑑 (𝑡) are bounded measurable functions on Γ. Assume that
the mapping 𝜈 satisfies the following conditions:

(1) Carleman conditions: 𝜈(𝜈(𝑡)) = 𝑡;
(2) the derivative 𝜈′(𝑡) has a finite number of discontinuity points of the first kind

on Γ , and on the arcs 𝑙𝑘 connecting the discontinuity points it satisfies Hölder’s
condition, 𝜈′(𝑡) ∈ 𝐻 (𝑙𝑘);

(3) 𝜈′(𝑡 ∓ 0) ≠ 0 (▽𝑡 ∈ Γ).
Along with the operator 𝐴 of the form (16), we also consider the operator 𝐴̃ defined

on the space 𝐿2
𝑝 (Γ) = 𝐿𝑝 (Γ) × 𝐿𝑝 (Γ) by the equality

𝐴̃ =






 𝑎𝐼 + 𝑏𝑆 𝑐𝐼 + 𝑑𝑆
𝑐𝐼 + 𝑑𝑆 𝑎̃𝐼 + 𝜀𝑏̃𝑆






 +





 0 0
𝑑 (𝑉𝑆𝑉 − 𝜀𝑆) 𝑏̃(𝑉𝑆𝑉 − 𝜀𝑆)






 = 𝐴̃0 + 𝑅, (17)

where 𝑓 = 𝑓 (𝜈(𝑡)) and 𝜀 = 1 (𝜀 = −1), if the mapping 𝜈 preserves (changes) its
orientation on the contour Γ. As it is known (see [4], [2] and the bibliography given
in these papers), if 𝑎, 𝑏, 𝑐 and 𝑑 are continuous functions and 𝜈′(𝑡) ∈ 𝐻 (Γ), then the
operator is 𝑅 completely continuous in 𝐿𝑝 (Γ) and

Theorem 5.1. The operator 𝐴 defined by equality (16) is Noetherian on the space 𝐿𝑝 (Γ)
if and only if the operator 𝐴̃0 is Noetherian in the space 𝐿2

𝑝 (Γ). When these conditions
are fulfilled, the index of the operator 𝐴 is calculated by formula

𝐼𝑛𝑑𝐴 =
1
2
𝐼𝑛𝑑 𝐴̃0.

In this section, we prove that this assertion ceases to be true if Γ has corner points. In
this case, as a rule, the derivative 𝜈′(𝑡) has discontinuity points on Γ, and it turns out that
if the operator 𝐴 is Noetherian, then the operator 𝐴̃0 is also Noetherian. However, the
converse assertion does not hold.

45



PERTURBATION OF SINGULAR INTEGRAL OPERATORS WITH PIECEWISE
CONTINUOUS COEFFICIENTS

Theorem 5.2. If operator 𝐴 = 𝑎(𝑡)𝐼 + 𝑏(𝑡)𝑆 + (𝑐(𝑡)𝐼 + 𝑑 (𝑡)𝑆)𝑉 (𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐶 (Γ)) is
Noetherian on the space 𝐿𝑝 (Γ), then operator 𝐴̃0 is also Noetherian on the space 𝐿2

𝑝 (Γ).

Proof. Indeed, operator 𝐴̃0 is Noetherian if and only if the conditions

Δ1(𝑡) = (𝑎(𝑡) − 𝑏(𝑡)) (𝑎̃(𝑡) − 𝜀𝑏̃(𝑡)) − (𝑐(𝑡) − 𝑑 (𝑡)) (𝑐(𝑡) − 𝜀𝑑 (𝑡)) ≠ 0,

Δ2(𝑡) = (𝑎(𝑡) + 𝑏(𝑡)) (𝑎̃(𝑡) + 𝜀𝑏̃(𝑡)) − (𝑐(𝑡) + 𝑑 (𝑡)) (𝑐(𝑡) + 𝜀𝑑 (𝑡)) ≠ 0,

hold for all 𝑡 ∈ Γ. Let the operator 𝐴 be Noetherian. Then the determinant of its symbol
[1] does not vanish: 𝑑𝑒𝑡𝐴(𝑡, 𝜉) (𝑡 ∈ Γ,−∞ ≤ 𝜉 ≤ +∞). It is directly verified that

𝑑𝑒𝑡𝐴(𝑡,−∞) · 𝑑𝑒𝑡𝐴(𝑡,−∞) = Δ1(𝑡) · Δ2(𝑡).

Hence the operator 𝐴̃0 is Noetherian in 𝐿2
𝑝 (Γ). Theorem is proved. □

The following example shows that Theorem 5.1 cannot be inverted. Let us change the
orientation of the contour Γ and the corner point 𝑡0 ∈ Γ with the angle 𝜃 (0 < 𝜃 < 𝜋)
be a fixed point of the mapping 𝜈 : 𝜈(𝑡0) = 𝑡0. In this case, it is easy to verify that
the derivative 𝜈′(𝑡) is discontinuous at the point 𝑡0, and 𝜈′(𝑡0 − 0) = exp(−𝑖𝜃 − 𝜎) and
𝜈′(𝑡0 + 0) = exp(𝑖𝜃 + 𝜎), where 𝜎 is some real number. Consider the operator

𝐴 = 𝐼 + 𝛿𝑆𝑉,

where 𝛿 is a complex number. The corresponding operator 𝐴̃ has the form

𝐴̃ =






 𝐼 𝛿𝑆

−𝛿𝑆 𝐼






 +





 0 0
𝛿(𝑉𝑆𝑉 − 𝑆) 0






 = 𝐴̃0 + 𝑅.

If 𝛿 ≠ ±𝑖, then the operator 𝐴̃0 is Noetherian. Let 𝐴(𝑡0, 𝜉) (−∞ ≤ 𝜉 ≤ +∞) be the
symbol of the operator 𝐴 at the point 𝑡0. It is directly verified that

𝑑𝑒𝑡𝐴(𝑡0, 𝜉) = 𝛿2 + 2(𝛾 + 𝛽)𝛿 + 1,

where

𝛾 =
exp[(2𝜋 − 𝜃 − 𝑖𝜎) (𝜉 + 𝑖/𝑝)]

exp(𝜉 + 𝑖/𝑝) − 1
and 𝛽 =

exp[(𝜃 + 𝑖𝜎) (𝜉 + 𝑖/𝑝)]
exp(𝜉 + 𝑖/𝑝) − 1

.

Hence, by virtue of Theorem 1.1 from [5], it follows that for all 𝛿 = −(𝛾 + 𝛽)−1 ±√︁
(𝛾 + 𝛽)2 − 1 the operator 𝐴 is not Noetherian on the space 𝐿𝑝 (Γ). Thus, the condition

for the operator 𝐴 to be Noetherian depends on the angle 𝜃.
Theorems 5.1 and 5.2, and the above example imply the following assertions

Corollary 5.1. Let 𝜈′(𝑡) ∉ 𝐻 (Γ). Then operator 𝑉𝑆𝑉 − 𝜀𝑆 is not compact on the space
𝐿𝑝 (Γ).
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Corollary 5.2. If the operator 𝐴, defined by equality (16), is Noetherian, then the opera-
tors 𝐴̃ and 𝐴̃0 defined by equality (17) are also Noetherian.

Corollary 5.3. If the operator 𝐴̃ is Noetherian, then 𝐴̃0 is also Noetherian. The converse
is generally not true.

In conclusion, we note that the corresponding example of a non-Noetherian operator
𝐴 for which 𝐴̃0 is Noetherian can also be given in the case when the mapping 𝜈 preserves
the orientation of the contour Γ.

6. Examples

The symbol of the singular integral operators and Theorem 2.1 can be used in studying
different classes of composite singular operators. The difficulties which can arise in this
context are the following: to show that the operator under consideration belongs to an
algebra of operators with symbol; to write in the explicit form the symbol of this operator;
to show that the symbol can be expressed as a singular perturbed operator that satisfies
the conditions of Theorem 2.1.

We will consider an example where these difficulties arise and are overcome. Studying
singular integral operators with homographic translations on the real axis in the space

𝐿
𝛾
𝑝 =

{
𝜑 :

∫ +∞

−∞
|𝜑(𝑥) |𝑝 |𝑥 − 𝛿 |𝛾𝑑𝑥 < ∞

}
(−1 < 𝛾 < 𝑝 − 1, 𝛿 ∈ 𝑅),

operators of the following form are investigated (see [12])

𝐻𝜑 = 𝑎(𝑥) + 𝑏(𝑥)
𝜋𝑖

∫ +∞

−∞

𝜑(𝑡)
𝑡 − 𝑥 𝑑𝑡 + 𝑐(𝑥)

(𝑥 − 𝛿)𝜆
𝜋𝑖

∫ +∞

−∞

(𝑡 − 𝛿)−𝜆𝜑(𝑡)
𝑡 − 𝑥 𝑑𝑡,

−1 + 𝛾
𝑝

< 𝜆 < 1 − 1 + 𝛾
𝑝

. (18)

To apply the conditions of Theorem 2.1, we will express the operator 𝐻 as follows

𝐻 = 𝑎𝐼 + 𝑏𝑆 + 𝑐𝑀, (19)

where

𝑆𝜑 =

∫ +∞

−∞

𝜑(𝑡)
𝑡 − 𝑥 𝑑𝑡

and

𝑀𝜑 =
(𝑥 − 𝛿)𝜆
𝜋𝑖

∫ +∞

−∞

(𝑡 − 𝛿)−𝜆𝜑(𝑡)
𝑡 − 𝑥 𝑑𝑡.

The expression (19) implies the operator 𝐻 to be a singular integral operator perturbed
with the operator 𝑐𝑀 .
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Theorem 6.1. Let 𝑎, 𝑏, 𝑐 ∈ 𝐶 (𝑅̄). The operator 𝐻 = 𝑎𝐼 + 𝑏𝑆 + 𝑐𝑀 is Noetherian
in the space 𝐿𝛾

𝑝 if and only if the operator 𝐻0 = 𝑎𝐼 + 𝑏𝑆 is Noetherian. Moreover,
𝐼𝑛𝑑 𝐻 = 𝐼𝑛𝑑 𝐻0.

Thus, the operator 𝑐𝑀 is a permissible perturbation to the operator 𝐻0 and as a result
of this perturbation his index remains the same.

Proof. Denote by 𝐻 (𝑥, 𝜇), respectively by 𝐻0(𝑥, 𝜇) the symbols of operators 𝐻 and 𝐻0.
The symbol of the operator 𝑀 at the point 𝑥 = 𝛿 has the form

𝑀 (𝛿, 𝜇) =





 0 𝑢(𝜇)

0 0






 , (20)

where

𝑢(𝜇) = 4𝑖ℎ(𝜇) sin 𝜋𝜆 · exp(𝜋𝑖𝜆)
2𝑖 𝑓 (𝜇) sin 𝜋𝜆 · exp(𝜋𝑖𝜆) + 1

,

𝑓 (𝜇) =
{ sin 𝜃𝜇·exp(𝑖 𝜃𝜇)

sin 𝜃 ·exp(𝑖 𝜃 ) , for 𝜃 ≠ 0,
𝜇, for 𝜃 = 0,

𝜃 = 𝜋 − 2𝜋(1 + 𝛾)
𝑝

and

ℎ(𝜇) =
√︁
𝑓 (𝜇) (1 − 𝑓 (𝜇)), 0 ≤ 𝜇 ≤ 1.

Obviously, the operator 𝑀 has singularities only at the points 𝑥 = 𝛿 and 𝑥 = ∞, therefore
it is equivalent to the null operator at the points 𝑥 ∈ 𝑅̄ \ {𝛿,∞}. Thus

𝑀 (𝑥, 𝜇) =





 0 0

0 0






 , 𝑥 ≠ 𝛿, 𝑥 ≠ ∞.

To calculate the symbol of 𝑀 at the point 𝑥 = ∞, we proceed as follows. We consider
the linear and bounded operator 𝐴 : 𝐿𝑝 (𝑅, |𝑥 − 𝛿 |𝛾) → 𝐿𝑝 (𝑅, |𝑥 − 𝛿 |𝑝−2−𝛾) defined by
the relation

(𝐴𝜑) (𝑡) = 1
𝑡
𝜑

(
𝛿𝑡 − 1
𝑡

) (
(𝐴−1𝜓) (𝑥) = 1

𝑥 − 𝛿 𝜑
(
− 1
𝑥 − 𝛿

))
.

The symbol of the operator 𝑀 at the point 𝑥 = ∞ is defined as the symbol of the
operator 𝐴𝑀𝐴−1 at the point 𝑥 = 0. We calculate 𝐴𝑀𝐴−1. Let 𝑓 (𝑥) = (𝑥 − 𝛿)𝜆, then

𝐴 𝑓 𝐴−1 =

(
−1
𝑡

)𝜆
= 𝑡−𝜆𝑒𝜋𝑖𝜆𝐼,

(𝐴 𝑓 𝐴−1𝜑) (𝑡) = −1
𝑡
· 1
𝜋𝑖

∫ +∞

−∞

1
𝑥−𝛿

𝜑
( 1
𝑥−𝛿

)
𝑥 − 𝛿𝑡−1

𝑡

𝑑𝑥 = −1
𝑡
· 1
𝜋𝑖

∫ +∞

−∞

𝜏𝜑(𝜏)
𝛿𝜏−1
𝜏

𝛿𝑡−1
𝜏

𝑑𝜏

𝜏2 .

(𝐴 𝑓 𝐴−1𝜑) (𝑡) = (𝑆𝜑) (𝑡).
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Thus, 𝐴𝑀𝐴−1 = 𝑡−𝜆𝑆𝑡𝜆𝐼 and 𝜆 verifies the condition
1 + 𝑝 − 𝛾 − 2

𝑝
< 𝜆 < 1 − 1 + 𝑝 − 𝛾 − 2

𝑝
.

Therefore, the symbol of the operator 𝑀 at the point 𝑥 = ∞ has the form (20), where 𝜆
must be replaced by −𝜆, and 𝜃 by −𝜃. This is equivalent to the fact that the function 𝑢(𝜇)
from (20) is replaced by 𝑢(𝜇). Thus, the symbol of the operator (18) has the form

𝐻 (𝑥, 𝜇) =





 𝑎(𝑥) + 𝑏(𝑥) 𝑐(𝑥)𝜎(𝑥, 𝜇)

0 𝑎(𝑥) − 𝑏(𝑥)






 ,
where 𝜎(𝑥, 𝜇) = 0 for any 𝑥 ∈ 𝑅̄\{𝛿,∞}, 𝜎(𝛿, 𝜇) = 𝑢(𝑥) and 𝜎(∞, 𝜇) = 𝑢(𝜇). It follows
from this that 𝑑𝑒𝑡𝐻 (𝑥, 𝜇) = 𝑑𝑒𝑡𝐻0(𝑥, 𝜇) which means that both operators 𝐻 and 𝐻0 are
or are not Noetherians and 𝐼𝑛𝑑 𝐻 = 𝐼𝑛𝑑 𝐻0. □

Remark 6.1. The statements of Theorem 6.1 remain to be true even if the functions are
replaced by matrices functions with elements from 𝐶 (𝑅̄).

Conclusion 6.1. The results presented in this paper show us that the property of singular
integral operators to be Noetherian is stable with respect to their perturbation with certain
noncompact operators. This property was established due to the symbol of some operators
with singularities was determined. It was shown that the determinant of the symbol of the
original operator coincides with the determinant of the symbol of the perturbed operator.
Moreover, the indices of these operators are also equal.
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The method for solving the multi-criteria linear-fractional
optimization problem in integers
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Abstract. In the paper we propose a method for solving the linear-fractional multi-criteria
optimization model with identical denominators in whole numbers. Such models are in
increasing demand, especially from an application point of view. The solving procedure
of these models initially involves assigning utilities (weights) to each criterion [15] and
building the optimization model with a single criterion, which is a synthetic function of
all criteria weighted. It was found that the optimal solution of the model does not depend
on the values optimum of the criteria obtained in 𝑅+ or in 𝑍+. So, the decision maker can
combinatorially select the types of optimal values of criteria, a fact that represents the
essential priority of the algorithm. By changing the utility values, at the decision maker’s
discretion, we will obtain a new optimal compromise solution of the model. Theoretical
justification of the algorithm as well as a solved example are brought to work.
2010 Mathematics Subject Classification: 90C10, 90C29, 90C32
Keywords: multi-criteria fractional model in integers, basic efficient solution, optimal
compromise solution.

Metodă de soluţionare a problemei de optimizare multicriterială
de tip liniar-fracţionar ı̂n numere ı̂ntregi

Rezumat. În actuala lucrare propunem o metodă de rezolvare a modelului de optimizare
multicriterial de tip liniar-fracţionar cu numitori identici ı̂n numere ı̂ntregi. Acest tip
de modele ı̂nregistrează o solicitare practică ı̂n creştere. Procedura de solut,ionare a
modelului presupune atribuirea init,ială a unor utilităţii (ponderi) fiecărui criteriu [15],
apoi se construieşte modelul de optimizare de tip liniar-fracţionar ı̂n numere ı̂ntregi cu un
singur criteriu, care este o funcţie sinteză a criteriilor ponderate. S-a dovedit că soluţia
de compromis optim a modelului nu depinde de tipul solut,iilor optime a fiecărui criteriu
real sau ı̂ntreg pentru funct,ia sinteză, astfel fiind posibilă selectarea combinatorială a
acestora, iar modificând utilităţile, obt,inem o nouă soluţie a modelului. Justificarea
teoretică a algoritmului, cât s, i un exemplu rezolvat se aduc ı̂n lucrare.
Cuvinte-cheie: model multicriterial ı̂n numere ı̂ntregi, soluţie eficientă de bază, soluţie
de compromis optimal
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THE METHOD FOR SOLVING THE MULTI-CRITERIA LINEAR-FRACTIONAL
OPTIMIZATION PROBLEM IN INTEGERS

1. Introduction

There is currently a growing demand for solving integer optimization problems. This
happens because many decision situations require solving only in whole numbers [16].
Of course, this condition requires increased efforts to solve the optimization problem.
Among the practical domains, where are needed optimal integer solutions, there is the
problem of bi and three-dimensional cutting of materials [8], [9], [17]. A number of
studies of this type have been done to solve the problem of dynamic memory allocation
for multiprocessor and positioning systems. Several researchers have proposed various
studies on this topic (Dowsland and Dowsland 1992, Sweeny and Paternoster 1992,
Dyckhoff 1990, Coffman 1984, Golden 1976, Gilmore 1966). All approaches of these
researchers can be divided into 3 categories: precise, heuristic and metaheuristic. The
exact methods were investigated by Gilmore and Gomory (1961) and are considered
the first methods actually applied in the tailoring industry.The fundamental drawback of
these approaches is their inability to effectively solve the problems of large-dimensions.
However, this effort increases significantly when the problem is multicriteria in nature,
even if it is of linear type [5], [6], [7]. The requirement that the choice variables be of
integer type increases the problem’s complexity and the length of the solving time [1],
[2]. That is why, the interest in this fertile field of scientific research remains opening
further[10], [11], [12]. From a practical point of view, there is an increased interest for the
multicriterial optimization models of linear-fractional type in whole numbers, a fact that
intensified my research on these types of issues. Next, I will propose a study specifically
dedicated to this type of models.

2. Defining the problem with specific reasoning

The integer multicriteria linear optimization problem is typically represented by a
collection of linear constraints, including on the variables restrictions of non-negativity
and integrity, such as equations and/or inequalities. The mathematical model of this type
of problem [16] is as follows:


𝑜𝑝𝑡𝑖𝑚𝑢𝑚{𝐹𝑘 (𝑥)}, 𝑘 = 1, 𝑟
𝑥 ∈ 𝐷

𝐷 = the field of the admissible solutions
(1)

in which: 𝐷 = {𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑛)𝑇 |𝐴𝑥 ≤ 𝑏, 𝑥 ∈ 𝑍+}.
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The explicit form of model (1), in which the objective functions have the same denom-
inator, being of linear-fractional type, is the following:

{
min
max

}
𝐹𝑘 (𝑥) =

𝑛∑
𝑗=1

𝑐𝑘 𝑗 𝑥 𝑗

𝑛∑
𝑗=1

𝑑 𝑗 𝑥 𝑗

𝐴𝑥 ≤ 𝑏

𝑥 ∈ 𝑍+

(2)

in which: 𝐷 = {𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑛)𝑇 |𝐴𝑥 ≤ 𝑏, 𝑥 ∈ 𝑍+}, 𝐴 = | |𝑎𝑖 𝑗 | | is an array of size
𝑚 × 𝑛 (𝑚 < 𝑛), 𝐶 = | |𝑐𝑖 𝑗 | | is an array of size 𝑟 × 𝑛 (𝑟 < 𝑛), 𝑑− is a n-dimensional line
vector, 𝑥 is a n-dimensional column vector and 𝑏 is a 𝑚-dimensional column vector.

The parameters 𝑐𝑘 𝑗 , as well as 𝑑 𝑗 , may be the most different, according of their practical
meanings such as unit costs or benefits, unit of damages or others close in this meaning.
The type of related objective function, minimum or maximum, is determined by their
relevance. Similar to how the elements of the vector 𝑏 indicate the resources available
by types, the elements of the matrix 𝐴, {𝑎𝑖 𝑗}, represent the specific consumption of the
resource 𝑗 for the creation of a product unit of type 𝑖.

In order to solve the model (2) obviously, the value of the denominator function, which
is the same for all criteria, must be nonzero on the domain 𝐷, that is the following
condition must be satisfied:

𝑛∑︁
𝑗=1

𝑑 𝑗𝑥 𝑗 ≠ 0, (∀)𝑥 ∈ 𝐷.

It should be noted, that if in model (2) there are criteria of both minimum and maximum
type, it is not complicated to homogenize them, if necessary.

Unfortunately, it is well known that the multicriteria optimization model rarely admits
an optimal solution. That’s why, in order to solve the multicriteria model, the notion
of a solution that achieves the best compromise, solution of the optimal compromise,
non-dominant solution, efficient solution, optimal solution in the Pareto sense, etc. is
used. In [13] different ways of defining the vector solution 𝑥∗ of the best compromise for
the real-type multicriteria optimization model are proposed. We will adapt some of them
to solve the integer multicriteria linear-fractional optimization model (2) as follows.

1. The solution 𝑥∗ ∈ 𝑍+ for the model (1) is the vector that optimizes a synthesis
function of all 𝑟 criteria, ie: ℎ(𝐹) = ℎ[𝐹1, 𝐹2, ..., 𝐹𝑟 ] . We mention that ℎ(·) can be
defined in various ways.

2. The solution 𝑥∗ ∈ 𝑍+ is the vector which minimizes a single criterion such as:
𝜙(𝑥∗) = min𝑥∈𝐷 ℎ(Ψ1(𝑥−𝑋1), ...,Ψ1(𝑥−𝑋𝑟 )), in which 𝑋 𝑗 = (𝑥1 𝑗 , 𝑥2 𝑗 , ..., 𝑥𝑛 𝑗)𝑇 , 𝑗 = 1, 𝑟
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is the optimal solution of each criterion, 𝐹𝑗 , and Ψ𝑘 is a distance type function between
the vector 𝑥 ∈ 𝐷 and optimal solution 𝑋𝑘 for each criterion 𝐹𝑘 .

3. The solution 𝑥∗ ∈ 𝑍+ is a vector which belongs to a set of efficient solutions of
integer type. Because the model (1) is of multicriteria type, it is well known, that such of
models in general rarely admit optimal solutions. Solving model (1) involves constructing
a finite set of efficient integer solutions known as best compromise solutions [13], which
we mentioned earlier. For the model (2) we will adapt the next definitions.

Definition 2.1. The basic solution 𝑥∗ of the model (2), where 𝑥∗ ∈ 𝑍+, is called optimal
overall if it is the optimal solution for each of criteria.

Definition 2.2. The basic solution 𝑋 , where 𝑋 ∈ 𝑍+ of the model (2) is a basic efficient
one if and only if it doesn’t exists any other basic solution 𝑋 ∈ 𝑍+, where 𝑋 ≠ 𝑋 , which
would improve the values of all criteria and at least one of criteria would be strictly
improved.

The more exact, mathematical version of the same definition is proposed below.

Definition 2.3. The basic solution 𝑋 ∈ 𝑍+ of the model (2) is a basic efficient one if
and only if for any other basic solution 𝑋 ∈ 𝑍+, where 𝑋 ≠ 𝑋 , for which the relations
𝐹𝑗1 (𝑋) ≥ 𝐹𝑗1 (𝑋) are true, where 𝑗1 ∈ (1, ..., 𝑗2), indices corresponding to the maximum
type of criteria immediately exists at least one index ∃ 𝑗𝑙 ∈ ( 𝑗2 + 1, ..., 𝑟), of the minimum
type for which is true the relation: 𝐹𝑗𝑙 (𝑋) > 𝐹𝑗1 (𝑋) or, if the relation 𝐹𝑗𝑙 (𝑋) ≤ 𝐹𝑗1 (𝑋)
is true for all indices corresponding to the minimum type of criteria which are 𝑗𝑙 ∈
( 𝑗2 +1, ..., 𝑟), immediately exists at least one index from the set of indices of the maximum
type of criteria ∃ 𝑗1 ∈ (1, ..., 𝑗2), for which the next relation 𝐹𝑗2 (𝑋) < 𝐹𝑗2 (𝑋) is true.

3. Section plans method

In order to iteratively improve the integer solution of the optimization model, the
section plans approach involves a sectioning procedure for the domain of admissible
solutions. Sections are executed in accordance with predetermined rules. The section
plans algorithm is often referred to as the ”Cyclic Algorithm”. The algorithm iteratively
modifies one of the components of the admissible solution of the optimization problem,
cutting each time the admissible domain, so that the new obtained solution remains
admissible. Of course, at each iteration the value of the objective function changes in
the direction opposite to the criterion type. Since the algorithm is convergent and finite,
after a finite number of steps it determines the optimal integer solution of the model, if
it exists. Despite the fact that the convergence of this algorithm has not been proven, no
examples have been found that contradict it. This algorithm is also known as Gomory’s
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algorithm [4], in honor of the American scientist, R. Gomory, who created it and published
the method for the first time in 1958. We will describe further, applying mathematical
formulas the sectioning process adapted for the linear-fractional optimization problem.
Next we will consider the following couple of optimization problems:

(𝐼𝐿𝑃)


(max) 𝑓 = 𝑐𝑥 + 𝑐0

𝑑𝑥 + 𝑑0
𝐴𝑥 = 𝑏

𝑥 ≥ 0
𝑥 ∈ 𝑍+

(𝐿𝑃)


(max) 𝑓 = 𝑐𝑥 + 𝑐0

𝑑𝑥 + 𝑑0
𝐴𝑥 = 𝑏

𝑥 ≥ 0

where the elements of the matrix 𝐴 and the components of the vector 𝑏, 𝑐,𝑑, and the
constants 𝑐0, 𝑑0, all are of integer type.

We denote 𝐷0 = {𝑥 |𝐴 · 𝑥 = 𝑏, 𝑥 ∈ 𝑍+} and 𝐷 = {𝑥 |𝐴 · 𝑥 = 𝑏, 𝑥 ≥ 0}, where 𝐷0

is the domain of admissible solutions of the problem (ILP) and 𝐷 of the problem (LP),
respectively. We will assume that the function at the denominator is different from zero
in 𝐷, which appears like this: 𝑑𝑥 + 𝑑0 ≠ 0, (∀)𝑥 ∈ 𝐷.

Algorithm stages with theoretical justifications
We’ll start off assuming that 𝑥∗ doesn’t have all of the integer components. In this

instance, a constraint of the fractional optimum 𝑥∗ is constructed; nonetheless, it is
satisfied by any admissible solution of whole type. It is added to the original problem
noted with (𝐿𝑃0), after which the optimal solution will be re-optimized. Let 𝑥∗∗ be the
optimal solution to the new constructed problem, denoted by (𝐿𝑃1). Because of the way
the additive constraint was defined, we will have the following true relationships between
admissible domains: 𝐷 𝐼𝐿𝑃 ⊂ 𝐷𝐿𝑃1 ⊂ 𝐷𝐿𝑃0 = 𝐷𝐿𝑃.

If 𝑥∗∗ does not have all components of integer type, the described procedure is repeated:
a new restriction is constructed, which is not satisfied by 𝑥∗∗, but is verified by the set
of admissible solutions. This new restriction is added to (𝐿𝑃1), resulting a new linear
optimization problem (𝐿𝑃2). The sectioning procedure is as follows: 𝐷 𝐼𝐿𝑃 ⊂ 𝐷𝐿𝑃2 ⊂
𝐷𝐿𝑃1 ⊂ 𝐷𝐿𝑃0 = 𝐷𝐿𝑃.

After applying the reoptimization procedure of the new admissible solution, it is
decided whether 𝐿𝑃2 admit or not optimal solution. The theory guarantees that, after
a finite number of steps, we obtain a linear-fractional programming problem, (𝐿𝑃𝑘−1),
whose optimal solution is 𝑥𝑘 (∗) , which has all integer components, hence it is the optimal
solution of our proposed problem (𝐼𝐿𝑃).

Geometrically, each new added constraint removes some part of the set of admissible
solutions, thus cutting off an intrusive section of the entire admissible domain. Next, we
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will describe the admissible domain partitioning algorithm proposed in [16], adapted for
the linear-fractional optimization problem by imposing additional partitioning restrictions.
We shall take into consideration the vector 𝑏 and matrix 𝐴, which correspond to the
optimal solution of model (𝐿𝑃). We’ll assume that the vector 𝑏 doesn’t have all integer
components. Let the vector component 𝑏 with the largest fractional part be 𝑏𝑟 .

We can represent the constraint coefficients as follows:

𝑏𝑟 = 𝑥𝑟 +
∑︁
𝑗∈𝐽

𝑎𝑟 𝑗𝑥 (3)

which can be decomposed thus:[
𝑏𝑟

]
+
{
𝑏𝑟

}
= 𝑥𝑟 +

∑︁
𝑗∈𝐽

(
[𝑎𝑟 𝑗] +

{
𝑎𝑟 𝑗

})
𝑥 𝑗 . (4)

Because we have true the relationship 0 <

{
𝑏𝑟

}
< 1, the following equality is also

true:
[𝑏𝑟 ] −

∑︁
𝑗∈𝐽

[𝑎𝑟 𝑗]𝑥 𝑗 − 𝑥𝑟 =
∑︁
𝑗∈𝐽

{
𝑎𝑟 𝑗

}
𝑥 𝑗 −

{
𝑏𝑟

}
(5)

Let 𝑥 be a whole admissible solution of the problem (𝐼𝐿𝑃). Therefore, the left-hand
member of the relation (5) is an integer, so we get the following relation true:

[𝑏𝑟 ] −
∑︁
𝑗∈𝐽

[𝑎𝑟 𝑗]𝑥 𝑗 − 𝑥𝑟 ∈ 𝑍 (6)

It follows that the right-hand side of equality (5), which is calculated in the same
solution, is an integer, so we have true the next relationship:∑︁

𝑗∈𝐽

{
𝑎𝑟 𝑗

}
𝑥 𝑗 −

{
𝑏𝑟

}
∈ 𝑍. (7)

Obviously, the next real relation is true:∑︁
𝑗∈𝐽

{
𝑎𝑟 𝑗

}
𝑥 𝑗 −

{
𝑏𝑟

}
≥ 0. (8)

If, however, by absurdity, we assume that:∑︁
𝑗∈𝐽

{
𝑎𝑟 𝑗

}
𝑥 𝑗 −

{
𝑏𝑟

}
< 0, (9)

then from the equality (5) yields the following true inequality:[
𝑏𝑟

]
−
∑︁
𝑗∈𝐽

[
𝑎𝑟 𝑗

]
𝑥 𝑗 − 𝑥𝑟 < 0 (10)

and from (6) results the true expression:[
𝑏𝑟

]
−
∑︁
𝑗∈𝐽

[
𝑎𝑟 𝑗

]
𝑥 𝑗 − 𝑥𝑟 ≤ −1. (11)
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From (5), we will obtained the next relations:
∑
𝑗∈𝐽

{
𝑎𝑟 𝑗

}
𝑥 𝑗 −

{
𝑏𝑟

}
≤ −1, whence it

follows: ∑︁
𝑗∈𝐽

{
𝑎𝑟 𝑗

}
𝑥 𝑗 ≤

{
𝑏𝑟

}
− 1 (12)

Since the relationship is true:
{
𝑎𝑟 𝑗

}
≥ 0, (∀) 𝑗 ∈ 𝐽, we get that the left member of

the relationship (5) is also positive, while the right limb is negative, since
{
𝑏𝑖

}
< 1. The

obtained contradiction proves that the inequality (8) is true. Because 𝑥 has been chosen
arbitrarily, we conclude that the next restriction is also true:∑︁

𝑗∈𝐽

{
𝑎𝑟 𝑗

}
𝑥 𝑗 ≥

{
𝑏𝑟

}
(13)

and that this is verified by any admissible solution of integer type.
But in the optimal solution, which is not of integer type 𝑥∗, we will get: 𝑥∗

𝑗
= 0, 𝑗 ∈ 𝐽.

Inserting these values into (8), we obtain the inequality:
{
𝑏𝑟

}
≤ 0, which contradicts the

hypothesis (4), according to which we had:
{
𝑏𝑟

}
> 0. So, it turns out that the fractional

optimum 𝑥∗ does not verify the inequality (10). Adding this constraint to model (10),
we obtain a new linear optimization problem with (𝑚 + 1) constraints, which we denote
by (𝐿𝑃1). By introducing a new deviation variable 𝑥𝑛+1, we will transform the added
constraint into equality, after which we will apply the re-optimization procedure of the
model solution. The new restriction introduced in (10): − ∑

𝑗∈𝐽

{
𝑎𝑟 𝑗

}
𝑥 𝑗 + 𝑥𝑛+1 = −

{
𝑏𝑟

}
,

is considered a plane sectioning restriction.

4. Method of maximizing global utility

The global utility maximization method is known as the method of Boldur Latescu,
a Romanian researcher, who developed it, as mentioned in [13]. It is based on the
idea of transforming of the objective functions of a multicriteria problem into utility
functions in the sense of von Neumann—Morgenstern [3], which are to be summed to
obtain a synthesis function. In the hypothesis of the existence of a multicriteria linear
programming problem, this method can be used quite effectively even in the case of an
infinite number of decision variants. We will extend the method for the case when the
objective functions are of linear fractional type with the same denominator.

Definition 4.1. Utility is a subjective amount of appreciation of the event by the decision
maker on a certain scale of values depending on the specifics of the event [3].
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Definition 4.2. Given 𝑛 criteria 𝐶1, 𝐶2, ..., 𝐶𝑛, they are called mutually independent in
the sense of the theory of utility, if and only if we have the true relation: 𝜔𝑖 ∼ 𝜔 𝑗 for
anything

(
𝜔𝑖 , 𝜔 𝑗

)
∈ 𝐺, where G is the events space.

Since the additivity of utilities is obviously possible, we will have true the following
relationship:

𝑈 (𝑎𝑖1, 𝑎𝑖2, ..., 𝑎𝑖𝑛) = 𝑢1 (𝑎𝑖1) + 𝑢2 (𝑎𝑖2) + ... + 𝑢𝑛 (𝑎𝑖𝑛) .

The independence of the criteria in the sense of the utility theory specifies that any
consequence of the possible decision variant of a criterion always corresponds to the same
a priori assigned utility.

Global utility maximization algorithm
We will present the algorithm of the global utility maximization method [13], consid-

ering the case of the linear multicriteria optimization problem (1).
Step 1. We will consider for each objective function its optimal value 𝑋 𝑗 , which is

determined, where 𝐹𝑗 = 𝑜𝑝𝑡𝑖𝑚𝑥∈𝐷𝐹𝑗 (𝑥) and 𝑌 𝑗 is its pessimistic value, where 𝐹
𝑝

𝑗
=

𝑝𝑒𝑠𝑠𝑖𝑚𝑥∈𝐷𝐹𝑗 (𝑥). We note that in these cases we will solve fractional linear models,
applying the adapted simplex algorithm [14].

Step 2. For all sets of optimal and worst values of the criteria, the corresponding values
of utilities in the sense Neumann–Morgenstern [13] are associated as follows:{

𝐹1, 𝐹2, ..., 𝐹𝑟 ; 𝐹 𝑝

1 , 𝐹
𝑝

2 , ..., 𝐹
𝑝
𝑟

}
−→ {𝑈1,𝑈2, ...,𝑈𝑟 ;𝑈𝑟+1,𝑈𝑟+2, ...,𝑈2𝑟 } .

Step 3. The objective functions 𝐹𝑗 are presented as utility functions 𝐹𝑈 𝑗 , by solving 𝑟

linear systems with 2𝑟 variables. The unknowns in these equations are the coefficients of
the type:

{(
𝛼 𝑗 , 𝛽 𝑗

)}
𝑗=1,𝑟 .

Using the solutions of the 𝑟 systems of linear equations of this type:{
𝛼 𝑗𝐹𝑗 + 𝛽 𝑗 = 𝑢 𝑗

𝛼 𝑗𝐹
𝑝

𝑗
+ 𝛽 𝑗 = 𝑢 𝑗+𝑟

, 𝑗 = 1, 𝑟,

we will build the following r utility functions such as:

𝐹𝑈 𝑗 = 𝛼 𝑗𝐹𝑗 (𝑋) + 𝛽 𝑗 , 𝑗 = 1, 𝑟 .

Step 4. At the final stage, we will solve a single problem of linear programming whose
objective is to maximize the global utility function UG, which is as follows:

max𝑥∈𝐷𝑈𝐺 = max𝑥∈𝐷
𝑟∑
𝑗=1

𝜋 𝑗𝐹𝑈 𝑗 ,

where 𝜋 𝑗 is the weight coefficient of the criterion 𝐶 𝑗 , which, obviously, can be changed
by the decision maker, thus obtaining another, a new linear optimization problem.
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5. The generalized synthesis algorithm

A rather important problem, which we obviously face when solving the multicriteria
optimization problem in integers, using the methods of synthesis functions, as mentioned
in [16], is formulated as follow: what type of optimal solution of each criterion must be
used to construct the synthesis function of all criteria, in 𝑅+ or in 𝑍+, so that the final
model efficiently solves the problem in 𝑍+ ?

In this paragraph we will answer and justify the answer to this question. We will adjust
the global utility maximization method for the objective functions of the linear-fractional
criteria, in order to use it in solving the proposed model (2). The algorithm will be
performed in two stages.

Stage I:
1. At this stage it is necessary to solve 2𝑟 unicriteria linear fractional programming

problem from model (2), of which r are of the type: 𝐹𝑗 = 𝑜𝑝𝑡𝑖𝑚𝑥∈𝐷𝐹𝑗 (𝑥) and the other
r of the type: 𝐹 𝑝

𝑗
= 𝑝𝑒𝑠𝑠𝑖𝑚𝑥∈𝐷𝐹𝑗 (𝑥) on the same admissible domain:

𝐷 = {𝑥 ∈ 𝑅 |𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} ;
2. Next, we will analogically solve 2𝑟 linear fractional programming problems of

integer type as follows, the first r of the type: 𝐹𝑗 = 𝑜𝑝𝑡𝑖𝑚𝑥∈𝐷𝐹𝑗 (𝑥) and the others r of
the type: 𝐹 𝑝

𝑗
= 𝑝𝑒𝑠𝑠𝑖𝑚𝑥∈𝐷𝐹𝑗 (𝑥) all on the domain: 𝐷 = {𝑥 ∈ 𝑍+ |𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0};

3. We will build the vectors of records of the optimal values of the objective functions,
using in each combinatorial vector both values of some criteria in 𝑍+ and of others in 𝑅+.
Analogously, we will build the vectors of the worst records of the objective functions in
𝑅+ and 𝑍+. Since the size of the optimization problem is finite, it follows that the number
of such combinations is also finite. These combinations can be described as follows:

©­­­­­«
𝐹1(𝑅+)
𝐹2(𝑅+)

...

𝐹𝑟 (𝑅+)

ª®®®®®¬
∨
©­­­­­«
𝐹1(𝑅+)
𝐹2(𝑍+)

...

𝐹𝑟 (𝑍+)

ª®®®®®¬
∨
©­­­­­«
𝐹1(𝑅+)
𝐹2(𝑅+)

...

𝐹𝑟 (𝑍+)

ª®®®®®¬
∨ ... ∨

©­­­­­«
𝐹1(𝑍+)
𝐹2(𝑍+)

...

𝐹𝑟 (𝑍+)

ª®®®®®¬

,


©­­­­­«
𝐹

𝑝

1 (𝑅+)
𝐹

𝑝

2 (𝑅+)
...

𝐹
𝑝
𝑟 (𝑅+)

ª®®®®®¬
∨
©­­­­­«
𝐹

𝑝

1 (𝑅+)
𝐹

𝑝

2 (𝑍+)
...

𝐹
𝑝
𝑟 (𝑍+)

ª®®®®®¬
∨
©­­­­­«
𝐹

𝑝

1 (𝑅+)
𝐹

𝑝

2 (𝑅+)
...

𝐹
𝑝
𝑟 (𝑍+)

ª®®®®®¬
∨ ... ∨

©­­­­­«
𝐹

𝑝

1 (𝑍+)
𝐹

𝑝

2 (𝑍+)
...

𝐹
𝑝
𝑟 (𝑍+)

ª®®®®®¬

.

The total number of such vectors is: 𝑁 (𝑉) = 𝐶1
𝑟 +𝐶2

𝑟 + ... +𝐶𝑟
𝑟 , analogously, the same

number is for pessim type of criteria.
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Stage II:
1. Randomly considering one of the vector records of the optimal values of the

objective functions and correspondingly the vector of records of the worst values, we
construct the synthesis function of the model, which expresses the summary utility of
all criteria thus: 𝐺 =

𝑟∑
𝑗=1

(
𝛼 𝑗𝐹𝑗 + 𝛽 𝑗

)
, which is obviously to be maximized. The utility

coefficients
{(
𝛼 𝑗 , 𝛽 𝑗

)}
𝑗=1,𝑟 are determined by solving the systems of equations for each

criterion, as previously described. Finally, we will solve the following model on linear
programming:

max𝑥∈𝐷 𝐺 =
𝑟∑
𝑗=1

(
𝛼 𝑗𝐹𝑗 (𝑋) + 𝛽 𝑗

)
,

where 𝐷 = {𝑥 |𝐴𝑥 = 𝑏, 𝑥 ∈ 𝑍+}. The optimal solution of this problem is the optimal
compromise solution for model (2). By calculating the values of each objective function
of the model (2) in the obtained optimal solution we will construct the following vector
of records of all objective functions: 

𝐹1(𝑋∗)
𝐹2(𝑋∗)

...

𝐹𝑟 (𝑋∗)


.

Theorem 5.1. For any utility values assigned a priori to the objective functions in model
(2), where the identical denominator is nonzero over the admissible domain, the optimal
compromise solution corresponding to them remains the same for any combinatorial
selection of the optimal values of the criteria and the corresponding pessimistic ones from
in 𝑅+ or in 𝑍+.

Proof. Let 𝑋1
𝑒 𝑓 𝑓

be a solution of the optimal compromise for the model (2) of
integer type, for a given a priori set of utilities, obtained by applying the global utility
maximization method. Because the solution is of the optimal compromise, it turns out
that it is the closest located to the optimal solutions of the whole type of each criterion.
We will assume that the synthesis function of the model, which generated the given
solution, was obtained using a certain combination of optimal and pessimistic values of
the objective functions of the model (2), some being solved in 𝑅+, others in 𝑍+.

Let

©­­­­­«
𝐹1(𝑅+)
𝐹2(𝑅+)

...

𝐹𝑟 (𝑍+)

ª®®®®®¬
be the vector of optimal and correspondingly pessimistic

©­­­­­«
𝐹

𝑝

1 (𝑅+)
𝐹

𝑝

2 (𝑅+)
...

𝐹
𝑝
𝑟 (𝑍+)

ª®®®®®¬
objective functions values. We will admit, analogously to the demonstration in [16], that
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for another record values, different from the previous one, of the values of the objective
functions of model (2), let it be©­­­­­«

𝐹1(𝑍+)
𝐹2(𝑅+)

...

𝐹𝑟 (𝑍+)

ª®®®®®¬
and corresponding vector of the pessimistic values

©­­­­­«
𝐹

𝑝

1 (𝑍+)
𝐹

𝑝

2 (𝑅+)
...

𝐹
𝑝
𝑟 (𝑍+)

ª®®®®®¬
, the ob-

jective synthesis function admits another integer-optimal compromise solution that is
different from the first one, either it is: 𝑋2

𝑒 𝑓 𝑓
. If 𝑋1

𝑒 𝑓 𝑓
.≠ 𝑋2

𝑒 𝑓 𝑓
, there is at least one

coordinate by which these solution vectors differ from each other. So, we will have at
least one criterion of model (2), be it having indices 𝑖1, for which the distance between its
optimal solution in integers and the new solution is smaller than the previously received
one. Therefore, we will have the following true relation: 𝜌

(
𝑋1
𝑒 𝑓 𝑓

.𝑋∗
𝑖1

)
> 𝜌

(
𝑋2
𝑒 𝑓 𝑓

.𝑋∗
𝑖1

)
,

where 𝑋∗
𝑖1

is optimal solution in integer of criterion 𝑖1, fact that contradicts the assumption
that 𝑋1

𝑒 𝑓 𝑓
is a optimal compromise solution of integer type for the model (2). Therefore,

our assumption is wrong. So, in conclusion, we obtained, that model (2) admits a single
optimal compromise solution in integers, regardless of the type of optimal values of the
objective functions of the model solved in 𝑅+ or 𝑍+, which is used to build the synthesis
function of the proposed model.

Remark 5.1. Obviously, for any values of the a priori utilities assigned to the criteria in
the multicriteria optimization model (2), applying the global utility maximization method,
we will obtain the optimal compromise solution of integer type corresponding to them.

6. Conclusions

Multicriteria optimization models have always enjoyed increased interest. This trend
is maintained even today, especially due to the fact that they more adequately describe
the decision-making situations in the most diverse socio-economic fields, and the optimal
compromise solution of such a model effectively solves the real situation described. In the
current paper, an efficient algorithm is proposed for solving the multicriteria optimization
model in integers, where the objective functions are of the linear-fractional type with
identical denominators. Obviously, the complexity of such a problem is increased, but
the practical necessity of its solution is certainly imposed. For this purpose, we focused
on using the synthesis function methods, namely the global utility maximization method,
adapted for solving the proposed multicriteria optimization model. This method leads
to the determination of an optimal compromise integer solution for all criteria, which
are of linear-fractional type and which is closest to the optimal integer solutions of each
criterion.
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As a result of the algorithm investigation, we obtained a significant result for determin-
ing the optimal compromise solution in whole numbers of the proposed model. Thus, for
its determination, the decision-maker can use combinatorially both the optimal values of
some criteria in whole numbers, as well as others calculated on the set of real numbers,
all, of course, positive when constructing the synthesis function. Regardless of the con-
figuration used to construct the synthetic function, its optimal integer solution does not
change. Therefore, the decision-maker has the free choice to select more advantageous
values of the criteria from his point of view for building the synthesis function of the
model. This fact is quite important, making it possible to solve the model interactively,
obviously increasing both the efficiency and the attractiveness of the algorithm.

Example 5.1. For the following linear-fractional multicriteria optimization model in
integers and for the proposed values of the criteria’s utilities, the optimal compromise
solution is to be determined, using the global utility maximization method:

min
{
𝐹1 (𝑋) =

𝑥1 + 2𝑥2 + 𝑥3
𝑥1 + 𝑥2 + 𝑥3 + 1

}
, max

{
𝐹2 (𝑋) =

2𝑥1 + 𝑥2 + 2𝑥3
𝑥1 + 𝑥2 + 𝑥3 + 1

}
,

max
{
𝐹3 (𝑋) =

2𝑥1 + 3𝑥2 + 𝑥3
𝑥1 + 𝑥2 + 𝑥3 + 1

}
,

3𝑥1 + 5𝑥2 + 𝑥3 ≤ 18
5𝑥1 + 3𝑥2 + 2𝑥3 ≤ 20

2𝑥1 + 𝑥2 + 2𝑥3 ≥ 5
𝑥 𝑗 ∈ 𝑍+.

𝐹1 𝐹2 𝐹3 𝐹
𝑝

1 𝐹
𝑝

2 𝐹
𝑝

3
𝑈1 = 4 𝑈2 = 8 𝑈3 = 9 𝑈4 = 1 𝑈5 = 2 𝑈6 = 2

Solving procedure: For solving the proposed model, we will apply the global utility
maximization method, being one of synthesis type. Initially, we can observe, that in the
model the value of the denominator will be non-zero in 𝐷. We will go through stage I of the
algorithm. For this purpose we will solve six unicriteria linear- fractional programming
problems in 𝑅+, recording the optimal and worst values for each objective function. Next,
in an analogous way, we will solve the same six unicriteria linear-fractional programming
problems on the set 𝑍+, keeping the optimal and pessimistic values of each criterion. For
the construction of the synthesis function, using the global utility maximization method,
we will randomly select any combination of records of the corresponding optimal and
worst criteria values, some criteria being solved in 𝑅+ and others in 𝑍+.
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These are as follows:

1)


𝐹1(𝑅+)
𝐹2(𝑅+)
𝐹3(𝑅+)

 ,


𝐹

𝑝

1 (𝑅+)
𝐹

𝑝

2 (𝑅+)
𝐹

𝑝

3 (𝑅+)

 ; 2)


𝐹1(𝑍+)
𝐹2(𝑍+)
𝐹3(𝑍+)

 ,


𝐹

𝑝

1 (𝑍+)
𝐹

𝑝

2 (𝑍+)
𝐹

𝑝

3 (𝑍+)

 ;

3)


𝐹1(𝑅+)
𝐹2(𝑍+)
𝐹3(𝑍+)

 ,


𝐹

𝑝

1 (𝑅+)
𝐹

𝑝

2 (𝑍+)
𝐹

𝑝

3 (𝑍+)

 ; 4)


𝐹1(𝑅+)
𝐹2(𝑅+)
𝐹3(𝑍+)

 ,


𝐹

𝑝

1 (𝑅+)
𝐹

𝑝

2 (𝑅+)
𝐹

𝑝

3 (𝑍+)

 ;

5)


𝐹1(𝑅+)
𝐹2(𝑍+)
𝐹3(𝑅+)

 ,


𝐹

𝑝

1 (𝑅+)
𝐹

𝑝

2 (𝑍+)
𝐹

𝑝

3 (𝑅+)

 ; 6)


𝐹1(𝑍+)
𝐹2(𝑍+)
𝐹3(𝑅+)

 ,


𝐹

𝑝

1 (𝑍+)
𝐹

𝑝

2 (𝑍+)
𝐹

𝑝

3 (𝑅+)

 ;

7)


𝐹1(𝑍+)
𝐹2(𝑅+)
𝐹3(𝑍+)

 ,


𝐹

𝑝

1 (𝑍+)
𝐹

𝑝

2 (𝑅+)
𝐹

𝑝

3 (𝑍+)

 ; 8)


𝐹1(𝑍+)
𝐹2(𝑅+)
𝐹3(𝑅+)

 ,


𝐹

𝑝

1 (𝑍+)
𝐹

𝑝

2 (𝑅+)
𝐹

𝑝

3 (𝑅+)

 .

The optimal solutions of the unicriteria models as well as the weight criteria, we placed
them directly in the vectors of value combinations of the objective functions proposed
above. Next, we solved 24 systems of linear equations in order to determine the weight
coefficients of each criterion in the synthesis function:

{(
𝛼 𝑗 , 𝛽 𝑗

)}
𝑗=1,𝑟 . For each of

the selected combinations of objective function values we have built the corresponding
synthesis functions using the same criterion utility table for the proposed model. We
obtained the following utility functions:

𝐹1 (𝑈) = 1, 73𝑥1 + 1, 63𝑥2 + 1, 09𝑥3
𝑥1 + 𝑥2 + 𝑥3 + 1

−→ max

𝐹2 (𝑈) = 1, 83𝑥1 + 1, 75𝑥2 + 1, 13𝑥3
𝑥1 + 𝑥2 + 𝑥3 + 1

−→ max

𝐹3 (𝑈) = 1, 85𝑥1 + 1, 8𝑥2 + 1, 15𝑥3
𝑥1 + 𝑥2 + 𝑥3 + 1

−→ max

𝐹4 (𝑈) = 1, 85𝑥1 + 1, 8𝑥2 + 1, 15𝑥3
𝑥1 + 𝑥2 + 𝑥3 + 1

−→ max

𝐹5 (𝑈) = 1, 73𝑥1 + 1, 63𝑥2 + 1, 09𝑥3
𝑥1 + 𝑥2 + 𝑥3 + 1

−→ max

𝐹6 (𝑈) = 1, 7𝑥1 + 1, 57𝑥2 + 1, 07𝑥3
𝑥1 + 𝑥2 + 𝑥3 + 1

−→ max

𝐹7 (𝑈) = 1, 83𝑥1 + 1, 75𝑥2 + 1, 13𝑥3
𝑥1 + 𝑥2 + 𝑥3 + 1

−→ max

𝐹8 (𝑈) = 1, 7𝑥1 + 1, 57𝑥2 + 1, 07𝑥3
𝑥1 + 𝑥2 + 𝑥3 + 1

−→ max
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The above expressions express the summary utility of all criteria for the corresponding
weights and are to be maximized over the admissible domain of the model, given by the
same restrictions: 

3𝑥1 + 5𝑥2 + 𝑥3 ≤ 18
5𝑥1 + 3𝑥2 + 2𝑥3 ≤ 20

2𝑥1 + 𝑥2 + 2𝑥3 ≥ 5
𝑥 𝑗 ∈ 𝑍+

By solving these 8 constructed problems, which are of integer linear programming
type, we obtained the same optimal compromise solution:

𝑋1
𝑒 𝑓 𝑓 = 𝑋2

𝑒 𝑓 𝑓 = 𝑋3
𝑒 𝑓 𝑓 = 𝑋4

𝑒 𝑓 𝑓 = 𝑋5
𝑒 𝑓 𝑓 = 𝑋6

𝑒 𝑓 𝑓 = 𝑋7
𝑒 𝑓 𝑓 = 𝑋8

𝑒 𝑓 𝑓 = {𝑥1 = 1, 𝑥2 = 3, 𝑥3 = 0} .

Further we calculated the values of utility functions, which are as follows:
𝐹1 (𝑈) ≈ 2, 38; 𝐹2 (𝑈) ≈ 2, 41; 𝐹3 (𝑈) ≈ 2, 4; 𝐹4 (𝑈) ≈ 2, 4;

𝐹5 (𝑈) ≈ 2, 38; 𝐹6 (𝑈) ≈ 2, 39; 𝐹7 (𝑈) ≈ 2, 41; 𝐹8 (𝑈) ≈ 2, 39;

𝐹

(
𝑋1
𝑒 𝑓 𝑓

)
=


𝐹1

(
𝑋1
𝑒 𝑓 𝑓

)
𝐹2

(
𝑋1
𝑒 𝑓 𝑓

)
𝐹3

(
𝑋1
𝑒 𝑓 𝑓

)

= 𝐹

(
𝑋2
𝑒 𝑓 𝑓

)
=


𝐹1

(
𝑋2
𝑒 𝑓 𝑓

)
𝐹2

(
𝑋2
𝑒 𝑓 𝑓

)
𝐹3

(
𝑋2
𝑒 𝑓 𝑓

)

=

= 𝐹

(
𝑋3
𝑒 𝑓 𝑓

)
=


𝐹1

(
𝑋3
𝑒 𝑓 𝑓

)
𝐹2

(
𝑋3
𝑒 𝑓 𝑓

)
𝐹3

(
𝑋3
𝑒 𝑓 𝑓

)

= 𝐹

(
𝑋4
𝑒 𝑓 𝑓

)
=


𝐹1

(
𝑋4
𝑒 𝑓 𝑓

)
𝐹2

(
𝑋4
𝑒 𝑓 𝑓

)
𝐹3

(
𝑋4
𝑒 𝑓 𝑓

)

=

= 𝐹

(
𝑋5
𝑒 𝑓 𝑓

)
=


𝐹1

(
𝑋5
𝑒 𝑓 𝑓

)
𝐹2

(
𝑋5
𝑒 𝑓 𝑓

)
𝐹3

(
𝑋5
𝑒 𝑓 𝑓

)

= 𝐹

(
𝑋6
𝑒 𝑓 𝑓

)
=


𝐹1

(
𝑋6
𝑒 𝑓 𝑓

)
𝐹2

(
𝑋6
𝑒 𝑓 𝑓

)
𝐹3

(
𝑋6
𝑒 𝑓 𝑓

)

=

= 𝐹 (𝑋7
𝑒 𝑓 𝑓

) =


𝐹1

(
𝑋7
𝑒 𝑓 𝑓

)
𝐹2

(
𝑋7
𝑒 𝑓 𝑓

)
𝐹3

(
𝑋7
𝑒 𝑓 𝑓

)

= 𝐹 (𝑋8

𝑒 𝑓 𝑓
)


𝐹1

(
𝑋8
𝑒 𝑓 𝑓

)
𝐹2

(
𝑋8
𝑒 𝑓 𝑓

)
𝐹3

(
𝑋8
𝑒 𝑓 𝑓

)

=


7
5
11

 .
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On stability of some examples of ternary differential critical
systems with quadratic nonlinearities

Natalia Neagu and Mihail Popa

Abstract. Starting with Example 1 of A.M. Lyaponov’s thesis [1] (§32), which represents
a ternary differential system with quadratic nonlinearities, examples of differential sys-
tems of the generalized Darboux type were constructed in the critical case.The stability
conditions of the unperturbed motion described by these systems were determined.
2010 Mathematics Subject Classification: 34C05, 34C14, 34C40.
Keywords: differential system, stability of unperturbed motion, differential system of
generalized Darboux type, the intrinsic transmission dynamics of tuberculosis.

Despre stabilitatea unor exemple de sisteme critice diferenţiale
ternare cu neliniarităţi pătratice

Rezumat. Pornind de la Exemplul 1, din teza lui A. M. Lyaponov [1] (§32), ce constă
dintr-un sistem diferenţial ternar cu nelinearităţi pătratice, ı̂n cazul critic, au fost construite
mai multe exemple de sisteme diferenţiale de tip generalizat Darboux. Pentru aceste
sisteme au fost determinate condiţiile de stabilitate a mişcării neperturbate.
Cuvinte-cheie: sistem diferenţial, stabilitatea mişcării neperturbate, sistem diferenţial
de tip generalizat Darboux, sistemul dinamicii răspândirii tuberculozei.

1. Introduction

Systems of autonomous differential equations of the first order are mathematical models
of many processes in everyday life, for example the system of intrinsic transmission
dynamics of tuberculosis (TB).

This mathematical model is described by ternary differential systems with quadratic
nonlinearities, which are contained in ternary differential systems with quadratic non-
linearities generalized Darboux type. In the world, there are countless dedicated works
to TB problems, both in medicine and in mathematics. For example, among the works
devoted to the problem of dynamics of TB, in medicine and mathematics, we can mention
the paper [2].
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In the Institute of Mathematics and Computer Science of ASM, there were carried
researches in the field of TB within a project [3], without examining the stability of the
unperturbed motion governed by the system mentioned above.

Also, starting with Example 1 from A. M. Lyaponov’s thesis [1] (§32), which consisted
of a ternary differential system with quadratic nonlinearities, in the critical case, there
were constructed some examples of differential systems of the generalized Darboux type.

In this work, there were determined the stability conditions of unperturbed motion in
the critical case for the differential system aimed at the intrinsic transmission dynamics of
tuberculosis TB in society and examples of differential systems of generalized Darboux
type.

2. Intrinsic transmission dynamics of tuberculosis (TB)

The intrinsic transmission dynamics of tuberculosis [2, 4], represents a mathematical
model, in which the entire population is divided into:

- the sensitive population (S);
- the population carrying latent infection (L);
- the population with active tuberculosis (T).
This dynamics is defined by the following system of differential equations:

𝑑𝑆

𝑑𝑡
= 𝜏 − 𝜇𝑆 − 𝛽𝑆𝑇 ≡ 𝑃,

𝑑𝐿

𝑑𝑡
= −𝛿𝐿 − 𝜇𝐿 + (1 − 𝑝)𝛽𝑆𝑇 ≡ 𝑄,

𝑑𝑇

𝑑𝑡
= 𝛿𝐿 − (𝜇 + 𝜈)𝑇 + 𝑝𝛽𝑆𝑇 ≡ 𝑅.

(1)

The variables and parameters of system (1) are described in the Table 1:

Table 1. The variables and parameters of the system (1)

Value Description
𝑆(𝑡) number of sensible persons in the moment 𝑡
𝐿 (𝑡) number of infected persons in the moment 𝑡
𝑇 (𝑡) number of infectious persons in the moment 𝑡
𝜆(𝑡) force of infection per capita in the moment 𝑡
𝜏 influx of young people
𝜇 average mortality from causes not related to TB
𝑝 probability of rapid progression of the disease
𝛿 speed constant of reactivation of TB infection
𝜈 additional mortality caused by active TB
𝛽 transfer coefficient of TB infection
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The intrinsic transmission dynamics of tuberculosis [3] (1), through the affine trans-
formation

𝑥 = 𝜏 − 𝜇𝑆; 𝑦 = 𝐿; 𝑧 = 𝑇, (2)

and 𝜇 ≠ 0, according to the medical meaning of this variable, can be brought to the form

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 + 𝑏𝑧 + 2𝑔𝑥𝑧;

𝑑𝑦

𝑑𝑡
= 𝑐𝑦 + 𝑑𝑧 + 2ℎ𝑥𝑧;

𝑑𝑧

𝑑𝑡
= 𝑒𝑦 + 𝑓 𝑧 + 2𝑘𝑥𝑧.

(3)

where

𝑎 = −𝜇 ≠ 0, 𝑏 = 𝛽𝜏, 𝑐 = −𝛿 − 𝜇, 𝑑 =
(1 − 𝑝)𝛽𝜏

𝜇
, 𝑒 = 𝛿, 𝑓 =

𝑝𝛽𝜏

𝜇
− 𝜇 − 𝜇𝑇 ,

𝑔 = − 𝛽

2
, ℎ = − (1 − 𝑝)𝛽

2𝜇
, 𝑘 = − 𝑝𝛽

2𝜇
.

(4)

The characteristic equation of system (3) is

𝜌3 + (−𝑎 − 𝑐 − 𝑓 )𝜌2 + (𝑎𝑐 + 𝑎 𝑓 + 𝑐 𝑓 − 𝑑𝑒)𝜌 − 𝑎(𝑐 𝑓 − 𝑑𝑒) = 0. (5)

Taking into account the medical meaning of the variables (𝑎 ≠ 0), for equation (5) to have
one zero root, we obtain the relation 𝑐 𝑓 − 𝑑𝑒 = 0.

By a center-affine transformation

𝑥 = −𝑒𝑦 + 𝑐𝑧; 𝑦̄ = 𝑦; 𝑧 = 𝑥 + 𝑧 (Δ ≡ 𝑐 ≠ 0) (6)

and 𝑐 𝑓 − 𝑑𝑒 = 0 or 𝑓 = 𝑑𝑒
𝑐

, according to Hurwitz’s theorem [5], the system (3) can be
brought to the critical Lyapunov form

𝑑𝑥

𝑑𝑡
=

2(𝑐𝑘 − 𝑒ℎ)
𝑐2 (−𝑥2 − 2𝑒𝑥𝑦 + 𝑐𝑥𝑧 − 𝑒2𝑦2 + 𝑐𝑒𝑦𝑧);

𝑑𝑦

𝑑𝑡
=

𝑑

𝑐
𝑥 + (𝑐 + 𝑑𝑒

𝑐
)𝑦 + 2ℎ

𝑐2 (−𝑥
2 − 2𝑒𝑥𝑦 + 𝑐𝑥𝑧 − 𝑒2𝑦2 + 𝑐𝑒𝑦𝑧);

𝑑𝑧

𝑑𝑡
=
−𝑎 + 𝑓 + 𝑏

𝑐
𝑥 + (−𝑎 + 𝑐 + 𝑓 + 𝑏)𝑒

𝑐
𝑦 + 𝑎𝑧+

+2(𝑔 + 𝑘)
𝑐2 (−𝑥2 − 2𝑒𝑥𝑦 + 𝑐𝑥𝑧 − 𝑒2𝑦2 + 𝑐𝑒𝑦𝑧),

(7)

where

−𝑎 − 𝑐 − 𝑓 > 0, 𝑎(𝑐 + 𝑓 ) > 0. (8)
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According to Lemma 4.2 [6], we have

𝐶1 = 0, 𝐶2 =
2
𝑐2 (−1 + 𝑐𝐵1 − 𝑒𝐴1) (1 + 𝑒𝐴1) (−𝑒ℎ + 𝑐𝑘),

𝐶3 =
2
𝑐2 [𝑐𝐵2 − 2𝑒𝐴2 + 𝑐𝑒(𝐴2𝐵1 + 𝐴1𝐵2) − 2𝑒2𝐴1𝐴2] (−𝑒ℎ + 𝑐𝑘),

𝐶4 =
2
𝑐2 [𝑐𝐵3 − 2𝑒𝐴3 + 𝑐𝑒(𝐴3𝐵1 + 𝐴2𝐵2 + 𝐴1𝐵3) − 𝑒2(𝐴2

2 + 2𝐴1𝐴3)] (−𝑒ℎ + 𝑐𝑘),

𝐶5 =
2
𝑐2 [𝑐𝐵4 − 2𝑒𝐴4 + 𝑐𝑒(𝐴4𝐵1 + 𝐴3𝐵2 + 𝐴2𝐵3 + 𝐴1𝐵4)−

−2𝑒2(𝐴2𝐴3 + 𝐴1𝐴4)] (−𝑒ℎ + 𝑐𝑘),

𝐶6 =
2
𝑐2 [𝑐𝐵5 − 2𝑒𝐴5 + 𝑐𝑒(𝐴5𝐵1 + 𝐴4𝐵2 + 𝐴3𝐵3 + 𝐴2𝐵4 + 𝐴1𝐵5)−

−𝑒2(𝐴2
3 + 2𝐴2𝐴4 + 2𝐴1𝐴5)] (−𝑒ℎ + 𝑐𝑘),

𝐶7 =
2
𝑐2 [𝑐𝐵6 − 2𝑒𝐴6 + 𝑐𝑒(𝐴6𝐵1 + 𝐴5𝐵2 + 𝐴4𝐵3 + 𝐴3𝐵4 + 𝐴2𝐵5 + 𝐴1𝐵6)−

−2𝑒2(𝐴3𝐴4 + 𝐴2𝐴5 + 𝐴1𝐴6)] (−𝑒ℎ + 𝑐𝑘),

𝐶8 =
2
𝑐2 [𝑐𝐵7 − 2𝑒𝐴7 + 𝑐𝑒(𝐴7𝐵1 + 𝐴6𝐵2 + 𝐴5𝐵3 + 𝐴4𝐵4 + 𝐴3𝐵5+

+𝐴2𝐵6 + 𝐴1𝐵7) − 𝑒2(𝐴2
4 + 2𝐴3𝐴5 + 2𝐴2𝐴6 + 2𝐴1𝐴7)] (−𝑒ℎ + 𝑐𝑘),

𝐶9 =
2
𝑐2 [𝑐𝐵8 − 2𝑒𝐴8 + 𝑐𝑒(𝐴8𝐵1 + 𝐴7𝐵2 + 𝐴6𝐵3 + 𝐴5𝐵4 + 𝐴4𝐵5+

+𝐴3𝐵6 + 𝐴2𝐵7 + 𝐴1𝐵8) − 2𝑒2(𝐴4𝐴5 + 𝐴3𝐴6 + 𝐴2𝐴7 + 𝐴1𝐴8)] (−𝑒ℎ + 𝑐𝑘),

𝐶10 =
2
𝑐2 [𝑐𝐵9 − 2𝑒𝐴9 + 𝑐𝑒(𝐴9𝐵1 + 𝐴8𝐵2 + 𝐴7𝐵3 + 𝐴6𝐵4 + 𝐴5𝐵5 + 𝐴4𝐵6+

+𝐴3𝐵7 + 𝐴2𝐵8 + 𝐴1𝐵9) − 𝑒2(𝐴2
5 + 2𝐴4𝐴6 + 2𝐴3𝐴7+

+2𝐴2𝐴8 + 2𝐴1𝐴9)] (−𝑒ℎ + 𝑐𝑘), . . . ,

(9)

where

𝐴1 = − 𝑑

𝑐2 + 𝑑𝑒
, 𝐵1 =

(𝑎 − 𝑏)𝑐
𝑎(𝑐2 + 𝑑𝑒)

;

𝐴2 = − 2
𝑐(𝑐2 + 𝑑𝑒)

[(−1 + 𝑐𝐵1 − 𝑒𝐴1) (1 + 𝑒𝐴1)ℎ],

𝐵2 = − 2
𝑎𝑐3(𝑐2 + 𝑑𝑒)

(−1 + 𝑐𝐵1 − 𝑒𝐴1) (1 + 𝑒𝐴1) (𝑐3𝑔 + 𝑐𝑑𝑒𝑔 + 𝑎𝑐𝑒ℎ−

−𝑏𝑐𝑒ℎ − 𝑐2𝑒ℎ − 𝑑𝑒2ℎ + 𝑐3𝑘 + 𝑐𝑑𝑒𝑘),
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𝐴3 = − 2
𝑐(𝑐2 + 𝑑𝑒)

(𝑐𝐵2 − 2𝑒𝐴2 + 𝑐𝑒(𝐴2𝐵1 + 𝐴1𝐵2) − 2𝑒2𝐴1𝐴2)ℎ,

𝐵3 = − 2
𝑎𝑐3(𝑐2 + 𝑑𝑒)

(𝑐𝐵2 − 2𝑒𝐴2 + 𝑐𝑒(𝐴2𝐵1 + 𝐴1𝐵2)−

−2𝑒2𝐴1𝐴2) (𝑐3𝑔 + 𝑐𝑑𝑒𝑔 + 𝑎𝑐𝑒ℎ − 𝑏𝑐𝑒ℎ − 𝑐2𝑒ℎ − 𝑑𝑒2ℎ + 𝑐3𝑘 + 𝑐𝑑𝑒𝑘),

𝐴4 = − 2
𝑐(𝑐2 + 𝑑𝑒)

[𝑐𝐵3 − 2𝑒𝐴3 + 𝑐𝑒(𝐴3𝐵1 + 𝐴2𝐵2 + 𝐴1𝐵3) − 𝑒2(𝐴2
2 + 2𝐴1𝐴3)]ℎ,

𝐵4 = − 2
𝑎𝑐3(𝑐2 + 𝑑𝑒)

[𝑐𝐵3 − 2𝑒𝐴3 + 𝑐𝑒(𝐴3𝐵1 + 𝐴2𝐵2 + 𝐴1𝐵3)−

−𝑒2(𝐴2
2 + 2𝐴1𝐴3)] (𝑐3𝑔 + 𝑐𝑑𝑒𝑔 + 𝑎𝑐𝑒ℎ − 𝑏𝑐𝑒ℎ − 𝑐2𝑒ℎ − 𝑑𝑒2ℎ + 𝑐3𝑘 + 𝑐𝑑𝑒𝑘),

𝐴5 = − 2
𝑐(𝑐2 + 𝑑𝑒)

[𝑐𝐵4 − 2𝑒𝐴4 + 𝑐𝑒(𝐴4𝐵1 + 𝐴3𝐵2 + 𝐴2𝐵3 + 𝐴1𝐵4)−

−2𝑒2(𝐴2𝐴3 + 𝐴1𝐴4)]ℎ,

𝐵5 = − 2
𝑎𝑐3(𝑐2 + 𝑑𝑒)

[𝑐𝐵4 − 2𝑒𝐴4 + 𝑐𝑒(𝐴4𝐵1 + 𝐴3𝐵2 + 𝐴2𝐵3 + 𝐴1𝐵4)−

−2𝑒2(𝐴2𝐴3 + 𝐴1𝐴4)] (𝑐3𝑔 + 𝑐𝑑𝑒𝑔 + 𝑎𝑐𝑒ℎ − 𝑏𝑐𝑒ℎ − 𝑐2𝑒ℎ − 𝑑𝑒2ℎ + 𝑐3𝑘 + 𝑐𝑑𝑒𝑘),

𝐴6 = − 2
𝑐(𝑐2 + 𝑑𝑒)

[𝑐𝐵5 − 2𝑒𝐴5 + 𝑐𝑒(𝐴5𝐵1 + 𝐴4𝐵2 + 𝐴3𝐵3 + 𝐴2𝐵4 + 𝐴1𝐵5)−

−𝑒2(𝐴2
3 + 2𝐴2𝐴4 + 2𝐴1𝐴5)]ℎ,

𝐵6 = − 2
𝑎𝑐3(𝑐2 + 𝑑𝑒)

[𝑐𝐵5 − 2𝑒𝐴5 + 𝑐𝑒(𝐴5𝐵1 + 𝐴4𝐵2 + 𝐴3𝐵3 + 𝐴2𝐵4 + 𝐴1𝐵5)−

−𝑒2(𝐴2
3 + 2𝐴2𝐴4 + 2𝐴1𝐴5)] (𝑐3𝑔 + 𝑐𝑑𝑒𝑔 + 𝑎𝑐𝑒ℎ − 𝑏𝑐𝑒ℎ − 𝑐2𝑒ℎ − 𝑑𝑒2ℎ + 𝑐3𝑘 + 𝑐𝑑𝑒𝑘),

𝐴7 = − 2
𝑐(𝑐2 + 𝑑𝑒)

[𝑐𝐵6 − 2𝑒𝐴6 + 𝑐𝑒(𝐴6𝐵1 + 𝐴5𝐵2 + 𝐴4𝐵3 + 𝐴3𝐵4+

+𝐴2𝐵5 + 𝐴1𝐵6) − 2𝑒2(𝐴3𝐴4 + 𝐴2𝐴5 + 𝐴1𝐴6)]ℎ,

𝐵7 = − 2
𝑎𝑐3(𝑐2 + 𝑑𝑒)

[𝑐𝐵6 − 2𝑒𝐴6 + 𝑐𝑒(𝐴6𝐵1 + 𝐴5𝐵2 + 𝐴4𝐵3 + 𝐴3𝐵4+

+𝐴2𝐵5 + 𝐴1𝐵6) − 2𝑒2(𝐴3𝐴4 + 𝐴2𝐴5 + 𝐴1𝐴6)] (𝑐3𝑔+

+𝑐𝑑𝑒𝑔 + 𝑎𝑐𝑒ℎ − 𝑏𝑐𝑒ℎ − 𝑐2𝑒ℎ − 𝑑𝑒2ℎ + 𝑐3𝑘 + 𝑐𝑑𝑒𝑘),

𝐴8 = − 2
𝑐(𝑐2 + 𝑑𝑒)

[𝑐𝐵7 − 2𝑒𝐴7 + 𝑐𝑒(𝐴7𝐵1 + 𝐴6𝐵2 + 𝐴5𝐵3 + 𝐴4𝐵4+

+𝐴3𝐵5 + 𝐴2𝐵6 + 𝐴1𝐵7) − 𝑒2(𝐴2
4 + 2𝐴3𝐴5 + 2𝐴2𝐴6 + 2𝐴1𝐴7)]ℎ,
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𝐵8 = − 2
𝑎𝑐3(𝑐2 + 𝑑𝑒)

[𝑐𝐵7 − 2𝑒𝐴7 + 𝑐𝑒(𝐴7𝐵1 + 𝐴6𝐵2 + 𝐴5𝐵3 + 𝐴4𝐵4 + 𝐴3𝐵5+

+𝐴2𝐵6 + 𝐴1𝐵7) − 𝑒2(𝐴2
4 + 2𝐴3𝐴5 + 2𝐴2𝐴6 + 2𝐴1𝐴7)] (𝑐3𝑔+

+𝑐𝑑𝑒𝑔 + 𝑎𝑐𝑒ℎ − 𝑏𝑐𝑒ℎ − 𝑐2𝑒ℎ − 𝑑𝑒2ℎ + 𝑐3𝑘 + 𝑐𝑑𝑒𝑘),

𝐴9 = − 2
𝑐(𝑐2 + 𝑑𝑒)

[𝑐𝐵8 − 2𝑒𝐴8 + 𝑐𝑒(𝐴8𝐵1 + 𝐴7𝐵2 + 𝐴6𝐵3 + 𝐴5𝐵4 + 𝐴4𝐵5+

+𝐴3𝐵6 + 𝐴2𝐵7 + 𝐴1𝐵8) − 2𝑒2(𝐴4𝐴5 + 𝐴3𝐴6 + 𝐴2𝐴7 + 𝐴1𝐴8)]ℎ,

𝐵9 = − 2
𝑎𝑐3(𝑐2 + 𝑑𝑒)

[𝑐𝐵8 − 2𝑒𝐴8 + 𝑐𝑒(𝐴8𝐵1 + 𝐴7𝐵2 + 𝐴6𝐵3 + 𝐴5𝐵4 + 𝐴4𝐵5+

+𝐴3𝐵6 + 𝐴2𝐵7 + 𝐴1𝐵8) − 2𝑒2(𝐴4𝐴5 + 𝐴3𝐴6 + 𝐴2𝐴7 + 𝐴1𝐴8)] (𝑐3𝑔+

+𝑐𝑑𝑒𝑔 + 𝑎𝑐𝑒ℎ − 𝑏𝑐𝑒ℎ − 𝑐2𝑒ℎ − 𝑑𝑒2ℎ + 𝑐3𝑘 + 𝑐𝑑𝑒𝑘),

𝐴10 = − 2
𝑐(𝑐2 + 𝑑𝑒)

[𝑐𝐵9 − 2𝑒𝐴9 + 𝑐𝑒(𝐴9𝐵1 + 𝐴8𝐵2 + 𝐴7𝐵3 + 𝐴6𝐵4 + 𝐴5𝐵5+

+𝐴4𝐵6 + 𝐴3𝐵7 + 𝐴2𝐵8 + 𝐴1𝐵9) − 𝑒2(𝐴2
5 + 2𝐴4𝐴6 + 2𝐴3𝐴7 + 2𝐴2𝐴8 + 2𝐴1𝐴9)]ℎ,

𝐵10 = − 2
𝑎𝑐3(𝑐2 + 𝑑𝑒)

[𝑐𝐵9 − 2𝑒𝐴9 + 𝑐𝑒(𝐴9𝐵1 + 𝐴8𝐵2 + 𝐴7𝐵3 + 𝐴6𝐵4 + 𝐴5𝐵5+

+𝐴4𝐵6 + 𝐴3𝐵7 + 𝐴2𝐵8 + 𝐴1𝐵9) − 𝑒2(𝐴2
5 + 2𝐴4𝐴6 + 2𝐴3𝐴7 + 2𝐴2𝐴8+

+2𝐴1𝐴9)] (𝑐3𝑔 + 𝑐𝑑𝑒𝑔 + 𝑎𝑐𝑒ℎ − 𝑏𝑐𝑒ℎ − 𝑐2𝑒ℎ − 𝑑𝑒2ℎ + 𝑐3𝑘 + 𝑐𝑑𝑒𝑘), . . .

(10)

Taking into account the medical meaning of the parameters from system (3) – (4), we
mention that the denominators in (9) and (10) are different from zero. We get

Lemma 2.1. Let 𝑎+𝑐+ 𝑓 < 0 and 𝑎(𝑐+ 𝑓 ) > 0. Then the stability of unperturbed motion
governed by system (7) includes all possible cases in the following two:

I. When (−1 + 𝑐𝐵1 − 𝑒𝐴1) (1 + 𝑒𝐴1) (𝑐𝑘 − 𝑒ℎ) ≠ 0 the unperturbed motion is unstable;
II. When (−1 + 𝑐𝐵1 − 𝑒𝐴1) (1 + 𝑒𝐴1) (𝑐𝑘 − 𝑒ℎ) = 0 the unperturbed motion is stable.
In the last case, the unperturbed motion belongs to some continuous series of stabilized

motion. For sufficiently small perturbations, any perturbed motion will asymptotically
approach to one of the stabilized motions of the mentioned series. Moreover, this motion
is also asymptotic stable [5].

Proof. To prove Lemma we use the Lyapunov’s theorem [1] (§32) in the ternary case.
Next we analyze the coefficients of the series 𝐶𝑖 from (9).

If 𝐶2 ≠ 0, then we obtain the Case I of Lemma 2.1.
If −𝑒ℎ + 𝑐𝑘 = 0, then 𝐶𝑖 = 0 (∀𝑖) and if (−1 + 𝑐𝐵1 − 𝑒𝐴1) (1 + 𝑒𝐴1) = 0, then

𝐴𝑖 = 𝐵𝑖 = 0 (𝑖 ≥ 2) from (10). This implies 𝐶𝑖 = 0 (𝑖 ≥ 3). Lemma 2.1 is proved. □
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3. Stability conditions of unperturbed motion for some differential
systems of generalized Darboux type with quadratic nonlinearities

Following Example 1 from [1] (§32), which in the critical equation has 2 parameters,
we will examine a few cases of ternary systems of Lyapunov critical canonical form:

Example 3.1. We will examine the ternary differential system with three parameters in
the critical equation of the form

𝑑𝑥

𝑑𝑡
= (𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧) (−𝑥 + 𝑦 + 𝑧),

𝑑𝑦

𝑑𝑡
= 𝑥 − 𝑦 + (𝑥 − 𝑦 + 2𝑧) (−𝑥 + 𝑦 + 𝑧),

𝑑𝑧

𝑑𝑡
= 𝑥 − 𝑧 + (𝑥 + 2𝑦 − 𝑧) (−𝑥 + 𝑦 + 𝑧),

(11)

where 𝑎, 𝑏, 𝑐 are real arbitrary coefficients.

The characteristic equation of the linear part is

𝜌3 + 2𝜌2 + 𝜌 = 0, (12)

where

𝜌1 = 0, 𝜌2 = 𝜌3 = −1. (13)

According to Lemma 4.2 [6], we have

𝐶1 = 0, 𝐶2 = 𝑎 + 𝑏 + 𝑐,

𝐶3 = 4𝑎 + 6𝑏 + 6𝑐 = 2[2𝑎 + 3(𝑏 + 𝑐)],

𝐶4 = 20𝑎 + 38𝑏 + 38𝑐 = 2[10𝑎 + 19(𝑏 + 𝑐)],

𝐶5 = 116𝑎 + 254𝑏 + 254𝑐 = 2[58𝑎 + 127(𝑏 + 𝑐)],

𝐶6 = 740𝑎 + 1774𝑏 + 1774𝑐 = 2[370𝑎 + 887(𝑏 + 𝑐)],

𝐶7 = 5028𝑎 + 12822𝑏 + 12822𝑐 = 2[2514𝑎 + 6411(𝑏 + 𝑐)],

𝐶8 = 35700𝑎 + 95190𝑏 + 95190𝑐 = 2[17850𝑎 + 47595(𝑏 + 𝑐)],

𝐶9 = 261780𝑎 + 721870𝑏 + 721870𝑐 = 2[130890𝑎 + 360935(𝑏 + 𝑐)],

𝐶10 = 1967300𝑎 + 5569118𝑏 + 5569118𝑐 = 2[982650𝑎 + 2784559(𝑏 + 𝑐)], . . . ,

(14)
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where
𝐴1 = 𝐵1 = 1; 𝐴2 = 𝐵2 = 2, 𝐴3 = 𝐵3 = 10, 𝐴4 = 𝐵4 = 58, 𝐴5 = 𝐵5 = 370,

𝐴6 = 𝐵6 = 2514, 𝐴7 = 𝐵7 = 17850, 𝐴8 = 𝐵8 = 130890, 𝐴9 = 𝐵9 = 983650,

𝐴10 = 𝐵10 = 7536418, . . .

(15)

As the characteristic equation (12) of system (11) has the roots (13), then according to
Lyapunov’s Theorem [1] (§32), in the ternary case, we obtain

Lemma 3.1. The stability of the unperturbed motion, governed by system (11), includes
all possible cases in the following four:

I. 𝑎 + 𝑏 + 𝑐 ≠ 0, then the unperturbed motion is unstable;
II. 𝑎 > 0, then the unperturbed motion is stable;
III. 𝑎 < 0, then the unperturbed motion is unstable;
IV. 𝑏 + 𝑐 = −𝑎 = 0, then the unperturbed motion is stable.
In the last case, the unperturbed motion belongs to some continuous series of stabilized

motion. For sufficiently small perturbations, any perturbed motion will asymptotically
approach to one of the stabilized motions of the mentioned series. Moreover, this motion
is also asymptotic stable [5].

Proof. According to Lyapunov’s Theorem [1] (§32), we analyze the coefficients of the
series 𝐶𝑖 , from (14). If 𝐶2 ≠ 0, then we get the case I of Lemma 3.1.

If 𝐶2 = 0, then 𝑏 + 𝑐 = −𝑎. Substituting in 𝐶3 we obtain 𝐶3 = −2𝑎. Depending on the
sign of this expression, we get the cases II and III of Lemma 3.1.

If 𝐶3 = 0, then 𝑏 + 𝑐 = −𝑎 = 0. In this case, 𝐶𝑖 = 0 (𝑖 ≥ 4). Lemma 3.1 is proved. □

Example 3.2. We examine the ternary differential system with six parameters in the
critical equation of the form

𝑑𝑥

𝑑𝑡
= 𝑎1𝑥

2 + 𝑎2𝑦
2 + 𝑎3𝑧

2 + 2𝑎4𝑥𝑦 + 2𝑎5𝑥𝑧 + 2𝑎6𝑦𝑧,

𝑑𝑦

𝑑𝑡
= 𝑥 − 𝑦 + (𝑥 − 𝑦 + 2𝑧) (−𝑥 + 𝑦 + 𝑧),

𝑑𝑧

𝑑𝑡
= 𝑥 − 𝑧 + (𝑥 + 2𝑦 − 𝑧) (−𝑥 + 𝑦 + 𝑧),

(16)

where 𝑎𝑖 (𝑖 = 1, 6) are real arbitrary coefficients.

According to Lemma 4.2 [6], we have

𝐶1 = 0, 𝐶2 = 𝑎1 + (𝑎2 + 𝑎3 + 2𝑎6) + 2(𝑎4 + 𝑎5),

𝐶3 = 4[(𝑎2 + 𝑎3 + 2𝑎6) + (𝑎4 + 𝑎5))],

𝐶4 = 4[6(𝑎2 + 𝑎3 + 2𝑎6) + 5(𝑎4 + 𝑎5)],
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𝐶5 = 4[39(𝑎2 + 𝑎3 + 2𝑎6) + 29(𝑎4 + 𝑎5)],

𝐶6 = 4[268(𝑎2 + 𝑎3 + 2𝑎6) + 185(𝑎4 + 𝑎5)],

𝐶7 = 12[639(𝑎2 + 𝑎3 + 2𝑎6) + 419(𝑎4 + 𝑎5)],

𝐶8 = 60[942(𝑎2 + 𝑎3 + 2𝑎6) + 595(𝑎4 + 𝑎5)],

𝐶9 = 20[21319(𝑎2 + 𝑎3 + 2𝑎6) + 13089(𝑎4 + 𝑎5)],

𝐶10 = 4[819096(𝑎2 + 𝑎3 + 2𝑎6) + 491825(𝑎4 + 𝑎5)], . . . ,

(17)

where
𝐴1 = 𝐵1 = 1; 𝐴2 = 𝐵2 = 2, 𝐴3 = 𝐵3 = 10, 𝐴4 = 𝐵4 = 58,

𝐴5 = 𝐵5 = 370, 𝐴6 = 𝐵6 = 2514, 𝐴7 = 𝐵7 = 17850,

𝐴8 = 𝐵8 = 130890, 𝐴9 = 𝐵9 = 983650,

𝐴10 = 𝐵10 = 7536418, . . .

(18)

We introduce the notation

𝐿1 = 𝑎2 + 𝑎3 + 2𝑎6; 𝐿2 = −𝑎1 − 2(𝑎4 + 𝑎5);

𝐿3 = −𝑎1 − (𝑎4 + 𝑎5); 𝐿4 = −(𝑎4 + 𝑎5).
(19)

As the characteristic equation (12) of the system (16) has the roots (13), then according
to Lyapunov’s Theorem [1] (§32), in the ternary case, we obtain

Lemma 3.2. The stability of the unperturbed motion, governed by system (16), includes
all possible cases in the following five:

I. 𝐿1 ≠ 𝐿2, then the unperturbed motion is unstable;
II. 𝐿1 = 𝐿2, 𝐿3 < 0, then the unperturbed motion is stable;
III. 𝐿1 = 𝐿2, 𝐿3 > 0, then the unperturbed motion is unstable;
IV. 𝐿1 = 𝐿2, 𝐿3 = 0, 𝐿4 ≠ 0, then the unperturbed motion is unstable;
V. 𝑎2 + 𝑎3 + 2𝑎6 = 𝑎1 = 0, 𝑎4 = −𝑎5, then the unperturbed motion is stable.
In the last case, the unperturbed motion belongs to some continuous series of stabilized

motion. For sufficiently small perturbations, any perturbed motion will asymptotically
approach to one of the stabilized motions of the mentioned series. Moreover, this motion
is also asymptotic stable [5]. The expressions 𝐿𝑖 (𝑖 = 1, 4) are given in (19).

Proof. According to Lyapunov’s Theorem [1] (§32), we analyze the coefficients of the
series 𝐶𝑖 from (17). If 𝐶2 ≠ 0, then 𝐿1 − 𝐿2 ≠ 0. We obtain the Case I of Lemma 3.2.

If 𝐶2 = 0, then 𝐿1 = 𝐿2, and

𝐶3 = 4[𝐿1 + (𝑎4 + 𝑎5)] = 4[𝐿2 + (𝑎4 + 𝑎5)] = 4[−𝑎1 − (𝑎4 + 𝑎5)] = 4𝐿3.
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Depending on the sign of this expression, we get the Cases II and III of Lemma 3.2.
If 𝐶2 = 𝐶3 = 0, then 𝐿1 = 𝐿2 and 𝐿3 = 0 implies 𝑎1 = −(𝑎4 + 𝑎5) and

𝐶4 = 4[6𝐿1 + 5(𝑎4 + 𝑎5)] = 4[6𝐿2 + 5(𝑎4 + 𝑎5)] = 4[−6𝑎1 − 7(𝑎4 + 𝑎5)] = 4𝐿4.

Assume that 𝐿4 ≠ 0. In this case we get the Case IV of Lemma 3.2.
If 𝐶2 = 𝐶3 = 𝐶4 = 0, then 𝐿1 = 𝐿2, 𝐿3 = 𝐿4 = 0 or 𝑎2 + 𝑎3 + 2𝑎6 = 𝑎1 = 0, 𝑎4 = −𝑎5.

In this case, all 𝐶𝑖 = 0 (𝑖 ≥ 5). Lemma 3.2 is proved. □

Example 3.3. We examine the ternary differential system with 6 parameters in the critical
equation, of which three form the common factor of the quadratic part, of the form

𝑑𝑥

𝑑𝑡
= (𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧) (𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧),

𝑑𝑦

𝑑𝑡
= 𝑥 − 𝑦 + (𝑥 − 𝑦 + 2𝑧) (𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧),

𝑑𝑧

𝑑𝑡
= 𝑥 − 𝑧 + (𝑥 + 2𝑦 − 𝑧) (𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧),

(20)

where 𝑎, 𝑏, 𝑐, 𝑎1, 𝑏1, 𝑐1 are real arbitrary coefficients.

We introduce the notation

𝑀1 = 𝑎 + 𝑏 + 𝑐; 𝑀2 = 𝑎1 + 𝑏1 + 𝑐1;

𝑀3 = −𝑎𝑎1 + (𝑏 + 𝑐) (𝑏1 + 𝑐1); 𝑀4 = (𝑏 + 𝑐) (𝑏1 + 𝑐1).
(21)

According to Lemma 4.2 [6], we have

𝐶1 = 0, 𝐶2 = 𝑀1𝑀2, 𝐶3 = (𝑀1𝑀2 + 𝑀3)𝐴2,

𝐶4 = 𝑀4𝐴
2
2 + (𝑀1𝑀2 + 𝑀3)𝐴3,

𝐶5 = 2𝑀4𝐴2𝐴3 + (𝑀1𝑀2 + 𝑀3)𝐴4,

𝐶6 = 𝑀4(2𝐴2𝐴4 + 𝐴2
3) + (𝑀1𝑀2 + 𝑀3)𝐴5,

𝐶7 = 2𝑀4(𝐴2𝐴5 + 𝐴3𝐴4) + (𝑀1𝑀2 + 𝑀3)𝐴6,

𝐶8 = 𝑀4(2𝐴2𝐴6 + 2𝐴3𝐴5 + 𝐴2
4) + (𝑀1𝑀2 + 𝑀3)𝐴7,

𝐶9 = 2𝑀4(𝐴2𝐴7 + 𝐴3𝐴6 + 𝐴4𝐴5) + (𝑀1𝑀2 + 𝑀3)𝐴8,

𝐶10 = 𝑀4(2𝐴2𝐴8 + 2𝐴3𝐴7 + 2𝐴4𝐴6 + 𝐴2
5) + (𝑀1𝑀2 + 𝑀3)𝐴9, . . . ,

(22)

where
𝐴1 = 𝐵1 = 1; 𝐴2 = 𝐵2 = 2(𝑎 + 𝑏 + 𝑐),

𝐴3 = 𝐵3 = (𝑎 + 3𝑏 + 3𝑐)𝐴2,
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𝐴4 = 𝐵4 = (𝑏 + 𝑐)𝐴2
2 + (𝑎 + 3𝑏 + 3𝑐)𝐴3,

𝐴5 = 𝐵5 = 2(𝑏 + 𝑐)𝐴2𝐴3 + (𝑎 + 3𝑏 + 3𝑐)𝐴4,

𝐴6 = 𝐵6 = (𝑏 + 𝑐) (2𝐴2𝐴4 + 𝐴2
3) + (𝑎 + 3𝑏 + 3𝑐)𝐴5,

𝐴7 = 𝐵7 = 2(𝑏 + 𝑐) (𝐴2𝐴5 + 𝐴3𝐴4) + (𝑎 + 3𝑏 + 3𝑐)𝐴6,

𝐴8 = 𝐵8 = (𝑏 + 𝑐) (2𝐴2𝐴6 + 2𝐴3𝐴5 + 𝐴2
4) + (𝑎 + 3𝑏 + 3𝑐)𝐴7,

𝐴9 = 𝐵9 = 2(𝑏 + 𝑐) (𝐴2𝐴7 + 𝐴3𝐴6 + 𝐴4𝐴5) + (𝑎 + 3𝑏 + 3𝑐)𝐴8,

𝐴10 = 𝐵10 = (𝑏 + 𝑐) (2𝐴2𝐴8 + 2𝐴3𝐴7 + 2𝐴4𝐴6 + 𝐴2
5) + (𝑎 + 3𝑏 + 3𝑐)𝐴9, . . .

(23)

As the characteristic equation (12) of system (20) has the roots (13), then according to
Lyapunov’s Theorem [1] (§32), in the ternary case, we obtain

Lemma 3.3. The stability of the unperturbed motion governed by the system (20) includes
all possible cases in the following six:

I. 𝑀1𝑀2 ≠ 0, then the unperturbed motion is unstable;
II. 𝑀2 = 0, 𝑀1𝑀3 < 0, then the unperturbed motion is stable;
III. 𝑀2 = 0, 𝑀1𝑀3 > 0, then the unperturbed motion is unstable;
IV. 𝑀1𝑀4 ≠ 0, then the unperturbed motion is unstable;
V. 𝑀4 = 0, then the unperturbed motion is stable;
VI. 𝑀1 = 0, then the unperturbed motion is stable;.
In the last case, the unperturbed motion belongs to some continuous series of stabilized

motion. For sufficiently small perturbations, any perturbed motion will asymptotically
approach to one of the stabilized motions of the mentioned series. Moreover, this motion
is also asymptotic stable [5]. The expressions 𝑀𝑖 (𝑖 = 1, 4) are given in (21).

Proof. According to Lyapunov’s Theorem [1] (§32), we analyze the coefficients of the
series 𝐶𝑖 from (22). Suppose that 𝑀1 ≠ 0.

If 𝐶2 ≠ 0, then 𝑀1𝑀2 ≠ 0 and we get the Case I of Lemma 3.3.
If 𝐶2 = 0, then 𝑀2 = 0, and 𝐶3 = (𝑀1𝑀2 + 𝑀3)𝐴2 = 2𝑀1𝑀3. Depending on the sign

of this expression, we obtain the Cases II and III of Lemma 3.3.
If 𝐶2 = 𝐶3 = 0, then 𝑀2 = 𝑀3 = 0 and 𝐶4 = 𝑀4𝐴

2
2 + (𝑀1𝑀2 + 𝑀3)𝐴3 = 4𝑀2

1 𝑀4. If
𝑀1𝑀4 ≠ 0, we get the Case IV of Lemma 3.3.

If 𝐶2 = 𝐶3 = 𝐶4 = 0, then 𝑀2 = 𝑀3 = 𝑀4 = 0, and all 𝐶𝑖 = 0 (𝑖 ≥ 5). We have the
Case V of Lemma 3.3.

If 𝑀1 = 0, then all 𝐶𝑖 = 0 (∀𝑖) and we obtain the Case VI. Lemma 3.3 is proved. □
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(Natalia Neagu) “Ion Creangă” State Pedagogical University, 5 Gh. Iablocikin st., MD-2069,
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Tuning method of automatic controllers to object models
with second order advance-delay and dead time

Dumitru Moraru

Abstract. This article explores the application of mathematical models in the design and
analysis of automatic control system. By integrating mathematical concepts such as lin-
ear algebra, mathematical analysis, the performance and reliability of automatic control
systems can be optimized. In the paper, an efficient procedure has been developed for
tuning the standardized P, PI, PD, and PID control algorithms to mathematical models of
second-order advance-delay with dead time control objects with known parameters, us-
ing the maximal stability degree method with iterations.The advantages of the maximum
stability degree method with reduced calculations and minimal time are highlighted.
2010 Mathematics Subject Classification: 93A30, 93C85, 44A10.
Keywords: mathematical model, advance-delay control object, transfer function, auto-
matic system, tuning methods, differential equation, system performances.

Metodă de acordare a regulatoarelor automate la modele de
obiecte cu anticipaţie-ı̂ntârziere de ordinul doi s, i timp mort

Rezumat. Acest articol explorează aplicarea modelelor matematice ı̂n proiectarea s, i
analiza sistemelor automate. Prin integrarea conceptelor matematice, cum ar fi alge-
bra liniară, analiza matematică, se pot optimiza performant,ele s, i fiabilitatea sistemelor
de conducere automată. În lucrare s-a elaborat o procedură eficientă de acordare a al-
goritmilor tipizat,i P, PI, PD şi PID la modele matematice ale obiectelor de reglare cu
anticipat,ie-ı̂ntârziere de ordinul doi cu timp mort cu parametrii cunoscuţi după metoda
gradului maximal de stabilitate cu iterat,ii. Se evident,iază avantajele metodei gradul ma-
ximal de stabilitate cu iterat,ii cu calcule reduse s, i timp minim.
Cuvinte-cheie: model matematic, obiect de reglare cu anicipat,ie-ı̂ntârziere, funcţie de
transfer, sistem automat, metode de acordare, ecuat,ie diferent,ială, performanţele siste-
mului.

1. Introduction

Automatic control systems are complex entities that can adapt their behavior based on
external conditions or inputs. These can be mathematically modeled using differential
equations, Laplace transforms, and transfer functions. Differential equations are used to
describe the relationships between the input and output variables of a system as a function
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of time. In the context of automatic systems, these equations model the dynamic behavior
of the system. The Laplace transform is used to convert differential equations into transfer
functions, which represent algebraic equations of complex variables. This facilitates the
analysis and solving of dynamic system problems. Control theory deals with the design
and analysis of controllers that influence the behavior of a system. There are two main
types of control: open-loop and closed-loop. In open-loop control, the input is set without
considering the output, whereas in closed-loop control, the input is adjusted based on the
output magnitude to achieve a desired behavior.

According to the concept of automatic control theory, the technological process presents
the control object with the variables that interact in the process: the input flow is called
the control variable, denoted by the vector 𝑥(𝑡), the characteristic variables 𝑦1, ..., 𝑦𝑛,
which represents the output flow known as the controlled variable, denoted by the vector
𝑦(𝑡) and disturbances denoted by the vector 𝑝(𝑡) (Figure 1), where FP is fixed part of
control object [5].

Figure 1. The block diagram of the control object.

The control object represents a technical, industrial, biological, economic, social, etc.
process that requires control for optimal operation.

In paper is discussed the mathematical model of the control object, characterized as a
advance-delay object with second-order inertia and dead time, described by the transfer
function 𝐻𝐹𝑃 (𝑠) in form [2], [3]:

𝐻𝐹𝑃 (𝑠) = 𝑒−𝜏𝑠
𝑘 (𝑇1𝑠 + 1)

(𝑇2𝑠 + 1) (𝑇3𝑠 + 1) = 𝑒−𝜏𝑠
𝑏0𝑠 + 𝑏1

𝑎0𝑠2 + 𝑎1𝑠 + 𝑎2
, (1)

where 𝑘 is the transfer coefficient, 𝑇1, 𝑇2, and 𝑇3 are the time constants of the process, 𝜏 is
the dead time and the generic coefficients are 𝑏0 = 𝑘𝑇1, 𝑏1 = 𝑘 , 𝑎0 = 𝑇2𝑇3, 𝑎1 = 𝑇2 + 𝑇3,
𝑎2 = 1.

For the control object model (1), it is necessary to synthesize the control algorithm.
In the practice of automation various industrial processes, controllers with a fixed PID
structure have a wide range of applications [1], [6], [7].
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There are several methods for tuning the standard PID control algorithm to the model
object (1): the frequency-domain method, the pole-zero allocation method, the polynomial
method, the Ziegler-Nichols method, etc [2], [3], [4], [9].

The application of the frequency-domain method involves calculations in the frequency
domain and graphical constructions, which can lead to difficulties in synthesizing control
algorithms.

The pole-zero allocation method (or model-based method) is an analytical approach.
Based on the model of the control object (1) and the performance requirements imposed
on the designed system, PI and PID control algorithms are synthesized. This is done by
solving a system of matrix equations to determine the control algorithm parameters that
meet the stability, performance, and robustness requirements of the system. As a result,
the control algorithm synthesis procedure involves iterations and can become challenging
[3], [4].

The polynomial method is also an analytical approach that leads to solving the control
algorithm synthesis problem. However, it can be challenging to determine the character-
istic equation of the designed system [8].

The basic experimental method includes the Ziegler-Nichols (ZN) method, which is
widely used in practice for tuning standard PID algorithms for the model (1), but it may
lead to reduced system performance [4].

In the paper, a procedure for tuning the PID controller for the control object model
(1) has been developed based on the maximum stability degree method with Iterations
(MSDI) [1], [6], [7].

To verify and compare the obtained results, both the Ziegler-Nichols and parametric
optimization (PO) methods are applied.

2. Tuning the controller using the Maximum Stability Degree Method
with Iterations

The structural block diagram of the automatic control system, consisting of the object
model with transfer function 𝐻𝐹𝑃 (𝑠) and the controller with transfer function 𝐻𝑅 (𝑠), is
shown in Figure 2. Here, 𝑟 (𝑡) = 1(𝑡) represents the unit reference, 𝑒(𝑡) is the system error,
𝑢(𝑡) is the command generated by the controller, and 𝑦(𝑡) = ℎ(𝑡) is the step response of
the system.

The standardized control algorithms P, PI, PD and PID are represented by the transfer
function:

𝐻𝑃 (𝑠) = 𝑘 𝑝, (2)
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Figure 2. Structural block diagram of the automatic system.

𝐻𝑃𝐼 (𝑠) = 𝑘 𝑝 +
𝑘𝑖

𝑠
=

𝑘 𝑝𝑠 + 𝑘𝑖

𝑠
, (3)

𝐻𝑃𝐷 (𝑠) = 𝑘 𝑝 + 𝑘𝑑𝑠, (4)

𝐻𝑃𝐼𝐷 (𝑠) = 𝑘 𝑝 +
𝑘𝑖

𝑠
+ 𝑘𝑑𝑠 =

𝑘𝑑𝑠
2 + 𝑘 𝑝𝑠 + 𝑘𝑖

𝑠
, (5)

where 𝑘 𝑝, 𝑘𝑖 , and 𝑘𝑑 are the tuning parameters of the proportional, integral and derivative
components of the P, PI, PD and PID algorithms [1], [4], [8].

Tuning the P, PI, PD and PID control algorithms to the model (1) based on the
maximum stability degree method of the designed system in the classical version becomes
challenging when determining the algebraic equation for finding the maximum stability
degree 𝐽.

The procedure for tuning the PID control algorithm according to the proposed method
involves obtaining the characteristic equation of the closed-loop system. The notion of
stability degree is introduced into the characteristic equation as a new unknown variable.
Through operations of differentiation on this variable, relationships are derived that
express the PID tuning parameters as nonlinear functions of the stability degree 𝐽 and the
known parameters of the object model parameters.

The transfer function of the closed-loop system with a P controller is given by:

𝐻0(𝑠) =
𝐻𝑑 (𝑠)

1 + 𝐻𝑑 (𝑠)
=

𝑘 𝑝𝑒
−𝜏𝑠 (𝑏0𝑠 + 𝑏1)

𝑎0𝑠2 + 𝑎1𝑠 + 𝑎2 + 𝑘 𝑝𝑒
−𝜏𝑠 (𝑏0𝑠 + 𝑏1)

=
𝐶 (𝑠)
𝐷 (𝑠) , (6)

where 𝐻0(𝑠)is the transfer function of closed-loop system, 𝐻𝑑 (𝑠) - transfer function of
open-loop system, 𝑘 𝑝 - the parameter of the P controller, 𝐶 (𝑠) and 𝐷 (𝑠) - the system
polynomials.

The characteristic equation of the automatic control system is the polynomial 𝐷 (𝑠):

𝐷 (𝑠) = 𝑎0𝑠
2 + 𝑎1𝑠 + 𝑎2 + 𝑘 𝑝𝑒

−𝜏𝑠 (𝑏0𝑠 + 𝑏1) = 0. (7)
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According to the maximum stability degree method algorithm, it is substituted 𝑠 = −𝐽,
and after some transformations, it is obtained the expression:

𝐷 (−𝐽) = 𝑎0𝐽
2 − 𝑎1𝐽 + 𝑎2 + 𝑘 𝑝𝑒

𝜏𝐽 (𝑏1−𝑏0𝐽) =

=
𝑒−𝜏𝐽 (𝑎0𝐽

2 − 𝑎1𝐽 + 𝑎2)
𝑏1−𝑏0𝐽

+ 𝑘 𝑝 = 0. (8)

In the case of a system with a P controller, expression (8) is differentiated once with
respect to 𝐽 and the resulting expression is:

¤𝐷 (−𝐽) = 𝑒−𝜏𝐽 (𝑑0𝐽
3 − 𝑑1𝐽

2 + 𝑑2𝐽 − 𝑑3)
𝑏2

0𝐽
2 − 2𝑏0𝑏1𝐽 + 𝑏2

1
= 0. (9)

where 𝑑0 = 𝑎0𝑏0𝜏, 𝑑1 = 𝑎0𝑏0 + 𝑎0𝑏1𝜏 + 𝑎1𝑏0𝜏, 𝑑2 = 2𝑎0𝑏1 + 𝑎1𝑏1𝜏 + 𝑎2𝑏0𝜏, 𝑑3 =

𝑎1𝑏1 − 𝑎2𝑏0 + 𝑎2𝑏1𝜏.
The optimal degree value 𝐽𝑜𝑝𝑡 is the smallest positive root of the expression:

𝑒−𝜏 𝑗 [𝑎0𝑏0𝐽
3𝜏 − 𝑎2𝑏1𝜏 + 𝐽2 (−𝑎0𝑏0 − 𝑎0𝑏1𝜏 − 𝑎1𝑏0𝜏) +

+𝐽 (2𝑎0𝑏1 + 𝑎1𝑏1𝜏 + 𝑎2𝑏0𝜏) − 𝑎1𝑏1 + 𝑎2𝑏0] = 0. (10)

To determine the tuning parameter for the P controller from (8), the following relation-
ship is used:

𝑘 𝑝 =
𝑒−𝜏𝐽 (−𝑎0𝐽

2 + 𝑎1𝐽 − 𝑎2)
𝑏1 − 𝑏0𝐽

= 𝑓𝑝 (𝐽). (11)

Further, the calculation mathematical expression for the tuning parameters 𝑘 𝑝, 𝑘𝑖 , 𝑘𝑑
of the PI, PD, and PID control algorithms are presented using the MSDI to the object
model (1) in a simplified form.

Mathematical expressions for determine of tuning parameters of PI controller are:

𝑘 𝑝 =
𝑒−𝜏𝐽 (−𝑑0𝐽

4 + 𝑑1𝐽
3 − 𝑑2𝐽

2 + 𝑑3𝐽 − 𝑑4)
𝑏2

0𝐽
2 − 2𝑏0𝑏1𝐽 + 𝑏2

1
= 𝑓𝑝 (𝐽), (12)

𝑘𝑖 =
𝑒−𝜏𝐽 (𝑎0𝐽

3 − 𝑎1𝐽
2 + 𝑎2𝐽)

𝑏1 − 𝑏0𝐽
+𝑘 𝑝𝐽 = 𝑓𝑖 (𝐽), (13)

where 𝑑0 = 𝑎0𝑏0𝜏, 𝑑1 = 2𝑎0𝑏0 + 𝑎0𝑏1𝜏 + 𝑎1𝑏0𝜏, 𝑑2 = 3𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1𝜏 + 𝑎2𝑏0𝜏,
𝑑3 = 2𝑎1𝑏1 + 𝑎2𝑏1𝜏, 𝑑4 = 𝑎2𝑏1.

Mathematical expressions for determine of tuning parameters of PD controller are:

𝑘 𝑝 =
𝑒−𝜏𝐽

(
𝑎0𝐽

3 − 𝑎1𝐽
2 + 𝑎2𝐽

)
𝑏1 − 𝑏0𝐽

+ 𝑘𝑑𝐽 = 𝑓𝑝 (𝐽), (14)
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𝑘𝑑 =
𝑒−𝜏𝐽 (−𝑑0𝐽

4 + 𝑑1𝐽
3 − 𝑑2𝐽

2 + 𝑑3𝐽 − 𝑑4)
𝑏2

0𝐽
2 − 2𝑏0𝑏1𝐽 + 𝑏2

1
= 𝑓𝑑 (𝐽), (15)

where 𝑑0 = 𝑎0𝑏0𝜏, 𝑑1 = 2𝑎0𝑏0 + 𝑎0𝑏1𝜏 + 𝑎1𝑏0𝜏, 𝑑2 = 3𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1𝜏 + 𝑎2𝑏0𝜏,
𝑑3 = 2𝑎1𝑏1 + 𝑎2𝑏1𝜏.

Mathematical expressions for determine of tuning parameters of PID controller are:

𝑘 𝑝 =

𝑒−𝜏𝐽
(
−𝑑0𝐽

4 + 𝑑1𝐽
3 − 𝑑2𝐽

2 + 𝑑3𝐽 − 𝑑4

)
𝑏2

0𝐽
2 − 2𝑏0𝑏1𝐽 + 𝑏2

1
+ 2𝑘𝑑𝐽 = 𝑓𝑝 (𝐽), (16)

𝑘𝑖 =
𝑒−𝜏𝐽 (𝑎0𝐽

3 − 𝑎1𝐽
2 + 𝑎2𝐽)

𝑏1 − 𝑏0𝐽
− 𝑘𝑑𝐽

2 + 𝑘 𝑝𝐽 = 𝑓𝑖 (𝐽), (17)

𝑘𝑑 =
𝑒−𝜏𝐽 (−𝑑5𝐽

6 + 𝑑6𝐽
5 − 𝑑7𝐽

4 + 𝑑8𝐽
3 − 𝑑9𝐽

2 + 𝑑10𝐽 − 𝑑11)
2(𝑏4

0𝐽
4 − 4𝑏3

0𝑏1𝐽3 + 6𝑏2
0𝑏

2
1𝐽

2 − 4𝑏0𝑏
3
1𝐽 + 𝑏4

1)
= 𝑓𝑑 (𝐽), (18)

where 𝑑0 = 𝑎0𝑏0𝜏, 𝑑1 = 2𝑎0𝑏0 + 𝑎0𝑏1𝜏 + 𝑎1𝑏0𝜏, 𝑑2 = 3𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1𝜏 + 𝑎2𝑏0𝜏,
𝑑3 = 2𝑎1𝑏1 +
+ 𝑎2𝑏1𝜏, 𝑑4 = 𝑎2𝑏1, 𝑑5 = 𝑎0𝑏

3
0𝜏

2, 𝑑6 = 4𝑎0𝑏
3
0𝜏 + 3𝑎0𝑏

2
0𝑏1𝜏

2 + 𝑎1𝑏
3
0𝜏

2, 𝑑7 = 2𝑎0𝑏
3
0 +

14𝑎0𝑏
2
0𝑏1𝜏 +

+ 3𝑎0𝑏0𝑏
2
1𝜏

2 + 2𝑎1𝑏
3
0𝜏 + 3𝑎1𝑏

2
0𝑏1𝜏

2 + 𝑎2𝑏
3
0𝜏

2, 𝑑8 = 8𝑎0𝑏
2
0𝑏1 + 16𝑎0𝑏0𝑏

2
1𝜏 + 𝑎0𝑏

3
1𝜏

2 +
8𝑎1𝑏

2
0𝑏1𝜏 +

+ 3𝑎1𝑏0𝑏
2
1𝜏

2 + 3𝑎2𝑏
2
0𝑏1𝜏

2, 𝑑9 = 12𝑎0𝑏0𝑏
2
1 + 6𝑎0𝑏

3
1𝜏 + 10𝑎1𝑏0𝑏

2
1𝜏 + 𝑎1𝑏

3
1𝜏

2 + 2𝑎2𝑏
2
0𝑏1𝜏 +

3𝑎2𝑏0𝑏
2
1𝜏

2, 𝑑10 = 6𝑎0𝑏
3
1 + 2𝑎1𝑏0𝑏

2
1 + 4𝑎1𝑏

3
1𝜏 + 2𝑎2𝑏

2
0𝑏1 + 4𝑎2𝑏0𝑏

2
1𝜏 + 𝑎2𝑏

3
1𝜏

2, 𝑑11 =

2𝑎1𝑏
3
1 − 2𝑎2𝑏0𝑏

2
1 + 2𝑎2𝑏

3
1𝜏.

3. Applications and computer simulation

The mathematical model of object described by the transfer function (1) is considered
with the following numerical values: 𝜏 = 2, 𝑏0 = 0.35, 𝑏1 = 0.2313, 𝑎0 = 1, 𝑎1 = 0.3872,
and 𝑎2 = 0.04851.

𝐻𝑃𝐹 (𝑠) = 𝑒−𝜏𝑠
𝑏0𝑠 + 𝑏1

𝑎0𝑠3 + 𝑎1𝑠2 + 𝑎2𝑠
= 𝑒−2𝑠 0, 35𝑠 + 0, 2313

𝑠3 + 0, 3872𝑠2 + 0, 04851𝑠
. (19)

It is required: to tune the P, PI, PD and PID controllers.
Solution. The parameters of the control algorithms P, PI, PD and PID of the automatic

system with the model of object in (1) with the given parameters and the respective
controller according to relations (12)-(18) are calculated.
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Substitute the numerical data in (11) and it is obtained the mathematical calculation
expression for the P controller:

𝑘 𝑝 =
𝑒−2𝐽 (−𝐽2 + 0.3872𝐽 − 0.04851)

0.2313 − 0.35𝐽
. (20)

The value of stability degree 𝐽 is varied from 0.01 to 4.8, and the dependence 𝑘 𝑝 = 𝑓 (𝐽)
is plotted (Figure 3).

Figure 3. Dependence of 𝑘 𝑝 = 𝑓 (𝐽).

Substitute the numerical data in (12), (13) and obtain the mathematical calculation
expressions for the PI controller:

𝑘 𝑝 =
𝑒−2𝐽 (−0.7𝐽4 + 1.433𝐽3 − 1.042𝐽2 + 0.201𝐽 − 0.011)

0.122𝐽2 − 0.162𝐽 + 0.053
, (21)

𝑘𝑖 =
𝑒−2𝐽 (𝐽3 − 0.3872𝐽2 + 0.04851𝐽)

0.2313 − 0.35𝐽
+ 𝑘 𝑝𝐽. (22)

The value of stability degree 𝐽 is varied from 0.76 to 1.9, and the dependencies
𝑘 𝑝 = 𝑓 (𝐽), 𝑘𝑖 = 𝑓 (𝐽) are plotted (Figure 4).

Substitute the numerical data in (14), (15) and obtain the mathematical calculation
expressions for the PD controller:

𝑘 𝑝 =
𝑒−2𝐽 (−𝐽2 + 0.3872𝐽 − 0.04851)

0.2313 − 0.35𝐽
+ 𝑘𝑑𝐽, (23)

𝑘𝑑 =
𝑒−2𝐽 (0.7𝐽3 − 1.083𝐽2 + 0.6756𝐽 − 0.095)

0.122𝐽2 − 0.162𝐽 + 0.053
. (24)
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Figure 4. Dependencies of 𝑘 𝑝 = 𝑓 (𝐽), 𝑘𝑖 = 𝑓 (𝐽).

The value of stability degree 𝐽 is varied from 0.76 to 3, and the dependencies 𝑘 𝑝 = 𝑓 (𝐽),
𝑘𝑑 = 𝑓 (𝐽) are plotted (Figure 5).

Figure 5. Dependencies of 𝑘 𝑝 = 𝑓 (𝐽), 𝑘𝑑 = 𝑓 (𝐽).

Substitute the numerical data in (16), (17), (18) and obtain the mathematical calculation
expressions for the PID controller:

𝑘 𝑝 =
𝑒−2𝐽 (−0.7𝐽4 + 1.433𝐽3 − 1.042𝐽2 + 0.201𝐽 − 0.011)

0.122𝐽2 − 0.162𝐽 + 0.053
+ 2𝑘𝑑𝐽, (25)

𝑘𝑖 =
𝑒−2𝐽 (𝐽3 − 0.3872𝐽2 + 0.04851𝐽)

0.2313 − 0.35𝐽
− 𝑘𝑑𝐽

2 + 𝑘 𝑝𝐽, (26)
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𝑘𝑑 =
𝑒−2𝐽 (−0.1715𝐽6 + 0.343𝐽5 − 1.31𝐽4 + 1.182𝐽3 − 0.553𝐽2 + 0.139𝐽 − 0.01)

2(0.015𝐽4 − 0.0396𝐽3 + 0.0393𝐽2 − 0.0173𝐽 + 0.0028)
.

(27)

The value of stability degree 𝐽 is varied from 0.01 to 0.57, and the dependencies
𝑘 𝑝 = 𝑓 (𝐽), 𝑘𝑖 = 𝑓 (𝐽), 𝑘𝑑 = 𝑓 (𝐽) is plotted (Figure 6).

Figure 6. Dependencies of 𝑘 𝑝 = 𝑓 (𝐽), 𝑘𝑖 = 𝑓 (𝐽) and 𝑘𝑑 = 𝑓 (𝐽).

To verify the tuning results of the controller, the system is simulated in the MATLAB
software package, and the step responses (set point = 80) of the system with the respective
P, PI, PD and PID controllers are illustrated in Figure 7.

Figure 7. The step responses of the system with different controller types: P,
PI, PD and PID: curve 1 is with P controller, 2 - PI, 3 - PD, 4 - PID

tuned with MSDI, 5 - PID with Ziegler-Nichlos method, 6 - PID
with parametric optimization method.
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In Table 1, the performance of the simulated automatic control system in the MATLAB
software package is presented with different P, PI, PD, and PID controllers tuned using
the MSDI, Ziegler-Nichols, and parametric optimization methods.

Table 1. Controller parameters and simulated automated system performances

Iter.
Nr.

Tune
method

Contr.
type

Controller parameters System performances
𝐽 𝑘 𝑝 𝑘𝑖 𝑇𝑖 , s 𝑘𝑑 𝑡𝑐, s 𝜎, % 𝑡𝑟 , s 𝑛

1 MSDI P 1.38 0.35 - - - 29.3 31.97 187.2 2
2 MSDI PI 1.35 0.209 0.032 31.25 - 57.5 12.02 263.4 2
3 MSDI PD 1.80 0.701 - - 0.29 18.7 57.49 245.3 4
4 MSDI PID 0.22 0.424 0.046 21.73 0.119 28.1 8.75 82.8 1
5 ZN PID - 0.8922 0.1965 5.08 1.029 18.12 32.12 102.2 1
6 PO PID - 0.404 0.0501 19.96 0.572 36.88 - 60.94 -

4. Conclusions

Based on the conducted study, the following conclusions are formulated:

1. Good performances of the automatic control system were obtained for the version
with PID controller tuned by the MSDI (Figure 7, curve 4, iteration 4, Table 1),
having the settling time 𝑡𝑟 = 82.8 s, the overshoot 𝜎 = 8.75 % and a deviation
𝑛 = 1.

2. The best performance of the automatic control system was obtained for the sys-
tem with PID controller tuned according to the parametric optimization method
(Figure 7, curve 6, iteration 6, Table 1), having the lowest settling time 𝑡𝑟 = 60.94
s, no overshoot 𝜎 = 0 and no oscillation 𝑛 = 0.

3. The MSDI tuning method is the least computationally intensive and performs
satisfactorily compared to the ZN and PO.

4. It is not recommended to use the P and PD controllers for the system with the
given mathematical model of object (1) because they have a high stationary error
(Figure 7, curve 1 and 3, Table 7, iteration 1 and 3).

Acknowledgement This work was supported by the project 20.80009.5007.26 “Models,
algorithms and technologies for the control, optimization and security of the Cyber-Physical
systems”.
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Compactificări generalizate Hausdorff
Rezumat. În acest articol se studiază unele proprietăţi ale compactificărilor generalizate
Hausdorff ale 𝑇0-spaţiilor topologice. În particular, se demonstrează că totalitatea com-
pactificărilor formează o latice de 𝑔-extensii ı̂n care există elementul maximal.
Cuvinte-cheie: aplicaţie continuă, extensie, 𝑔-extensie, compactificare, latice, spaţiu.

1. Extensions

Let us mention, that in case there are no concrete indications, then the topological
space is considered 𝑇0–space.

Definition 1.1. A pair (𝑌, 𝑓 ) it is called a generalized extension or 𝑔–extension of space
𝑋 , where 𝑌 is a space, 𝑓 : 𝑋 → 𝑌 is a continuous mapping and the set 𝑓 (𝑋) is dense in
𝑌 . If 𝑓 is an embadding of space 𝑋 in 𝑌 , i.e. an omeomorphism of space 𝑋 on subspace
𝑓 (𝑋) of 𝑌 , then the pair (𝑌, 𝑓 ) is called an extension of space 𝑋 .

If (𝑌, 𝑓 ) is an extension of space 𝑋, then, as a rule, the point 𝑥 ∈ 𝑋 is identified with
𝑓 (𝑥) ∈ 𝑌 and it is considered to be 𝑋 ⊆ 𝑌 . In this case 𝑓 (𝑥) = 𝑥 for any 𝑥 ∈ 𝑋 .

Let 𝐺𝐸 (𝑋) be the set of all 𝑔–extensions of the space 𝑋 and 𝐸 (𝑋) be the set of all
extensions of 𝑋 . Obviously, 𝐸 (𝑋) ⊆ 𝐺𝐸 (𝑋).

In class 𝐺𝐸 (𝑋) the binary increased relationship is introduced. If (𝑌, 𝑓 ) and (𝑍, 𝑔)
are two 𝑔–extensions of 𝑋 space, then it is considered (𝑍, 𝑔) ≤ (𝑌, 𝑓 ). If there is a
continuous mapping 𝜑 : 𝑌 → 𝑍 , for which 𝑔(𝑥) = 𝜑( 𝑓 (𝑥)) for any 𝑥 ∈ 𝑋 , i.e. 𝑔 = 𝜑 ◦ 𝑓
and Diagram 1 is commutative.
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Figure 1. Diagrams 1 and 2.

If (𝑌, 𝑓 ) ≤ (𝑍, 𝑔) and (𝑍, 𝑔) ≤ (𝑌, 𝑓 ), then these 𝑔–extensions (𝑌, 𝑓 ) and (𝑍, 𝑔) are
called equivalent and we denote this by (𝑌, 𝑓 ) ∼ (𝑍, 𝑔).

Proposition 1.1. If (𝑌, 𝑓 ) and (𝑍, 𝑔) are two 𝑔–extensions of space 𝑋 , (𝑍, 𝑔) ≤ (𝑌, 𝑓 )
and (𝑍, 𝑔) ∈ 𝐸 (𝑋), then (𝑌, 𝑓 ) ∈ 𝐸 (𝑋).

Proof. Let 𝜑 : 𝑌 → 𝑍 be a continuous mapping and 𝑔 = 𝜑◦ 𝑓 . According to the definition
of relationship ≤, 𝑔 is a dive. Let us denote ℎ = 𝜑 | 𝑓 (𝑋) : 𝑓 (𝑋) → 𝑔 (𝑋). Then
we get Diagram 2. As 𝑔 is a bijection and 𝑓 , ℎ are surjections, it turns out that 𝑓 and ℎ
are bijections. We have 𝑓 (𝐴) = ℎ−1 (𝑔 (𝐴)). Therefore, for any open set 𝑈 of 𝑋 the set
𝑓 (𝑈) is open in 𝑓 (𝑋), and the mapping 𝑓 −1 : 𝑓 (𝑋) → 𝑋 is continuous. So, 𝑓 is a dive.
Obviously, ℎ is a homomorphism. Proposition 1.1 is proved. □

Corollary 1.1. If (𝑌, 𝑓 ) and (𝑍, 𝑔) are two 𝑔–extensions equivalent of space 𝑋 and one
of them is extension, then the other one is extension.

The pair (𝑋, 𝑓 ), where 𝑓 (𝑥) = 𝑥 for any 𝑥 ∈ 𝑋 is an extension of space 𝑋 . This is the
trivial extension or maximum extension. Let us denote this extension by (𝑋, 𝑒𝑋).

Let 𝑆 be a space consisting of a single point and let 𝑠𝑋 (𝑥) = 𝑆 for any 𝑥 ∈ 𝑋 . Then
(𝑆, 𝑠𝑋) is called 𝑔–extension minimal or 𝑔–zero extension of space 𝑋 .

Let 𝑃 be a property of topological spaces. The property 𝑃 is called multiplicative if
the product of a set of spaces with the property 𝑃 is a space with the property 𝑃.

The property 𝑃 is called hereditary closed if any closed subspace of a space with the
property 𝑃 is a space with the property 𝑃.

Property 𝑃 is called additive if the reunion space of a finite number of subspaces with
the property 𝑃 is a space with the property 𝑃.

Example 1.1. The property of being compact space is multiplicative, hereditary closed
and additive.
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Example 1.2. The property of being countable compact space is hereditary, additive but
not multiplicative. The product of two countable compact spaces can not be a countable
compact space ([4], Example 3.10.19).

Example 1.3. The property of being pseudocompact is additive, but it is neither multi-
plicative and not hereditary closed [4].

Example 1.4. The property of being space is multiplicative, hereditary and additive. This
property is called trivial property.

2. Lattice of extensions

Let us fix a property 𝑃 of topological spaces. We denote by 𝑃𝐺𝐸 (𝑋) the totality
of 𝑔–extensions (𝑌, 𝑓 ) with the property 𝑃, i.e. 𝑌 possesses the property 𝑃 and denote
𝑌 ∈ 𝑃.

Let 𝑃𝐸 (𝑋) = 𝐸 (𝑋) ∩ 𝑃𝐺𝐸 (𝑋). If 𝑃 is a trivial property, then 𝑃𝐸 (𝑋) = 𝐸 (𝑋) and
𝑃𝐺𝐸 (𝑋) = 𝐺𝐸 (𝑋).

Definition 2.1. If 𝐿 is a nonempty set of 𝑃𝐺𝐸 (𝑋) and (𝑌, 𝑓 ) ∈ 𝑃𝐺𝐸 (𝑋), then:

(1) the extension (𝑌, 𝑓 ) is called the upper bound of a set 𝐿 in 𝑃𝐺𝐸 (𝑋) and denote
(𝑌, 𝑓 ) ∈ ∨𝐿, if (𝑍, 𝑔) ≤ (𝑌, 𝑓 ) for any (𝑍, 𝑔) ∈ 𝐿. If (𝑌1, 𝑓1) ∈ 𝑃𝐺𝐸 (𝑋) and
(𝑍, 𝑔) ≤ (𝑌, 𝑓 ) for any (𝑍, 𝑔) ∈ 𝐿, then (𝑌, 𝑓 ) ≤ (𝑌1, 𝑓1);

(2) the extension (𝑌, 𝑓 ) is called the lower bound of a set 𝐿 in 𝑃𝐺𝐸 (𝑋) and denote
(𝑌, 𝑓 ) ∈ ∧𝐿, if (𝑌, 𝑓 ) ≤ (𝑍, 𝑔) for anything (𝑍, 𝑔) ∈ 𝐿. If (𝑌1, 𝑓1) ∈ 𝑃𝐺𝐸 (𝑋)
and (𝑌, 𝑓 ) ≤ (𝑍, 𝑔) for any (𝑍, 𝑔) ∈ 𝐿, then (𝑌, 𝑓 ) ≤ (𝑌1, 𝑓1).

Proposition 2.1. Let 𝑃 be a multiplicative and hereditary closed property. Then for any
nonempty set 𝐿 ⊆ 𝑃𝐺𝐸 (𝑋) there are extensions (𝑌, 𝑓 ) ∈ ∨𝐿.

Proof. Let 𝐿 =
{(
𝑌𝜇, 𝑓𝜇

)
: 𝜇 ∈ 𝑀

}
, 𝑓 (𝑥) =

(
𝑓𝜇 (𝑥) : 𝜇 ∈ 𝑀

)
∈ ∏ {

𝑌𝜇 : 𝜇 ∈ 𝑀
}

for any
𝑥 ∈ 𝑋 and let 𝑌 be the adherence of a set 𝑓 (𝑥) in

∏ {
𝑌𝜇 : 𝜇 ∈ 𝑀

}
. Then (𝑌, 𝑓 ) ∈ ∨𝐿.

Proposition 2.1 is proved. □

Definition 2.2. The set 𝐿 ⊆ 𝑃𝐺𝐸 (𝑋) is called:

(1) the upper semilattice of extensions, if 𝐿 is nonempty and for any nonempty subset
𝑀 ⊆ 𝐿 there exists (𝑌, 𝑓 ) ∈ ∨𝑀 .

(2) the lower semilattice of extensions, if 𝐿 is nonempty and for any nonempty subset
𝑀 ⊆ 𝐿 there exists (𝑌, 𝑓 ) ∈ ∧𝑀;

(3) the lattice of extensions, if it is an upper semilattice and a lower semilattice of
extensions.
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Proposition 2.2. Let 𝑃 be a multiplicative and closed hereditary property. Then for any
nonempty set 𝐻 ⊆ 𝑃𝐺𝐸 (𝑋) there exists an upper semilattice of extensions 𝐿∗ (𝐻) with
properties:

(1) 𝐻 ⊆ 𝐿∗ (𝐻);
(2) if 𝐿 is an upper semilattice of extensions and if𝐻 ⊆ 𝐿 ⊆ 𝐿∗ (𝐻), then 𝐿 = 𝐿∗ (𝐻).

Proof. Let us fix (𝑌𝑀 , 𝑓𝑀 ) ∈ ∨𝑀 for any nonempty subset 𝑀 ⊆ 𝐻. If 𝑀 = {(𝑌, 𝑓 )},
then 𝑌𝑀 = 𝑌 and 𝑓𝑀 = 𝑓 . They can be obtained by constructing (𝑌𝑀 , 𝑓𝑀 ) as in the proof
of Proposition 2.1.

Let us denote 𝐿∗(𝐻) = {(𝑌𝑀 , 𝑓𝑀 ) : 𝑀 ⊆ 𝐻, 𝑀 ≠ ∅}. Obviously, 𝐻 ⊆ 𝐿∗ (𝐻). If
𝑀 ⊆ 𝐾 ⊆ 𝐻, then (𝑌𝑀 , 𝑓𝑀 ) ≤ (𝑌𝐾 , 𝑓𝐾 ). According to construction 𝐿∗ (𝐻) is an upper
semilattice. If 𝐾 =

{(
𝑌𝑀𝛼

, 𝑓𝑀𝛼

)
: 𝛼 ∈ 𝐴

}
and 𝑀 = ∪ {𝑀𝛼 : 𝛼 ∈ 𝐴}, then (𝑌𝑀 , 𝑓𝑀 ) ∈

∨𝐾 . The proof is complete. □

Definition 2.3. The upper semilattice 𝐿∗ (𝐻) built in the proof of Proposition 2.2 is called
the upper semilattice generated by set 𝐻.

Corollary 2.1. Let 𝑃 be a multiplicative and closed hereditary property. Suppose that
the continuous image of a space with property 𝑃 is a space with property 𝑃. Then any
nonempty set 𝐻 ⊆ 𝑃𝐺𝐸 (𝑋) is contained in a lattice of extensions of 𝑃𝐺𝐸 (𝑋).

Proof. Let (𝑍0, 𝑔0) be the extension, where 𝑍0 is a space consisting of a single point, and
let 𝑔0 : 𝑋 → 𝑍0 be the only possible application. It is clear that (𝑍0, 𝑔0) ≤ (𝑌, 𝑓 ) for
any (𝑌, 𝑓 ) ∈ 𝐺𝐸 (𝑋). Let us denote 𝐿 (𝐻) = 𝐿∗ (𝐻 ∪ {(𝑍0, 𝑔0)}). Obviously, 𝐿 (𝐻) is
an upper semilattice. As the upper lattice 𝐿 (𝐻) contains an element of ∧𝐿 (𝐻), it is a
lattice. But (𝑍0, 𝑔0) ∈ ∧𝐿 (𝐻). The proof is complete. □

Definition 2.4. A 𝑔–extension (𝑌, 𝑓 ) of the space 𝑋 is called correct, if the family
{𝑐𝑙𝑌 𝑓 (𝐴) : 𝐴 ⊆ 𝑋} forms a closed base of the space 𝑌 .

Let us denote by 𝐾𝐺𝐸 (𝑋) the totality of correct 𝑔–extensions of the space 𝑋 and let
𝐾𝐸 (𝑋) = 𝐸 (𝑋) ∩ 𝐾𝐺𝐸 (𝑋).

Proposition 2.3. If (𝑌, 𝑓 ) , (𝑍, 𝑔) are two correct and equivalent 𝑔–compactifications of
the space 𝑋 , then (𝑌, 𝑓 ) = (𝑍, 𝑔), i.e. the continuous application 𝜑 : 𝑌 → 𝑍 for any
𝑔 = 𝜑 ◦ 𝑓 is a homeomorphism of the space 𝑌 onto the space 𝑍 .

Proof. Let 𝜑 : 𝑌 → 𝑍 and 𝜓 : 𝑍 → 𝑌 be two continuous applications, for which 𝑔 = 𝜑◦ 𝑓
and 𝑓 = 𝜓 ◦ 𝑔. If 𝐴 ⊆ 𝑋 , then 𝜑 (𝑐𝑙𝑌 𝑓 (𝐴)) ⊆ 𝑐𝑙𝑍𝑔 (𝐴) and 𝜓 (𝑐𝑙𝑍𝑔 (𝐴)) ⊆ (𝑐𝑙𝑌 𝑓 (𝐴)).
Hence, 𝜑 (𝑐𝑙𝑌 𝑓 (𝐴)) = 𝑐𝑙𝑍𝑔 (𝐴) and 𝜓 (𝑐𝑙𝑧𝑔 (𝐴)) = 𝑐𝑙𝑌 𝑓 (𝐴). From these two equalities
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we conclude that 𝜑, 𝜓 are reciprocal bijective applications and 𝜑−1 = 𝜓. Proposition 2.3
is proved. □

3. Compacts

For topological spaces the notion of compact space was introduced by P.S. Alexandroff
and P.S. Urysohn (see [1]).

Definition 3.1. The class 𝑃 of topological spaces is called strict compactness if it satisfies
the conditions:

(𝐶1) class 𝑃 is not empty;
(𝐶2) in 𝑃 there is a space 𝑋 containing at least two different points;
(𝐶3) class 𝑃 is multiplicative;
(𝐶4) class 𝑃 is closed hereditary;
(𝐶5) if 𝑌 is a dense subspace of the space 𝑋 ∈ 𝑃, then {𝑐𝑙𝑋𝐴 : 𝐴 ⊆ 𝑌 } is a closed

basis of the space 𝑋 .

Definition 3.2. The class 𝑃 of spaces with properties (𝐶1)–(𝐶4) is called quasi-
compactness.

Definition 3.3. A quasi-compactness 𝑃 of Hausdorff spaces is called compactness.

Proposition 3.1. If 𝑃 is a strict compactness, then:

(1) 𝑃𝐺𝐸 (𝑋) = 𝐾𝑃𝐺𝐸 (𝑋) for any space 𝑋;
(2) 𝑃𝐺𝐸 (𝑋) is a set for any space 𝑋;
(3) 𝑃𝐺𝐸 (𝑋) is a lattice of extensions for any space 𝑋 .

Proof. Equality (1) is a consequence of condition (C5) in Definition 3.1. It follows from
Proposition 2.3 that 𝑃𝐺𝐸 (𝑋) is a set. Since 𝐿∗𝑃𝐺𝐸 (𝑋)) = 𝐿 (𝑃𝐺𝐸 (𝑋)) = 𝑃𝐺𝐸 (𝑋),
from Corollary 2.1 we obtain that 𝑃𝐺𝐸 (𝑋) is a lattice of extensions. The proof is
complete. □

Proposition 3.2. If 𝑃 is a compactness, then 𝑃𝐺𝐸 (𝑋) is a lattice of extensions for any
space 𝑋 .

Proof. If (𝑌, 𝑓 ) is a 𝑔–extension of the space 𝑋 , 𝑌 is a Hausdorff space, and 𝜏 is the
power of the set 𝑋 , then the weight 𝜔(𝑌 ) ≤ 2𝜏 . Therefore, 𝑃𝐺𝐸 (𝑋) is a set. Then, based
on Corollary 2.1, we obtain that 𝐿∗(𝑃𝐺𝐸 (𝑋)) = 𝐿 (𝑃𝐺𝐸 (𝑋)) = 𝑃𝐺𝐸 (𝑋) is a lattice of
extensions. The proof is complete. □

Corollary 3.1. Let 𝑃 be a compactness or a strict compactness, 𝑋 be a space and suppose
that 𝑃𝐸 (𝑋) ≠ ∅. Then 𝑃𝐸 (𝑋) is a upper semilattice of extensions.
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Corollary 3.2. Let 𝑃 be a compactness or a strict compactness. Then:

(1) for any space 𝑋 a unique maximal 𝑔–extension (𝛽𝑃𝑋, 𝛽𝑋) ∈ 𝑃𝐺𝐸 (𝑋) is deter-
mined;

(2) for any continuous mapping 𝜑 : 𝑋 → 𝑌 there is a unique continuous mapping
𝛽𝑃𝜑 : 𝛽𝑃𝑋 → 𝛽𝑃𝑌 , for which 𝛽𝑌 ◦𝜑 = 𝛽𝑃𝜑 ◦ 𝛽𝑋, i.e. Diagram 3 is commutative.

Proof. The statement (1) follows from Propositions 3.1 and 3.2. If 𝜑 : 𝑋 → 𝑌 is
continuous mapping and (𝑍, 𝑔) ∈ 𝑃𝐺𝐸 (𝑋), then (𝑍, 𝑔 ◦ 𝜑) ∈ 𝑃𝐺𝐸 (𝑋). This fact
proves the presence of 𝛽𝑃𝜑 . The proof is complete. □

4. Generalized Hausdorff Compactifications

Let us denote by 𝐻𝐺𝐶 (𝑋) the totality of 𝑔–compactifications (𝑏𝑋, 𝑏𝑋) of the space
𝑋 for which 𝑏𝑋 is a Hausdorff space.

Theorem 4.1. The totality of 𝐻𝐺𝐶 (𝑋) is a complete lattice of 𝑔–extensions.

Proof. We will prove this theorem after the following steps:

(1) Let us note that the totality of𝐻𝐺𝐶 (𝑋) is not empty, since it contains the minimal
extension (𝑚𝑋, 𝑚𝑋) of a point.

(2) If 𝑌 is a Hausdorff space, then for the power (cardinality) of the set 𝑌 we have
|𝑌 | ≤ exp (exp 𝑑 (𝑌 ) ) , where 𝑑 (𝑌 ) is the density of the space𝑌 (see [4], Theorem
1.5.3). If (𝑌, 𝑓 ) ∈ 𝐺𝐸 (𝑋), then 𝑑 (𝑌 ) ≤ |𝑋 |. Hence, |𝑌 | ≤ exp (exp |𝑋 | ) for
any Hausdorff 𝑔–compactification (𝑌, 𝑓 ) ∈ 𝐻𝐺𝐶 (𝑋). But all topological spaces
of power ≤ exp (exp |𝑋 | ) form a set, which contains the entirety of 𝐻𝐺𝐶 (𝑋).
So the totality of 𝐻𝐺𝐶 (𝑋) is a set.

(3) If (𝑌, 𝑓 ) and (𝑍, 𝑔) are two equivalent Hausdorff 𝑔–compactifications, then they
coincide. Let 𝜑 : 𝑌 → 𝑍 and 𝜓 : 𝑍 → 𝑌 be two continuous maps for which
𝑔 = 𝜑 ◦ 𝑓 and 𝑓 = 𝜓 ◦ 𝑔. Let us prove that 𝜓 = 𝜑−1. We examine the
application ℎ = 𝜓 ◦ 𝜑 : 𝑌 → 𝑌 . This mapping is continuous and ℎ (𝑦) = 𝑦 for
any 𝑦 ∈ 𝑓 (𝑋). Indeed, let 𝑦 = 𝑓 (𝑥) and 𝑥 ∈ 𝑋 . Then 𝜑(𝑦) = 𝜑 ( 𝑓 (𝑥)) = 𝑔(𝑥)
and 𝜓 (𝜑 (𝑦)) = 𝜓 (𝑔 (𝑥)) = 𝑓 (𝑥) = 𝑦. Therefore, ℎ(𝑦) = 𝑦. The space 𝑌 is
Hausdorff and 𝑌1 = {𝑦 ∈ 𝑌 : ℎ(𝑦) = 𝑦} contains the set 𝑓 (𝑋). So the set 𝑌1

is dense in 𝑌 . Now let us prove that 𝑌1 = 𝑌 . Assume that 𝑦0 ∈ 𝑌\𝑌1. Then
𝑦1 = ℎ (𝑦0) ≠ 𝑦0 and there are two open sets 𝑈,𝑉 in 𝑌 for which 𝑦1 ∈ 𝑈, 𝑦0 ∈ 𝑉
and𝑈 ∩𝑉=∅. The set𝑊 = 𝑈 ∩ ℎ−1 (𝑉) is open in 𝑌 and 𝑦1 ∈ 𝑊 . If 𝑌 ∈ 𝑊 , then
ℎ (𝑦) ∈ 𝑉 and ℎ (𝑦) ≠ 𝑦. Hence, 𝑊 ∩ 𝑌1 = ∅. Therefore, the set 𝑌1 is closed in
𝑌 . But 𝑌1 is dense in 𝑌 , and a dense and closed set in 𝑌 coincides with 𝑌 . So,
𝑌1 = 𝑌 . We proved that ℎ(𝑦) = 𝑦 for any 𝑦 ∈ 𝑌 . Therefore, 𝜓 = 𝜑−1.
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(4) The property𝐻 to be compact and Hausdorff space is multiplicative and hereditary
over closed subspaces. Applying Proposition 3.2 we obtain that 𝐻𝐺𝐶 (𝑋) is a
complete lattice. Theorem 4.1 is proved.

□

Definition 4.1. The maximal element of the lattice 𝐻𝐺𝐶 (𝑋) is denoted by (𝛽𝑋, 𝛽𝑋) and
is called the Stone-Čech 𝑔–compactification.

Corollary 4.1. If 𝑓 : 𝑋 → 𝑌 is a continuous mapping, then there is a unique continuous
mapping 𝛽 𝑓 : 𝛽𝑋 → 𝛽𝑌 for which 𝛽 𝑓 ◦ 𝛽𝑋=𝛽𝑌 ◦ 𝑓 , i.e. Diagram 4 is commutative.

Figure 2. Diagrams 3, 4 and 5.

Corollary 4.2. If 𝑓 : 𝑋 → 𝑌 is a continuous application of 𝑋 space in the Hausdorff and
compact space 𝑌 , then there is a unique continuous mapping 𝛽 𝑓 : 𝛽𝑋 → 𝑌 for which
𝑓 = 𝛽 𝑓 ◦ 𝛽𝑋, i.e. Diagram 5 is commutative.

Corollary 4.3. (See [4], Chapter 3). Let 𝐻𝐶 (𝑋) =𝐸 (𝑋) ∩ 𝐻𝐺𝐶 (𝑋) be the set of
Hausdorff compactifications of the space 𝑋 . Then:

(1) if𝐻𝐶 (𝑋) ≠ ∅, then𝐻𝐶 (𝑋) is a complete upper semilattice with maximal element
𝛽𝑋;

(2) the following statements are equivalent:
(2.1) 𝐻𝐶 (𝑋) ≠ ∅;
(2.2) 𝑋 is a 𝑇0–completely regular space;
(2.3) 𝛽𝑋 is an extension of the space 𝑋 .

Theorem 4.2. (see [4], for 𝑇1 spaces). For any continuous application 𝑓 : 𝑋 → 𝑌 in a
compact Hausdorff space 𝑌 there is a unique continuous application 𝜔 𝑓 : 𝜔𝑋 → 𝑌 for
which 𝑓 = 𝜔𝑋 | 𝑋 . The mapping 𝜔 𝑓 is always perfect.

Proof. Denote 𝜑(𝑥) = 𝑓 (𝑥) for any 𝑥 ∈ 𝑋 and let 𝜑(𝜉) = ∩ {𝑐𝑙𝑌 𝑓 (𝐻) : 𝐻 ∈ 𝜉} for any
ultrafilter 𝜉 ∈ 𝜔𝑋\𝑋 . Let 𝑦, 𝑧 ∈ 𝑐𝑙𝑌 𝑓 (𝑋) be two different points. There are two open sets
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𝑈 and 𝑉 in 𝑌 for which 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 , and the sets 𝐹 = 𝑐𝑙𝑌𝑈,Φ = 𝑐𝑙𝑌𝑉 do not intersect.
Then 𝑐𝑙𝜔𝑋 𝑓 −1 (𝐹) ∩ 𝑐𝑙𝜔𝑋 𝑓 −1 (Φ) = ∅. If 𝑋\ 𝑓 −1 (𝑈) ∈ 𝜉, then 𝑦 ∉ 𝜑 (𝜉). If 𝑋\𝑉 ∈ 𝜉,
then 𝑧 ∉ 𝜑 (𝜉). But 𝜉 ∩

{
𝑋\ 𝑓 −1 (𝑈) , 𝑋\ 𝑓 −1 (𝑉)

}
=∅. So the mapping 𝜑: 𝜔𝑋 → 𝑌 is

unique and 𝑓=𝜑 | 𝑋 . The set 𝑍= {𝑐𝑙𝑌 𝐴 :𝐴 ⊆ 𝑓 (𝑥)} forms a closed basis of the space
𝑍=𝑐𝑙𝑌 𝑓 (𝑋). If 𝐴 is closed in 𝑓 (𝑋) and 𝑦 ∈ 𝑐𝑙𝑌 𝐴, then there exists an ultrafilter 𝜂 of
closed sets in 𝑓 (𝑋) for which {𝑦} =∩{𝑐𝑙𝑌𝐻 : 𝐻 ∈ 𝜂}. There exists at least one ultrafilter
𝜉 ∈ 𝜔𝑋 for which 𝑓 −1 (𝜂) ⊆ 𝜉. Then 𝜑 (𝜉) = 𝑦. Therefore, 𝜑−1 (𝐴) = 𝑐𝑙𝜔𝑋 𝑓 −1 (𝐴) is a
closed set in 𝜔𝑋 . So, 𝜑 is a continuous mapping. From the construction and continuity
of the mapping 𝜑 we obtain its uniqueness. If the set 𝐹 is closed in 𝜔𝑋 , then 𝜑 (𝐹) is a
compact set. The compact set in a Hausdorff space is closed. So, 𝜑 is a closed mapping.
Theorem 4.2 is proved. □
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Abstract. In this paper we find conditions for a singular point 𝑂 (0, 0) of a center or a
focus type to be a center, in a cubic differential system with one invariant straight line
and one invariant cubic. The presence of a center at 𝑂 (0, 0) is proved by constructing
Darboux first integrals.
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Integrale prime pentru un sistem diferenţial cubic cu o dreaptă
invariantă şi o cubică invariantă

Rezumat. În lucrare se examinează sistemul diferenţial cubic cu punctul singular𝑂 (0, 0)
de tip centru sau focar, care are o dreaptă invariantă şi o cubică invariantă. Pentru acest
sistem sunt determinate condiţiile de existenţă a centrului ı̂n 𝑂 (0, 0) prin construirea
integralelor prime de forma Darboux.
Cuvinte-cheie: sistem diferenţial cubic, curbă algebrică invariantă, integrabilitatea
Darboux, problema centrului şi focarului.

1. Introduction

We consider the cubic differential system{
¤𝑥 = 𝑦 + 𝑎𝑥2 + 𝑐𝑥𝑦 + 𝑓 𝑦2 + 𝑘𝑥3 + 𝑚𝑥2𝑦 + 𝑝𝑥𝑦2 + 𝑟𝑦3 ≡ 𝑃(𝑥, 𝑦),
¤𝑦 = −(𝑥 + 𝑔𝑥2 + 𝑑𝑥𝑦 + 𝑏𝑦2 + 𝑠𝑥3 + 𝑞𝑥2𝑦 + 𝑛𝑥𝑦2 + 𝑙𝑦3) ≡ 𝑄(𝑥, 𝑦),

(1)

where 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) are real and coprime polynomials in the variables 𝑥 and 𝑦,
¤𝑥 = 𝑑𝑥/𝑑𝑡, ¤𝑦 = 𝑑𝑦/𝑑𝑡. The origin𝑂 (0, 0) is a singular point of a center or a focus type for
(1), i.e. a week focus. It arises the problem of distinguishing between a center and a focus
(called the problem of the center), i.e. the problem of finding the coefficient conditions
under which 𝑂 (0, 0) is a center.

The problem of the center is equivalent to the problem of local integrability of a differ-
ential system in the neighboarhood of a singular point with pure imaginary eigenvalues.
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It is known [1] that a singular point 𝑂 (0, 0) is a center for (1) if and only if the system
has a holomorphic first integral of the form 𝐹 (𝑥, 𝑦) = 𝐶 in some neighborhood of𝑂 (0, 0).

Although the problem of the center dates from the end of the 19th century, it is
completely solved only for: quadratic systems ¤𝑥 = 𝑦 + 𝑝2(𝑥, 𝑦), ¤𝑦 = −𝑥 + 𝑞2(𝑥, 𝑦); cubic
symmetric systems ¤𝑥 = 𝑦 + 𝑝3(𝑥, 𝑦), ¤𝑦 = −𝑥 + 𝑞3(𝑥, 𝑦); Kukles system ¤𝑥 = 𝑦, ¤𝑦 =

−𝑥 + 𝑞2(𝑥, 𝑦) + 𝑞3(𝑥, 𝑦) and a few particular cases in families of polynomial systems of
higher degree, where 𝑝 𝑗 (𝑥, 𝑦) and 𝑞 𝑗 (𝑥, 𝑦) are homogeneous polynomials of degree 𝑗 in
the variables 𝑥 and 𝑦.

If the cubic system (1) contains both quadratic and cubic nonlinearities, then the
problem of the center is still open. For such systems the necessary and sufficient conditions
for the origin to be a center were obtained in some particular cases (see, for example, [9],
[20], [21], [22]), [25].

The problem of the center was solved for some families of cubic differential systems
with algebraic solutions: four invariant straight lines [3], [4], [5], [9], [18]; three invariant
straight lines [9], [24]; two parallel invariant straight lines [14], [23]; two invariant straight
lines and invariant conic [6], [7], [9]; two invariant straight lines and invariant cubic [10],
[11]. It was proved that every center in the cubic differential system (1) with two invariant
straight lines and one invariant conic comes from a Darboux integrability.

The integrability conditions for some families of cubic differential systems having
invariant algebraic curves were found in [2], [8], [9], [12]–[17], [19], [25].

The goal of this paper is to obtain the center conditions for cubic differential system (1)
with one invariant straight line and one irreducible invariant cubic by using the method
of Darboux integrability. Our main result is the following one.

Theorem 1.1. The origin is a center for cubic differential system (1), with one invariant
straight line and one irreducible invariant cubic, if one of the following conditions holds:

(i) 𝑎 = 𝑑 = 𝑘 = 𝑟 = 0, 𝑔 = 𝑐 + 1 − 𝑏, 𝑙 = 𝑏 𝑓 , 𝑚 = −(𝑐 + 1), 𝑛 = [𝑏(2𝑐 + 3 − 𝑏)]/2,
𝑝 = − 𝑓 , 𝑞 = − 𝑓 (𝑐 + 1 + 𝑏), 𝑠 = −𝑏(𝑐 + 1), 𝑏2 − 2 𝑓 2 − 𝑏 = 0;

(ii) 𝑑 = 2𝑎, 𝑘 = −𝑎, 𝑙 = [ 𝑓 (2𝑏− 𝑐−1)]/3, 𝑚 = −(𝑐+1), 𝑛 = [(2𝑏− 𝑐−2) (𝑐+1)]/2,
𝑝 = − 𝑓 , 𝑞 = 𝑎(2𝑏 − 𝑐 − 3), 𝑟 = 0.

The paper is organized as follows. In Section 2 we present the known results concerning
the relation between algebraic solutions and Darboux integrability. In Sections 3 and 4 we
determine the integrability conditions for cubic differential system (1) with one invariant
straight line and one invariant cubic by constructing Darboux first integrals. Finally in
Section 5 we prove the Theorem 1.1.
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2. Algebraic solutions and Darboux first integrals

An important problem for differential system (1) is whether the trajectories to (1) can
be described by an algebraic formula, for example, Φ(𝑥, 𝑦) = 0, where Φ is a polynomial.

Definition 2.1. An algebraic invariant curve of (1) is the solution set in C2 of an equation
Φ(𝑥, 𝑦) = 0, where Φ is a polynomial in 𝑥, 𝑦 with complex coefficients such that

𝜕Φ

𝜕𝑥
𝑃(𝑥, 𝑦) + 𝜕Φ

𝜕𝑦
𝑄(𝑥, 𝑦) = 𝐾 (𝑥, 𝑦)Φ(𝑥, 𝑦)

for some polynomial in 𝑥, 𝑦, 𝐾 = 𝐾 (𝑥, 𝑦) with complex coefficients, called the cofactor of
the invariant algebraic curve Φ = 0.

We say that the invariant algebraic curve Φ(𝑥, 𝑦) = 0 is an algebraic solution of (1) if
and only if Φ(𝑥, 𝑦) is an irreducible polynomial in C[𝑥, 𝑦]. We shall study the problem
of the center for cubic differential system (1) assuming that (1) has algebraic solutions:
one invariant straight line and one invariant cubic.

By Definition 2.1 a straight line

1 + 𝐴𝑥 + 𝐵𝑦 = 0, (𝐴, 𝐵) ≠ 0, 𝐴, 𝐵 ∈ C (2)

is said to be invariant for (1), if there exists a polynomial with complex coefficients𝐾 (𝑥, 𝑦)
such that the following identity holds

𝐴𝑃(𝑥, 𝑦) + 𝐵𝑄(𝑥, 𝑦) ≡ (1 + 𝐴𝑥 + 𝐵𝑦)𝐾 (𝑥, 𝑦).

Let the cubic system (1) have a real invariant straight line of the form (2). Then
by rotating the system of coordinates (𝑥 → 𝑥 cos 𝜑 − 𝑦 sin 𝜑, 𝑦 → 𝑥 sin 𝜑 + 𝑦 cos 𝜑) and
rescaling the axes of coordinates (𝑥 → 𝛼𝑥, 𝑦 → 𝛼𝑦), we can make the line to be 1−𝑥 = 0.

In [9] it was proved the following Lemma

Lemma 2.1. The cubic system (1) has the invariant straight line 1 − 𝑥 = 0 if and only if
the following set of conditions holds

𝑘 = −𝑎, 𝑚 = −𝑐 − 1, 𝑝 = − 𝑓 , 𝑟 = 0. (3)

Suppose the set of conditions (3) is realized, then the cubic system (1) can be written
as follows{

¤𝑥 = (1 − 𝑥) (𝑦 + 𝑥𝑦 + 𝑎𝑥2 + 𝑐𝑥𝑦 + 𝑓 𝑦2) ≡ 𝑃(𝑥, 𝑦),
¤𝑦 = −(𝑥 + 𝑔𝑥2 + 𝑑𝑥𝑦 + 𝑏𝑦2 + 𝑠𝑥3 + 𝑞𝑥2𝑦 + 𝑛𝑥𝑦2 + 𝑙𝑦3) ≡ 𝑄(𝑥, 𝑦),

(4)

We are interested in finding the conditions under which the cubic system (4) has one
real irreducible invariant cubic curve. According to [9], a real irreducible invariant cubic
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curve of (1) can have one of the following two forms

𝑎30𝑥
3 + 𝑎21𝑥

2𝑦 + 𝑎12𝑥𝑦
2 + 𝑎03𝑦

3 + 𝑎20𝑥
2 + 𝑎11𝑥𝑦 + 𝑎02𝑦

2 + 𝑎10𝑥 + 𝑎01𝑦 + 1 = 0 (5)

or
𝑎30𝑥

3 + 𝑎21𝑥
2𝑦 + 𝑎12𝑥𝑦

2 + 𝑎03𝑦
3 + 𝑥2 + 𝑦2 = 0, (6)

where (𝑎30, 𝑎21, 𝑎12, 𝑎03) ≠ 0, 𝑎𝑖 𝑗 ∈ R.

By Definition 2.1, the cubic curve (5) ((6)) is said to be an invariant cubic for (1), if
there exists a polynomial with real coefficients𝐾 (𝑥, 𝑦) = 𝑐10𝑥+𝑐01𝑦+𝑐20𝑥

2+𝑐11𝑥𝑦+𝑐02𝑦
2

such that the following identity holds
𝜕Φ

𝜕𝑥
𝑃(𝑥, 𝑦) + 𝜕Φ

𝜕𝑦
𝑄(𝑥, 𝑦) ≡ Φ(𝑥, 𝑦)𝐾 (𝑥, 𝑦).

Definition 2.2. System (1) is integrable on an open set𝐷 of 𝑅2 if there exists a nonconstant
analytic function 𝐹 : 𝐷 → 𝑅 which is constant on all solution curves (𝑥(𝑡), 𝑦(𝑡)) in 𝐷,
i.e. 𝐹 (𝑥(𝑡), 𝑦(𝑡)) = 𝐶 for all values of 𝑡 where the solution is defined. Such an 𝐹 is called
a first integral of the system on 𝐷.

When 𝐹 exists in 𝐷 all the solutions of the differential system in 𝐷 are known [1],
since every solution is given by 𝐹 (𝑥, 𝑦) = 𝐶, for some 𝐶 ∈ R. Clearly 𝐹 is a first integral
of (1) on 𝐷 if and only if

𝑃
𝜕𝐹

𝜕𝑥
+𝑄𝜕𝐹

𝜕𝑦
≡ 0. (7)

A first integral constructed from invariant algebraic curves 𝑓 𝑗 (𝑥, 𝑦) = 0, 𝑗 = 1, 𝑞

𝐹 (𝑥, 𝑦) ≡ 𝑓
𝛼1

1 𝑓
𝛼2

2 · · · 𝑓 𝛼𝑞

𝑞 = 𝐶 (8)

with 𝛼 𝑗 ∈ C not all zero is called a Darboux first integral [21], [25].
By constracting Darboux first integrals (8), the center conditions where obtained for

cubic system (1) with two invariant straight lines and one invariant conic in [9], with two
invariant straight lines and one invariant cubic of the form (6) in [10] and [11].

The qualitative investigation in 2-dimensional parameter space of cubic systems (1)
with a center and having the Darboux first integral of the form

(1 + 𝐴𝑥 + 𝐵𝑦)2Φ = 0,

where Φ = 0 is an irreducible invariant cubic curve of the form (6), was done in [26].
In [13] it was found the center conditions for cubic differential system (1) by construct-

ing Darboux integrating factors of the form

𝜇(𝑥, 𝑦) = (1 − 𝑥)𝛼Φ𝛽 ,
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where Φ = 0 is an irreducible invariant cubic of the form (6) and 𝛼, 𝛽 ∈ R.
In this paper, using the equation (7), we find the conditions under which the cubic

differential system (1) has Darboux first integrals of the form

𝐹 (𝑥, 𝑦) ≡ (1 − 𝑥)𝛼Φ𝛽 = 𝐶 (9)

composed of one invariant straight line 1 − 𝑥 = 0 and one irreducible invariant cubic
Φ = 0 of the form (5) ((6)), where 𝛼, 𝛽 ∈ R.

3. One invariant straight line and one invariant cubic of the form (5)

In this section we find Darboux integrability conditions for cubic differential system
(1) with one invariant straight line and one invariant cubic of the form (5).

Lemma 3.1. The cubic differential system (1) with one invariant straight line 1 − 𝑥 = 0
and one invariant cubic (5) has a Darboux first integral of the form (9) if and only if one
of the following two sets of conditions is satisfied:

(i) 𝑎 = 𝑑 = 𝑘 = 𝑟 = 0, 𝑔 = 𝑐 + 1 − 𝑏, 𝑙 = 𝑏 𝑓 , 𝑚 = −(𝑐 + 1), 𝑛 = [𝑏(2𝑐 + 3 − 𝑏)]/2,
𝑝 = − 𝑓 , 𝑞 = − 𝑓 (𝑐 + 1 + 𝑏), 𝑠 = −𝑏(𝑐 + 1), 𝑏2 − 2 𝑓 2 − 𝑏 = 0;

(ii) 𝑑 = 2𝑎, 𝑘 = −𝑎, 𝑙 = [ 𝑓 (2𝑏− 𝑐−1)]/3, 𝑚 = −(𝑐+1), 𝑛 = [(2𝑏− 𝑐−2) (𝑐+1)]/2,
𝑝 = − 𝑓 , 𝑞 = 𝑎(2𝑏 − 𝑐 − 3), 𝑟 = 0.

Proof. Let the cubic system (1) have the invariant straight line 1 − 𝑥 = 0 and an invariant
cubic Φ = 0 of the form (5). In this case the system (1) will have a Darboux first integral
of the form (9) if and only if the identity (7) holds. Identifying the coefficients of the
monomials 𝑥𝑖𝑦 𝑗 in (7), we obtain a system of twenty equations

{𝑈𝑖 𝑗 = 0, 𝑖 + 𝑗 = 1, . . . , 5} (10)

for the unknowns 𝑎30, 𝑎21, 𝑎12, 𝑎03, 𝑎20, 𝑎11, 𝑎02, 𝑎10, 𝑎01, 𝛼, 𝛽 and the coefficients of
system (1).

When 𝑖 + 𝑗 = 1, the equations 𝑈10 = 0 and 𝑈01=0 of (10) yield 𝑎01 = 0 and 𝛼 = 𝑎10𝛽.
If 𝑖 + 𝑗 = 2, the equations 𝑈20 = 0, 𝑈11 = 0 and 𝑈02 = 0 of (10) imply 𝑎11 = 0 and
𝑎20 = (2𝑎02 + 𝑎2

10 + 𝑎10)/2.
When 𝑖 + 𝑗 = 3, the equations 𝑈𝑖 𝑗 = 0 of (10) give 𝑎21 = 2𝑎𝑎02, 𝑎12 = 𝑎02(𝑎10 + 2𝑏),

𝑎30 = (6𝑎02𝑎10+8𝑏𝑎02−4𝑐𝑎02+4𝑔𝑎02+𝑎3
10+3𝑎2

10+2𝑎10)/6 and 𝑎03 = [2𝑎02(2𝑎−𝑑+ 𝑓 )]/3.
We express 𝑙, 𝑛, 𝑞, 𝑠 from the equations𝑈04 = 0,𝑈13 = 0,𝑈22 = 0,𝑈31 = 0 of (10). Then
𝑈40 ≡ 2𝑎𝛽𝑎02(𝑎10 + 2𝑏 − 𝑐 − 1) = 0, where 𝛽𝑎02 ≠ 0. We divide the investigation into
two cases: {𝑎 = 0}; {𝑎10 = 𝑐 − 2𝑏 + 1, 𝑎 ≠ 0}.

1. Let 𝑎 = 0. Then𝑈05 ≡ 𝑑 (𝑑 − 𝑓 ) (𝑎10 + 3𝑏) = 0.
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1.1. Assume that 𝑑 = 𝑓 . In this case𝑈14 ≡ 𝑓 (𝑎10 + 2𝑏 + 1) (𝑎10 + 2𝑏) = 0.
1.1.1. Suppose 𝑎10 = −2𝑏. Then𝑈32 ≡ 𝑓1 𝑓2 𝑓3 = 0, where

𝑓1 = 𝑓 , 𝑓2 = 2𝑏 − 3, 𝑓3 = (2𝑏 − 1) (𝑏 − 1)𝑏 + (𝑏 + 𝑐 − 𝑔)𝑎02.
If 𝑓2 = 0 or 𝑓3 = 0, then the right-hand sides of (1) have a common factor 𝑐𝑥+𝑥+ 𝑓 𝑦+1.

The case 𝑓1 = 0 is contained in (ii) (𝑎 = 𝑓 = 0, 𝑐 = −1).
1.1.2. Suppose 𝑎10 = −2𝑏 − 1. Then𝑈32 ≡ 𝑔1𝑔2𝑔3 = 0, where

𝑔1 = 𝑓 , 𝑔2 = 2𝑏 + 1, 𝑔3 = (2𝑏 − 1) (𝑏 − 1)𝑏 + (𝑏 + 𝑐 − 𝑔)𝑎02.
If 𝑔2 = 0 or 𝑔3 = 0, then the right-hand sides of (1) have a common factor 𝑐𝑥+𝑥+ 𝑓 𝑦+1.

The case 𝑔1 = 0 is contained in (ii) (𝑎 = 𝑓 = 0, 𝑐 = −2).
1.1.3. Suppose (𝑎10 + 2𝑏 + 1) (𝑎10 + 2𝑏) ≠ 0 and let 𝑓 = 0. Then𝑈32 ≡ 0 and𝑈23 = 0

yields 𝑎10 = 𝑐 − 2𝑏 + 1. This case is contained in (ii) (𝑎 = 𝑓 = 0).
1.2. Assume that 𝑑 ≠ 𝑓 and let 𝑑 = 0. Then𝑈14 ≡ (𝑎10 + 2𝑏 − 𝑐 − 1) (𝑎10 + 3𝑏) = 0.
1.2.1. The case 𝑎10 = 𝑐 + 1 − 2𝑏 is contained in (ii) (𝑎 = 0).
1.2.2. If 𝑎10 ≠ 𝑐 + 1 − 2𝑏 and 𝑎10 = −3𝑏, then from equations {𝑈23 = 0,𝑈32 =

0,𝑈41 = 0} of (10) we get 2 𝑓 2 − 𝑏2 + 𝑏 = 0, 𝑔 = 𝑐 − 𝑏 + 1 and 𝑎02 = (3𝑏 − 3𝑏2)/2. In
this case we obtain the set of conditions (i) for the existence of the first integral (9) with
𝛼 = −3𝑏, 𝛽 = 1 and

Φ ≡ 2(1 − 𝑏𝑥)3 + 𝑏(𝑏 − 1) (3𝑏𝑥 − 2 𝑓 𝑦 − 3)𝑦2 = 0.
1.3. Assume that 𝑑 (𝑑 − 𝑓 ) ≠ 0 and let 𝑎10 = −3𝑏. In this case𝑈05 ≡ 0 and

𝑈32 ≡ (3𝑏 − 1) (3𝑏 − 2) (3𝑏(𝑏 − 1) + 2𝑎02) = 0.
1.3.1. If 𝑏 = 1/3 or 𝑏 = 2/3, then𝑈14 ≡ 𝑑 (9(𝑑 − 𝑓 )2 + 1) ≠ 0.
1.3.2. If 𝑎02 = (3𝑏(1 − 𝑏))/2 and (3𝑏 − 1) (3𝑏 − 2) ≠ 0, then 𝑈41 ≡ 𝑈32 ≡ 0. The

equations𝑈23 = 0,𝑈14 = 0 yield 𝑏2 − 𝑏−2(𝑑 − 𝑓 )2 = 0. In this case, the right-hand sides
of (1) have a common factor 𝑐𝑥 + 𝑥 + 𝑓 𝑦 + 1.

2. Assume that 𝑎10 = 𝑐 − 2𝑏 + 1 and let 𝑎 ≠ 0. Then the equations of (10) imply
𝑑 = 2𝑎. In this case we obtain the set of conditions (ii) for the existence of the first integral
(9) with 𝛼 = 𝑐 − 2𝑏 + 1, 𝛽 = 1 and
Φ ≡ 𝑎30𝑥

3 + 𝑎21𝑥
2𝑦 + 𝑎12𝑥𝑦

2 + 𝑎03𝑦
3 + 𝑎20𝑥

2 + 𝑎11𝑥𝑦 + 𝑎02𝑦
2 + 𝑎10𝑥 + 𝑎01𝑦 + 1 = 0,

where 𝑎01 = 𝑎11 = 0, 𝑎10 = 𝑐+1−2𝑏, 𝑎20 = (2𝑎02+𝑎2
10+𝑎10)/2, 𝑎02 = [(𝑐+1−2𝑏) (2𝑏−

𝑐 − 2) (2𝑏 − 𝑐 − 3) (2𝑏 − 𝑐 − 4)]/[2(2𝑏 − 𝑐 − 2𝑔 − 3) (2𝑏 − 𝑐 − 4) + 12𝑠], 𝑎21 = 2𝑎𝑎02,
𝑎12 = 𝑎02(𝑎10 + 2𝑏), 𝑎03 = [2𝑎02(2𝑎 − 𝑑 + 𝑓 )]/3, 𝑎30 = (6𝑎02𝑎10 + 8𝑏𝑎02 − 4𝑐𝑎02 +
4𝑔𝑎02 + 𝑎3

10 + 3𝑎2
10 + 2𝑎10)/6.

In each of the cases (i) and (ii), the system (1) has a Darboux first integral of the form (9)
and therefore the origin is a center for (1). □
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4. One invariant straight line and one invariant cubic of the form (6)

In this section we find Darboux integrability conditions for cubic differential system
(1) with one invariant straight line and one invariant cubic of the form (6).

Lemma 4.1. The cubic differential system (1) with one invariant straight line 1 − 𝑥 = 0
and one invariant cubic (6) has a Darboux first integral of the form (9) if and only if the
following set of conditions is satisfied:

(iii) 𝑑 = 2𝑎, 𝑘 = −𝑎, 𝑙 = [ 𝑓 (2𝑏− 𝑐−1)]/3, 𝑚 = −(𝑐+1), 𝑛 = [(2𝑏− 𝑐−2) (𝑐+1)]/2,
𝑝 = − 𝑓 , 𝑞 = 𝑎(2𝑏 − 𝑐 − 3), 𝑟 = 0, 𝑠 = [(𝑐 − 2𝑏 + 2𝑔 + 3) (2𝑏 − 𝑐 − 4)]/6.

Proof. Let the cubic system (1) have the invariant straight line 1 − 𝑥 = 0 and an invariant
cubic Φ = 0 of the form (6). In this case the system (1) will have a Darboux first integral
of the form (9) if and only if the identity (7) holds. Identifying the coefficients of the
monomials 𝑥𝑖𝑦 𝑗 in (7), we obtain a system of fifteen equations

{𝑉𝑖 𝑗 = 0, 𝑖 + 𝑗 = 3, 4, 5} (11)

for the unknowns 𝑎30, 𝑎21, 𝑎12, 𝑎03, 𝛼, 𝛽 and the coefficients of system (1).
When 𝑖 + 𝑗 = 3, the equations of (11) yield 𝑎21 = 2𝑎, 𝛼 = 𝛽(𝑎12 − 2𝑏), 𝑔 =

(3𝑎30 − 3𝑎12 + 2𝑏 + 2𝑐)/2, 𝑑 = (4𝑎 + 2 𝑓 − 3𝑎03)/2, where 𝛽 ≠ 0.
We express 𝑙, 𝑛, 𝑞, 𝑠 from the equations 𝑉04 = 0, 𝑉13 = 0, 𝑉22 = 0, 𝑉31 = 0 of (11).

Then 𝑉05 ≡ (3𝑎03 − 2 𝑓 ) (𝑎12 + 𝑏)𝑎03 = 0. We divide the investigation into three cases:
{𝑎03 = (2 𝑓 )/3}; {𝑎03 = 0, 𝑓 ≠ 0}; {𝑎12 = −𝑏, 𝑎03(3𝑎03 − 2 𝑓 ) ≠ 0}.

1. Let 𝑎03 = (2 𝑓 )/3. Then 𝑉40 ≡ 𝑎(𝑎12 − 𝑐 − 1) = 0.
1.1. Assume that 𝑎12 = 𝑐+1. Then we obtain the set of conditions (iii) for the existence

of the first integral (9) with 𝛼 = 𝑐 − 2𝑏 + 1, 𝛽 = 1 and
Φ ≡ 3(𝑥2 + 𝑦2) + (𝑐 − 2𝑏 + 2𝑔 + 3)𝑥3 + 6𝑎𝑥2𝑦 + 3(𝑐 + 1)𝑥𝑦2 + 2 𝑓 𝑦3 = 0.

1.2. Assume that 𝑎12 ≠ 𝑐 + 1 and let 𝑎 = 0. Then 𝑉14 ≡ 𝑓 (𝑎12 + 𝑏) = 0.
If 𝑓 = 0, then 𝑉23 ≡ 𝑎12(𝑎12 + 1) = 0. When 𝑎12 = 0 or 𝑎12 = −1 the right-hand sides

of (1) have a common factor 𝑐𝑥 + 𝑥 + 1.
If 𝑓 ≠ 0 and 𝑎12 = −𝑏, then 𝑎30 = (2− 7𝑏)/3. In this case𝑉41 ≡ (3𝑏 − 1) (3𝑏 − 2) = 0.

When 𝑏 = 1/3 or 𝑏 = 2/3, we have that 𝑉23 ≠ 0.
2. Let 𝑎03 = 0 and 𝑓 ≠ 0. Then 𝑉40 ≡ 𝑎(𝑎12 − 𝑐 − 1) = 0.
2.1. Assume that 𝑎 = 0. Then 𝑉14 ≡ 𝑎12(𝑎12 + 1) = 0. If 𝑎12 = 0, then 𝑏 = 3/2 and

the right-hand sides of (1) have a common factor 𝑐𝑥 + 𝑥 + 𝑓 𝑦 + 1.
If 𝑎12 = −1, then 𝑉32 ≡ (𝑎30 + 1) (2𝑏 + 1) = 0. When 𝑎30 = −1, the cubic curve (6)

is reducible and when 𝑏 = (−1)/2, the right-hand sides of (1) have a common factor
𝑐𝑥 + 𝑥 + 𝑓 𝑦 + 1.
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2.2. Assume that 𝑎12 = 𝑐 + 1 and let 𝑎 ≠ 0. Then 𝑉50 ≠ 0.
3. Let 𝑎12 = −𝑏 and (3𝑎03 − 2 𝑓 )𝑎03 ≠ 0. Then 𝑉40 ≡ 𝑎(𝑏 + 𝑐 + 1) = 0.
3.1. Assume that 𝑎 = 0. Then 𝑉41 ≡ 𝑓1 𝑓2 = 0, where

𝑓1 = 𝑏 + 𝑐 + 1, 𝑓2 = (6𝑏 − 3)𝑎30 + 5𝑏2 − 2𝑏.
If 𝑓1 = 0, then 𝑐 = −𝑏 − 1 and 𝑉23 = 0 yields 𝑎30 = (2 − 7𝑏)/3. In this case

𝑉32 ≡ (3𝑏 − 1) (3𝑏 − 2) = 0. If 𝑏 = 1/3 or 𝑏 = 2/3, then 𝑉14 ≠ 0.
Suppose that 𝑓2 = 0 and 𝑓1 ≠ 0. Then 𝑎30 = (𝑏(5𝑏 − 2))/(3(1 − 2𝑏)) and 𝑉32 ≡

(3𝑏 − 1) (3𝑏 − 2) = 0. If 𝑏 = 1/3 or 𝑏 = 2/3, then 𝑉14 ≠ 0.
3.2. Assume that 𝑐 = −𝑏 − 1 and 𝑎 ≠ 0. Then 𝑉50 ≠ 0.
In the case (iii), the system (1) has a Darboux first integral of the form (9) and therefore

the origin is a center for (1). □

5. Proof of the Main Theorem

The proof of the main result, Theorem 1.1, follows directly from Lemmas 3.1 and
4.1. The existence of a center for system (1), in Cases (i), (ii) and (iii), is equivalent
to the existence of the Darboux first integrals of the form (9) defined in a neighborhood
of the origin [25]. It is easy to verify that the Case (iii) is contained in the Case (ii)
(𝑠 = [(𝑐 − 2𝑏 + 2𝑔 + 3) (2𝑏 − 𝑐 − 4)]/6).
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T-quasigroups with Stein 2-nd and 3-rd identity
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Abstract. In this paper we prolong research of T-quasigroups with Stein 2-rd (𝑥𝑦 · 𝑥 =

𝑦 · 𝑥𝑦) and Stein 3-rd (𝑥𝑦 · 𝑦𝑥 = 𝑦) identities [9].
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T-cvasigrupuri cu a doua şi a treia identitate Stein
Rezumat. În această lucrare sunt prelungite cercetările T-cvasigrupurilor cu a 2-a
identitate Stein (𝑥𝑦 · 𝑥 = 𝑦 · 𝑥𝑦) şi a 3-a identitate Stein (𝑥𝑦 · 𝑦𝑥 = 𝑦) [9].
Cuvinte-cheie: cvasigrup, buclă, grupoid, cvasigrupuri Schröder, identitate Stein.

1. Introduction

Necessary definitions can be found in [2, 3, 4, 5, 7, 10, 14].

Definition 1.1. Binary groupoid (𝑄, ◦) is called a left quasigroup if for any ordered pair
(𝑎, 𝑏) ∈ 𝑄2 there exist the unique solution 𝑥 ∈ 𝑄 to the equation 𝑎 ◦ 𝑥 = 𝑏 [2].

Definition 1.2. Binary groupoid (𝑄, ◦) is called a right quasigroup if for any ordered
pair (𝑎, 𝑏) ∈ 𝑄2 there exist the unique solution 𝑦 ∈ 𝑄 to the equation 𝑦 ◦ 𝑎 = 𝑏 [2].

Definition 1.3. Binary groupoid (𝑄, ·) is called medial if this groupoid satisfies the
following medial identity:

𝑥𝑦 · 𝑢𝑣 = 𝑥𝑢 · 𝑦𝑣 (1)

for all 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑄 [2].

We recall

Definition 1.4. Quasigroup (𝑄, ·) is a T-quasigroup if and only if there exists an abelian
group (𝑄, +), its automorphisms 𝜑 and 𝜓 and a fixed element 𝑎 ∈ 𝑄 such that 𝑥 · 𝑦 =

𝜑𝑥 + 𝜓𝑦 + 𝑎 for all 𝑥, 𝑦 ∈ 𝑄 [6].

We mantion that a T-quasigroup with the additional condition 𝜑𝜓 = 𝜓𝜑 is medial.
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2. T-quasigroups with Stein 2-rd (𝑥𝑦 · 𝑥 = 𝑦 · 𝑥𝑦) identity

Theorem 2.1. In T-quasigroup (𝑄, ·) of the form 𝑥 · 𝑦 = 𝜑𝑥 + 𝜓𝑦 Stein 2-nd identity
(𝑥𝑦 · 𝑥 = 𝑦 · 𝑥𝑦) is true if 𝜑𝑦 + 𝜓2𝑦 = 𝜑𝜓𝑦, 𝜑2𝑥 + 𝜓𝑥 = 𝜓𝜑𝑥.

Proof. From identity
𝑥𝑦 · 𝑥 = 𝑦 · 𝑥𝑦 (2)

we obtain
𝜑(𝜑𝑥 + 𝜓𝑦) + 𝜓𝑥 = 𝜑𝑦 + 𝜓(𝜑𝑥 + 𝜓𝑦), (3)

𝜑2𝑥 + 𝜑𝜓𝑦 + 𝜓𝑥 = 𝜑𝑦 + 𝜓𝜑𝑥 + 𝜓2𝑦, (4)

If in (4) 𝑥 = 0, then
𝜑𝑦 + 𝜓2𝑦 = 𝜑𝜓𝑦. (5)

If in (4) 𝑦 = 0, then
𝜑2𝑥 + 𝜓𝑥 = 𝜓𝜑𝑥. (6)

□

Corollary 2.1. In medial quasigroup (𝑄, ·) of the form 𝑥 · 𝑦 = 𝜑𝑥 +𝜓𝑦, Stein 2-nd identity
(𝑥𝑦 · 𝑥 = 𝑦 · 𝑥𝑦) is true if (𝜑 + 𝜓 − 1) (𝜑 − 𝜓) = 0.

Proof. From the mediality of quasigroup (𝑄, ·), equalities (5), (6) we have the following

(𝜑 + 𝜓 − 1) (𝜑 − 𝜓) = 0. (7)

Indeed, 𝜑2𝑥 + 𝜓𝑥 = 𝜑𝑥 + 𝜓2𝑥, 𝜑2𝑥 − 𝜓2𝑥 = 𝜑𝑥 − 𝜓𝑥, (𝜑𝑥 − 𝜓𝑥) (𝜑𝑥 + 𝜓𝑥) = 𝜑𝑥 − 𝜓𝑥,
(𝜑𝑥 − 𝜓𝑥) (𝜑𝑥 + 𝜓𝑥 − 1) = 0 □

Example 2.1. Suppose we have the group 𝑍𝑛 of residues modulo 𝑛. We define quasigroup
(𝑄, ◦) in the following way: 𝑥 ◦ 𝑦 = 4 · 𝑥 + 2 · 𝑦 (mod 5).

Check: (𝑥◦𝑦) ◦𝑥 = 𝑦◦ (𝑥◦𝑦), 16𝑥+8𝑦+2𝑥 = 4𝑦+8𝑥+4𝑦 (mod 5), 18𝑥+8𝑦 = 8𝑥+8𝑦
(mod 5), 10𝑥 = 0 (mod 5).

Example 2.2. Suppose we have the group 𝑍𝑛 of residues modulo 𝑛. We define quasigroup
(𝑄, ◦) in the following way: 𝑥 ◦ 𝑦 = 2 · 𝑥 + 4 · 𝑦 (mod 10).

Verify: (𝑥◦𝑦)◦𝑥 = 𝑦◦(𝑥◦𝑦), 4𝑥+8𝑦+4𝑥 = 2𝑦+8𝑥+16𝑦 (mod 10), 8𝑥+8𝑦 = 8𝑥+18𝑦
(mod 10), 0 = 10𝑦 (mod 10).

Example 2.3. Let us consider the group 𝑍𝑛 of residues modulo 𝑛. We define quasigroup
(𝑄, ◦) in the following way: 𝑥 ◦ 𝑦 = 11 · 𝑥 + 3 · 𝑦 (mod 13).

Check: (𝑥 ◦ 𝑦) ◦ 𝑥 = 𝑦 ◦ (𝑥 ◦ 𝑦), 121𝑥 + 33𝑦 + 3𝑥 = 11𝑦 + 33𝑥 + 9𝑦 (mod 13),
0 = 91𝑥 + 13𝑦 (mod 13), 0 = 0 (mod 13).
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Example 2.4. Suppose we have the group 𝑍𝑛 of residues modulo 𝑛. We define quasigroup
(𝑄, ◦) in the following way: 𝑥 ◦ 𝑦 = 7 · 𝑥 + 11 · 𝑦 (mod 17).

Verify: (𝑥 ◦ 𝑦) ◦ 𝑥 = 𝑦 ◦ (𝑥 ◦ 𝑦), 49𝑥 + 77𝑦 + 11𝑥 = 7𝑦 + 77𝑥 + 121𝑦 (mod 17),
60𝑥 + 77𝑦 = 128𝑦 + 77𝑥 (mod 17), 0 = 0 (mod 17).

Example 2.5. Suppose we have the group 𝑍𝑛 of residues modulo 𝑛. We define quasigroup
(𝑄, ◦) in the following way: 𝑥 ◦ 𝑦 = 21 · 𝑥 + 9 · 𝑦 (mod 29).

Check: (𝑥 ◦ 𝑦) ◦ 𝑥 = 𝑦 ◦ (𝑥 ◦ 𝑦), 441𝑥 + 189𝑦 + 9𝑥 = 21𝑦 + 189𝑥 + 81𝑦 (mod 29),
450𝑥 + 189𝑦 = 189𝑥 + 102𝑦 (mod 29), 261𝑥 + 87𝑦 = 0 (mod 29), 0 = 0 (mod 29).

3. T-quasigroups with Stein 3-rd identity 𝑥𝑦 · 𝑦𝑥 = 𝑦

T-quasigroups with Stein 3-rd identity are researched in [13]. Sufficiently big number
of simple medial qusigroups with 3-rd Stein identity is constructed in [12].

Theorem 3.1. In T-quasigroup (𝑄, ·) of the form 𝑥 · 𝑦 = 𝜑𝑥 + 𝜓𝑦 Stein 3-rd identity is
true if and only if 𝜑2 + 𝜓2 = 0, 𝜑𝜓𝑦 + 𝜓𝜑𝑦 = 𝜀 [13].

Corollary 3.1. In medial quasigroup (𝑄, ·) of the form 𝑥 · 𝑦 = 𝜑𝑥 +𝜓𝑦 Stein 3-rd identity
is true if and only if 𝜑2 + 𝜓2 = 0, 2𝜑𝜓 = 𝜀 [13].

Example 3.1. Let 𝑍𝑛 be the group of residues modulo 𝑛. Assume that 𝜑 = 8, 𝜓 = 20. Then
𝜑2 + 𝜓2 = 64 + 400 = 464 = 0 (mod 29), 𝑛 = 29. Next, 2𝜑𝜓 = 2 · 8 · 20 = 320 = 𝜀 = 1
(mod 29), 𝑥 · 𝑦 = 8𝑥 + 20𝑦 (mod 29).

Verify: 8(8𝑥 + 20𝑦) + 20(8𝑦 + 20𝑥) = 𝑦 (mod 29), 64𝑥 + 160𝑦 + 160𝑦 + 400𝑥 = 𝑦

(mod 29), 𝑦 = 𝑦 (mod 29).

Example 3.2. Let 𝑍𝑛 be the group of residues modulo 𝑛. We consider 𝜑 = 9, 𝜓 = 21. Then
𝜑2 + 𝜓2 = 81 + 441 = 522 = 0 (mod 29), 𝑛 = 29. Next, 2𝜑𝜓 = 2 · 9 · 21 = 378 = 𝜀 = 1
(mod 29), 𝑥 · 𝑦 = 9𝑥 + 21𝑦 (mod 29).

Verify: 9(9𝑥 + 21𝑦) + 21(9𝑦 + 21𝑥) = 𝑦 (mod 29), 81𝑥 + 189𝑦 + 189𝑥𝑦 + 441𝑥 = 𝑦

(mod 29), 𝑦 = 𝑦 (mod 29).

Example 3.3. Let 𝑍𝑛 be the group of residues modulo 𝑛. Let 𝜑 = 3, 𝜓 = 11. In this case
𝜑2 + 𝜓2 = 9 + 121 = 130 = 0 (mod 65), 𝑛 = 65. Next, 2𝜑𝜓 = 2 · 3 · 11 = 66 = 𝜀 = 1
(mod 65), 𝑥 · 𝑦 = 3𝑥 + 11𝑦 (mod 65).

Verify: 3(3𝑥+11𝑦)+11(3𝑦+11𝑥) = 𝑦 (mod 65), 9𝑥+33𝑦+33𝑦+121𝑥 = 𝑦 (mod 65),
𝑦 = 𝑦 (mod 65).
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Example 3.4. Let 𝑍𝑛 be the group of residues modulo 𝑛. Let 𝜑 = 11, 𝜓 = 41. Then we get
𝜑2+𝜓2 = 121+1681 = 1802 = 0 (mod 53), 𝑛 = 53. Next, 2𝜑𝜓 = 2·41·11 = 902 = 𝜀 = 1
(mod 53), 𝑥 · 𝑦 = 11𝑥 + 41𝑦 (mod 53).

Check: 11(11𝑥+41𝑦) +41(11𝑦+41𝑥) = 𝑦 (mod 53), 121𝑥+451𝑦+451𝑦+1681𝑥 = 𝑦

(mod 53), 𝑦 = 𝑦 (mod 53).

Example 3.5. Let 𝑍𝑛 be the group of residues modulo 𝑛. We consider 𝜑 = 12, 𝜓 = 42.
Then 𝜑2 + 𝜓2 = 144 + 1764 = 1908 = 0 (mod 53), 𝑛 = 53. Next, 2𝜑𝜓 = 2 · 42 · 12 =

1008 = 𝜀 = 1 (mod 53), 𝑥 · 𝑦 = 12𝑥 + 42𝑦 (mod 53).
Verify: 12(12𝑥 +42𝑦) +42(12𝑦+42𝑥) = 𝑦 (mod 53), 144𝑥 +504𝑦+504𝑦+1764𝑥 = 𝑦

(mod 53), 𝑦 = 𝑦 (mod 53).

Example 3.6. Let 𝑍𝑛 be the group of residues modulo 𝑛. Let 𝜑 = 55, 𝜓 = 5. Then
𝜑2 + 𝜓2 = 3050 (mod 61), 𝑛 = 61. Next, 2𝜑𝜓 = 2 · 5 · 55 = 550 = 𝜀 = 1 (mod 61),
𝑥 · 𝑦 = 55𝑥 + 5𝑦 (mod 61).

Check. 55(55𝑥 + 5𝑦) + 5(55𝑦 + 5𝑥) = 𝑦 (mod 61), 3025𝑥 + 275𝑦 + 275𝑦 + 25𝑥 = 𝑦

(mod 61), 𝑦 = 𝑦 (mod 61).
Similar example gives us numbers 𝑥 ·𝑦 = 56𝑥+6𝑦 (mod 61). Indeed, we have to check.

56(56𝑥 + 6𝑦) + 6(56𝑦 + 6𝑥) = 𝑦 (mod 61), 3136𝑥 + 336𝑦 + 336𝑦 + 36𝑥 = 𝑦 (mod 61),
0 = 0 (mod 61). Notice, the last quasigroup is idempotent.

Example 3.7. Let 𝑍𝑛 be the group of residues modulo 𝑛. Assume that 𝜑 = 59, 𝜓 = 13.
Then we have 𝜑2+𝜓2 = 592+132 = 3650 = 0 (mod 73), 𝑛 = 73. Next, 2𝜑𝜓 = 2 ·59 ·13 =

1534 = 𝜀 = 1 (mod 73), 𝑥 · 𝑦 = 59𝑥 + 13𝑦 (mod 73).
Verify: 59(59𝑥 +13𝑦) +13(59𝑥 +13𝑦) = 𝑦 (mod 73), 3481𝑥 +767𝑦+767𝑦+169𝑥 = 𝑦

(mod 73), 𝑦 = 𝑦 (mod 73).
Idempotent example gives us numbers 𝜑 =60, 𝜓=14. Check: 60(60𝑥 +14𝑦) +14(60𝑥 +

14𝑦) = 𝑦 (mod 73), 3600𝑥 + 840𝑦 + 840𝑦 + 196𝑥 = 𝑦 (mod 73), 𝑦 = 𝑦 (mod 73).
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Qualitative analysis of polynomial differential systems with the
line at infinity of maximal multiplicity: exploring linear,
quadratic, cubic, quartic, and quintic cases

Vadim Repeşco

Abstract. This article investigates the phase portraits of polynomial differential sys-
tems with maximal multiplicity of the line at infinity. The study explores theoretical
foundations, including algebraic multiplicity definitions, to establish the groundwork for
qualitative analyses of dynamical systems. Spanning polynomial degrees from linear
to quintic, the article systematically presents transformations and conditions to achieve
maximal multiplicity of the invariant lines at infinity. Noteworthy inclusions of system-
atic transformations, such as Poincaré transformations, simplify analysis and enhance the
accessibility of phase portraits.
2010 Mathematics Subject Classification: 34C05.
Keywords: polynomial differential system, phase portrait, infinity, multiplicity of an
invariant algebraic curve, Poincaré transformation.

Studiul calitativ al sistemelor diferenţiale polinomiale cu linia de
la infinit de multiplicitate maximală: studierea cazurilor liniare,
pătratice, cubice, cuartice şi cuintice

Rezumat. Acest articol investighează portretele de fază ale sistemelor diferent,iale poli-
nomiale cu multiplicitatea maximă a liniei de la infinit. Studiul explorează fundamentele
teoretice, inclusiv definit,iile multiplicităt,ii algebrice, pentru a stabili baza pentru analize
calitative ale sistemelor dinamice. Acoperind grade polinomiale de la liniar la quintic,
articolul prezintă ı̂n mod sistematic transformări s, i condit,ii pentru a obt,ine multiplicitatea
maximală a dreptei invariante de la infinit. Incluziile notabile ale transformărilor sistema-
tice, cum ar fi transformările Poincaré, simplifică analiza s, i ı̂mbunătăt,esc accesibilitatea
portretelor de fază.
Cuvinte-cheie: sistem diferenţial polinomial, portret fazic, infinit, multiplicitatea curbei
algebrice invariante, transformarea Poincaré.

1. Introduction

Phase portraits serve as visual representations illustrating the temporal evolution of a
differential equation system, offering insights into the long-term dynamics of the system.
The complexity of the phase portrait for a polynomial differential system, characterized
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by the maximal multiplicity of the line at infinity, can be intricate, showcasing diverse
behaviors.

The exploration of invariant algebraic curves holds significant importance in the qual-
itative analysis of dynamical systems [1, 2, 3, 4]. The inquiry into the maximal number
of invariant straight lines within a polynomial differential system is addressed in [5].
Moreover, the incorporation of invariant straight lines in the derivation of Darboux first
integrals is a notable area of investigation, as detailed in [6]. The study demonstrates
that a polynomial differential system can yield a Darboux first integral when a sufficient
number of invariant straight lines, considering their multiplicities, is present.

This article concentrates on the phase portraits of polynomial differential systems
expressed as equations of the form:

𝑑𝑥

𝑑𝑡
= 𝑃(𝑥, 𝑦), 𝑑𝑦

𝑑𝑡
= 𝑄(𝑥, 𝑦), (1)

where 𝑥 and 𝑦 are dependent variables, and 𝑡 is the independent variable. The functions
𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) are polynomials in 𝑥 and 𝑦. The focus is on obtaining phase portraits
for polynomial differential systems with degrees 𝑛 ∈ {1, 2, 3, 4, 5} that possess an invariant
straight line at infinity of maximal multiplicity.

Definition 1.1. An algebraic curve 𝑓 (𝑥, 𝑦) = 0, 𝑓 ∈ C[𝑥, 𝑦] is said to be an invariant
algebraic curve for system (1), if there exists a polynomial 𝐾 (𝑥, 𝑦) such that the identity

X( 𝑓 ) = 𝑓 (𝑥, 𝑦)𝐾 (𝑥, 𝑦)

holds.

To rigorously address the characterization of the invariant algebraic curve in a differen-
tial system, it becomes imperative to introduce the concept of multiplicity. Multiplicity,
within this context, encompasses various facets such as algebraic, geometric, and infini-
tesimal type. For the specific analytical framework employed herein, we shall adopt the
algebraic multiplicity as defined in reference [7].

Definition 1.2. Let C𝑚 [𝑥] be the C-vector space of polynomials in C[𝑥] of degree at most
𝑚. Then it has dimension 𝑅 =

(𝑛+𝑚
𝑛

)
. Let 𝑣1, 𝑣2, . . . , 𝑣𝑅 be a base of C𝑚 [𝑥]. If 𝑘 is the

greatest positive integer such that the 𝑘-th power of 𝑓 divides 𝑑𝑒𝑡𝑀𝑅, where

𝑀𝑅 =

©­­­­­«
𝑣1 𝑣2 . . . 𝑣𝑅

X (𝑣1) X (𝑣2) . . . X (𝑣𝑅)
. . . . . . . . . . . .

X𝑅−1 (𝑣1) X𝑅−1 (𝑣2) . . . X𝑅−1 (𝑣𝑅)

ª®®®®®¬
,
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then the invariant algebraic curve 𝑓 of degree 𝑚 of the vector field X has algebraic
multiplicity 𝑘 .

Various methodologies exist for examining the behaviour at infinity within a polynomial
differential system. In this context, I will employ a straightforward approach, leveraging
one of the Poincaré transformations. Through this transformation, the infinity locus
is effectively mapped onto one of the axes in the newly defined coordinates, thereby
assuming the role of an invariant straight line within the finite part of the phase plane.
Subsequently, the analytical tools elucidated earlier will be applied.

2. Linear and quadratic differential systems

A general linear differential system has the form:{
¤𝑥 = 𝑎00 + 𝑎10𝑥 + 𝑎01𝑦,

¤𝑦 = 𝑏00 + 𝑏10𝑥 + 𝑏01𝑦,
(2)

Utilizing the Poincaré transformation, denoted as 𝑥 → 1
𝑧
, 𝑦 → 𝑦

𝑧
, followed by a

subsequent adjustment for enhanced visual clarity 𝑦 → 𝑥 and 𝑧 → 𝑦, the transformed
system is expressed as follows:{

¤𝑥 = −𝑏10 + (𝑎10 − 𝑏01) 𝑥 − 𝑏00𝑦 + 𝑎01𝑥
2 + 𝑎00𝑥𝑦,

¤𝑦 = 𝑦 (𝑏00 + 𝑏10𝑥 + 𝑏01𝑦) .
(3)

In this representation, the variable 𝑦 corresponds to the invariant straight line character-
izing the infinity of the system specified by equation (2).

Our objective is to achieve the maximum multiplicity for the system (2), which is
equivalent to ensuring that the system (3) also attains its maximum multiplicity. Notably,
the degree of the polynomial det𝑀𝑟 is equal to 3

det𝑀𝑅 = 𝐴1(𝑥)𝑦 + 𝐴2(𝑥)𝑦2 + 𝐴3(𝑥)𝑦3,

implying that the system (2) can theoretically exhibit a multiplicity of up to 3, where

𝐴1 (𝑥) = 𝑏10 (𝑎10𝑏01 − 𝑎01𝑏10)+(𝑏01 − 𝑎10) (𝑎10𝑏01 − 𝑎01𝑏10) 𝑥+𝑎01 (𝑎01𝑏10 − 𝑎10𝑏01) 𝑥2,

𝐴2 (𝑥) = −𝑎2
10𝑏00 + 𝑎10𝑏00𝑏01 + 𝑎00𝑎10𝑏10 − 2𝑎01𝑏00𝑏10 + 𝑎00𝑏01𝑏10 + (−𝑎01𝑎10𝑏00−

−𝑎00𝑎10𝑏01 − 𝑎01𝑏00𝑏01 + 𝑎00𝑏
2
01 + 2𝑎00𝑎01𝑏10

)
𝑥,

𝐴3 (𝑥) = −𝑎00𝑎10𝑏00 − 𝑎01𝑏
2
00 + 𝑎00𝑏00𝑏01 + 𝑎2

00𝑏10.

Requiring both 𝐴1(𝑥) and 𝐴2(𝑥) to be zero, while simultaneously ensuring 𝐴3(𝑥) ≠ 0,
entails solving a straightforward system of algebraic equations. Upon resolution, it is

113



QUALITATIVE ANALYSIS OF POLYNOMIAL DIFFERENTIAL SYSTEMS WITH
THE LINE AT INFINITY OF MAXIMAL MULTIPLICITY

shown that the infinity of the system (2) possesses a multiplicity of 3. The system can be
expressed in the following form: {

¤𝑥 = 1,

¤𝑦 = 𝑥.
(4)

The phase portrait on the Poincaré disk is presented in Figure 1.a) for the given system.
Employing a parallel methodology, we confirm that the infinity of the general quadratic
differential system (5){

¤𝑥 = 𝑎00 + 𝑎10𝑥 + 𝑎01𝑦 + 𝑎20𝑥
2 + 𝑎11𝑥𝑦 + 𝑎02𝑦

2,

¤𝑦 = 𝑏00 + 𝑏10𝑥 + 𝑏01𝑦 + 𝑏20𝑥
2 + 𝑏11𝑥𝑦 + 𝑏02𝑦

2,
(5)

achieves a multiplicity of 5 and can be expressed as{
¤𝑥 = 1,

¤𝑦 = 𝑥2.
(6)

The corresponding phase portrait is depicted in Figure 1.b).
As stated in [8], the maximal multiplicity of the line at infinity for cubic systems

is identified as seven, and these systems can be reformulated into the following two
configurations: {

¤𝑥 = 1,
¤𝑦 = 𝑥3 + 𝑎𝑥,

𝑎 ∈ R; (7)

and {
¤𝑥 = −𝑥,
¤𝑦 = 𝑥3 + 2𝑦.

(8)

The phase portraits depicted in Figure 1.c) and 1.d) for these two systems were demon-
strated in [9].

3. Quartic and quintic differential systems

As outlined in [10], a quartic polynomial differential system with maximal multiplicity
can be transformed into the following canonical form:{

¤𝑥 = −3𝑥 + 𝑎𝑦4,

¤𝑦 = 𝑦, 𝑎 > 0.
(9)

This system features an invariant line at infinity with a multiplicity of 10. Referring to
[11], the phase portrait of this system can be constructed. However, to facilitate this
analysis, it is necessary to relocate the singular points at infinity to the ends of the 𝑂𝑦
axis by implementing the transformation 𝑥 → 𝑦, 𝑦 → 𝑥 (Figure 1.e)).
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Repeşco V.

As indicated in [12], a quintic polynomial differential system with the line at infinity
exhibiting maximal multiplicity can be written into the following form:{

¤𝑥 = 𝑥, 𝑎 ≠ 0,
¤𝑦 = −4𝑦 + 𝑎𝑥5.

(10)

The system’s structure remains unaltered under the transformations 𝑥 → 𝑥, 𝑦 → −𝑦,
𝑎 → −𝑎, with the additional condition 𝑎 > 0 imposed for generality. To align its phase
portrait with others, we apply the transformation 𝑥 → 𝑦, 𝑦 → 𝑥 to system (10), resulting
in the following transformed system:{

¤𝑥 = −4𝑥 + 𝑎𝑦5,

¤𝑦 = 𝑦, 𝑎 > 0.
(11)

The phase portrait depicted in Figure 1.f) is obtained from the analysis presented in [9].

a) b) c)

d) e) f)

Figure 1. Phase portraits of all polynomial (𝑛 ≤ 5) differential systems with
infinity of maximal multiplicity.
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QUALITATIVE ANALYSIS OF POLYNOMIAL DIFFERENTIAL SYSTEMS WITH
THE LINE AT INFINITY OF MAXIMAL MULTIPLICITY

4. Conclusions

This article explores phase portraits for polynomial differential systems, emphasizing
the significance of invariant algebraic curves, particularly those associated with maximal
multiplicity at the line at infinity. Theoretical foundations, including algebraic multiplicity
definitions, lay the groundwork for qualitative dynamical system analysis.

Examining polynomial degrees from linear to quintic, the article systematically presents
transformations and conditions to achieve desired invariant structures at infinity, offering
nuanced insights into the dynamics of polynomial differential equations. Systematic trans-
formations, like Poincaré transformations, simplify analysis and enhance accessibility to
phase portraits.

Encompassing various polynomial degrees, including linear, quadratic, cubic, quartic,
and quintic systems, the article contributes to a comprehensive understanding of the
interplay between invariant algebraic curves, multiplicity, and resulting phase portraits in
polynomial differential dynamics.
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Discovering the mysteries of Pi number using AR technologies

Inga Titchiev , Olesea Caftanatov , and Dan Talambuta

Abstract. The integration of Augmented Reality (AR) in education requires a strategic
approach in order to ensure effectiveness in the learning process. AR technologies
are constantly evolving, offering new possibilities for educational content, making it an
evolving and innovative tool for educators. Exploring the mathematical world of Pi
through AR can be an engaging and interactive experience for learners. This article
presents the approach used in the development of an Augmented Reality application
intended for Pi learning.
2010 Mathematics Subject Classification: 97C70, 68T05.
Keywords: Augmented Reality, challenges, education, Pi number.

Descoperirea misterelor numărului Pi utilizând tehnologiile RA

Rezumat. Integrarea Realităt,ii Augmentate (RA) ı̂n educat,ie necesită o abordare strate-
gică pentru a asigura eficacitatea procesului de ı̂nvăt,are. Tehnologiile RA evoluează con-
stant, oferind noi posibilităt,i pentru cont,inutul educat,ional, făcându-l un instrument evo-
lutiv s, i inovator pentru profesori. Explorarea numărului Pi prin RA poate fi o experient,ă
captivantă s, i interactivă pentru instruit,i. În acest articol este prezentată abordarea utili-
zată ı̂n dezvoltarea unei aplicaţii de Realitate Augmentată destinată ı̂nvăt,ării numărului
Pi.
Cuvinte-cheie: Realitate Augmentata, provocări, educat,ie, numărul Pi.

1. Introduction

Augmented Reality (AR) technology in education offers transformative opportunities
to enhance learning experiences by overlaying digital content onto the physical world.
AR creates immersive and interactive learning environments that engage students by
bringing abstract concepts to life, making learning more engaging and memorable. It
allows students to visualize complex subjects, explore 3D models, and interact with
digital content, making abstract concepts more tangible and easier to understand.

AR applications [4] can be tailored to accommodate diverse learning styles, allowing
students to learn at their own pace and providing personalized learning experiences.
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By merging the physical and digital worlds, AR captures students’ attention, fostering
curiosity, and promoting active participation in the learning process.

Moreover, Augmented Reality facilitates interdisciplinary learning by connecting vari-
ous subjects, enabling students to explore the connections between different fields of study
in a more interactive manner. It helps develop critical thinking, problem-solving, and
spatial reasoning skills as students engage in interactive AR experiences that require anal-
ysis and decision-making. AR bridges the gap between theory and practice by simulating
real-world scenarios, allowing students to apply their knowledge in practical contexts.

In this article we will present how AR technology can be used to explore the world
of Pi by offering a dynamic and immersive approach to learning mathematics. By inte-
grating AR experiences into educational settings, students can engage with Pi’s concepts
in creative and interactive ways, fostering a deeper appreciation for its significance in
mathematics and beyond.

From ancient civilizations, where approximations of Pi were etched into clay tablets,
to the modern era of supercomputers and advanced mathematical theories, the quest
to understand Pi has been an enduring journey. The intrigue surrounding Pi has led to
profound discoveries about the nature of numbers, the limits of calculation, and the beauty
inherent in mathematical patterns. Thus, we decided to develop an augmented mobile
application that would be used as a tool in learning this transcendental number.

The Pi Journey App that we developed is an immersive exploration of the mysteries
and intricacies of the mathematical constant 𝜋 (Pi) using cutting-edge AR technology.
This unique experience takes users on a visual and interactive journey, unraveling the
significance of Pi in a three-dimensional augmented space.

2. Challenges associated with using AR technology in education

However, integrating AR into education faces challenges like infrastructure limitations,
content creation complexities, teacher training needs, and ensuring equitable access for
all students. Overcoming these hurdles requires investment in resources, professional
development, and a commitment to adapting pedagogical approaches to harness the full
potential of AR in education.

In order to develop a useful, interactive and efficient application, the following aspects
are taken into consideration:

• Defining learning goals and objectives that align with the curriculum or educa-
tional outcomes where AR can enhance understanding or engagement.

• Identifying subjects or topics where visualizing, interacting with 3D models, or
experiencing immersive content can significantly benefit student.
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• Elaborating user-friendly AR application for both educators and students that
align with educational goals.

• Developing AR content that supports the learning objectives. This might involve
creating 3D models, animations, or utilizing existing AR resources.

• Integrating AR activities into the curriculum to complement and enhance tradi-
tional teaching methods, but not as standalone activities.

• Testing the effectiveness of AR in enhancing learning outcomes. In order to refine
the approach feedback from both teachers and students are gathered.

• Developing assessment methods to measure the impact of AR on learning out-
comes. To continuously improve AR content and teaching strategies feedback
can be used.

• Sharing best practices and success stories in integrating AR, encouraging collab-
oration and innovation.

• Improving and updating AR content and methodologies continuously.

By following these steps and integrating AR strategically, educators can leverage this
technology to create immersive, engaging, and effective learning experiences for students
across various subjects and educational levels.

3. The mysteries and importance of the mathematical constant Pi

In the realm of mathematics, few constants have captured the imagination and curiosity
of scholars and enthusiasts alike as much as the mysterious and revered number 𝜋 (Pi)
[6]. Defined as the ratio of a circle’s circumference to its diameter, pi is an irrational and
transcendental number with a decimal representation that stretches into infinity without
repeating. As a fundamental constant, Pi plays a pivotal role in a myriad of mathematical
equations, geometry, and scientific principles, transcending its utilitarian purpose to
become a symbol of mathematical beauty and intrigue.

The enigma of Pi lies not only in its seemingly infinite and non-repeating decimal
expansion but also in its ubiquitous presence across diverse mathematical landscapes. Its
significance extends far beyond the simple geometry of circles, permeating areas such
as calculus, trigonometry, and even physics. Pi has become a symbol of mathematical
elegance and complexity, challenging mathematicians throughout history [7] to explore
its mysteries and pushing the boundaries of mathematical knowledge.

In this exploration, we will delve into the mysteries of Pi, unravelling its infinite
decimals, exploring its irrationality and transcendence, and discovering its unexpected
appearances in various mathematical and scientific realms. Beyond its numerical signif-
icance, we will also delve into the cultural, artistic, and philosophical dimensions of Pi,
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examining how this mathematical constant has left an indelible mark on human thought
and creativity. For this purpose, we designed 10 cards.

The mysterious nature of Pi lies in several intriguing aspects:

• Irrationality: Pi is an irrational number, meaning it cannot be expressed as a
simple fraction. Its decimal representation goes on forever without repeating, and
it cannot be precisely represented by any finite ratio of integers. This property
was proven by Johann Lambert in 1768.

• Transcendence: Pi is not only irrational but also transcendental. This means that
Pi is not the root of any non-zero polynomial equation with rational coefficients.
Ferdinand von Lindemann established the transcendence of Pi in 1882. The
combination of irrationality and transcendence makes Pi particularly mysterious
in the realm of mathematics.

• No Discernible Pattern: Despite extensive computation and exploration, mathe-
maticians have not discovered a discernible pattern or sequence within the digits
of Pi. The randomness and lack of repetition in its decimal expansion contribute
to the mystery surrounding this mathematical constant.

• Computational Challenges: The quest to calculate Pi to as many digits as pos-
sible has been ongoing throughout history. From manual calculations to modern
supercomputers, mathematicians and computer scientists continually strive to
push the boundaries of Pi’s decimal expansion. Calculating Pi to a high degree of
precision poses computational challenges. While modern computers have calcu-
lated Pi to trillions of digits, the process remains resource-intensive, emphasizing
the vastness and complexity of Pi’s decimal expansion.

• Cultural and Philosophical Significance: Pi has cultural and philosophical
significance beyond its mathematical properties. Its mysterious and infinite nature
has inspired contemplations about the limits of human knowledge and the nature
of mathematical reality.

The exploration of Pi’s digits continues to be a captivating pursuit in the field of
mathematics and not only. Through, Pi Journey application we intend to express a part
of people’s passion to this mysterious number.

4. Some consideration in Pi application development

AR fosters collaboration and teamwork as students engage in shared AR experiences,
encouraging peer-to-peer learning and cooperation. It has the potential to make learning
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Figure 1. Mysteries of Pi App

more accessible for students with diverse learning needs [5] by providing alternative ways
to access and interact with educational content.

In order to facilitate learning, increase study efficiency and successfully adapt to the
multitude of learning situations, it is necessary to determine the specific preferences of
the personal learning style so that they can be applied in a targeted manner.

Stable individual differences in the way of learning affect the rhythms and quality of
learning, and especially determine the option for one or another learning strategy as one’s
own and personal way of approaching a learning situation.

In the application development the VAK (Visual, Auditory, Kinesthetic) learning style
theory was applied.

For each category of learners the following discovery Pi activities were proposed:

• Visual Learners: Graphical Representations like diagrams, charts, and visual
aids to illustrate Pi’s relationship with circles, showing geometric models and
patterns visually. Video displaying Pi’s digits, sequences, or relationships with
shapes, allowing exploration through interactive visual elements.

• Auditory Learners: Explanations or discussions about Pi’s significance, history,
and applications in an auditory format, such as podcasts or recorded lectures. Pi
Chants or Songs, in particular Pi Symphony by Lars Ericksone.

• Kinesthetic Learners: Engage learners in measuring circles, calculating circum-
ferences, and experimenting with circular objects to explore Pi’s mathematical
properties practically.

4.1. Designing augmented Pi artifacts and Pi markers

An augmented artifact and marker has quite a few tasks to accomplish [1]. Besides the
fact that it has to capture student’s attention, entice them to pick up their mobile and scan
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Figure 2. Augmented Pi artifacts and Pi markers

the image - it should have a high quality to let the AR experience come to life. Therefore,
in this section, we will describe the best practice of designing augmented artifacts and
markers that we observed as a result of the working process and testing.

Moreover, we will describe our experiences with low and high star rating image targets.
We consider that “markers” are the digital form of image targets that Vuforia Engine can
detect and track by comparing extracted natural features from the camera image against a
known image target resources database.

Markers come in various forms: simple, flat image targets, curled targets in the form
of cylindrical shapes, or multi-targets in the composition of a box. We define “artifacts”
as the physical form of markers. They can also come in various forms: cards, papers,
newspapers, posters, objects, etc. In our cases, it is a matte laminated image with size 10
x 10 cm, see Figure 1. The main purpose of the artifact is to trigger the augmentation
content when it is scanned by camera.

In the next section we will give some examples of these Augmented Pi Artifacts.

4.2. Pi Artifact that explains the relationship between Pi and the circumference
of a circle

The relationship between Pi (𝜋) and the circumference of a circle is defined by a
fundamental geometric formula. The circumference (C) of a circle is calculated using Pi
and the circle’s diameter (D) or radius (r). The formula for the circumference of a circle
is as follows:

𝐶 = 2𝜋𝑟 (1)

or equivalently
𝐶 = 𝜋𝐷, (2)
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where 𝐶 is the circumference of the circle, 𝜋 (Pi) is the mathematical constant approxi-
mately equal to 3.14159, 𝑟 is the radius of the circle, 𝐷 is the diameter of the circle.

This relationship is derived from the definition of Pi, which represents the ratio of a
circle’s circumference to its diameter. Essentially, Pi is the constant that relates the size of
a circle to its ”wrap-around” distance. The formula (1) expresses that the circumference is
equal to twice the product of Pi and the radius. Alternatively, the formula (2) emphasizes
that the circumference is equal to Pi multiplied by the diameter. Since the diameter is
twice the radius, these two formulas are equivalent.

The augmented reality Pi artifacts utilize graphical representations to elucidate the
correlation between Pi and the circumference of a circle, catering to diverse learning
styles through visual and interactive elements.

4.3. Pi Artifacts that represents digits as melodic elements

Pi’s influence extends into the realm of music, where musicians and composers
have explored creative ways to incorporate the mathematical constant into their works.
Pi-themed compositions showcase a unique fusion of mathematics and art, offering a
creative interpretation of this transcendental number.

Musicians have experimented with using the digits of Pi as melodic elements in their
compositions. Assigning musical notes or intervals to the numerical digits allows for
the creation of melodies that directly reflect the numerical sequence of Pi. Composers
have employed Pi to structure the rhythmic and harmonic elements of their music. For
example, using the digits of Pi to determine the length of musical phrases, the arrangement
of sections, or the timing of specific musical events can result in compositions with a
distinct mathematical foundation.

We designed an artifact that contains a playlist with the following musics [2]:

• Pi Symphony by Lars Ericksone: Lars Erickson, captivated by the enigmatic
nature of Pi (𝜋), composed “Pi Symphony” in the early 1990s. Crafting a melody
from the seemingly random digits of Pi, Erickson’s magnum opus demonstrated
that, contrary to expectations, a composition based on Pi could be as majestic as
a symphony.

• Pi Symphony by Jim Zamerski: Jim Zamerski crafted a melody using 226
digits of 𝜋, by utilizing the 12 tones in music as the foundation. While sharing the
numerical essence of 𝜋 with Lars Erickson’s piece, Zamerski’s composition takes
on a lighter ambiance. It initiates with a touch of melodrama, swiftly transitioning
into a danceable tune with a dynamic tempo that fluctuates throughout its entirety.
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• Pi Symphony by David Macdonald: Another example is David Macdonald’s
“Pi Symphony”, which transforms the first 100 digits of Pi into a musical com-
position. The sequence of digits dictates the pitch, rhythm, and dynamics of the
piece, offering an auditory experience that mirrors the mathematical constant.
David Macdonald added a diverse angle to Pi-inspired music. Incorporating har-
monic elements played by the left hand, Macdonald’s composition concealed the
randomness of Pi. The poignant piece seemed to transport listeners to a mythical
realm in their minds.

This artifact employs auditory elements to cater to a learning style based on sound and
hearing.

4.4. Pi poems Artifacts

While Pi (𝜋) is primarily a mathematical constant, its intriguing nature has found its
way into literature, where writers and authors have incorporated it as a symbol, metaphor,
or even as a theme. Pi poems may use the actual numerical sequence of Pi (3.14159...)
to determine elements of the poem, such as the number of syllables in each line or the
length of stanzas. For example, the number of syllables in each line might correspond
to the digits of Pi (3 syllables for the first line, 1 for the second, 4 for the third, and so
on).We dedicated a few artifacts for learning Pi poems in the Romanian Language, i.e.
“Iarna lui Pi” by Iuliana Ciubuc, see Table [3]. Pi poem artifacts use the characteristic of
visual learning style.

Table 1. Romanian Pi poem with the sequence of Pi 3,141592653589793

4.5. Pi Artifacts for visualizing and learning the first 100 decimal digits

Creating Pi artifacts for visualizing and learning the first 100 decimal expansions of Pi
can be an engaging way to explore this mathematical constant. In Figure 2, two instances
are depicted: in the left image, the user correctly inputs the first 8 decimal digits; while
in the right image, the user inaccurately inputs the 9th digit, resulting in a red highlighted
input section.

4.6. Pi Artifacts for assessing knowledge of the number Pi

For the evaluation of knowledge about the number Pi, a scenario was developed that
represents a five-item test. After answering to them, feedback is given about which items
were answered correctly and which were incorrect.
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Figure 3. Pi artifacts for visualizing and learning the first 100 decimal digits

Figure 4. Test for assessing knowledge of the number PI
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5. Conclusions

In this article we will present how AR technology can be used to explore the world
of Pi by offering a dynamic and immersive approach to learning mathematics. By inte-
grating AR experiences into educational settings, students can engage with Pi’s concepts
in creative and interactive ways, fostering a deeper appreciation for its significance in
mathematics and beyond.

The educational Application Pi Journey is delivered via mobile device that engages
pupils with a wide range of multi-sensory learning experiences, provide rich, contextual-
ized learning for understanding the concepts related to transcendental number Pi.

Acknowledgments. 20.80009.5007.22. Intelligent Information systems for solving ill
structured problems, knowledge and Big Data processing project has supported part of
this research.
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Application of genetic algorithm to solving the optimization
problem of locations graph vertices in the line

Liubomir Chiriac , Natalia Lupashco , and Maria Pavel

Abstract. This article examines genetic algorithms that are built on the ”survival of
the fittest” principle enunciated by Charles Darwin. By applying genetic algorithms to
solving optimization problems, it is not always possible to guarantee the determination
of the global optimum in polynomial time. This fact does not occur because only brute
force search methods allow us to find the global optimum. Instead the genetic algorithm
allows selecting good decisions, in a reasonable time, compared to other well-known de-
terministic or heuristic search engine optimization algorithms. The authors of this article
develop an algorithm of solving the optimization problem of locations graph vertices in
the line.
2010 Mathematics Subject Classification: 05C85, 05C90.
Keywords: genetic algorithm, optimization problem, location problem, graphs algo-
rithms.

Aplicarea algoritmului genetic la rezolvarea problemei de
optimizare privind amplasarea vârfurilor grafului ı̂n linie

Rezumat. Acest articol examinează algoritmii genetici care se bazează pe principiul
”supravieţuirii celui mai adaptat” enunţat de Charles Darwin. Prin aplicarea algoritmi-
lor genetici la rezolvarea problemelor de optimizare, nu este ı̂ntotdeauna posibil să se
garanteze determinarea optimului global ı̂n timp polinomial. Acest fapt nu se ı̂ntâmplă
deoarece numai metodele de căutare prin forţă brută ne permit să găsim optimul global.
În schimb, algoritmul genetic permite selectarea unor decizii bune, ı̂ntr-un timp rezona-
bil, ı̂n comparaţie cu alţi algoritmi de optimizare a motoarelor de căutare deterministe
sau euristice bine cunoscute. Autorii acestui articol dezvoltă un algoritm de rezolvare a
problemei de optimizare a amplasării vârfurilor grafurilor ı̂n linie.
Cuvinte-cheie: algoritm genetic, problema de optimizare, problema de localizare, algo-
ritmi de grafuri.

1. History of the development of the evolutionary calculus

The approach regarding the application of evolutionary principles (evolutionary com-
putation) in the automated solving of problems dates back long before the emergence and
development of modern computers.
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As early as 1948, Alan Turing introduced a new approach applied to problem-solving
called evolutionary or genetic approach. Subsequently, in the 1960s, Dr. Lawrence Jerome
Fogel (March 2, 1928 - February 18, 2007), a pioneer in evolutionary computation,
along with Wlash (later David B. Fogel, born on February 2, 1964), introduced and
developed the concept of evolutionary programming. During the same period, Holland
focused on genetic algorithms. Hans-Paul Schwefel (born on December 4, 1940), a
German computer scientist and emeritus professor at the University of Dortmund, and
Ingo Rechenberg (November 20, 1934 - September 25, 2021), a German researcher
and professor in the field of bionics, launched and developed evolutionary strategies as
alternative methods for automated problem-solving. Later, in the 1990s, J. R. Koza
developed genetic programming, a new technique for searching solutions.

Therefore, evolutionary computation is a field of modern computer science with a
strong emphasis on mathematics, inspired by the natural evolutionary process. The
fundamental concept underlying evolutionary computation is the interconnection between
natural evolution and the trial-and-error problem-solving technique [1].

In the context of the above, evolutionary computation is currently an important research
field in computer science. As known, this field derives from the natural evolutionary
process. The algorithms that emerge and develop in this field are called evolutionary
algorithms, and they include significant and promising subdomains such as:

• Evolutionary programming;
• Evolutionary strategies;
• Genetic programming;
• Genetic algorithms.

2. Genetic Algorithms

The fact that mathematics and computer science are widely applied in various sciences,
including biology, is a well-known and appreciated phenomenon. However, the reciprocity
of this relationship does not always occur. For instance, in modern science, there are not
many instances where mechanisms, concepts and basic notions from biology that are
widely and efficiently used in mathematics and computer science.

In this context, the genetic algorithm is an eloquent and convincing example. Genetic
algorithms represent adaptive heuristic search techniques that are implemented based on
the principles of natural selection and genetics.

The mechanisms of the Genetic Algorithm are similar to natural evolution and rely
on the principle stated by Charles Darwin, ”survival of the fittest”, meaning that the
most well-adapted individuals, not necessarily the strongest or most intelligent, survive.
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Thus, the Genetic Algorithm represents a computer-mathematical model that mimics the
evolutionary biological model to solve search and optimization problems. The Genetic
Algorithm is determined by a set of elements representing a population, consisting of
chromosomes (binary strings), and a set of genetic operators (selection, crossover, and
mutation) that influence the population’s structure.

Genetic algorithms are commonly used for problems where finding the optimal solution
is not simple or at least inefficient due to the characteristics of probabilistic search. Genetic
algorithms encode a possible solution to a specific problem in a unique data structure
called a ”chromosome” and apply genetic operators to these structures to maintain critical
information. The implementation process of genetic algorithms starts with an ”initial set
of possible solutions” to the examined problem (usually chosen randomly) referred to in
the literature as ”population” [2], [3].

Each individual in the ”examined population” represents a potential solution to the
problem and is called a ”chromosome”, which is a string of symbols, typically expressed
as a string of bits. The examined chromosomes evolve over successive iterations, sym-
bolically called generations. In each generation, these chromosomes are evaluated, using
fitness measures.

To generate the next population (generations), the most ”efficient” or ”best” chromo-
somes from the current generation are selected. New chromosomes are formed, using
one of the three (or even all three) central genetic operators: selection, crossover and
mutation.

Selection ensures the process from the following perspective: certain chromosomes
from the examined (current) generation are copied, depending on their fitness value,
in accordance with the problem requirements into the new generation. This indicates
that chromosomes with high significance have a high probability of contributing to the
formation of the new generation.

The genetic operator crossover represents the process by which, based on two individ-
uals (chromosomes) from the current population, two individuals (chromosomes), called
descendants, are formed for the next population. Mutation is the genetic operator that rep-
resents the process through which a chromosome from the current population is modified
and saved in the new population.

Genetic algorithms have been successfully applied to a variety of NP-complete prob-
lems that require global optimization of the solution and, in this regard, there is no iterative
method for resolution [4], [5].

In genetic algorithms, the individuals in a population are represented by chromosomes
with encoded sets, task parameters, for example, solutions otherwise called points in

130



Chiriac L., Lupashco N., and Pavel M.

the search space or search points. In some works, individuals are called organisms. In
this sense, we will clarify the meaning of the following biological concepts from the
perspective of computer science.

Darwin’s concept of evolution is adapted to the functioning of the genetic algorithm to
find solutions to a problem expressed through the fitness function (objective function or
adaptation function).

The fitness function represents a measure of the adaptability of a given individual
within each generation. This characteristic allows the evaluation of the adaptation degree
of individuals in the population and selects the most adapted ones, i.e., those with the
highest values of fitness function, following the evolution principle of the survival of the
fittest [6], [7].

Thus, selection represents the choice of individuals with the best aptitude for repro-
duction (sorting by the value of the objective function). The better an individual’s fitness
is, the greater the chances of crossing and passing on its genes to the next generation
are. The crossover operator is analogous to biological reproduction and crossover and
usually it is applied to individuals in the intermediate population. Two individuals are
selected from the intermediate population, and certain portions of their two chromosomes
are exchanged.

In simple terms, mutation can be defined as a small random modification of the
chromosome to obtain a new solution. Mutation is used to maintain and introduce
diversity into the genetic population. Mutation is the part of the Genetic Algorithm
related to ”exploring” the search space [4].

3. Introductory Concepts

Genetic Algorithms are algorithms of evolutionary computation, inspired by Darwin’s
Theory of Evolution. In 1960, Ingo Rechenberg (November 20, 1934 - September
25, 2021) introduced the idea of evolutionary computation in a work titled ”Evolution
strategies”. Rechenberg, a German researcher and professor in the field of bionics, was
a pioneer in the fields of evolutionary computation and artificial evolution. In the 1960s
and 1970s, he invented several optimization methods known as evolution strategies (in
German, Evolutionsstrategie). His research team successfully applied these algorithms to
optimization problems, including the aerodynamic design of wings. These were the first
serious technical applications of artificial evolution, an important component of bionics
and artificial intelligence [8].

In 1975, John Henry Holland (February 2, 1929 - August 9, 2015), an American
scientist and professor of psychology and electrical engineering and computer science at
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the University of Michigan, introduced and analyzed a mathematical model that, through
adaptive procedures, relied on a mechanism of natural selection and genetic evolution
called genetic algorithm. He was a pioneer in what became known as genetic algorithms
[1], [9].

Genetic algorithms are used often in cases where the optimal solution involves searches
among all combinations, permutations or probabilistic arrangements, a very complex and
sometimes inefficient process. They implement specific data structures called ”chromo-
somes” to encode, through genetic operators, the possible solution to a particular problem
while retaining important information.

Usually, to solve a problem using a genetic algorithm, the so-called ”population” is
identified, constructed randomly based on the ”initial set of possible solutions”. Each
individual or ”chromosome” (a string of characters expressed as a sequence of bits) in
the examined ”population” represents a possible solution to the problem. Through con-
secutive iterations, the evolution of the ”chromosomes” occurs at the ”generation” level,
each of which is validated by an evaluation function called fitness. Using one of the
three main genetic operators (selection, crossover, and mutation) new ”chromosomes”
identified from the current generation as the most ”efficient” are generated for the future
population. Thus, just like in biology, the most ”powerful chromosomes”, with a higher
probability, are selected from the given generation to transmit their characteristics (values
of the ”evaluation function”, according to the requirements of the problem), to the next
generation, ensuring the perpetuation of the entire process. Using the crossover genetic
operator combines information from two individuals (”parents”) from the current popula-
tion to generate one or more descendants. Mutation, on the other hand, allows the random
modification of a gene or a small section of the ”chromosome” to ensure diversity in the
future population.

The success of genetic algorithms is ensured by their implementation in solving a
series of NP-complete problems, whose solutions cannot be identified through iterative
methods, but rather by obtaining the optimal solution globally.

In genetic algorithms, individuals in a population are represented by chromosomes
with encoded sets of task parameters, e.g., solutions, otherwise called points in the search
space (search points). In some works, individuals are called organisms.

In this sense, the following biological concepts, borrowed by computer scientists from
the perspective of genetic algorithms, will be clarified:

Chromosomes: Ordered sequences of genes.
Gene: Also called a property, sign, or detector, is the atomic element of the genotype,

especially of chromosomes.
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Genotype: The set of chromosomes of a given individual. Consequently, individuals in
a population can be genotypes or unique chromosomes (in a common case when
the genotype consists of a single chromosome).

Phenotype: A set of values that correspond to a specific genotype or set of task parameters
(solution, search space point).

Allele: The value of a specific gene, also defined as the property value or property variant.
Locus: The position indicating the location of a specific gene in a chromosome (chain).

The set of gene positions represents loci.
Genome: The totality of the genetic material of an organism or species, determining the

development, functioning and transmission of hereditary traits from one genera-
tion to another.

Individual: A unique entity that has a specific set of chromosomes inherited from par-
ents. In genetic algorithms, an individual represents a possible solution or a
combination of parameters that can be optimized over time by selection and
recombination processes and is evaluated within a specific problem.

Population: A group of individuals sharing a common set of genetic characteristics that
occupy a certain type of environment. Genetic variation within populations is
important for adaptation to environmental changes.

Mapping: An essential evaluation function that assigns a numerical value to each indi-
vidual in the given population, reflecting the quality or appropriateness of that
solution within the optimization problem. The mapping process is also called
morphogenesis.

A crucial concept in genetic algorithms is the function that measures the degree of
adaptability known as the fitness function.

The fitness function is a measure of the adaptability of a given individual within
each generation. This characteristic allows the evaluation of the adaptation degree of
individuals in the population and the most adapted individuals, those with the highest
values of the fitness function, are selected in accordance with the evolutionary principle
of the survival of the fittest.

The fitness function got its name directly from genetics. It has a strong impact on the
functioning of genetic algorithms and must have precision and correct definition. In op-
timization problems, the fitness function is usually optimized (maximized or minimized)
and is called the objective function.

At each iteration of the genetic algorithm, the fitness (adaptation degree) of each
individual in a particular population is estimated using the fitness function. Based on this,
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the next generation (population of individuals) is generated, constituting the possible set
of solutions to the examined problem [1], [4].

4. Implementation of the Genetic Algorithm

In the specialized literature, the Genetic Algorithm involves a series of steps (originally
proposed by John Henry Holland) intended to conclude with an optimal solution to the
examined problem. Below, we will outline the steps regarding the implementation of the
Genetic Algorithm.

Step 1: Creating/generating the initial population.
Step 2: Evaluating the fitness function value of each individual (a mechanism used to

measure and evaluate the state of a chromosome).
Step 3: Selection - considering the characteristics of each individual, during this stage,

some individuals may reproduce more frequently than others.
Step 4: Crossover.
Step 5: Mutation.
Step 6: Replacing the old population of chromosomes with the new population of chro-

mosomes.
Step 7: Finding the best solutions (but if the optimization criteria are not met, then the

method requires returning to Step 2 and ultimately selecting the best individual
as the final solution).

Genetic algorithms generate a new population composed of individuals with better and
more adapted characteristics to the environment than those of the previous population.
The logical scheme related to the implementation of the Genetic Algorithm is presented
in Figure 1.

The process begins by initializing a random genetic pool through the creation of a set
of chromosomes according to a predefined template, where the values of all genes are
randomly selected for each chromosome. These initial chromosomes correspond to the
individuals in the initial population. Typically, the number of individuals (and implicitly
chromosomes) in the population remains constant at different generations, although this
is not always the case. The Genetic Algorithm starts with a set of permissible solutions
called the ”population” (created arbitrarily, as mentioned earlier), each of which represents
a potential solution to the problem, called a ”chromosome” [10].

Once the population is established, it evolves towards better solutions through various
genetic processes (selection, crossover, mutation) that lead to a better fitness function
value, used to evaluate the state of each chromosome.
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Figure 1. Logical Scheme of the Genetic Algorithm

5. Genetic algorithm for solving the optimization problem of
locations graph vertices in the line

The problem of optimal placement of vertices of an undirected graph on a linear grid
is a classic problem that requires knowledge in mathematics, computer science, and,
evidently, genetic algorithms. In this section, the authors propose an algorithm that solves
this problem under certain conditions.

Problem Statement: Given a graph 𝐺, where 𝑛 = |𝐺 | is the number of vertices of
graph 𝐺. The goal is to find the best placement of the vertices of graph 𝐺 on a linear grid
after performing a genetic algorithm for 𝑘 iterations (𝑘 generations), where 𝑘 < 𝑛. It is
assumed that the distances between the vertices of the graph are equal.

Solution: The total length of the edges of graph 𝐺 is calculated according to the
following formula:

𝐿 (𝐺) =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑑𝑖, 𝑗𝑎𝑖, 𝑗 (1)

where 𝑛 = |𝐺 | is the number of vertices, 𝑑𝑖, 𝑗 represents the distance between vertices of
graph 𝐺, 𝑣𝑖 and 𝑣 𝑗 , on the examined line. The distance in this case is measured in the
number of edges of the graph, 𝑎𝑖, 𝑗 is the corresponding element of the adjacency matrix
(0 or 1). In other words, the task is to find min 𝐿 (𝐺) after changing 𝑘 generations (after
performing 𝑘 iterations).
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The main goal of placement algorithms is to minimize the total length of the edges
of a graph or hypergraph. Let us formulate this placement problem as an optimization
problem. Formula (1) is selected as the objective function, which needs to be minimized.

Notations. The index 𝑖 for chromosomes 𝐶𝑖
1, 𝐶

𝑖
2, . . . , 𝐶

𝑖
𝑘

represents the number of the
generation to which chromosomes numbered 1, 2, . . . , 𝑘 belong.

The output will be the positions of each vertex. The genetic algorithm applied consists
of the following steps:

Step 1: Create the initial population consisting of 𝑘 chromosomes, each composed of 𝑛
elements (vertices of the graph):

𝐶𝑖
1, 𝐶

𝑖
2, . . . , 𝐶

𝑖
𝑘 , where 𝑖 = 0, 1, 2, . . . , 𝑛 − 1.

Step 2: Place the vertices of the graph on the linear grid according to the values of the
examined chromosomes: 𝐶𝑖

1, 𝐶
𝑖
2, . . . , 𝐶

𝑖
𝑘
.

Step 3: Calculate the length of each chromosome 𝐶𝑖
1, 𝐶

𝑖
2, . . . , 𝐶

𝑖
𝑘
. This involves calcu-

lating the number of horizontal segments that connect the vertices of the graph,
according to the placement made in Step 2, for each individual chromosome.
Obtain lengths:

𝐿1(𝐶𝑖
1), 𝐿2(𝐶𝑖

2), . . . , 𝐿𝑘 (𝐶𝑖
𝑘).

Step 4: Calculate the total sum of the edges of the graph according to the placement of
the vertices on the grid determined by that particular population of chromosomes:

𝑆(𝑖) = 𝐿1(𝐶𝑖
1) + 𝐿2(𝐶𝑖

2) + . . . + 𝐿𝑘 (𝐶𝑖
𝑘), 𝑖 = 0, 1, 2, . . . , 𝑛 − 1 (2)

where 𝑖 is the number of the iteration or generation of the population.
Step 5: Choose the ”fittest” chromosome (with the smallest length) from the population

𝐶𝑖
1, 𝐶

𝑖
2, . . . , 𝐶

𝑖
𝑘
. Let this chromosome be 𝐶𝑖

𝑟 , where 1 ≤ 𝑟 ≤ 𝑘 .
Step 6: Apply the inverse mutation genetic operator on chromosome 𝐶𝑖

𝑟 after the first
element. In other words, in the first iteration, the first element of the chromosome
remains in place and the other elements are written in reverse order, starting with
the last one, which will already be in the second position in the chromosome
representation. In the second iteration, the first and second elements remain
intact and the other elements are written in reverse order, starting with the last
one, which will already be in the third position. And so on for each iteration.
Denote the newly obtained chromosome after performing the inverse mutation by
𝐶𝑖
𝑟𝑚.

Step 7: Calculate the length of the newly obtained chromosome 𝐶𝑖
𝑟𝑚.
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Step 8: Identify and eliminate the weakest chromosome (with the maximum length)
from the first generation of chromosomes, which is subsequently replaced by the
chromosome 𝐶𝑖

𝑟𝑚.
Step 9: Build the next generation of chromosomes (which already includes the new

chromosome 𝐶𝑟𝑚 and excludes the weakest chromosome) and then proceed to
Step 2.

Step 10: The process of the genetic algorithm stops after performing 𝑘 iterations or, in
other words, after constructing 𝑘 generations of chromosomes. At each iteration,
calculate 𝑆(0), 𝑆(1), . . . , 𝑆(𝑘), where for each sum, the condition

𝑆(𝑚) ≥ 𝑆(𝑚 + 1), 𝑚 = 0, 1, . . . , 𝑘 (3)

is satisfied. The best placement of the vertices of the graph is obtained after
completing the last iteration, in which the last genetically modified chromosome
𝐶𝑖
𝑟𝑚 represents the solution min 𝐿 (𝐺).

6. Example of genetic algorithm application for solving the
optimization problem of locations graph vertices in the line

Problem: Find the best placement of the vertices of graph 𝐺 in Figure 2 on a line
after performing three iterations of the genetic algorithm. The graph 𝐺 and the initial
population consisting of 3 chromosomes are given below.

Figure 2. The examined graph, 𝑛 = 5, and 𝑚 = 5.

Solution: Place the vertices of the graph on the line according to the initial population
of chromosomes to calculate the length of each chromosome.

Therefore, we get the graphical representation of the chromosomes.
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Table 1. Initial Population of Chromosomes (Generation 0)

Chromosome 𝐶0
1 1 2 3 4 5

Chromosome 𝐶0
2 1 3 2 4 5

Chromosome 𝐶0
3 5 2 3 4 1

Chromosome 𝐶0
1

Chromosome 𝐶0
2

Chromosome 𝐶0
3

We calculate the number of horizontal segments between the vertices of the graph
(between chromosome elements). We obtain:

𝐿1(𝐶0
1 ) = 1 + 4 + 4 + 2 = 11;

𝐿2(𝐶0
2 ) = 1 + 3 + 4 + 2 = 10;

𝐿3(𝐶0
3 ) = 2 + 3 + 3 + 1 = 9.

Calculate the total sum of the edges of the graph according to the placement of the
vertices on the grid determined by that particular population of chromosomes:

𝑆(0) = 𝐿1(𝐶0
1 ) + 𝐿2(𝐶0

2 ) + 𝐿3(𝐶0
3 ) = 11 + 10 + 9 = 30.

Among the examined chromosomes, chromosome 𝐶0
3 has the minimum length, which is

9, so it is the fittest. Consider chromosome 𝐶0
3 selected.

Chromosome 𝐶0
3 5 2 3 4 1
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Apply the inverse mutation genetic operator on chromosome 𝐶0
3 to obtain a new

chromosome, which we will denote as 𝐶1
1 .

Chromosome 𝐶1
1 5 1 4 3 2

In other words, in the first iteration, the first element of the chromosome (5) remains
in place, and the other elements are written in reverse order, starting with the last one,
which will already be in the second position in the chromosome representation.

Chromosome 𝐶1
1

Calculate the length of chromosome 𝐶1
1 :

𝐿1(𝐶1
1 ) = 2 + 1 + 3 + 3 = 9.

Thus, from the initial generation of the population, we replace the less fit chromosome
𝐶0

1 with the more fit chromosome 𝐶1
1 with a length of 9. Chromosome 𝐶0

2 will be denoted
as 𝐶1

2 , and chromosome 𝐶0
3 will be denoted as 𝐶1

3 . Thus, we obtain Generation 1 of the
population of chromosomes.

Table 2. Population of Chromosomes (Generation 1)

Chromosome 𝐶1
1 5 1 4 3 2

Chromosome 𝐶1
2 1 3 2 4 5

Chromosome 𝐶1
3 5 2 3 4 1

The length of each chromosome is:

𝐿1(𝐶1
1 ) = 2 + 1 + 3 + 3 = 9;

𝐿2(𝐶1
2 ) = 1 + 3 + 4 + 2 = 10;

𝐿3(𝐶1
3 ) = 2 + 3 + 3 + 1 = 9.

The total sum of the edges of the graph according to the placement of the vertices on
the grid determined by that particular population of chromosomes in the first iteration is:

𝑆(1) = 𝐿1(𝐶1
1 ) + 𝐿2(𝐶1

2 ) + 𝐿3(𝐶1
3 ) = 9 + 10 + 9 = 28.
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Among the two chromosomes with a length of 9, we select chromosome 𝐶1
1 as the

fittest from Generation 1.

Chromosome 𝐶1
1 5 1 4 3 2

Apply the inverse mutation genetic operator on chromosome 𝐶1
1 to obtain a new

chromosome 𝐶2
2 . In other words, in iteration 2, the first and second elements of the

chromosome (5, 1) remain intact, and the other elements are written in reverse order,
starting with the last one, which will already be in the third position in the chromosome
representation. Thus, we obtain:

Chromosome 𝐶2
2 5 1 2 3 4

Chromosome 𝐶2
2

Calculate the length of chromosome 𝐶2
2 . We have

𝐿2(𝐶2
2 ) = 2 + 1 + 2 + 2 = 7.

Further, in Generation 1 of the population, we have two chromosomes with a maximum
length of 9, considered the least fit: 𝐶1

3 and 𝐶1
2 . We replace less fit chromosome 𝐶1

2 with
fitter chromosome 𝐶2

2 with a length of 7. Thus, we obtain Generation 2 of the population
of chromosomes.

Table 3. Population of Chromosomes (Generation 2)

Chromosome 𝐶2
1 5 1 4 3 2

Chromosome 𝐶2
2 5 1 2 3 4

Chromosome 𝐶2
3 5 2 3 4 1

The length of each chromosome is:

𝐿1(𝐶2
1 ) = 2 + 1 + 3 + 3 = 9;

𝐿2(𝐶2
2 ) = 2 + 1 + 2 + 2 = 7;

𝐿3(𝐶2
3 ) = 2 + 3 + 3 + 1 = 9.
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The total sum of the edges of the graph according to the placement of the vertices on
the grid determined by that particular population of chromosomes in the second iteration
is:

𝑆(2) = 𝐿1(𝐶2
1 ) + 𝐿2(𝐶2

2 ) + 𝐿3(𝐶2
3 ) = 9 + 7 + 9 = 25.

Choose the best chromosome from Generation 2. Clearly, we need to choose the
chromosome of minimum length, which is 𝐶2

2 :

Chromosome 𝐶2
2 5 1 2 3 4

Apply the inverse mutation genetic operator on chromosome 𝐶2
2 to obtain a new

chromosome 𝐶3
3 . In other words, in iteration 3, the first, second and third elements (5, 1,

2) of the chromosome remain in place, and the other elements are written in reverse order,
starting with the last one, which will already be in the fourth position in the chromosome
representation. Thus, we obtain:

Chromosome 𝐶3
3 5 1 2 4 3

Chromosome 𝐶3
3

Calculate the length of chromosome 𝐶3
3 :

𝐿3(𝐶3
3 ) = 2 + 1 + 2 + 2 = 7.

Further, in Generation 2 of the population, we select the chromosome with the max-
imum length equal to 9, considered the least fit, either 𝐶2

1 or 𝐶2
3 . We replace the less

fit chromosome 𝐶2
3 with fitter chromosome 𝐶3

3 with a length of 7. Thus, we obtain
Generation 3 of the population of chromosomes.

Table 4. Population of Chromosomes (Generation 3)

Chromosome 𝐶3
1 5 1 4 3 2

Chromosome 𝐶3
2 5 1 2 3 4

Chromosome 𝐶3
3 5 1 2 4 3
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The length of each chromosome is:

𝐿1(𝐶3
1 ) = 1 + 1 + 3 + 2 = 7;

𝐿2(𝐶3
2 ) = 1 + 1 + 2 + 2 = 7;

𝐿3(𝐶3
3 ) = 1 + 1 + 3 + 2 = 7.

The total sum of the edges of the graph according to the placement of the vertices on the
grid determined by that particular population of chromosomes in the third iteration is:

𝑆(3) = 𝐿1(𝐶3
1 ) + 𝐿2(𝐶3

2 ) + 𝐿3(𝐶3
3 ) = 7 + 7 + 7 = 21.

The evolution of lengths in the case of generations 0, 1, 2, 3 is as follows:

𝑆(0) = 30 > 𝑆(1) = 28 > 𝑆(2) = 25 > 𝑆(3) = 21.

The best placement of the vertices of the graph on the line is obtained in the last iteration,
in which the last genetically modified chromosomes 𝐶3

2 and 𝐶3
3 represent the solution

with min 𝐿 (𝐺) = 7 and 𝑆(3) = 21.
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