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două drepte afine invariante şi concurente de multiplicitate totală trei . . . . . 18
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construcţie a quasigrupurilor topologice care ı̂ndeplinesc anumite identităţi . 86
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VACARAŞ Olga. Center problem for quartic differential systems with an affine
invariant straight line of maximal multiplicity . . . . . . . . . . . . . . . . . 38
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Mathematical modelling of the immune response to infectious
diseases with the influence of environmental factors

Yaroslav Bihun and Oleh Ukrainets

Abstract. The mathematical model of the immune response to infectious diseases with
the influences of environmental factors is investigated. The conditions for the existence
and uniqueness of the solution to the mathematical model for 𝑡 > 0 have been established.
Stationary solutions have been identified, along with the conditions for their existence
and asymptotic stability. The results are illustrated using a model example.
2020 Mathematics Subject Classification: 34K10; 34K33.
Keywords: immune response, infectious disease, mathematical model, stationary solu-
tion, stability of solutions, delay differential equations, Marchuk model, model of immune
system.

Modelarea matematică a răspunsului imun la bolile infecţioase
sub influenţa factorilor de mediu

Rezumat. Modelul matematic al răspunsului imun la bolile infecţioase sub influenţa
factorilor de mediu este investigat. Au fost stabilite condiţiile de existenţă şi unicitate
a soluţiei modelului matematic pentru 𝑡 > 0. Soluţiile staţionare au fost identificate
ı̂mpreună cu condiţiile de existenţă şi stabilitate asimptotică. Rezultatele sunt prezentate
folosind un exemplu model.
Cuvinte-cheie: răspuns imun, boală infecţioasă, model matematic, soluţie staţionară,
stabilitatea soluţiilor, ecuaţii diferenţiale cu ı̂ntârziere, modelul Marchuk, model al siste-
mului imunitar.

1. Introduction

Numerous works, including those [1]-[4], [8], [9] and others, are devoted to the
mathematical modelling of the immune response. G.Bell proposed a predatory-prey
model in an immune response to infections by antigens (viruses, bacteria or foreign cells)
[1]. In 1980, G.I. Marchuk published a mathematical model that reflects the humoral
immune response of the human body and is described by a system of delay differential
equations [2]:
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MATHEMATICAL MODELLING OF THE IMMUNE RESPONSE TO
INFECTIOUS DISEASES

𝑑𝑉

𝑑𝑡
= (𝛽 − 𝛾𝐹)𝑉,

𝑑𝐶

𝑑𝑡
= 𝛼𝜉 (𝑚)𝑉𝜏𝐹𝜏 − 𝜇𝑐 (𝐶 − 𝐶∗),

𝑑𝐹

𝑑𝑡
= 𝜌𝐶 − 𝜂𝛾𝐹𝑉 − 𝜇 𝑓 𝐹,

𝑑𝑚

𝑑𝑡
= 𝜎𝑉 − 𝜇𝑚𝑚,

(1)

where variables represent the core factors of the infectious process. The immune response
involves the production of specific objects (antibodies, 𝐹 (𝑡)), which are generated by a
cascade of plasma cells 𝐶 (𝑡). Antibodies are capable of neutralizing or destroying
foreign materials (antigens), the amount 𝑉 (𝑡) of which changes over time 𝑡 ≥ 𝑡0 = 0. The
models also include the relative mass of the affected target organ m(t), which serves as a
generalized measure of organ damage caused by the virus, and 𝜉 (𝑚) = 1 for 𝑚 ∈ [0, 𝑚∗]
and 𝜉 (𝑚) = (𝑚 − 1)/(𝑚∗ − 1) for 𝑚∗ < 𝑚 ≤ 1, having 𝑚∗ ∈ (0, 1) and considering for
𝑚 ∈ [0, 𝑚∗] the immune system functions normally; 𝑉𝜏 (𝑡) = 𝑉 (𝑡 − 𝜏), 𝐹𝜏 (𝑡) = 𝐹 (𝑡 − 𝜏).

The delay factor 𝜏 > 0 plays a crucial role in the model as it sets the time from the
moment of infection to the activation of immune response mechanisms. More complex
delay models have been developed for the immune response to hepatitis B and C, tuber-
culosis, and other diseases [2]-[6]. Various aspects of immune response dynamics have
been studied in the works of U. Forys and M. Bodnar [4].

The course of infectious diseases, such as hepatitis and acute respiratory diseases, is
influenced by factors such as air pollution, water contamination, industrial waste, noise
pollution, chemical pollution and other environmental pollutants. The model represented
in the current work and described subsequently takes into account an integral factor 𝐸 (𝑡),
which is the sum of 𝑚 factors 𝐸𝑖 (𝑡) and is represented as follows:

𝐸 (𝑡) = 𝑎1𝐸1(𝑡) + ... + 𝑎𝑚𝐸𝑚(𝑡),

where 𝑎𝑖 ≥ 0, 𝑎1 + ... + 𝑎𝑚 = 1.
Let us assume that the change of 𝐸 (𝑡) occurs according to the generalized Hutchinson

equation [5], [7], which has the following form:

𝑑𝐸 (𝑡)
𝑑𝑡

= 𝑟

(
1 −

(
𝐸 (𝑡 − Δ)

𝐸∗

)𝑛)
𝐸 (𝑡), 𝑡 > 0, (2)

where 𝑟 > 0 - coefficient of linear growth, 0 < Δ - the average time for the restoration
of ecological balance, amount of which is 𝐸∗ > 0. Using the parameter 𝑛 > 0, a more
accurate shape of the curve can be selected for a better representation of the system

8



Bihun Y. and Ukrainets O.

dynamics. This flexibility allows the modelling of specific scenarios or data, ensuring a
closer match to observed behavior in immune response or external factors dynamics (see
Fig.1).

Figure 1. The dynamics of the generalized Hutchinson model for
𝑛 = 1, 2, 3, 4, 5 and 𝑟 = 0.5,Δ = 1, 𝐸∗ = 0.25

The change over time of the factors 𝑉, 𝐸, 𝐹, 𝐶 and the measure 𝑚, 0 ≤ 𝑚(𝑡) ≤ 1 –
the extent of organ damage against which the antigen 𝑉 is directed – is proposed to be
described by a system of equations:

𝑑𝑉

𝑑𝑡
= (𝛽 − 𝛾𝐹)𝑉,

𝑑𝐶

𝑑𝑡
= 𝛼𝜉 (𝑚)𝑉𝜏𝐹𝜏 − 𝜇𝑐 (𝐶 − 𝐶∗) − 𝜀𝑐𝐸,

𝑑𝐹

𝑑𝑡
= 𝜌𝐶 − (𝜇 𝑓 + 𝜂𝛾𝑉)𝐹,

𝑑𝑚

𝑑𝑡
= 𝜎𝑉 − 𝜇𝑚𝑚 + 𝜀𝑚𝐸,

(3)

The initial conditions for the system (3) solution have the following form:

𝑉 (𝑡) = 0, 𝑡 ∈ [−𝜏, 0), 𝑉 (0) = 𝑉0 ≥ 0;

𝐹 (𝑡) = 𝐹0(𝑡) ≥ 0, 𝑡 ∈ [−𝜏, 0];𝐶 (0) = 𝐶0 ≥ 0;𝑚(0) = 𝑚0 ∈ [0, 1).
(4)

The work explores issues of the existence and nonnegativity of solutions, identifies
stationary solutions, establishes coefficient conditions for their stability, and conducts
numerical modelling of the immune response for the model (3).

2. Nonnegativity and existence of a solution

It has been proven that the solution to the problem (3), (4) is nonnegative, which
corresponds to the medical nature of the immune response process. It is known that the

9



MATHEMATICAL MODELLING OF THE IMMUNE RESPONSE TO
INFECTIOUS DISEASES

solution to equation (2) with initial condition 𝐸0(𝑡) ≥ 0 for 𝑡 > 0 exists for 𝑡 > 0 and is
bounded, that means 0 ≤ 𝐸 (𝑡) ≤ 𝑀 .

Theorem 2.1. Let the coefficients of the system of equations (3) be nonnegative, and
suppose there exists a solution for 𝑡 > 0 and the condition

𝜀𝑐𝑀 < 𝜇𝑐𝐶
∗ (5)

is satisfied. Then the solution of system (3) with initial conditions (4) is nonnegative for
𝑡 > 0.

Proof. The solution of the equation (2) with initial function 𝐸0(𝑡) ≥ 0 for the 𝑡 ∈ [−Δ, 0]
exists for 𝑡 > 0 and limited [7] by

0 ≤ 𝐸 (𝑡) ≤ 𝑀, 𝑡 ≥ 0. (6)

From the first equation of (3) after integration we obtain the following:

𝑉 (𝑡) = 𝑉0𝑒𝑥𝑝(
∫ 𝑡

0
(𝛽 − 𝛾𝐹 (𝑠)) 𝑑𝑠) ≥ 0.

From that follows that 𝑉 (𝑡) ≥ 0 for 𝑡 > 0, if 𝑉0 ≥ 0 and 𝑉 (𝑡) > 0 for 𝑉0 > 0. From the
equation for the 𝑚(𝑡), we obtain

𝑚(𝑡) = 𝑚0𝑒
−𝜇𝑚𝑡 +

∫ 𝑡

0
𝑒−𝜇𝑚 (𝑡−𝑠) (𝜎𝑉 (𝑠) + 𝜀𝑚𝐸 (𝑠) 𝑑𝑠) ≥ 0. (7)

Since 𝑚(0) ≥ 0, 𝑉 (𝑡) ≥ 0 and 𝐸 (𝑡) ≥ 0, then 𝑚(𝑡) > 0 for 𝑡 > 0. The initial function
𝑉 (𝑡) = 0 for 𝑡 < 0, then on the interval [0, 𝜏]

𝑑𝐶

𝑑𝑡
= −𝜇𝑐𝐶 + 𝜇𝑐𝐶

∗ − 𝜀𝑐𝐸. (8)

The solution of the equation (8) is the following:

𝐶 (𝑡) = 𝐶∗ + (𝐶0 − 𝐶∗)𝑒−𝜇𝑐𝑡 − 𝜀𝑐

∫ 𝑡

0
𝑒−𝜇𝑚 (𝑡−𝑠)𝐸 (𝑠) 𝑑𝑠,

Since 𝐸 (𝑡) ≤ 𝑀 for 𝑡 > 0, then

𝐶 (𝑡) ≥ 𝐶∗ − 𝜀𝑐𝑀

𝜇𝑐
(1 − 𝑒−𝜇𝑐𝑡 ) ≥ 𝐶∗ − 𝜀𝑐𝑀

𝜇𝑐
> 0.

From the condition 𝐹 (0) > 0 we obtain 𝐹 (𝑡) > 0 on some interval (0, 𝑡1). Let us assume
that 𝑡1 ≤ 𝜏 and 𝐹 (𝑡1) = 0. Then 𝑑𝐹 (𝑡1 )

𝑑𝑡
= 0. At the same time,

𝑑𝐹 (𝑡1)
𝑑𝑡

= 𝜌𝐶 (𝑡1) − 𝜂𝛾𝐹 (𝑡1)𝑉 (𝑡1) − 𝜇𝑐𝐹 (𝑡1) = 𝜌𝐶 (𝑡1) > 0,

10



Bihun Y. and Ukrainets O.

which contradicts the assumption. Thus, 𝐹 (𝑡) > 0 for 𝑡 ∈ [0, 𝜏]. Since 𝜉 (𝑚) ≥ 0 and, on
the interval [𝜏, 2𝜏], 𝐹 (𝑡 − 𝜏)𝑉 (𝑡 − 𝜏) ≥ 0, then

𝑑𝐶

𝑑𝑡
= 𝜉 (𝑚(𝑡))𝑉 (𝑡 − 𝜏)𝐹 (𝑡 − 𝜏) − 𝜇𝑐 (𝐶 − 𝐶∗) − 𝜀𝑐𝐸 ≥ −𝜇𝑐 (𝐶 − 𝐶∗) − 𝜀𝑐𝑀.

From the estimate of the solution of the equation for F(t) on [0, 𝜏], it follows that𝐶 (𝑡) > 0
on [𝜏, 2𝜏]. Accordingly, 𝐹 (𝑡) > 0 on that interval. Using the step method, the positivity
of𝐶 (𝑡) and 𝐹 (𝑡) is similarly proven on [2𝜏, 3𝜏], and so forth for subsequent intervals. ■

Theorem 2.2. Let the coefficients and initial conditions at 𝑡 = 0 for the solutions of
equations (2) and (3) be positive numbers. Then there exists a unique solution to the
problem (2), (3), defined on [0,∞) and differentiable on (0, 𝜏) ∪ (𝜏,∞).

Proof. For equation (2), at each step [𝑘Δ, (𝑘 + 1)Δ], 𝑘 = 0, 1, ..., a linear equation
𝑑𝐸
𝑑𝑡

= 𝑞𝐸 (𝑡) with a continuous function 𝑞(𝑡), 𝑡 > 0 is obtained. Therefore, there exists a
unique solution to the equation (2) for 𝑡 > 0, which is differentiable if the initial function
𝐸0 ∈ 𝐶 [−Δ, 0].

Let 𝑉 (0) > 0. Then there exists a solution 𝑉 (𝑡) on some interval (0, 𝑎). Moreover, by
Theorem 2.1, 𝑉 (𝑡) > 0. From this it follows that 𝐹 (𝑡) > 0 for 𝑡 ∈ (0, 𝑎). Thus on that
interval

𝑑𝑉

𝑑𝑡
= 𝛽𝑉 − 𝛾𝐹𝑉 ≤ 𝛽𝑉.

The solution to the linear equation 𝑑𝑉
𝑑𝑡

= 𝛽𝑉 is defined for all 𝑡 > 0. According to
Wintner’s theorem [6], the solution 𝑉 (𝑡) of the first equation of (3) is defined for 𝑡 > 0.
Since the function 𝑉0(𝑡) has a first-order discontinuity at 𝑡 = 0, the function 𝑉 (𝑡) is
continuous for (0,∞) and differentiable over intervals (0, 𝜏) and (𝜏,∞).

From the form of the solution 𝑚(𝑡) according to formula (7), it follows that the solution
𝑚(𝑡) is defined for 𝑡 > 0 and 𝑚 ∈ 𝐶1(0,∞).

The existence and uniqueness of solution 𝐹 ∈ 𝐶1(0,∞) is received from the differen-
tiability of the right-hand side of the equation for F factor and an inequality

𝑑𝐹

𝑑𝑡
= 𝜌𝐶 − (𝜂𝛾𝐹 + 𝜇 𝑓 )𝐹 ≤ 𝜌𝐶,

using Winter’s theorem.
■

11
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3. Stationary solutions and their stability

By substituting 𝐸 (𝑡) = 𝐸 (𝑡) + 𝐸∗, 𝑡 = 𝑠Δ, equation (2) is transformed into the form

𝑑𝐸 (𝑠)
𝑑𝑠

= −𝑟𝑛Δ𝐸 (𝑠 − 1) + 𝑓 (𝐸 (𝑠 − 1)),

where lim𝑥→0
𝑓 (𝑥 )
𝑥

= 0. The roots of the characteristic equation 𝜆 + 𝑟𝑛Δ𝑒−𝜆 = 0 have
negative real parts if the following condition is satisfied [7]

0 < 𝑟𝑛Δ < 𝜋/2. (9)

According to the theorem on stability by linear approximation, the solution 𝐸 = 𝐸∗ of
equation (2) is asymptotically stable under the fulfilment of the condition (9).

The stationary solutions of system (3) are derived by the system of equations

(𝛽 − 𝛾𝐹)𝑉 = 0,

𝛼𝑉𝐹 − 𝜇𝑐 (𝐶 − 𝐶∗) − 𝜀𝑐𝐸 = 0,

𝜌𝐶 − (𝜇 𝑓 + 𝜂𝛾𝑉)𝐹 = 0,

𝜎𝑉 − 𝜇𝑚𝑚 + 𝜀𝑚𝐸 = 0.

(10)

The medical justification of the solutions requires 𝜉 (𝑚) = 1, which is achieved when
𝑚 ≤ 𝑚∗ means that the damage to the target organ does not exceed the critical level.

For the problem (2),(3), there always exists such a stationary solution

𝐸1 = 𝐸∗, 𝑉1 = 0, 𝐶1 = 𝐶∗ − 𝜀𝑐𝐸
∗

𝜇𝑐
, 𝐹1 =

𝜌𝐶1
𝜇 𝑓

, 𝑚1 =
𝜀𝑚𝐸

∗

𝜇𝑚
(11)

that defines the state of a healthy organism under permissible environmental pollution
levels. The stationary solution (11) has a medical justification, if it is nonnegative. This
holds if the following conditions are met:

𝜀𝑐𝐸
∗ < 𝐶∗𝜇𝑐, 𝜀𝑚𝐸

∗ ≤ 𝜇𝑚𝑚
∗ (12)

Theorem 3.1. If condition (9), (12) and condition

𝛽 − 𝛾𝐹1 < 0 (13)

are satisfied, then solution (11) is locally asymptotically stable.

Proof. Let us perform a substitution in system (3): 𝐸 = 𝐸 + 𝐸∗, 𝑉 = 𝑉,𝐶 = 𝐶 +𝐶1, 𝐹 =

𝐹 + 𝐹1, 𝑚 = 𝑚 + 𝑚1. Let (𝑉, 𝐹, 𝐶, 𝑚) be a solution of (10), then the linearized system

12
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corresponding to (3) for this solution takes the form

𝑑𝑉

𝑑𝑡
= (𝛽 − 𝛾𝐹)𝑉,

𝑑𝐶

𝑑𝑡
= 𝛼𝑉𝐹𝜏 + 𝛼𝐹𝑉𝜏 − 𝜇𝑐𝐶 − 𝜀𝑐𝐸,

𝑑𝐹

𝑑𝑡
= 𝜌𝐶 − 𝜇 𝑓 𝐹 − 𝜂𝛾(𝑉𝐹 +𝑉𝐹),

𝑑𝑚

𝑑𝑡
= 𝜎𝑉 − 𝜇𝑚𝑚 + 𝜀𝑚𝐸.

(14)

If the conditions of the theorem are satisfied, the nonnegativity of the solution (11) is
evident. The characteristic equation for the linearized system (14) for solution (11) takes
the form

(𝜆 + 𝑟𝑛𝑒−Δ)

����������
𝛽 − 𝛾𝐹1 − 𝜆 0 0 0
𝛼𝐹1𝑒

−𝜆𝜏 −𝜇𝑐 − 𝜆 0 0
−𝜂𝛾𝐹1 𝜌 𝜇 𝑓 − 𝜆 0

𝜎 0 0 −𝜇𝑚 − 𝜆

���������� =
= (𝛽 − 𝛾𝐹1 − 𝜆) (𝜇𝑐 + 𝜆) (𝜇 𝑓 + 𝜆) (𝜇𝑚 + 𝜆) = 0,

If conditions (9) and (13) are satisfied, the roots are negative, and the stationary solution
is locally asymptotically stable. It is worth noting that solution (11) can be interpreted as
the state of a healthy organism under an acceptable level of environmental pollution. ■

Theorem 3.2. Let condition (13) hold, and for the initial values𝐶0 and𝑉0 the inequalities

𝐶0 > 𝐶∗ + 𝜀𝑀

𝜇𝑐
, 0 < 𝑉0 < 𝑉∗ =

𝜇 𝑓 (𝛾𝐹1 − 𝛽)
𝜂𝛾𝛽

+ 2𝜌𝜀𝐶𝑀
𝜇𝑐

(15)

are satisfied. Then, the function 𝑉 (𝑡) decreases for 𝑡 > 0 and

lim
𝑡→∞

𝑉 (𝑡) = 0.

Proof. Let 𝑐(𝑡) = 𝐶 (𝑡) −𝐶∗, 𝑐0 = 𝐶0 −𝐶∗. For 𝑡 ∈ [0, 𝜏] from second equation of model
(3) and initial functions (4); the following equation is received:

𝑑𝑐

𝑑𝑡
= −𝜇𝐶𝑐 − 𝜀𝑐𝐸.

From the first inequality from (15) and the boundedness of the solution of equation (2)
by the constant 𝑀 is received:

𝑐(𝑡) = 𝑐0𝑒
−𝜇𝑐𝑡 − 𝜀𝑐

∫ 𝑡

0
𝑒−𝜇𝑐 (𝑡−𝑠)𝐸 (𝑠) 𝑑𝑠 ≥ 𝑐0𝑒

−𝜇𝑐𝑡 − 𝜀𝑐𝑀

𝜇𝑐
(1 − 𝑒−𝜇𝑐𝑡 ) ≥ 𝑐0

2
. (16)

13
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Thus, for 𝑡 ∈ [0, 𝜏]
𝐶 (𝑡) ≥ 𝐶∗ + 2𝜀𝑐𝑀

𝜇𝑐
. (17)

On the interval [𝜏, 2𝜏], taking into account that 𝐹 (𝑡) > 0, we obtain
𝑑𝑐

𝑑𝑡
= 𝛼𝜉 (𝑚)𝐹 (𝑡 − 𝜏)𝑉 (𝑡 − 𝜏) − 𝜇𝑐𝑐(𝑡) − 𝜀𝑐𝐸 (𝑡) ≥ −𝜇𝑐𝑐(𝑡) − 𝜀𝑐𝐸 (𝑡),

from which assessment (16) is received. So forth for subsequent intervals [2𝜏, 3𝜏].
Since 𝐹 (𝑡) > 0 for 𝑡 > 0 and 𝛽 − 𝛾𝐹∗ < 0, then function 𝑉 (𝑡) decreases on the interval

(0, 𝑡1), 𝑡1 > 0 and 𝑑𝑉 (𝑡1 )
𝑑𝑡

= 0. Then 𝐹 (𝑡1) =
𝛽

𝛾
and on the certain interval (𝑡1, 𝑡2) the

following conditions are satisfied: 𝑑𝑉 (𝑡 )
𝑑𝑡

≥ 0,

𝑑𝐹 (𝑡)
𝑑𝑡

≤ 0. (18)

Let us consider the value of the derivative
𝑑𝐹 (𝑡1)
𝑑𝑡

= 𝜌𝐶 (𝑡1) − 𝜂𝛾𝐹 (𝑡1)𝑉 (𝑡1) − 𝜇 𝑓 𝐹 (𝑡1) > 𝜌(𝐶∗ + 2𝜀𝑐𝑀
𝜇𝑐

) − 𝜂𝛽𝑉0 − 𝜇 𝑓

𝛽

𝛾
.

From the estimate (17) follows:
𝑑𝐹 (𝑡1)
𝑑𝑡

= 𝜂𝛽

(
𝛾𝐹1 − 𝛽

𝛽𝛾𝜂
+ 2𝜌𝜀𝑐𝐸

𝛽𝜂𝜇𝑐
−𝑉0

)
= 𝑉∗ −𝑉0 ≥ 0,

This contradicts estimate (18). Hence, the function 𝑉 (𝑡) decreases for 𝑡 > 0 and the limit
for 𝑡 → ∞ is the stationary solution 𝑉1 = 0. ■

Remark 3.1. In the monograph [2] number 𝑉∗ is called an immunological barrier. If,
during antigen infection, its degree does not exceed 𝑉∗, then the disease will not develop.

The problem (2), (3) may have another stationary solution that corresponds to the state
of a chronic disease:

𝐸2 = 𝐸∗, 𝐹2 =
𝛽

𝛾
,

𝑉2 =
𝜇𝑐𝜇 𝑓 𝛽 − 𝜌𝛾𝜇𝑐𝐶

∗ + 𝜌𝛾𝜀𝑐𝐸
∗

𝛽(𝛼𝜌 − 𝜇𝑐𝜂𝛾)
,

𝐶2 =
𝛼𝛽𝜇 𝑓 − 𝜂𝛾2𝜇𝑐𝐶

∗ + 𝜂𝛾2𝜀𝑐𝐸
∗

𝛾(𝛼𝜌 − 𝜇𝑐𝜂𝛾)
,

𝑚2 =
𝛿𝑉2 + 𝐸2

𝜇𝑚
.

(19)

A stationary solution (19) exists if either

𝛼𝜌 > 𝜇𝑐𝜂𝛾, 𝜌𝛾𝜇𝑐𝐶
∗ < 𝜇𝑐𝜇 𝑓 𝛽 + 𝜌𝛾𝜀𝑐𝐸

∗

or the inequality with the opposite sign is satisfied. If 𝑉2 > 0, then 𝐶2 > 0 accordingly.

14
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The characteristic equation for system (19), corresponding to the stationary solution
𝑋 := (𝐸2, 𝑉2, 𝐶2, 𝐹2, 𝑚2) takes the form:

𝑃5(𝜆) := −(𝜇𝑚 + 𝜆) (𝜆 + 𝑟𝑛𝑒−𝜆Δ) ∗

�������
−𝜆 0 −𝛾𝑉2

2𝐹2𝑒
−𝜆𝜏 −𝜇𝑐 − 𝜆 𝛼𝑉2𝑒

−𝜆𝜏

−𝜂𝛾𝐹2 𝜌 𝜂𝛾𝑉2 − 𝜇 𝑓 − 𝜆

������� =
= (𝜇𝑚 + 𝜆) (𝜆 + 𝑟𝑛𝑒−𝜆Δ) (𝜆3 + 𝑐1𝜆

2 + +𝑐2𝜆 + 𝑐3) = 0,

where 𝑐1 = 𝜇𝑐 + 𝜇 𝑓 − 𝜂𝛾𝑉2, 𝑐2(𝜆) = 𝜇𝑐𝜇 𝑓 − (𝜂𝛾 + 𝛼𝜌𝑒−𝜆𝜏 + 𝜂𝛽)𝑉2,
𝑐3(𝜆) = (𝛼𝜌𝑒−𝜆𝜏 − 𝜂𝜇𝑐)Δ𝑉2.

If inequality (9) holds, the study of the asymptotic stability of the solution 𝑋 reduces
to finding the conditions under which 𝑅𝑒(𝜆) < 0 for the roots of the quasi-polynomial
𝑃3 = 0. Let us consider the case when 𝜏 = 0, which is the case of an instantaneous
immune system response to the infection of the human body. In this case, the problem
reduces to studying the roots of a cubic equation

𝑃3,0(𝜆) = 𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3 = 0, (20)

where 𝑎1 = 𝑐1, 𝑎2 = 𝜇𝑐𝜇 𝑓 − ((1+ 𝛽)𝜂𝛾 +𝛼𝜌)𝑉2, 𝑎3 = 𝛽(𝛼𝜌 − 𝜂𝛾𝜇𝑐)𝑉2. Let us consider
the case of a strong immune response [2], when

𝛼𝜌 > 𝜂𝛾𝜇𝑐, (21)

in that case 𝑎3 > 0.
From the Routh-Hurwitz criterion [6], it follows that the necessary and sufficient

conditions for the asymptotic stability of solution 𝑋 are the fulfilment of condition (21)
and

𝑎1 > 0, 𝑎1𝑎2 − 𝑎3 > 0. (22)

From the analysis of the roots of the characteristic equation of the linearized system,
the conditions for the asymptotic stability and instability of solution (19) have been
found. Therefore, sufficient conditions for either maintaining a chronic disease state or
transitioning from a chronic condition to an acute form have been obtained.

4. Numerical modelling

Numerical simulations of the immune response were conducted using the Wolfram
Mathematica computer algebra system, considering the influence of environmental fac-
tors. These simulations were based on the system (2), (3) with the following parameters:
𝛽 = 0.6, 𝛾 = 0.2, 𝛼 = 0.9, 𝜇𝑐 = 0.5, 𝐶∗ = 1, 𝜌 = 0.9, 𝜇 𝑓 = 0.17, 𝜂 = 0.8, 𝜎 =

0.35, 𝜇𝑚 = 0.4, 𝑟 = 0.5,Δ = 1, 𝐸∗ = 0.25, 𝑛 = 1;𝑉0 = 0.000001, 𝐶0 = 𝐹0 = 1, 𝐸0 =
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0.5, 𝑚0 = 0. Simulations were performed under two distinct scenarios: Figures 2(a),
3(a) with 𝜀𝑐 = 𝜀𝑚 = 0, and Figures 2(b), 3(b) with 𝜀𝑐 = 𝜀𝑚 = 0.0001.

Figure 2(a) illustrates the change in the level of plasma cells 𝐶 (𝑡) without the influence
of the environmental factors 𝐸 (𝑡). In Figure 2b, under the influence of 𝐸 (𝑡), oscilla-
tions occur in the plasma cell population, and the weakened overall immune response is
demonstrated.

a) b)

Figure 2. Dynamics in the immune response model factor 𝐶 (𝑡) without (a) and
with (b) the influence of environmental factors.

Figures 3(a) and 3(b) show the dynamics of the extent of damage 𝑚(𝑡) to the target
organ. With pollution (Figure 3b), there remains relatively minor damage to the target
organ according to the parameters set by this model example. The presence of the
ecological factor leads to an overall destabilizing effect on the system’s equilibrium.
When 𝐸 (𝑡) = 0, then 𝑚(𝑡) → 0 for 𝑡 → ∞.

a) b)

Figure 3. Dynamics in the immune response model factor 𝑚(𝑡) without (a) and
with (b) the influence of environmental factors.
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The problem of the center for cubic differential systems with
two affine non-parallel invariant straight lines of total
multiplicity three
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Abstract. In this paper, we show that a center-focus critical point of cubic differential
systems with two affine non-parallel invariant straight lines of total multiplicity three is
a center type if and only if the first five Lyapunov quantities vanish.
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Problema centrului pentru sistemele diferenţiale cubice cu
două drepte afine invariante şi concurente de multiplicitate
totală trei

Rezumat. În această lucrare se arată că punctul critic de tip centru-focar al sistemelor
diferenţiale cubice cu două drepte afine invariante şi concurente de multiplicitate totală
trei este centru, dacă şi numai dacă primele cinci mărimi Liapunov se anulează.
Cuvinte-cheie: sistem diferenţial cubic, dreaptă invariantă multiplă, problema centrului.

1. Introduction and statement of main results

We consider the real polynomial differential systems
𝑑𝑥

𝑑𝑡
= 𝑃 (𝑥, 𝑦) , 𝑑𝑦

𝑑𝑡
= 𝑄 (𝑥, 𝑦) , gcd(𝑃,𝑄) = 1 (1)

and the vector fields X = 𝑃 (𝑥, 𝑦) 𝜕
𝜕𝑥

+𝑄 (𝑥, 𝑦) 𝜕
𝜕𝑦

associated to systems (1).
Denote 𝑛 = max {deg (𝑃) , deg (𝑄)}. If 𝑛 = 2 (respectively, 𝑛 = 3, 𝑛 = 4), then the

system (1) is called quadratic (respectively, cubic, quartic).
An algebraic curve 𝑓 (𝑥, 𝑦) = 0, 𝑓 ∈ C[𝑥, 𝑦] (a function 𝑓 = exp[ 𝑔

ℎ
], 𝑔, ℎ ∈ C[𝑥, 𝑦])

is called invariant algebraic curve (exponential factor) of the system (1) if there exists a
polynomial 𝐾 𝑓 ∈ C[𝑥, 𝑦], deg(𝐾 𝑓 ) ≤ 𝑛−1 such that the identityX( 𝑓 ) ≡ 𝑓 (𝑥, 𝑦)𝐾 𝑓 (𝑥, 𝑦)
holds. In particular, a straight line L ≡ 𝛼𝑥 + 𝛽𝑦 + 𝛾 = 0, 𝛼, 𝛽, 𝛾 ∈ C is called
invariant for the system (1) if there exists a polynomial 𝐾L ∈ C[𝑥, 𝑦] such that the
identity 𝛼𝑃(𝑥, 𝑦) + 𝛽𝑄(𝑥, 𝑦) ≡ (𝛼𝑥 + 𝛽𝑦 + 𝛾)𝐾L (𝑥, 𝑦), (𝑥, 𝑦) ∈ R2, i.e. X(L) ≡
L(𝑥, 𝑦)𝐾L (𝑥, 𝑦), (𝑥, 𝑦) ∈ R2, holds. If a straight line L is described by the equation
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𝑦 = 𝛼𝑥 + 𝛽, 𝛽 ≠ 0 (respectively, 𝑥 = 𝛼), then L is invariant for (1) if the following
identity in 𝑥:

(𝛼𝑃(𝑥, 𝑦) −𝑄(𝑥, 𝑦)) |𝑦=𝛼𝑥+𝛽 ≡ 0 (2)

(respectively, in 𝑦: 𝑃(𝛼, 𝑦) ≡ 0) holds.
If 𝑚𝑝 (L) (respectively, 𝑚𝑎 (L)) is the greatest natural number such that L𝑚𝑝 (L)

(respectively, L𝑚𝑎 (L) ) divides X(L) (respectively, 𝐸 (X) = 𝑃 · X(𝑄) − 𝑄 · X(𝑃)), then
we say that the invariant straight line L has parallel multiplicity (algebraic multiplicity,
or in brief, multiplicity) 𝑚𝑝 (L) (respectively, 𝑚𝑎 (L)).

Remark 1.1. 1 ≤ 𝑚𝑝 (L) ≤ 𝑛 and 𝑚𝑝 (L) ≤ 𝑚𝑎 (L).

The number 𝑚𝑡 (L) = 𝑚𝑎 (L) − 𝑚𝑝 (L) + 1 is called transversally multiplicity of the
line L.

Some notions on multiplicity (algebraic, integrable, infinitesimal, geometric) of an
invariant algebraic line and its equivalence for polynomial differential systems are given
in [1].

The cubic differential systems with multiple invariant straight lines (including the line
at infinity) were studied in [5], [6], [10], [11], [12], [14].

Let 𝑓1, . . . , 𝑓𝑟 ( 𝑓𝑟+1 = exp(𝑔𝑟+1/ℎ𝑟+1), . . . , 𝑓𝑠 = exp(𝑔𝑠/ℎ𝑠)) be invariant algebraic
curves (exponential factors) of (1) and let 𝐾 𝑓 𝑗 , 𝑗 = 1, 𝑠, be its cofactors [2]. The system
(1) is called Darboux integrable if (1) has a first integral (an integrating factor) of the
form 𝐹 (𝑥, 𝑦) = 𝑓

𝛼1
1 · · · 𝑓 𝛼𝑠

𝑠 (𝜇(𝑥, 𝑦) = 𝑓
𝛼1

1 · · · 𝑓 𝛼𝑠
𝑠 ), 𝛼 𝑗 ∈ C, 𝑗 = 1, 𝑠. Note that the

constants 𝛼1, . . . , 𝛼𝑠 are not all equal to zero.
It is easy to show that𝐹 (𝑥, 𝑦) (𝜇(𝑥, 𝑦)) is a Darboux first integral (a Darboux integrating

factor) if and only if the following identity

𝛼1𝐾 𝑓1 + 𝛼2𝐾 𝑓2 + · · · + 𝛼𝑠𝐾 𝑓𝑠 ≡ 0(
𝛼1𝐾 𝑓1 + 𝛼2𝐾 𝑓2 + · · · + 𝛼𝑠𝐾 𝑓𝑠 + 𝜕𝑃

𝜕𝑥
+ 𝜕𝑄

𝜕𝑦
≡ 0

)
holds in 𝑥 and 𝑦.

In this work we consider the cubic systems of the form
¤𝑥 = 𝑦 + 𝑎𝑥2 + 𝑐𝑥𝑦 + 𝑓 𝑦2 + 𝑘𝑥3 + 𝑚𝑥2𝑦 + 𝑝𝑥𝑦2 + 𝑟𝑦3 ≡ 𝑃(𝑥, 𝑦),
¤𝑦 = −(𝑥 + 𝑔𝑥2 + 𝑑𝑥𝑦 + 𝑏𝑦2 + 𝑠𝑥3 + 𝑞𝑥2𝑦 + 𝑛𝑥𝑦2 + 𝑙𝑦3) ≡ 𝑄(𝑥, 𝑦),

gcd(𝑃,𝑄) = 1.
(3)

The critical point (0, 0) of the system (3) is of a center-focus type, i.e. is either a focus
or a center. The problem of distinguishing between a center and a focus is called the
problem of the center or the center-focus problem.
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It is known that (0, 0) is a center for (3) if and only if the system has a nonconstant
analytic first integral 𝐹 (𝑥, 𝑦) (an analytic integrating factor 𝜇(𝑥, 𝑦)) in a neighborhood
of (0, 0). Also, it is known that there exists a formal power series 𝐹 (𝑥, 𝑦) = 𝑥2 +
𝑦2 + ∑

𝑗≥3 𝐹𝑗 (𝑥, 𝑦) such that the rate of change of 𝐹 (𝑥, 𝑦) along trajectories of (3) is a
linear combination of polynomials {(𝑥2 + 𝑦2) 𝑗}∞

𝑗=2, i.e. 𝑑𝐹
𝑑𝑡

=
∑∞

𝑗=2 𝐿 𝑗−1(𝑥2 + 𝑦2) 𝑗 . The
quantities 𝐿 𝑗 , 𝑗 = 1,∞, are polynomials with respect to the coefficients of the system (3),
called to be the Lyapunov quantities. For example, the first Lyapunov quantity looks as

𝐿1 = (𝑏𝑑 − 𝑎𝑐 + 2𝑏 𝑓 − 2𝑎𝑔 + 𝑑𝑔 − 𝑐 𝑓 + 3𝑘 − 3𝑙 + 𝑝 − 𝑞)/4.

The origin (0, 0) is a center for (3) if and only if 𝐿 𝑗 = 0, 𝑗 = 1,∞.
The problem of the center is completely solved for quadratic systems (𝑘 = 𝑙 = 𝑚 = 𝑛 =

𝑝 = 𝑞 = 𝑟 = 𝑠 = 0) [4] and for symmetric cubic systems (𝑎 = 𝑏 = 𝑐 = 𝑑 = 𝑓 = 𝑔 = 0)
[8]. For other polynomial differential systems the necessary and sufficient conditions for
the center-focus critical point to be a center were obtained in some particular cases (see,
for example, [2], [7]).

The problem of coexistence in cubic systems of the distinct invariant straight lines and
critical points of center type was studied in [2], [3], [9]. In [3] (see also [2]) it was
proved that if the cubic system (3) has four distinct invariant straight lines of the form
1 + 𝛼 𝑗𝑥 + 𝛽 𝑗 𝑦 = 0, 𝑗 = 1, 2, 3, 4 (𝑦 ± 𝑖𝑥 = 0, 1 + 𝛼 𝑗𝑥 + 𝛽 𝑗 𝑦 = 0, 𝑗 = 1, 2) and the
Lyapunov quantity vanishes: 𝐿1 = 0 (𝐿1 = 𝐿2 = 0), then the origin is a center. In the
cases when (3) has three distinct invariant straight lines then (0, 0) is a center if the first
seven Lyapunov quantities vanish 𝐿 𝑗 = 0, 𝑗 = 1, ...7.

In this article we investigate the problem of the center for (3) with two invariant affine
straight lines of total multiplicity three. Our main result is the following one:

Main Theorem. Let the cubic system have two distinct affine non-parallel invariant
straight lines L1, L2 and a critical point 𝑀0(𝑥0, 𝑦0) with pure imaginary eigenvalues.
If 𝑚(L1) = 2, then 𝑀0 is a center if and only if the first five Lyapunov quantity vanishe
(𝐿1 = 𝐿2 = 𝐿3 = 𝐿4 = 𝐿5 = 0).

2. Conditions of the existence of invariant straight lines

Let the system (3) have an invariant straight line L1. Using a transformation of the
form 𝑥 → 𝜔(𝑥𝑐𝑜𝑠𝛼 − 𝑦𝑠𝑖𝑛𝛼), 𝑦 → 𝜔(𝑥𝑠𝑖𝑛𝛼 + 𝑦𝑐𝑜𝑠𝛼), we do L1 to be described by the
equation L1 ≡ 𝑥 − 1 = 0. The identity 𝑃(1, 𝑦) ≡ 0 gives us

𝑘 = −𝑎, 𝑚 = −𝑐 − 1, 𝑝 = − 𝑓 , 𝑟 = 0. (4)
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For system {(3), (4)} the identity (2) has the form

𝐴0 + 𝐴1𝑥 + 𝐴2𝑥
2 + 𝐴3𝑥

3 ≡ 0,

where

𝐴0 = −𝛽(𝛼 + 𝑏𝛽 + 𝑓 𝛼𝛽 + 𝑙𝛽2),
𝐴1 = −1 − 𝛼2 − (𝑑 + 2𝑏𝛼 + 𝑐𝛼 + 2 𝑓 𝛼2)𝛽 − (𝑛 − 𝑓 𝛼 + 3𝑙𝛼)𝛽2,

𝐴2 = −𝑔 − 𝑞𝛽 − 𝛼(𝑎 + 𝑑 − 𝛽 − 𝑐𝛽 + 2𝑛𝛽) − 𝛼2(𝑏 + 𝑐 − 2 𝑓 𝛽 + 3𝑙𝛽) − 𝑓 𝛼3,

𝐴3 = −𝑠 + (𝑎 − 𝑞)𝛼 + (1 + 𝑐 − 𝑛)𝛼2 + ( 𝑓 − 𝑙)𝛼3.

The system {𝐴0 ≡ 0, 𝐴1 ≡ 0, 𝐴2 ≡ 0, 𝐴3 ≡ 0, 𝛽 ≠ 0} has the solution

𝑔 = 𝛼(𝑑 + 𝑐𝛼 − 𝑎) − (𝑞 − 𝛼 − 𝑐𝛼)𝛽 + 𝛼(2 − 𝛼2)/𝛽,
𝑙 = −(𝛼 + 𝑏𝛽 + 𝑓 𝛼𝛽)/𝛽2,

𝑛 = 𝑓 𝛼 + (2𝛼2 − 1 − 𝛽(𝑑 − 𝑏𝛼 + 𝑐𝛼 − 𝑓 𝛼2))/𝛽2,

𝑠 = 𝛼(𝑎 − 𝑞 + 𝛼 + 𝑐𝛼) + 𝛼2(𝑑 + 𝑐𝛼)/𝛽 + 𝛼2(1 − 𝛼2)/𝛽2.

(5)

Therefore, the system {(3),(4),(5)} has the invariant straight lines L1 ≡ 𝑥−1 = 0, L2 ≡
𝛼𝑥 − 𝑦 + 𝛽 = 0, 𝛽 ≠ 0.

The invariant straight line L1 has parallel multiplicity two if 𝑃(1, 𝑦) |{(4),(5)} ≡ 0, i.e.
if

𝑎 = 𝑐 + 2 = 𝑓 = 0. (6)

The equalities {(4), (5), (6)} give us the first set of conditions

𝑎 = 𝑐 + 2 = 𝑓 = 𝑘 = 𝑚 − 1 = 𝑝 = 𝑟 = 0, 𝑙 = −(𝛼 + 𝑏𝛽)/𝛽2,

𝑔 = (2𝛼 − 𝛼(𝛼 + 𝛽)2 + 𝛽(𝑑𝛼 − 𝑞𝛽))/𝛽, 𝑛 = (2𝛼2 − 𝑑𝛽 + 2𝛼𝛽 + 𝑏𝛼𝛽 − 1)/𝛽2,

𝑠 = 𝛼(𝛼 − 𝛼(𝛼 + 𝛽)2 + 𝛽(𝑑𝛼 − 𝑞𝛽))/𝛽2,

(7)

so that, the straight lines L1, L2 are invariant for (3) and 𝑚𝑝 (L1) = 2.
If 𝑚𝑎 (L1) ≥ 2 > 𝑚𝑝 (L1) = 1, then it is necessary that 𝑥2 divide for {(3),(4),(5)} the

polynomial

𝜅(𝑥, 𝑦) = 𝑥(𝛼𝑥 − 𝑦) (𝑦2(𝛼 + 𝑏𝛽 + 𝑓 𝛼𝛽 + 𝑓 𝛽2) − 𝑥𝑦(𝛼2 − 𝑑𝛽 − 𝑐𝛼𝛽 − 𝛽2 − 𝑐𝛽2 − 1)
+𝑥2(𝛼 − 𝛼3 + 𝑑𝛼𝛽 + 𝑐𝛼2𝛽 + 𝑎𝛽2 − 𝑞𝛽2 + 𝛼𝛽2 + 𝑐𝛼𝛽2))/𝛽2.

This implies that

𝑏 = − 𝑓 (𝛼 + 𝛽) − 𝛼/𝛽. (8)

Taking into account (4) and (5), we obtain that

𝛽4(𝐸 (X)/((−1 + 𝑥) (−𝑦 + 𝑥𝛼 + 𝛽))) |𝑥=1 = 𝑓1(𝑦) 𝑓2(𝑦),
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where

𝑓1(𝑦) = 𝛼3 − 𝛼 − 𝛽(1 + 𝑑𝛼 + 𝑐𝛼2 − 𝑞𝛽 + 𝛼𝛽 + 𝑐𝛼𝛽)
+(𝛼2 − 1 − 𝛽(𝑑 + 𝛼 + 𝑐𝛼))𝑦 + 𝑓 𝛽2𝑦2,

𝑓2(𝑦) = 𝑎𝛽2(𝑑 + 𝑞 − 𝑎) + (𝑐 + 2) (𝛼 + 𝛽) (𝛼3 − 𝛼 − 𝛽 − 𝑑𝛼𝛽 + 2𝛼2𝛽 + 𝑞𝛽2 + 𝛼𝛽2)
−𝛼𝛽(𝑐 + 2)2(𝛼 + 𝛽)2 + 2((𝛼2 − 1) (𝑎 + 𝑓 𝛼2) − 𝛽(𝑎𝑑 − 𝑎𝛼 + 2 𝑓 𝛼 + 𝑑𝑓 𝛼2

−3 𝑓 𝛼3) − 𝑓 𝛽2(1 + 𝑎𝛼 + 𝑑𝛼 − 𝑞𝛼 − 3𝛼2) − 𝑓 𝛽3(𝑎 − 𝑞 − 𝛼)
−𝛽(𝑐 + 2) (𝛼 + 𝛽) (𝑎 + 𝑓 𝛼2 + 𝑓 𝛼𝛽))𝑦( 𝑓 𝛽2(𝑎 − 𝑑 − 𝑞)
+(𝑐 + 2) (𝛼2 − 1 − 𝑑𝛽 + 𝛼𝛽 − 𝑓 𝛼𝛽2 − 𝑓 𝛽3) − 𝛽(𝛼 + 𝛽) (𝑐 + 2)2)𝑦2.

If { 𝑓1(𝑦) ≡ 0, 𝛽 ≠ 0}, then gcd(𝑃,𝑄) = 𝑥 − 1, i.e. the system (3) is degenerate.
In the case { 𝑓2(𝑦) ≡ 0, 𝛽 ≠ 0} we obtain the equalities (6) and the following three set

of solutions

𝑎 = −(𝑐 + 2) (𝛼 + 𝛽), 𝑑 = ((𝛼 + 𝛽) (𝛼 − 2𝛽 − 𝑐𝛽) − 1)/𝛽, 𝑓 = 0; (9)

𝑑 = ((𝛼 + 𝛽) (𝛼 − 2𝛽 − 𝑐𝛽) − 1)/𝛽, 𝑞 = (1 − 𝛼2 + 𝑎𝛽 − 𝛼𝛽)/𝛽; (10)

𝑎 = −(𝛼 + 𝛽) (2 + 𝑐 + 𝑓 𝛼 + 𝑓 𝛽), 𝑞 = −(𝑑𝑓 𝛽2 + 2𝛽(𝑑 + 𝛼 + 2𝛽)
+(𝑐 + 2) (1 − 𝛼2) + 𝑐𝛽(𝑑 + 3𝛼 + 4𝛽)
+𝛽(𝛼 + 𝛽) (𝑐2 + 4 𝑓 𝛽 + 2𝑐 𝑓 𝛽) + 𝑓 2𝛽2(𝛼 + 𝛽)2)/( 𝑓 𝛽2).

(11)

Equalities (6) lead us to a particular case of the set (7) and each of the equalities (9),
(10), (11), together with (4), (5) and (8) give us, respectively, the following three series
of conditions

𝑎 = −(2 + 𝑐) (𝛼 + 𝛽), 𝑏 = −𝛼/𝛽, 𝑑 = ((𝛼 + 𝛽) (𝛼 − 2𝛽 − 𝑐𝛽) − 1)/𝛽, 𝑓 = 0,
𝑔 = (𝛼 + 𝛼𝛽(𝑐 + 1) (𝛼 + 𝛽) − 𝑞𝛽2)/𝛽, 𝑘 = −𝑎, 𝑙 = 0, 𝑚 = −𝑐 − 1, 𝑟 = 0,
𝑛 = (𝛼 + 2𝛽 + 𝑐𝛽)/𝛽, 𝑝 = − 𝑓 , 𝑠 = −(𝛼(𝑞𝛽 + (𝛼 + 𝛽) (𝛼 + 2𝛽 + 𝑐𝛽)))/𝛽;

(12)

𝑏 = −(𝛼 + 𝑓 𝛼𝛽 + 𝑓 𝛽2)/𝛽, 𝑑 = ((𝛼 + 𝛽) (𝛼 − 2𝛽 − 𝑐𝛽) − 1)/𝛽, 𝑚 = −𝑐 − 1,
𝑔 = (𝛼 − 𝛽 − 𝑎𝛼𝛽 − 𝑎𝛽2)/𝛽, 𝑘 = −𝑎, 𝑙 = 𝑓 , 𝑛 = (𝛼 + 2𝛽 + 𝑐𝛽)/𝛽,
𝑝 = − 𝑓 , 𝑞 = (1 − 𝛼2 + 𝑎𝛽 − 𝛼𝛽)/𝛽, 𝑟 = 0, 𝑠 = −𝛼/𝛽;

(13)

𝑎 = −(𝛼 + 𝛽) (2 + 𝑐 + 𝑓 𝛼 + 𝑓 𝛽), 𝑏 = −(𝛼 + 𝑓 𝛼𝛽 + 𝑓 𝛽2)/𝛽, 𝑟 = 0,
𝑔 = (2 𝑓 𝛼 + (𝑐 + 2) (1 + 𝑑𝛽) + (𝛼 + 𝛽) (𝑑𝑓 𝛽 − (𝑐 + 2) (𝛼 − 2𝛽 − 𝑐𝛽))
− 𝑓 (𝛼 + 𝛽)2(𝛼 − 4𝛽 − 2𝑐𝛽) + 𝑓 2𝛽(𝛼 + 𝛽)3)/( 𝑓 𝛽), 𝑘 = −𝑎, 𝑙 = 𝑓 ,

𝑛 = −(1 − 𝛼2 + 𝑑𝛽 + 𝑐𝛼𝛽)/𝛽2, 𝑝 = − 𝑓 , 𝑞 = −(𝑑𝑓 𝛽2 + 2𝛽(𝑑 + 𝛼 + 2𝛽)
+(𝑐 + 2) (1 − 𝛼2) + 𝑐𝛽(𝑑 + 3𝛼 + 4𝛽) + 𝛽(𝛼 + 𝛽) (𝑐2 + 4 𝑓 𝛽 + 2𝑐 𝑓 𝛽)
+ 𝑓 2𝛽2(𝛼 + 𝛽)2)/( 𝑓 𝛽2), 𝑠 = 𝛼( 𝑓 𝛼 + 2𝑑𝛽 + 2𝛽(𝛼 + 2𝛽) + (𝑐 + 2) (1 − 𝛼2)
+𝑐𝛽(𝑑 + 3𝛼 + 4𝛽) − (𝛼 + 𝛽) ( 𝑓 (𝛼 − 2𝛽) (𝛼 + 𝛽) − 𝛽(𝑐2 + 𝑑𝑓 ))
+𝑐 𝑓 𝛽(𝛼 + 𝛽)2)/( 𝑓 𝛽2), 𝑚 = −𝑐 − 1

(14)

such that the straight lines L1, L2 are invariant for (3) and 𝑚𝑎 (L1) ≥ 2.
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3. Sufficient conditions of the center

Lemma 3.1. The following set of conditions is sufficient for the origin (0, 0) to be a center
for the system (3)

𝑎 = 𝛾(𝛾 − 𝛽)/𝛽, 𝑏 = (𝛽 − 𝛾)/𝛽, 𝑐 = −(𝛽 + 𝛾)/𝛽, 𝑑 = (2𝛾2 − 2𝛽𝛾 − 1)/𝛽,
𝑓 = 0, 𝑔 = ((𝛽 − 𝛾) (𝛾2 − 1) − 𝑞𝛽2)/𝛽, 𝑘 = 𝛾(𝛽 − 𝛾)/𝛽, 𝑙 = 0, 𝑚 = 𝛾/𝛽,
𝑛 = 0, 𝑝 = 0, 𝑟 = 0, 𝑠 = 𝑞(𝛽 − 𝛾);

(15)

Proof. In conditions (15) the system (3) has the integrating factor of the form

𝜇(𝑥, 𝑦) = L𝛼1
1 L𝛼2

2 ,

where L1 = 𝑥 − 1, L2 = (𝛽 − 𝛾)𝑥 + 𝑦 − 𝛽, 𝛼1 = −2, 𝛼2 = −1. □

Lemma 3.2. The following six sets of conditions are sufficient for the origin (0, 0) to be
a center for the system (3)

𝑏 = 𝑓 = 𝑔 = 𝑙 = 𝑝 = 𝑞 = 𝑟 = 𝑠 = 0, 𝑑 = (𝛽2 − 1)/𝛽,
𝑎 − 𝛽 = 𝑐 + 3 = 𝑘 + 𝛽 = 𝑚 − 2 = 𝑛 + 1 = 0;

(16)

𝑏 = 1, 𝑐 = 0, 𝑑 = −1/𝛽, 𝑓 = 0, 𝑔 = −2, 𝑘 = −𝑎, 𝑙 = 0,
𝑚 = −1, 𝑛 = 1, 𝑝 = 0, 𝑞 = (1 + 𝑎𝛽)/𝛽, 𝑟 = 0, 𝑠 = 1;

(17)

𝑎 = −1/(𝛽(1 + 𝛽2)), 𝑏 = 1, 𝑐 = −2𝛽2/(1 + 𝛽2), 𝑑 = −1/𝛽, 𝑓 = −𝛽/(1 + 𝛽2),
𝑔 = −2, 𝑘 = 1/(𝛽(1 + 𝛽2)), 𝑙 = −𝛽/(1 + 𝛽2), 𝑚 = (𝛽2 − 1)/(1 + 𝛽2),
𝑛 = (1 − 𝛽2)/(1 + 𝛽2), 𝑝 = 𝛽/(1 + 𝛽2), 𝑞 = 𝛽/(1 + 𝛽2), 𝑟 = 0, 𝑠 = 1;

(18)

𝑎 = 𝛾2(1 + 𝛽𝛾 − 𝛾2)/(2𝛽(1 − 𝛾2)), 𝑐 = 𝛾(𝛽𝛾 + 𝛾2 − 1)/(𝛽(1 − 𝛾2)),
𝑏 = ((𝛽 − 𝛾) (𝛾2 − 1) (𝛾2 − 2) − 𝛽𝛾2)/(2𝛽(1 − 𝛾2)),
𝑑 = (𝛾(𝛽 − 𝛾) (2𝛾2 − 3) − 1)/(𝛽(1 − 𝛾2)),
𝑓 = 𝛾((𝛽 − 𝛾) (𝛾2 − 1) − 𝛽)/(2𝛽(𝛾2 − 1)),
𝑔 = (𝛾2 − 2) ((𝛽 − 𝛾) (𝛾2 − 1) − 𝛽)/(2𝛽(𝛾2 − 1)),
𝑘 = 𝛾2(1 + 𝛽𝛾 − 𝛾2)/(2𝛽(𝛾2 − 1)), 𝑟 = 0, 𝑠 = (𝛽 − 𝛾)/𝛽,
𝑙 = 𝛾((𝛽 − 𝛾) (𝛾2 − 1) − 𝛽)/(2𝛽(𝛾2 − 1)),
𝑚 = (𝛽 − 𝛾 + 𝛾3)/(𝛽(𝛾2 − 1)), 𝑛 = 1/(1 − 𝛾2),
𝑝 = 𝛾((𝛽 − 𝛾) (𝛾2 − 1) − 𝛽)/(2𝛽(1 − 𝛾2)),
𝑞 = (1 + 𝛽𝛾 − 𝛾2) (𝛾2 − 2)/(2𝛽(𝛾2 − 1));

(19)
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𝑏 = (𝛽 − 𝛾 − 𝑓 𝛽𝛾)/𝛽,
𝑐 = (2𝛽( 𝑓 − 𝛾) − 𝛾(𝑎 + 𝑓 ) (2𝑎𝛽 − 2 𝑓 𝛽 + 3𝛽𝛾 − 𝛾2 − 1))/(𝛽(𝛾

+(𝑎 + 𝑓 ) (𝛾2 − 1))), 𝑑 = ((3𝑎 − 𝛾) (𝛽 − 𝛾)𝛾 − 𝛾(1 − 𝑓 𝛽 + 3 𝑓 𝛾)
+(𝑎 + 𝑓 ) (1 + 2𝑎𝛽𝛾2 − 2 𝑓 𝛽𝛾2))/(𝛽(𝛾 + (𝑎 + 𝑓 ) (𝛾2 − 1))),

𝑔 = (𝛾 − 2𝛽 − 𝑎𝛽𝛾)/𝛽, 𝑘 = −𝑎, 𝑙 = 𝑓 , 𝑚 = (𝛽(𝑎 − 𝑓 + 𝛾)+
𝛾(𝑎 + 𝑓 ) (−1 + 2𝑎𝛽 − 2 𝑓 𝛽 + 2𝛽𝛾 − 𝛾2))/(𝛽(𝛾 + (𝑎 + 𝑓 ) (𝛾2 − 1))),

𝑛 = ((1 + 2𝛾(𝑎 + 𝑓 )) (𝛾2 + 𝑓 𝛽 − 𝑎𝛽 − 𝛽𝛾))/(𝛽(𝛾 + (𝑎 + 𝑓 ) (𝛾2 − 1))),
𝑝 = − 𝑓 , 𝑞 = (1 + 𝑎𝛽 + 𝛽𝛾 − 𝛾2)/𝛽, 𝑟 = 0, 𝑠 = ( 𝛽 − 𝛾)/𝛽,
((𝛽 − 𝛾)𝛾3 − 2𝛽( 𝑓 − 𝛾 − 𝑎𝛾2) − 𝛾2) (𝑎𝛽𝛾 + (𝑎 + 𝑓 ) (𝑎𝛽 − 𝛾2 − 𝑓 𝛽𝛾2)) = 0;

(20)

𝑎 = −𝛾(𝑐 + 2 + 𝑓 𝛾), 𝑏 = (𝛽 − 𝛾 − 𝑓 𝛽𝛾)/𝛽, 𝑘 = 𝛾(𝑐 + 2 + 𝑓 𝛾), 𝑙 = 𝑓 ,

𝑔 = (𝛽𝛾(𝑐 + 2)2 + (𝑐 + 2) (1 + 𝑑𝛽 + 𝛽𝛾 − 𝛾2 + 2 𝑓 𝛽𝛾2) + 𝑓 ((𝛽 − 𝛾) (𝛾2 − 2)
+𝑑𝛽𝛾 + 𝑓 𝛽𝛾3))/( 𝑓 𝛽), 𝑛 = ((𝛽 − 𝛾) (𝛽 + 𝑐𝛽 − 𝛾) − 𝑑𝛽 − 1)/𝛽2,

𝑚 = −𝑐 − 1, 𝑝 = − 𝑓 , 𝑞 = −((𝑐 + 2)2𝛽𝛾 + (𝑐 + 2) (𝑑𝛽 + 𝛽𝛾 + 2 𝑓 𝛽2𝛾 − 𝛾2

+1) + 𝑓 𝛽2(𝑑 + 𝑓 𝛾2))/( 𝑓 𝛽2), 𝑟 = 0, 𝑠 = (𝛾 − 𝛽) ((𝑐 + 2)2𝛽𝛾

+(𝑐 + 2) (1 + 𝑑𝛽 + 𝛽𝛾 − 𝛾2 + 𝑓 𝛽𝛾2) + 𝑑𝑓 𝛽𝛾 𝑓 (𝛽 − 𝛾) (𝛾2 − 1))/( 𝑓 𝛽2),
2(𝑐 + 2)2𝛽𝛾 + (𝑐 + 2) (1 + 𝑑𝛽 − 𝑓 𝛽 + 4 𝑓 𝛽𝛾2) + 𝑓 𝛽𝛾(𝑑 − 2 𝑓 + 2 𝑓 𝛾2).

(21)

Proof. In each of the sets of conditions (16)−(21), the system (3) has the integrating factor
of the form

𝜇(𝑥, 𝑦) = L𝛼1
1 L𝛼2

2 L𝛼3
3 (22)

and therefore, in all cases the origin (0, 0) is a center for (3). Indeed,
in Case (16):

L1 = 𝑥 − 1, L2 = 𝑦 − 𝛽, L3 = 𝛽𝑦 + 1, 𝛼1 = −3, 𝛼2 = −1, 𝛼3 = 1;

in Case (17):

L1 = 𝑥 − 1, L2 = 𝛽𝑥 + 𝑦 − 𝛽, L3 = exp[𝑦/(𝑥 − 1)],
𝛼1 = 2𝑎𝛽 − 2𝛽2 − 1, 𝛼2 = 2𝛽2 − 2𝑎𝛽 − 1, 𝛼3 = −2𝛽;

in Case (18):

L1 = 𝑥 − 1, L2 = 𝛽𝑥 + 𝑦 − 𝛽, L3 = 𝛽2𝑥 + 𝛽𝑦 − 𝛽2 − 1,
𝛼1 = −3, 𝛼2 = 1, 𝛼3 = −2;

in Case (19):

L1 = 𝑥 − 1, L3 = exp[𝛽𝛾(𝛾 − 𝑦) (2𝛽 − 𝛾 − 𝛽𝛾2 + 𝛾3)/(2(𝛾2 − 1) (𝑥 − 1))],
L2 = (𝛽 − 𝛾)𝑥 + 𝑦 − 𝛽, 𝛼1 = (1 − 2𝛽(2𝛾 − 𝛽) − 𝛾2(𝛾 − 𝛽)2)/(𝛾2 − 1),
𝛼2 = (1 + (𝛽 − 𝛾)2(𝛾2 − 2))/(𝛾2 − 1), 𝛼3 = −2/(𝛽𝛾);
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in Case (20):

L2 = (𝛽 − 𝛾)𝑥 + 𝑦 − 𝛽, L3 = exp[( 𝑓 𝛽2(𝑦 − 𝛾))/(𝑥 − 1)],
𝛼1 = (2𝛽2(𝛾 − 𝛽)𝛾2 𝑓 2 + 𝛽(2𝑎𝛽2 + 3𝛾 − 2𝑎𝛽𝛾 − 2𝛽𝛾2 + 𝛾3 + 2𝑎𝛽𝛾3

+𝛽2𝛾3 − 𝛽𝛾4) 𝑓 + 𝛾(𝑎𝛽 − 2𝑎2𝛽2 − 3𝛽𝛾 − 𝑎𝛽2𝛾 + 𝛾2 − 𝑎𝛽𝛾2

+𝛽2𝛾2 − 2𝛽𝛾3 + 𝛾4))/(𝛽𝛾(𝛾 + (𝑎 + 𝑓 ) (𝛾2 − 1))),
𝛼2 = (2𝛽(𝛽 − 𝛾)𝛾2 𝑓 2 + (𝛾 − 2𝑎𝛽2 + 2𝑎𝛽𝛾 + 2𝛽𝛾2 − 3𝛾3 − 2𝑎𝛽𝛾3

−𝛽2𝛾3 + 𝛽𝛾4) 𝑓 + 𝛾(𝑎 + 2𝑎2𝛽 − 𝛾 + 𝑎𝛽𝛾 − 3𝑎𝛾2 − 𝛽𝛾2

+𝛾3))/(𝛾(𝛾 + (𝑎 + 𝑓 ) (𝛾2 − 1))),
𝛼3 = (2𝑎𝛽 − 𝛾2 − 2 𝑓 𝛽𝛾2 + 𝛽𝛾3 − 𝛾4)/(𝛽2𝛾(𝛾 + (𝑎 + 𝑓 ) (𝛾2 − 1)));

in Case (21):

L1 = 𝑥 − 1, L2 = (𝛽 − 𝛾)𝑥 + 𝑦 − 𝛽,
L3 = exp[( 𝑓 𝛽2𝑦 + 𝛾2 − 𝑑𝛽 − 3𝛽𝛾 − 𝑐𝛽𝛾 − 𝑓 𝛽2𝛾 − 1)/(𝑥 − 1)],
𝛼1 = −((𝑐 + 2)2𝛽2𝛾(1 + 2𝛾2) + 𝛽(𝑐 + 2) (2𝛽2𝛾2 − 2𝛾4 + (1 + 𝑑𝛽) (1 + 3𝛾2)

+ 𝑓 𝛽(𝛽2 + 2𝛾2(1 + 𝛽2 + 𝛾2))) + 𝛽2𝛾𝑑2 + 𝛽𝛾𝑑 (3 + 2 𝑓 𝛽 + 𝛽2 + 𝑓 𝛽3 − 𝛾2

+2 𝑓 𝛽𝛾2) − 2𝛾(−(1 + 𝑓 𝛽) (1 + 𝑓 𝛽3 + 𝑓 𝛽3𝛾2) − 2𝛽2 + 𝛾2 + 𝑓 𝛽𝛾4))/(𝛽2𝛾),
𝛼2 = 𝛽((𝑐 + 2) ( 𝑓 𝛽 + 2𝛾2 + 2 𝑓 𝛽𝛾2) + 𝛾(1 + 𝑓 𝛽) (𝑑 + 2 𝑓 + 2 𝑓 𝛾2))/𝛾,
𝛼3 = −𝛽(𝑐 + 2) (1 + 2𝛾2) + 2𝛾 + 𝑑𝛽𝛾 + 2 𝑓 𝛽𝛾(1 + 𝛾2)/(𝛽2𝛾).

□

Lemma 3.3. The following three sets of conditions are sufficient for the origin (0, 0) to
be a center for the system (3)

𝑎 = 0, 𝑏 = 1, 𝑑 = −1/𝛽, 𝑓 = 0, 𝑔 = −1 − 𝑞𝛽, 𝑘 = 0,
𝑙 = 0, 𝑚 = −1 − 𝑐, 𝑛 = 1 + 𝑐, 𝑝 = 0, 𝑟 = 0, 𝑠 = 𝑞𝛽;

(23)

𝑎 = 0, 𝑏 = 1, 𝑐 = −2, 𝑑 = −1/𝛽, 𝑔 = −2, 𝑘 = 0, 𝑙 = 𝑓 ,

𝑚 = 1, 𝑛 = −1, 𝑝 = − 𝑓 , 𝑞 = 1/𝛽, 𝑟 = 0, 𝑠 = 1;
(24)
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𝑎 = 𝛾2(1 + 𝛽𝛾 − 𝛾2)/(2𝛽(1 − 𝛾2)),
𝑏 = (2𝛽 + 𝛽𝛾2(𝛾2 − 4) − 𝛾(𝛾2 − 1) (𝛾2 − 2))/(2𝛽(1 − 𝛾2)),
𝑐 = (𝛽𝛾2 + 2𝛾3 + 𝛽𝛾4 − 𝛾5 − 4𝛽 − 𝛾)/(2𝛽(1 − 𝛾2)),
𝑑 = (𝛾4(𝛾2 − 𝛽𝛾 − 4) + (1 + 𝛽𝛾) (5𝛾2 − 2))/(2𝛽(1 − 𝛾2)),
𝑓 = 𝛾(𝛽𝛾2 − 𝛾3 − 2𝛽 + 𝛾)/(2𝛽(𝛾2 − 1)),
𝑔 = (𝛾2 − 2) (𝛽𝛾2 − 𝛾3 − 2𝛽 + 𝛾)/(2𝛽(𝛾2 − 1)),
𝑘 = 𝛾2(1 + 𝛽𝛾 − 𝛾2)/(2𝛽(𝛾2 − 1)),
𝑙 = 𝛾(𝛽𝛾2 − 𝛾3 − 2𝛽 + 𝛾)/(2𝛽(𝛾2 − 1)),
𝑚 = (2𝛽 + 𝛾(𝛾2 − 1) (𝛾2 − 𝛽𝛾 − 1))/(2𝛽(1 − 𝛾2)),
𝑛 = (1 + 𝛾2) ((𝛽 − 𝛾) (𝛾2 − 1) − 𝛽)/(2𝛽(1 − 𝛾2)),
𝑝 = 𝛾((𝛽 − 𝛾) (𝛾2 − 1) − 𝛽)/(2𝛽(1 − 𝛾2)),
𝑞 = (1 + 𝛽𝛾 − 𝛾2) (𝛾2 − 2)/(2𝛽(𝛾2 − 1)), 𝑟 = 0, 𝑠 = (𝛽 − 𝛾)/𝛽.

(25)

Proof. If one of the conditions (23) - (25) holds, then the cubic system (3) has a first
integral 𝐹 (𝑥, 𝑦) of the form

L𝛼1
1 L𝛼2

2 L𝛼3
3 L𝛼4

4 . (26)

In Case (23):

L1 = 𝑥 − 1, L2 = 𝛽𝑥 + 𝑦 − 𝛽, L3 = exp[(𝛽(𝑐 + 2)𝑦 + 𝑞𝛽 − 1)/(𝑥 − 1)],
L4 = (𝑐 + 1)𝑥 + 1, 𝛼1 = (1 + 𝑐) (1 − 3𝑞𝛽 − 𝑐𝑞𝛽 + (2 + 𝑐)2𝛽2),
𝛼2 = −(1 + 𝑐) (2 + 𝑐)2𝛽2, 𝛼3 = (1 + 𝑐) (2 + 𝑐), 𝛼4 = −1 − 𝑐 − 𝑞𝛽;

in Case (24):

L1 = 𝑥 − 1, L2 = 𝛽𝑥 + 𝑦 − 𝛽, L3 = exp[𝑦/(𝑥 − 1)],
L4 = exp[(𝑥2 + 𝑓 𝛽𝑦2 − 1)/(𝑥 − 1)2], 𝛼1 = 2(1 + 𝛽2 + 𝑓 𝛽3),
𝛼2 = −2𝛽2(1 + 𝑓 𝛽), 𝛼3 = 2𝛽(1 + 𝑓 𝛽), 𝛼4 = −1;

in Case (25):

L1 = 𝑥 − 1, L2 = (𝛽 − 𝛾)𝑥 + 𝑦 − 𝛽,
L4 = ((𝛽 − 𝛾) (𝛾2 − 1) − 𝛽) (𝑥 + 𝛾𝑦) + 2𝛽,
L3 = exp[𝛽𝛾(𝛾 − 𝑦) (𝛾 + 𝛽𝛾2 − 𝛾3 − 2𝛽)/(2(𝑥 − 1) (1 − 𝛾2))],
𝛼1 = 𝛽(2 + 𝛽𝛾) (1 − 𝛽𝛾 + 𝛾2) ((𝛽 − 𝛾) (𝛾2 − 1) − 𝛽),
𝛼2 = 𝛽2𝛾(1 + 𝛽𝛾 − 𝛾2) (( 𝛽 − 𝛾) (𝛾2 − 1) − 𝛽),
𝛼3 = 2(𝛾2 − 1) (1 − 𝛽𝛾 + 𝛾2), 𝛼4 = 4𝛽2.

□

Lemma 3.4. The following sets of conditions are sufficient for the origin (0, 0) to be a
center for the system (3)
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𝑎 = 0, 𝑏 = 1, 𝑐 = (3𝛾2 − 2)/(1 − 𝛾2), 𝑑 = 𝛾3/(𝛾2 − 1), 𝑓 = 𝛾/(1 − 𝛾2),
𝑔 = (𝛾2 − 2)/(1 − 𝛾2), 𝑘 = 0, 𝑙 = 𝛾/(1 − 𝛾2), 𝑚 = (2𝛾2 − 1)/(𝛾2 − 1),
𝑛 = −1, 𝑝 = 𝛾/(𝛾2 − 1), 𝑞 = 0, 𝑟 = 0, 𝑠 = 1/(1 − 𝛾2);

(27)

𝑎 = (4𝛾3)/((𝛾2 − 3) (9 + 𝛾2)), 𝑏 = ((3 + 𝛾2) (5𝛾2 − 9))/((𝛾2 − 3) (9 + 𝛾2)),
𝑐 = −18/(9 + 𝛾2), 𝑑 = (𝛾(9 + 16𝛾2 − 𝛾4))/((𝛾2 − 3) (9 + 𝛾2)),
𝑓 = (6𝛾(3 + 𝛾2))/((3 − 𝛾2) (9 + 𝛾2)), 𝑙 = (6𝛾(3 + 𝛾2))/((3 − 𝛾2) (9 + 𝛾2)),
𝑘 = (4𝛾3)/((3 − 𝛾2) (9 + 𝛾2)), 𝑔 = (2(3 + 𝛾2) (2𝛾2 − 9))/((3 − 𝛾2) (9 + 𝛾2)),
𝑚 = (9 − 𝛾2)/(9 + 𝛾2), 𝑛 = (3((3 + 𝛾2)2 − 4𝛾2))/((𝛾2 − 3) (9 + 𝛾2)),
𝑝 = (6𝛾(3 + 𝛾2))/((𝛾2 − 3) (9 + 𝛾2)), 𝑞 = (𝛾(3 + 𝛾2)2)/((3 − 𝛾2) (9 + 𝛾2)),
𝑟 = 0, 𝑠 = (3 + 𝛾2)/(3 − 𝛾2);

(28)

𝑎 = 𝛿(1 + 𝛽𝛿)/𝜈, 𝑏 = (𝛽2𝛿2 − 𝛿2 − 𝛽𝛿 − 1)/(𝛽𝛿𝜈), 𝑐 = −(1 + 3𝛽𝛿 + 3𝛿2)/𝜈,
𝑑 = ((1 + 𝛽𝛿) (1 + 2𝛽𝛿 + 𝛽𝛿3) − 𝛿4)/(𝛽𝛿2𝜈), 𝑓 = −𝛿/𝜈, 𝑘 = −(𝛿(1 + 𝛽𝛿))/𝜈,
𝑔 = (𝜈 − 𝛽𝛿 − 2𝛽2𝛿2)/(𝛽𝛿𝜈), 𝑙 = −𝛿/𝜈, 𝑚 = (𝛿(𝛽 + 2𝛿))/𝜈, 𝑛 = (1 − 𝛿2)/𝜈,
𝑝 = 𝛿/𝜈, 𝑞 = −(1 + 𝛽𝛿)/(𝛿𝜈), 𝑟 = 0, 𝑠 = (𝛽𝛿)/𝜈, where 𝜈 = 1 + 2𝛽𝛿 + 𝛿2;

(29)

𝑎 = (𝛿 − 𝛽)/𝜎, 𝑏 = 𝛿(𝛽2 + 𝛽𝛿 − 𝛿2 − 1)/(𝛽𝜎), 𝑐 = (3 − 3𝛽𝛿 + 𝛿2)/𝜎,
𝑑 = (1 − (𝛽 − 𝛿) (𝛽 + 2𝛽𝛿2 − 𝛿3))/(𝛽𝜎), 𝑓 = − 𝛿/𝜎, 𝑘 = (𝛽 − 𝛿)/𝜎,
𝑔 = −𝛿(2𝛽2 + 𝛽𝛿 − 𝛿2 − 1)/(𝛽𝜎), 𝑙 = −𝛿/𝜎, 𝑚 = (𝛽𝛿 − 2)/𝜎,
𝑛 = (1 − 𝛿2)/𝜎, 𝑝 = 𝛿/𝜎, 𝑞 = (𝛽 − 𝛿)𝛿2/𝜎, 𝑟 = 0, 𝑠 = 𝛽𝛿/𝜎,
where 𝜎 = 2𝛽𝛿 − 𝛿2 − 1;

(30)

𝑏 = 2(1 + 𝑎2), 𝑐 = 2𝑎2 − 3, 𝑑 = (1 + 𝑎2)/𝑎, 𝑓 = −2𝑎, 𝑔 = −2, 𝑘 = −𝑎,
𝑙 = −2𝑎, 𝑚 = 2(1 − 𝑎2), 𝑛 = 4𝑎2 − 1, 𝑝 = 2𝑎, 𝑞 = −4𝑎3, 𝑟 = 0, 𝑠 = −2𝑎2;

(31)

𝑎 = (𝑢2 − 4 𝑓 2 − 1)/(8 𝑓 ),
𝑏 = (32 𝑓 2 + 16 𝑓 4 ∓ 32 𝑓 2𝑢 + 2𝑢2 − 𝑢4 − 1)/(4(1 ∓ 𝑢) (−1 + 4 𝑓 2 + 𝑢2)),
𝑐 = (4 𝑓 2 ± 12𝑢 − 3𝑢2 − 9)/(4(1 ∓ 𝑢)), 𝑑 = ((4 𝑓 2 − 1)2 + 𝑢2(𝑢2 − 56 𝑓 2 − 2)

∓𝑢((𝑢2 − 1)2 − 8 𝑓 2(7 + 6 𝑓 2 + 𝑢2)))/(8 𝑓 (1 ∓ 𝑢) (4 𝑓 2 + 𝑢2 − 1)),
𝑔 = (1 − 20 𝑓 2 − 𝑢2 ∓ 𝑢(4 𝑓 2 + 𝑢2 − 1))/(2(4 𝑓 2 + 𝑢2 − 1)),
𝑘 = (1 + 4 𝑓 2 − 𝑢2)/(8 𝑓 ), 𝑙 = 𝑓 , 𝑚 = (3𝑢2 ∓ 8𝑢 − 4 𝑓 2 + 5)/(4(1 ∓ 𝑢)),
𝑛 = (4 𝑓 2 − 𝑢2 − 1 ± 2𝑢)/(2(1 ∓ 𝑢)), 𝑠 = (4 𝑓 2 + 𝑢2 − 1)/(4(−1 ± 𝑢)),
𝑝 = − 𝑓 , 𝑞 = 𝑓 (1 + 4 𝑓 2 − 𝑢2)/(2(𝑢 ∓ 1)2), 𝑟 = 0.

(32)

Proof. In each of the sets of conditions (27)–(32), the system (3) has an integrating factor
of the form (26) 𝜇(𝑥, 𝑦) = L𝛼1

1 L𝛼2
2 L𝛼3

3 L𝛼4
4 .
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In Case (27):

L1 = 𝑥 − 1; L2 = 𝑥 − 𝛾𝑦 + 𝛾2 − 1, L3 = exp[(1 − 𝛾2) (𝑦 − 𝛾)/(𝛾(𝑥 − 1))],
L4 = 𝑥 − 𝛾𝑦 − 1, 𝛼1 = −3, 𝛼2 = 1,
𝛼3 = −𝛾2/(𝛾2 − 1)2, 𝛼4 = (𝛾2 − 2)/(1 − 𝛾2);

in Case (28):

L1 = 𝑥 − 1, L2 = (𝛾2 + 3)𝑥 − 2𝑦𝛾 + 𝛾2 − 3,
L3 = exp[3(𝛾 − 𝑦) (𝛾4 − 9)/(2𝛾(𝑥 − 1) (9 + 𝛾2))],
L4 = 3(3 + 𝛾2)𝑥 − 6𝑦𝛾 − 𝛾2 − 9, 𝛼1 = −3, 𝛼2 = 1,
𝛼3 = −2𝛾2(9 + 𝛾2)/(3(𝛾2 − 3)2), 𝛼4 = (18 + 3𝛾2 + 𝛾4)/(3(𝛾2 − 3));

in Case (29):

L1 = 𝑥 − 1, L2 = 𝑥 − 𝑦𝛿 + 𝛽𝛿, L3 = exp[1 + 𝛽𝛿 + 𝛿2 + 𝑦𝛽𝛿2/(𝑥 − 1)],
L4 = 𝛽𝛿(𝑥 − 𝑦𝛿) − 𝛿2 − 2𝛽𝛿 − 1, 𝛼1 = −3, 𝛼4 = 1,
𝛼2 = (1 + 2𝛽𝛿 + 𝛽2𝛿2 − 2𝛽𝛿3 − 𝛿4)/(𝛿2𝜈), 𝛼3 = (1 + 𝛽𝛿 + 𝛿2)/(𝛽𝛿3𝜈);

in Case (30):

L1 = 𝑥 − 1, L2 = 𝑦 − 𝛽 + 𝑥𝛿, L3 = exp[(1 + 𝑦𝛽 − 𝛽𝛿 + 𝛿2)/(𝑥 − 1)],
L4 = 𝛽(𝛿𝑥 + 𝑦) − 𝜎, 𝛼1 = −3, 𝛼2 = −(−1 + 2𝛽𝛿 + 𝛽2𝛿2 − 2𝛽]𝛿3 + 𝛿4)/𝜎,
𝛼3 = −(𝛿(−1 + 𝛽𝛿 − 𝛿2))/(𝛽𝜎), 𝛼4 = 1;

in Case (31):

L1 = 𝑥 − 1, L2 = 2𝑎2𝑥 − 𝑎𝑦 + 1, L3 = exp[2(1 + 2𝑎2 − 𝑎𝑦)/(𝑎2(𝑥 − 1))],
L4 = 𝑎𝑥 − 𝑦 − 𝑎, 𝛼1 = −3, 𝛼2 = 1, 𝛼3 = −𝑎2(1 + 2𝑎2), 𝛼4 = 4𝑎4 + 4𝑎2 − 1;

in Case (32):

L1 = 𝑥 − 1, L2 = (4 𝑓 2 + 𝑢2 − 1) (2 𝑓 𝑥 + (1 ∓ 𝑢)𝑦) + 8 𝑓 (1 ∓ 𝑢),
L3 = exp[ (64 𝑓 3 (2 𝑓 (3+4 𝑓 2+𝑢2∓4𝑢)+(1∓𝑢) (4 𝑓 2+𝑢2−1)𝑦) )

( (1∓𝑢) (1+4 𝑓 2+𝑢2−1)3 (𝑥−1) ) ],
L4 = 8 𝑓 2𝑥 + 4 𝑓 (1 ∓ 𝑢)𝑦 + 1 − 4 𝑓 2 − 𝑢2, 𝛼1 = −3, 𝛼2 = 1,
𝛼3 = −(((−1 + 4 𝑓 2 + 𝑢2)2(3 + 4 𝑓 2 ∓ 4𝑢 + 𝑢2))/(128 𝑓 2(𝑢 ∓ 1)2)),
𝛼4 = ((4 𝑓 2 − 1) (7 + 4 𝑓 2) ± 8𝑢(3 − 4 𝑓 2 + 𝑢2) + 𝑢2(8 𝑓 2 + 𝑢2 − 26))/(8(1 ∓ 𝑢)3).

□

Lemma 3.5. The following three sets of conditions are sufficient for the origin (0, 0) to
be a center for the system (3)

𝑎 = 0, 𝑏 = 1, 𝑐 = (3𝛾2 − 2)/(1 − 𝛾2), 𝑑 = 𝛾3/(𝛾2 − 1), 𝑓 = 𝛾/(1 − 𝛾2),
𝑔 = (𝛾2 − 2)/(1 − 𝛾2), 𝑘 = 0, 𝑙 = 𝛾/(1 − 𝛾2), 𝑚 = (2𝛾2 − 1)/(𝛾2 − 1),
𝑛 = −1, 𝑝 = 𝛾/(𝛾2 − 1), 𝑞 = 0, 𝑟 = 0, 𝑠 = 1/(1 − 𝛾2);

(33)
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𝑎 = −𝑘 = 𝛾𝛿(4 + 2𝑐 + 3𝛾2 + 2𝑐𝛾2), 𝑏 = −𝛿(10 + 4𝑐 + 7𝛾2 + 4𝑐𝛾2),
𝑑 = 𝛿((1 + 𝛾2) (9𝛾2 + 6𝑐𝛾2 − 4𝑐) − 8)/𝛾, 𝑓 = 𝑙 = −𝑝 = 𝛾𝛿,

𝑔 = 𝛿(16 + 6𝑐 + 11𝛾2 + 6𝑐𝛾2), 𝑚 = −(𝑐 + 1), 𝑛 = 2𝛿,
𝑞 = 𝛿(24 + 23𝛾2 + 6𝛾4 + 2𝑐(1 + 𝛾2) (10 + 2𝑐 + 5𝛾2 + 2𝑐𝛾2))/𝛾, 𝑟 = 0,
𝑠 = −𝛿(5 + 2𝑐 + 3𝛾2 + 2𝑐𝛾2) (6 + 2𝑐 + 3𝛾2 + 2𝑐𝛾2), 𝛿 = −1/(2(1 + 𝛾2));

(34)

𝑎 = −1/(2𝛾), 𝑏 = 1/2, 𝑐 = −3/2, 𝑑 = −(1 + 2𝛾2)/(2𝛾),
𝑓 = 𝑙 = 𝑛 = 𝑝 = 𝑟 = 0, 𝑔 = −1, 𝑘 = 1/(2𝛾), 𝑚 = 1/2, 𝑞 = 𝛾/2, 𝑠 = 1/2.

(35)

Proof. In this Lemma, the existence of the center is guaranteed by the presence of the
integrating factor of the form

𝜇(𝑥, 𝑦) = L𝛼1
1 L𝛼2

2 Φ𝛼3 ,

where L1, L2 are invariant straight lines and Φ is an invariant conic. Indeed,
in Case (33):

L1 = 𝑥 − 1, L2 = 𝑦 − 𝛽, Φ = 4(1 + 𝛽2) (𝑥 − 1) − (𝑥 + 𝑦𝛽)2,

𝛼1 = −2, 𝛼2 = −1, 𝛼3 = −1/2;

in Case (34):

L1 = 𝑥 − 1, L2 = 𝛾(1 + 𝛾2) + 2𝑦(2 + 𝑐 + 𝛾2 + 𝑐𝛾2) − 𝑥𝛾(5 + 2𝑐 + 3𝛾2 + 2𝑐𝛾]2),
Φ = 4(1 + 𝛾2) − 8𝑥(3 + 𝑐 + 2𝛾2 + 𝑐𝛾2) − 4𝑦𝛾(5 + 2𝑐 + 3𝛾2 + 2𝑐𝛾2)

+(6𝑥 + 2𝑐𝑥 + 𝑦𝛾 + 3𝑥𝛾2 + 2𝑐𝑥𝛾2)2, 𝛼1 = −2, 𝛼2 = −1, 𝛼3 = −1/2;

in Case (35):

L1 = 𝑥 − 1, L2 = 𝛾𝑥 + 𝑦 − 2𝛾, Φ = 2(1 + 𝛾2) − (𝑥 + 𝛾𝑦) (2(1 + 𝛾2) − 𝛾(𝛾𝑥 + 𝑦)),
𝛼1 = −2, 𝛼2 = 1, 𝛼3 = −1.

□
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Lemma 3.6. The following set of conditions is sufficient for the origin (0, 0) to be a center
for the system (3)

𝑎 = −( 𝑓 (1 − 6𝑢2 + 𝑢4))/(2(1 − 𝑢2)2),
𝑏 = ( 𝑓 (1 + 𝑢2)2(1 − 6𝑢2 + 𝑢4) + 32𝑢3(1 − 𝑢2))/(4(1 − 𝑢2)𝑢(1 + 𝑢2)2),
𝑐 = ( 𝑓 (1 − 14𝑢2 + 𝑢4) + 8𝑢(𝑢2 − 1))/(4(1 − 𝑢2)𝑢),
𝑑 = (3 − 𝑢2) (3𝑢2 − 1) ( 𝑓 (1 + 𝑢2)2 + 4𝑢(𝑢2 − 1))/(2(𝑢2 − 1)2(1 + 𝑢2)2),
𝑔 = (2 𝑓 𝑢(1 + 𝑢2)2 + (𝑢2 − 1) (1 + 10𝑢2 + 𝑢4))/((1 − 𝑢2) (1 + 𝑢2)2),
𝑘 = ( 𝑓 (1 − 6𝑢2 + 𝑢4))/(2(𝑢2 − 1)2), 𝑙 = 𝑓 ,

𝑚 = ( 𝑓 (1 − 14𝑢2 + 𝑢4) + 4𝑢(𝑢2 − 1))/(4𝑢(𝑢2 − 1)),
𝑛 = (4𝑢( 𝑓 (1 + 𝑢2)2 − 2𝑢(𝑢2 − 1)))/(𝑢2 − 1) (1 + 𝑢2)2, 𝑝 = − 𝑓 ,
𝑞 = ( 𝑓 (1 + 𝑢2)2(1 + 10𝑢2 + 𝑢4) + 4(𝑢2 − 1)𝑢(𝑢2 − 3) (3𝑢2 − 1))

/(2(𝑢2 − 1)2(1 + 𝑢2)2), 𝑟 = 0,
𝑠 = (𝑢( 𝑓 (1 + 𝑢2)4 + 8𝑢(𝑢2 − 1)3))/((𝑢2 − 1)3(1 + 𝑢2)2);

(36)

Proof. Under the conditions (36), there is an invertible transformation of the form

𝑥 =
𝑎1𝑋 + 𝑏1𝑌

𝑎3𝑋 + 𝐵3𝑌 − 1
, 𝑦 =

𝑎2𝑋 + 𝑏2𝑌

𝑎3𝑋 + 𝐵3𝑌 − 1
, (37)

in a neighborhood of 𝑂 (0, 0), where 𝑎 𝑗 , 𝑏 𝑗 ∈ R, 𝑗 = 1, 2, 3 and 𝑎1𝑏2 − 𝑏1𝑎2 ≠ 0. The
transformation (37) brings the system (3) to the polynomial system

¤𝑋 = 𝑌 + 𝑀 (𝑋2, 𝑌 ), ¤𝑌 = −𝑋 (1 + 𝑁 (𝑋2, 𝑌 )). (38)

This system has an axis of symmetry 𝑋 = 0 and therefore 𝑂 (0, 0) is a center for (38) and
for the initial system (3) (see, [2], pp.29-31).

In Case (36) the transformation (37) looks as

𝑥 =
2𝑢𝑋 + (1 − 𝑢2)𝑌

2𝑢𝑋 − 𝑢2 − 1
, 𝑦 =

(𝑢2 − 1)𝑋 + 2𝑢𝑌
2𝑢𝑋 − 𝑢2 − 1

and the system (38) has the form

¤𝑋 = 𝑌 + (4 𝑓 𝑢2(1 + 𝑢2)4𝑋4 − 𝑋2( 𝑓 (1 + 𝑢2)6 + 16𝑢3(𝑢2 − 1)2(1 + 𝑢2)𝑌−
16𝑢3(𝑢2 − 1)3𝑌2) − 4𝑢(𝑢2 − 1)3(1 + 𝑢2)2𝑌2)/(4𝑢(𝑢2 − 1)2(1 + 𝑢2)3),

¤𝑌 = 𝑋 (1 + (4𝑋2 𝑓 𝑢2(1 + 𝑢2)4(1 + 𝑢2 + (1 − 𝑢2)𝑌 ) + (1 − 𝑢2) (1 + 𝑢2)2( 𝑓 − 8𝑢
+4 𝑓 𝑢2 + 8𝑢3 + 6 𝑓 𝑢4 − 8𝑢5 + 4 𝑓 𝑢6 + 8𝑢7 + 𝑓 𝑢8)𝑌 + (𝑢2 − 1)2(1 + 𝑢2) ( 𝑓 − 4𝑢
+4 𝑓 𝑢2 − 20𝑢3 + 6 𝑓 𝑢4 + 20𝑢5 + 4 𝑓 𝑢6 + 4𝑢7 + 𝑓 𝑢8)𝑌2

−16𝑢3(𝑢2 − 1)4𝑌3)/(4𝑢(−1 + 𝑢4)3).

□
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4. Solution of the problem of the center

4.1. Centers in the conditions (7).

Lemma 4.1. Under the conditions (7) the system (3) has a center at the origin (0, 0) if
and only if the first four Lyapunov quantities vanish 𝐿1 = 𝐿2 = 𝐿3 = 𝐿4 = 0.

Proof. The Lemma 4.1 is proved in {[2], pp. 111–116}. □

4.2. Centers in the conditions (12).

Let 𝛼 = 𝛾 − 𝛽.

Lemma 4.2. When conditions (12) hold, the system (3) has a center at the origin (0, 0)
if and only if the first three Lyapunov quantities vanish 𝐿1 = 𝐿2 = 𝐿3 = 0.

Proof. In conditions (12) the first Lyapunov quantity is 𝐿1 = 𝑓0 𝑓1 𝑓2, where 𝑓0 = 𝛾, 𝑓1 =

𝑐𝛽 + 𝛽 + 𝛾, 𝑓2 = 𝑞𝛽 + (1 + 𝑐) (𝛽 − 𝛾)𝛾 − 𝑐 − 3. If 𝑓0 = 0, then Lemma {3.3, (23)}
and if 𝑓1 = 0, then Lemma {3.1, (15)}. Assume that 𝑓0 𝑓1 ≠ 0 and let 𝑓2 = 0. Then
𝑞 = (𝑐 + 3 + 𝛾(1 + 𝑐) (𝛾 − 𝛽))/𝛽 and 𝐿2 = (𝑐 + 2) (2𝑐𝛽 + 5𝛽 + 𝛾). If 𝑐 + 2 = 0, then
gcd(𝑃,𝑄) = 𝑥 − 1. Let 2𝑐𝛽 + 5𝛽 + 𝛾 = 0 ⇒ 𝛾 = −𝛽(5 + 2𝑐) ⇒ 𝐿3 = 𝑐 + 3 = 0 ⇒
Lemma {3.2, (16)}. □

4.3. Centers in the conditions (13).

Lemma 4.3. Under the conditions {(13), 𝛼 = −𝛽}, the system (3) has a center at the origin
(0, 0) if and only if the first four Lyapunov quantities vanish 𝐿1 = 𝐿2 = 𝐿3 = 𝐿4 = 0.

Proof. The system {(3), (13), 𝛼 = −𝛽 } has the invariant straight lines L1 = 𝑥 − 1, L2 =

𝛽𝑥 + 𝑦 − 𝛽 and the exponential factor L3 = exp[𝑦/(𝑥 − 1)] . For {(3), (13), 𝛼 = −𝛽 } we
calculate at (0, 0) the first four Lyapunov quantities 𝐿1, 𝐿2, 𝐿3 and 𝐿4. In the sequel, in
expressions of Lyapunov quantities we always neglect the non-zero factors. The first one
look as

𝐿1 = 𝑎𝑐 + (𝑐 + 2) 𝑓 .

If 𝑐 = 0, then {Lemma 3.2, (17)}. Let 𝑐 ≠ 0. Then 𝐿1 = 0 ⇒ 𝑎 = − 𝑓 (𝑐 + 2)/𝑐 ⇒ 𝐿2 =

𝑓 (𝑐 + 2)𝑙2, where

𝑙2 = 𝑐3𝛽 + 2𝑐2𝛽 + 6𝑐 𝑓 − 12 𝑓 2𝛽 + 4𝑐 𝑓 2𝛽.

If 𝑓 = 0, then {Lemma 3.3, (23), 𝑞 = 1/𝛽}, and if 𝑐 = −2, then {Lemma 3.3, (24)}.
Suppose 𝑐 𝑓 (𝑐 + 2) ≠ 0. Reducing 𝐿3 by 𝑙2 with respect to the variable 𝑐 we obtain

31



THE PROBLEM OF THE CENTER FOR CUBIC DIFFERENTIAL SYSTEMS

𝐿3 = (𝑐 − 2 𝑓 𝛽) (12 𝑓 𝛽 + 𝑐 𝑓 𝛽 − 𝑐). If 𝑐 − 2 𝑓 𝛽 = 0, then 𝑙2 = 𝑓 (1 + 𝛽2) + 𝛽 = 0 ⇒ 𝑓 =

−𝛽/(1+ 𝛽2) ⇒ {Lemma 3.2, (18)}. If 12 𝑓 𝛽 + 𝑐( 𝑓 𝛽 − 1) = 0 ⇒ 𝑐 = 12 𝑓 𝛽/(1− 𝑓 𝛽) ⇒

𝑙2 = 24𝛽2(5 𝑓 𝛽 + 1) + 5( 𝑓 𝛽 − 1)2( 𝑓 𝛽 + 1),
𝐿4 = 15( 𝑓 𝛽 + 1) (17 𝑓 𝛽 − 11) + 50𝛽4(24 − 43 𝑓 2 + 120 𝑓 𝛽) − 2𝛽2(271 + 2290 𝑓 𝛽).

The system {𝑙2 = 0, 𝐿4 = 0} has no real solutions with respect to the unknowns 𝑓 and
𝛽. □

Lemma 4.4. Let the conditions {(13)} hold for the system (3). Then the origin (0, 0) is a
center if and only if the first four Lyapunov quantities vanish 𝐿1 = 𝐿2 = 𝐿3 = 𝐿4 = 𝐿5 = 0.

Proof. Denote 𝛼 + 𝛽 = 𝛾 ≠ 0. Then under the conditions {(13), 𝛼 = 𝛾 − 𝛽} we calculate
the first five Lyapunov quantities. The first one look as 𝐿1 = 𝐴𝑐 · 𝑐 + 𝐵𝑐, where

𝐴𝑐 = 𝛽((𝑎 + 𝑓 ) (1 − 𝛾2) − 𝛾),
𝐵𝑐 = 2𝛽( 𝑓 − 𝛾) − (𝑎 + 𝑓 )𝛾(−1 + 2𝑎𝛽 − 2 𝑓 𝛽 + 3𝛽𝛾 − 𝛾2).

Remark that in conditions {(13), 𝛼 = 𝛾 − 𝛽} the system (3) has the invariant straight
lines L∞ = 𝑥 − 1, L2 = (𝛽 − 𝛾)𝑥 + 𝑦 − 𝛽] and the exponential factor L3 = exp[( 𝑓 𝑦𝛽2 +
𝛾2 − 𝛽𝛾(3 + 𝑐 + 𝑓 𝛽) − 𝑑𝛽 − 1)/(𝑥 − 1)] .

Let 𝐴𝑐 = 0. Then 𝛾2 − 1 ≠ 0 and the system {𝐴𝑐 = 0, 𝐵𝑐 = 0} gives us

𝑎 = 𝛾2(1 + 𝛽𝛾 − 𝛾2)/(2𝛽(1 − 𝛾2)), 𝑓 = 𝛾(𝛾 − 2𝛽 + 𝛽𝛾2 − 𝛾3)/(2𝛽(𝛾2 − 1)).

Substituting the expression of 𝑎 and 𝑓 into 𝐿2, 𝐿3, 𝐿4 and 𝐿5 we obtain that 𝐿2 =

𝛾 𝑓0 𝑓1 𝑓2, 𝐿3 = 𝛾 𝑓0 𝑓1 𝑓3, 𝐿4 = 𝛾 𝑓0 𝑓1 𝑓4, 𝐿5 = 𝛾 𝑓0 𝑓1 𝑓5, where

𝑓0 = 𝑐𝛽(𝛾2 − 1) + 𝛾(𝛾2 + 𝛽𝛾 − 1),
𝑓1 = 4𝛽 − 2𝑐𝛽(𝛾2 − 1) + 𝛾(𝛾2 − 1)2 − 𝛽𝛾2(𝛾2 + 1),
𝑓2 = (3𝛾 − 𝑐𝛽) (𝛾2 − 1) − 2𝛽(3𝛾2 − 1)

and 𝑓3, 𝑓4, 𝑓5 are polynomials in variables 𝑐, 𝛽, 𝛾. If 𝑓0 = 0, then {Lemma 3.2, (19)}, and
if 𝑓1 = 0, then {Lemma 3.3, (25)}.

Assume that (𝛾2−1) 𝑓0 𝑓1 ≠ 0 and let 𝑓2 = 0. From 𝑓2 = 0 we calculate 𝑐 = (6𝛽𝛾2−3𝛾3−
2𝛽 + 3𝛾)/(𝛽(1 − 𝛾2)) and substitute it in 𝐿3, 𝐿4, 𝐿5: 𝐿3 = 𝜑0𝜑3, 𝐿4 = 𝜑0𝜑4, 𝐿5 = 𝜑0𝜑5,

where

𝜑0 = 1 + 𝛽𝛾 − 𝛾2, 𝜑3 = 𝛾(14 + 17𝛾2 − 𝛾4)𝛽 + (1 − 𝛾2) (2 + 9𝛾2 − 𝛾4),
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and 𝜑4, 𝜑5 are polynomials in 𝛽, 𝛾. If 𝜑0 = 0, then {Lemma 3.4, (27)}, and if 𝜑3 = 0,
then 𝛽 = (𝛾2 − 1) (2 + 9𝛾2 − 𝛾4)/(𝛾(14 + 17𝛾2 − 𝛾4)) ⇒

𝜑4 = 212 − 976𝛾2 + 149𝛾4 + 39𝛾6 − 21𝛾8 − 3𝛾10,

𝜑5 = 341744 + 8972240𝛾2 + 20117464𝛾4 − 330716296𝛾6 + 161032455𝛾8

−51877847𝛾10 − 26524163𝛾12 + 4576265𝛾14 + 470531𝛾16 − 577165𝛾18

−126177𝛾20 − 8877𝛾22 − 174𝛾24.

The polynomials 𝜑4 and 𝜑5 have no common solutions.
Let now 𝛽𝛾𝐴𝑐 ≠ 0 and express 𝑐 from 𝐿1 = 0. Substituting

𝑐 = (2𝛽( 𝑓 − 𝛾) − 𝛾(𝑎 + 𝑓 ) (2𝑎𝛽 − 2 𝑓 𝛽 + 3𝛽𝛾 − 𝛾2 − 1))/(𝛽(𝛾 + (𝑎 + 𝑓 ) (𝛾2 − 1)))

in 𝐿2, 𝐿3, 𝐿4 and 𝐿5 we obtain that 𝐿2 = 𝜓0𝜓2, 𝐿3 = 𝜓0𝜓3, 𝐿4 = 𝜓0𝜓4, 𝐿5 = 𝜓0𝜓5,

where

𝜓0 = ((𝛽 − 𝛾)𝛾3 − 2𝛽( 𝑓 − 𝛾 − 𝑎𝛾2) − 𝛾2) (𝑎𝛽𝛾 + (𝑎 + 𝑓 ) (𝑎𝛽 − 𝛾2 − 𝑓 𝛽𝛾2)),
𝜓2 = 𝐴𝛽 · 𝛽 + 𝐵𝛽 ,

𝐴𝛽 = 2 𝑓 + 2(𝑎 + 𝑓 ) (2 𝑓 𝛾 − 1) + 2(𝑎 + 𝑓 )2( 𝑓 − 4𝛾 + 𝑓 𝛾2) + (𝑎 + 𝑓 )3(3 − 5𝛾2),
𝐵𝛽 = (𝑎 + 𝑓 ) ((𝑎 + 𝑓 ) (3 − 𝛾2) − 2𝛾)

and 𝜓3, 𝜓4, 𝜓5 are polynomials in 𝑎, 𝑓 , 𝛽, 𝛾. If 𝜓0 = 0, then {Lemma 3.2, (20)}. Let
𝜓0 ≠ 0. If 𝑎 + 𝑓 = 0, then 𝜓2 = 0 ⇒ 𝑎 = 𝑓 = 0 ⇒ gcd(𝑃,𝑄) = 𝑥 − 1 ≠ 1. The system
{𝐴𝛽 = 0, 𝐵𝛽 = 0, 𝛾(𝑎 + 𝑓 ) ≠ 0} ⇒ gives us

𝑎 = 4𝛾3/((𝛾2 − 3) (9 + 𝛾2)), 𝑓 = 6𝛾(3 + 𝛾2)/((3 − 𝛾2) (9 + 𝛾2))

⇒ 𝜓3 = 𝜂0𝜂3, 𝜓4 = 𝜂0𝜂4, 𝜓5 = 𝜂0𝜂5, where

𝜂0 = 3 + 2𝛽𝛾 − 𝛾2, 𝜂3 = 16𝛾(9 + 9𝛾2 + 𝛾4)𝛽 − (𝛾2 + 9) (𝛾2 − 3) (1 + 3𝛾2).

If 𝜂0 = 0, then {Lemma 3.4,(28)}. If 𝜂3 = 0, then 𝛽 = (𝛾2−3) (9+𝛾2) (1+3𝛾2)/(16𝛾(9+
9𝛾2 + 𝛾4)) and

𝜂4 = 1359 − 3582𝛾2 − 1524𝛾4 − 178𝛾6 − 11𝛾8,

𝜂5 = 399256533 + 7147083924𝛾2 + 16160765949𝛾4 − 88245537822𝛾6

−98340968934𝛾8 − 42412220400𝛾10 − 10500825742𝛾12 − 1982042948𝛾14

−323807311𝛾16 − 38802452𝛾18 − 2858767𝛾20 − 107822𝛾22.

The polynomials 𝜂4 and 𝜂5 have not common roots.
Suppose now that 𝛽𝛾( 𝑓 + 𝑎)𝐴𝑐𝐴𝛽 ≠ 0. From 𝜓2 = 0 we express 𝛽 : 𝛽 = −𝐵𝛽/𝐴𝛽

and substitute it in 𝜓3, 𝜓4, 𝜓5. We obtain: 𝜓3 = 𝛿0𝛿3, 𝜓4 = 𝛿0𝛿4, 𝜓5 = 𝛿0𝛿5, where

𝛿0 = 𝑎 − 𝑓 (𝑎 + 𝑓 )2 + (𝑎 + 𝑓 ) (3𝑎 + 𝑓 )𝛾 + (𝑎 + 𝑓 )2(2𝑎 + 𝑓 )𝛾2.
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First we will examine the equality 𝛿0 = 0. Each of the following three sets 1) { 𝑓 =

0, 𝑎 = −(1/𝛾)}, 2) { 𝑓 = 0, 𝑎 = −1/(2𝛾)}, 3) { 𝑓 = −2𝑎 ≠ 0, 𝛾 = (1+2𝑎2)/𝑎} vanish 𝛿0.

In the case 1) (respectively, 2), 3)) we have Lemma {3.2, (16), 𝛽 = −1/𝛾} (respectively,
Lemma 3.5, (35), Lemma 3.4, (31)). Suppose 𝑓 ( 𝑓 +2𝑎) ≠ 0 and 𝑎 = (𝑢2−4 𝑓 2−1)/(8 𝑓 ).
Then 𝛿0 = 0 ⇒ 𝛾 = 2 𝑓 (3 + 4 𝑓 2 ∓ 4𝑢 + 𝑢2)/((−1 ± 𝑢) (4 𝑓 2 + 𝑢2 − 1)) ⇒ Lemma 3.4,
(32).

Let 𝛿0 ≠ 0 and 𝛿3 = 𝛿4 = 𝛿5 = 0. Suppose that R0 = 0, where R0 = (𝛾2 −
3) (9 𝑓 + 6𝛾 + 𝑓 𝛾2) + 36𝛾. Taking into account that 𝛾 ≠ 0, the equality R0 = 0 gives us
𝑓 = 6𝛾(3 + 𝛾2)/((3 − 𝛾2) (9 + 𝛾2)). Substituting the expression of 𝑓 in 𝛿3, 𝛿4, 𝛿5, we
obtain: 𝛿3 = Δ0Δ3, 𝛿4 = Δ0Δ4, 𝛿5 = Δ0Δ5, where

Δ0 = (3 − 𝛾2) (9 + 𝛾2)𝑎 + 4𝛾3,

Δ3 = 5𝑎2(𝛾2 − 3)2(1 + 𝛾2) (3 + 𝛾2) (9 + 𝛾2)2−
8𝑎𝛾(𝛾2 − 3) (9 + 𝛾2) (117 + 129𝛾2 + 49𝛾4 + 5𝛾6)+
6(3 + 𝛾2) (81 + 702𝛾2 + 540𝛾4 + 186𝛾6 + 11𝛾8)

and Δ4, Δ5 are polynomial in 𝑎, 𝛾 (here and in the future we neglect the nonzero factors).
If Δ0 = 0, then 𝛿0 = 0. We calculate the following two resultants with respect to the
variable 𝑎:

𝑅𝑎43 ≡ 𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 [Δ4,Δ3, 𝑎] = −5314410 − 10333575𝛾2 − 10482291𝛾4

−7030476𝛾6 − 3361176𝛾8 − 757026𝛾10 + 22734𝛾12 + 52740𝛾14 + 11850𝛾16

−5775𝛾18 + 605𝛾20,

𝑅𝑎53 ≡ 𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 [Δ5,Δ3, 𝑎] = −204368836893016410 − 78124852045047566745𝛾2

−163756066096342731222𝛾4 − 96691944562452884637𝛾6

−65295919868671875114𝛾8 − 231514833275418305043𝛾10

−349818971483621819394𝛾12 − 225165183477638890419𝛾14

+8096548601981725416𝛾16 + 156133967087099004714𝛾18

+157409522222069149956𝛾20 + 75314811652151245182𝛾22

+4169565994499890092𝛾24 − 20155578686541419814𝛾26

−15882244595493905700𝛾28 − 6818058573715824678𝛾30

−1850109425790483978𝛾32 − 301146961631290581𝛾34

−12297992828350350𝛾36 + 8047908867120815𝛾38 + 2104984082966110𝛾40

+224322029461865𝛾42 − 66037811138170𝛾44 − 14404146643895𝛾46

+4307153529500𝛾48 + 103033012500𝛾50

and the resultant with respect to the variable 𝛾 : 𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 [𝑅𝑎53, 𝑅𝑎43, 𝛾] ≠ 0. There-
fore, the system {Δ3 = 0,Δ4 = 0,Δ5 = 0} is incompatible in rapport with the variables 𝑎
and 𝛾.
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In what follows, in this subsection we will consider 𝛿0R0 ≠ 0 and using the resultants we
solve the system of polynomials equations in 𝑎, 𝑓 , 𝛾 : 𝛿3 = 0, 𝛿4 = 0, 𝛿5 = 0. The system
𝑓 = 0, 𝛿3 = 0, 𝛿4 = 0, 𝛿5 = 0, 𝛿0 ≠ 0 has not real solutions. Eliminating nonzero factors
such as 𝑓 , 𝛾, 1+𝛾2, 3+𝛾2, 1+3𝛾2, 2+𝛾2, 403+1741𝛾2 +522𝛾4, 72361+91494574𝛾2 +
2288596483𝛾4 + 5776070816𝛾6 + 5787798803𝛾8 + 2797313270𝛾10 + 652276861𝛾12 +
63507100𝛾14 + 2102500𝛾16, 61009 + 540628𝛾2 + 1380646𝛾4 + 606612𝛾6 + 165105𝛾8,

we calculate the resultants:

R𝑎43 = 𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 [𝛿4, 𝛿3, 𝑎], R𝑎53 = 𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 [𝛿5, 𝛿3, 𝑎],
R𝑎54 = 𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 [𝛿5, 𝛿4, 𝑎],R𝑎 𝑓1 = 𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 [R𝑎53,R𝑎43, 𝑓 ],
R𝑎 𝑓2 = 𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 [R𝑎54,R𝑎43, 𝑓 ] .

The polynomials in 𝛾 : R𝑎 𝑓1,R𝑎 𝑓2 have only the following common real solutions
𝛾 = ±1, 𝛾 = ±

√
5. If 𝛾 = ±1, then

R𝑎43 = 0, R𝑎53 = 0,R𝑎54 = 0 (39)

⇒ 𝑏 = 0, and if 𝛾 = ±
√

5, then (39) has not real solutions. □

4.4. Centers in conditions (14).

Lemma 4.5. In the conditions (14) the system (3) has a center at the origin (0, 0) if and
only if the first three Lyapunov quantities vanish 𝐿1 = 𝐿2 = 𝐿3 = 0.

Proof. Let 𝛼 = 𝛾 − 𝛽. For the system {(3), (14)} we calculate at (0, 0) the first three
Lyapunov quantities 𝐿1, 𝐿2 and 𝐿3. The Lyapunov quantity 𝐿1 looks as 𝐿1 = 𝑓0 𝑓1, where

𝑓0 = 2(𝑐 + 2)2𝛽𝛾 + (𝑐 + 2) (1 + 𝑑𝛽 − 𝑓 𝛽 + 4 𝑓 𝛽𝛾2) + 𝑓 𝛽𝛾(𝑑 − 2 𝑓 + 2 𝑓 𝛾2),
𝑓1 = 1 + 𝑑𝛽 + 𝑓 𝛽 + 3𝛽𝛾 + 𝑐𝛽𝛾 − 𝛾2 + 𝑓 𝛽𝛾2.

If 𝑓0 = 0, then Lemma {3.2, (21)}. Let 𝑓1 = 0. Then

𝑑 = −(1 + 𝑓 𝛽 + 3𝛽𝛾 + 𝑐𝛽𝛾 − 𝛾2 + 𝑓 𝛽𝛾2)/𝛽 ⇒ 𝐿2 = 𝐴𝛽𝛽 + 𝐵𝛽 ,

where

𝐴𝛽 = 10 + 9𝑐 + 2𝑐2 − 2 𝑓 2 + 17 𝑓 𝛾 + 8𝑐 𝑓 𝛾 + 6 𝑓 2𝛾2, 𝐵𝛽 = 𝛽 + 2𝛾 + 𝑐𝛾 + 𝑓 𝛾2 − 𝑓 .

If 𝐴𝛽 = 0, 𝐵𝛽 = 0, then 𝑐 = −(5 + 3𝛾2)/(2(1 + 𝛾2)), 𝑓 = −𝛾/(2(1 + 𝛾2)) ⇒ 𝐿3 =

𝛽 − 𝛾 = 0 ⇒ Lemma {3.5, (33)}.
Let now 𝐴𝛽 ≠ 0. Then 𝐿2 = 0 ⇒ 𝛽 = −𝐵𝛽/𝐴𝛽 ⇒ 𝐿3 = 𝜑1𝜑2𝜑3, where

𝜑1 = 2 𝑓 + 𝛾 + 2 𝑓 𝛾2, 𝜑2 = 4 + 4𝑐 + 𝑐2 − 𝑓 2 + 8 𝑓 𝛾 + 4𝑐 𝑓 𝛾 + 3 𝑓 2𝛾2,

𝜑3 = 6 + 5𝑐 + 𝑐2 − 𝑓 2 + 9 𝑓 𝛾 + 4𝑐 𝑓 𝛾 + 3 𝑓 2𝛾2.
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If 𝜑1 = 0, then Lemma {3.5, (34)}. Denote 𝛾(𝑢) = (1 − 6𝑢2 + 𝑢4)/(4𝑢(𝑢2 − 1)). Then
𝜑2 = 𝜑21𝜑22/(16𝑢2(𝑢2−1)2),where 𝜑21 = 𝑓 −8𝑢−4𝑐𝑢−14 𝑓 𝑢2+8𝑢3+4𝑐𝑢3+ 𝑓 𝑢4, 𝜑22 =

3 𝑓 − 8𝑢 − 4𝑐𝑢 − 10 𝑓 𝑢2 + 8𝑢3 + 4𝑐𝑢3 + 3 𝑓 𝑢4. If 𝜑21 = 0, then Lemma {3.6, (36)}. The
case {𝛾(𝑢), 𝜑22 = 0} is reduced by transformation 𝑢 = (𝑣 − 1)/(1 + 𝑣) to the case
{𝛾(𝑣), 𝜑21 |𝑢=𝑣 = 0}.

Let now 𝜑3 = 0 and put 𝛾 = ( 𝑓 − 𝛿 − 𝑓 𝛿2)/(2 𝑓 𝛿). Then 𝜑3 = 𝜑31𝜑32/(4𝛿2), where
𝜑31 = 𝑓 + 3𝛿 + 2𝑐𝛿 − 3 𝑓 𝛿2 and 𝜑32 = 3 𝑓 + 3𝛿 + 2𝑐𝛿 − 𝑓 𝛿2. From 𝜑31 = 0 we calculate
𝑐 : 𝑐 = (3 𝑓 𝛿2−3𝛿− 𝑓 )/(2𝛿) ⇒ 𝛽 = −( 𝑓 +𝛿+ 𝑓 𝛿2)/(2 𝑓 𝛿) ⇒ 𝑓 = −𝛿/(1+2𝛽𝛿+𝛿2) ⇒
Lemma {3.4, (29)}. In the case 𝜑32 = 0 we have 𝑐 = ( 𝑓 𝛿2 − 3 𝑓 − 3𝛿)/(2𝛿) ⇒ 𝛽 =

( 𝑓 − 𝛿 + 𝑓 𝛿2)/(2 𝑓 𝛿) ⇒ 𝑓 = 𝛿/(1 − 2𝛽𝛿 + 𝛿2) ⇒ Lemma {3.4, (30)}.
□

The statement of the Main Theorem follows from Lemmas 4.1 − 4.5.

References

[1] Christopher, C., Llibre, J. and Pereira, J.V. Multiplicity of invariant algebraic curves in polynomial
vector fields. Pacific J. of Math., 2007, vol. 229, no. 1, 63–117.

[2] Cozma, D. Integrability of cubic systems with invariant straight lines and invariant conics. Chişinău:
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Center problem for quartic differential systems with an affine
invariant straight line of maximal multiplicity
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Abstract. In this paper the quartic differential systems with a center-focus
critical point and non-degenerate infinity are examined. We show that in
this family the maximal multiplicity of an affine invariant straight line is
six. Modulo the affine transformation and time rescaling the classes of
systems with an affine invariant straight line of multiplicity two, three,...,
six are determined. In the cases when the quartic systems has an affine
invariant straight line of maximal multiplicity the problem of the center
is solved.
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Problema centrului pentru sistemele diferenţiale cuartice cu o
dreaptă invariantă afină de multiplicitate maximală

Rezumat. În această lucrare sunt examinate sistemele diferenţiale
cuartice cu punct critic de tip centru-focar şi infinitul nedegenerat. Se
arată că ı̂n această familie de sisteme multiplicitatea maximală a unei
drepte invariante afine este egală cu şase. Cu exactitatea unei transformări
afine de coordonate şi rescalarea timpului sunt determinate clasele de sis-
teme cu o dreaptă invariantă afină de multiplicitatea doi, trei, ..., şase. În
cazurile când sistemele cuartice au o dreaptă invarinată de multiplicitate
maximală problema centrului este rezolvată.
Cuvinte-cheie: sistem diferenţial cuartic, dreaptă invariantă multiplă,
punct critic de tip centru-focar.
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Vacaraş O.

1. Introduction

We consider the real polynomial differential systems

¤𝑥 = 𝑝(𝑥, 𝑦), ¤𝑦 = 𝑞(𝑥, 𝑦), (1)

where ¤𝑥 = 𝑑𝑥/𝑑𝑡, ¤𝑦 = 𝑑𝑦/𝑑𝑡.
Let 𝑛 = 𝑚𝑎𝑥{𝑑𝑒𝑔(𝑝), 𝑑𝑒𝑔(𝑞)}. If 𝑛 = 2 (respectively, 𝑛 = 3, 𝑛 = 4) then the system

(1) is called quadratic (respectively, cubic, quartic). Via an affine transformation of co-
ordinates and time rescaling each non-degenerate quartic system with a non-degenerate
infinity and a center-focus critical point, i.e. a critical point with pure imaginary eigen-
values, can be written in the form{

¤𝑥 = 𝑦 + 𝑝2(𝑥, 𝑦) + 𝑝3(𝑥, 𝑦) + 𝑝4(𝑥, 𝑦) ≡ 𝑝(𝑥, 𝑦),
¤𝑦 = −(𝑥 + 𝑞2(𝑥, 𝑦) + 𝑞3(𝑥, 𝑦) + 𝑞4(𝑥, 𝑦)) ≡ 𝑞(𝑥, 𝑦),

(2)

where 𝑝𝑖 (𝑥, 𝑦) =
∑𝑖

𝑗=0 𝑎𝑖− 𝑗 , 𝑗𝑥
𝑖− 𝑗 𝑦 𝑗 , 𝑞𝑖 (𝑥, 𝑦) =

∑𝑖
𝑗=0 𝑏𝑖− 𝑗 , 𝑗𝑥

𝑖− 𝑗 𝑦 𝑗 , 𝑖 = 2, 3, 4 are homo-
geneous polynomials in 𝑥 and 𝑦 of degree 𝑖 with real coefficients.

The critical point (0, 0) of system (2) is either a focus or a center. The problem of
distinguishing between a center and a focus is called the center problem.

Suppose that
𝑦𝑝4(𝑥, 𝑦) − 𝑥𝑞4(𝑥, 𝑦) . 0, gcd(𝑝, 𝑞) = 1, (3)

i.e. at infinity the system (2) has at most five distinct singular points and the right-hand
sides of (2) do not have the common divisors of degree greater than 0.

Denote X = 𝑝 (𝑥, 𝑦) 𝜕
𝜕𝑥

+ 𝑞 (𝑥, 𝑦) 𝜕
𝜕𝑦

.
An algebraic curve 𝑓 (𝑥, 𝑦) = 0, 𝑓 ∈ C[𝑥, 𝑦] (a function 𝑓 = exp(𝑔/ℎ), 𝑔, ℎ ∈ C[𝑥, 𝑦])

is called invariant algebraic curve (exponential factor) of the system (1) if there exists a
polynomial 𝐾 𝑓 ∈ C[𝑥, 𝑦], deg(𝐾) ≤ 𝑛−1 such that the identity X( 𝑓 ) ≡ 𝑓 (𝑥, 𝑦)𝐾 𝑓 (𝑥, 𝑦),
(𝑥, 𝑦) ∈ R2 ((𝑥, 𝑦) ∈ R2 \ {(𝑥, 𝑦) ∈ R2 | ℎ(𝑥, 𝑦) = 0}) holds. In particular, a straight
line 𝑙 ≡ 𝛼𝑥 + 𝛽𝑦 + 𝛾 = 0, 𝛼, 𝛽, 𝛾 ∈ C is invariant for (1) if there exists a polynomial
𝐾𝑙 ∈ C[𝑥, 𝑦] such that the identity 𝛼𝑃(𝑥, 𝑦) + 𝛽𝑄(𝑥, 𝑦) ≡ (𝛼𝑥 + 𝛽𝑦 + 𝛾)𝐾𝑙 (𝑥, 𝑦),
(𝑥, 𝑦) ∈ R2 holds.

The invariant straight line 𝛼𝑥+ 𝛽𝑦+𝛾 = 0 has multiplicity 𝜈 if 𝜈 is the greatest positive
integer such that (𝛼𝑥 + 𝛽𝑦 + 𝛾)𝜈 divides E = 𝑝 · X(𝑞) − 𝑞 · X(𝑝) [1].

The quartic differential systems of the form (2) with multiple line at infinity were
examined in [8]. In this paper, we establish that in the class of systems (2) the maximal
multiplicity of an affine invariant line is six. The coefficient conditions when (2) has an
affine invariant line of multiplicity two, three, four, five and six are determined and in the
cases of multiplicity six, the center problem is solved.
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2. Classification of the quartic systems with a multiple affine
invariant straight line

Let the quartic system (2) have an affine real invariant straight line 𝑙1. By a transfor-
mation of the form

𝑥 → 𝜈 · (𝑥 cos 𝜑 + 𝑦 sin 𝜑), 𝑦 → 𝜈 · (𝑦 cos 𝜑 − 𝑥 sin 𝜑), 𝜈 ≠ 0

we can do 𝑙1 to be described by the equation 𝑥 = 1. Then,

𝑎40 = −(𝑎20 + 𝑎30), 𝑎31 = −(1 + 𝑎11 + 𝑎21),
𝑎22 = −(𝑎02 + 𝑎12), 𝑎13 = −𝑎03, 𝑎04 = 0,

(4)

and (2) is reduced to the system


¤𝑥 = (1 − 𝑥) (𝑦 + 𝑎20𝑥

2 + 𝑥𝑦 + 𝑎11𝑥𝑦 + 𝑎02𝑦
2 + 𝑎20𝑥

3 + 𝑎30𝑥
3 + 𝑥2𝑦+

+𝑎11𝑥
2𝑦 + 𝑎21𝑥

2𝑦 + 𝑎02𝑥𝑦
2 + 𝑎12𝑥𝑦

2 + 𝑎03𝑦
3) ≡ 𝑝(𝑥, 𝑦),

¤𝑦 = −(𝑥 + 𝑏20𝑥
2 + 𝑏11𝑥𝑦 + 𝑏02𝑦

2 + 𝑏30𝑥
3 + 𝑏21𝑥

2𝑦 + 𝑏12𝑥𝑦
2+

+𝑏03𝑦
3 + 𝑏40𝑥

4 + 𝑏31𝑥
3𝑦 + 𝑏22𝑥

2𝑦2 + 𝑏13𝑥𝑦
3 + 𝑏04𝑦

4)) ≡ 𝑞(𝑥, 𝑦).

(5)

Next, we will determine the conditions when the invariant line 𝑥 = 1 for the system (5)
has maximal multiplicity.

For (5) we have

E = (𝑥 − 1)
(
𝑌2(𝑦) + 𝑌3(𝑦) · (𝑥 − 1) + · · · + 𝑌10(𝑦) · (𝑥 − 1)10

)
,

where𝑌 𝑗 (𝑦), 𝑗 = 2, ...10, are polynomial in 𝑦. The invariant line 𝑥−1 = 0 has multiplicity
at least 𝑗 if the system of identity {𝑌2(𝑦) ≡ 0, ..., 𝑌 𝑗 (𝑦) ≡ 0} holds. In particular, the
line 𝑥 − 1 = 0 has multiplicity at least two if 𝑌2(𝑦) ≡ 0. The polynomial 𝑌2(𝑦) look as:
𝑌2(𝑦) = 𝑌21(𝑦) · 𝑌22(𝑦), where
𝑌21(𝑦) = 1+𝑏20+𝑏30+𝑏40+(𝑏11+𝑏21+𝑏31)𝑦+(𝑏02+𝑏12+𝑏22)𝑦2+(𝑏03+𝑏13)𝑦3+𝑏04𝑦

4,

𝑌22(𝑦) = 3+ 2𝑎11 + 4𝑎2
20 + 𝑎21 + 4𝑎20𝑎30 + 𝑎2

30 − 2𝑎20𝑏11 − 𝑎30𝑏11 + 3𝑏20 + 2𝑎11𝑏20 +
𝑎21𝑏20−2𝑎20𝑏21−𝑎30𝑏21+3𝑏30+2𝑎11𝑏30+𝑎21𝑏30−2𝑎20𝑏31−𝑎30𝑏31+3𝑏40+2𝑎11𝑏40+
𝑎21𝑏40 + 2(2𝑎02 + 𝑎12 + 6𝑎20 + 4𝑎11𝑎20 + 2𝑎20𝑎21 + 3𝑎30 + 2𝑎11𝑎30 + 𝑎21𝑎30 − 2𝑎20𝑏02 −
𝑎30𝑏02 − 2𝑎20𝑏12 − 𝑎30𝑏12 + 2𝑎02𝑏20 + 𝑎12𝑏20 − 2𝑎20𝑏22 − 𝑎30𝑏22 + 2𝑎02𝑏30 + 𝑎12𝑏30 +
2𝑎02𝑏40+𝑎12𝑏40)𝑦+ (9+3𝑎03+12𝑎11+4𝑎2

11+8𝑎02𝑎20+4𝑎12𝑎20+6𝑎21+4𝑎11𝑎21+𝑎2
21+

4𝑎02𝑎30 + 2𝑎12𝑎30 − 3𝑏02 − 2𝑎11𝑏02 − 𝑎21𝑏02 − 6𝑎20𝑏03 − 3𝑎30𝑏03 + 2𝑎02𝑏11 + 𝑎12𝑏11 −
3𝑏12 − 2𝑎11𝑏12 − 𝑎21𝑏12 − 6𝑎20𝑏13 − 3𝑎30𝑏13 + 3𝑎03𝑏20 + 2𝑎02𝑏21 + 𝑎12𝑏21 − 3𝑏22 −
2𝑎11𝑏22 − 𝑎21𝑏22 + 3𝑎03𝑏30 + 2𝑎02𝑏31 + 𝑎12𝑏31 + 3𝑎03𝑏40)𝑦2 + 2(6𝑎02 + 4𝑎02𝑎11 + 3𝑎12 +
2𝑎11𝑎12 + 2𝑎03𝑎20 + 2𝑎02𝑎21 + 𝑎12𝑎21 + 𝑎03𝑎30 − 3𝑏03 − 2𝑎11𝑏03 − 𝑎21𝑏03 − 4𝑎20𝑏04 −
2𝑎30𝑏04+𝑎03𝑏11−3𝑏13−2𝑎11𝑏13−𝑎21𝑏13+𝑎03𝑏21+𝑎03𝑏31)𝑦3+(4𝑎2

02+6𝑎03+4𝑎03𝑎11+
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4𝑎02𝑎12+𝑎2
12+2𝑎03𝑎21+𝑎03𝑏02−2𝑎02𝑏03−𝑎12𝑏03−9𝑏04−6𝑎11𝑏04−3𝑎21𝑏04+𝑎03𝑏12−

2𝑎02𝑏13 − 𝑎12𝑏13 + 𝑎03𝑏22)𝑦4 + 2(2𝑎02 + 𝑎12) (𝑎03 − 𝑏04)𝑦5 + 𝑎03(𝑎03 − 𝑏04)𝑦6.

If 𝑌21(𝑦) ≡ 0, then the system (5) is degenerate, i.e. deg
(
gcd(𝑝, 𝑞)

)
> 0, therefore we

require 𝑌22(𝑦) to be identically equal to zero. Solving the identity 𝑌22(𝑦) ≡ 0 we obtain
the following result:

Lemma 2.1. The invariant straight line 𝑥 = 1 has for quartic system (5) the multiplicity at
least two if and only if the coefficients of (5) verify the following five series of conditions:

𝑎03 = 0, 𝑏04 = 0, 𝑎12 = −2𝑎02, 𝑏13 = −𝑏03, 𝑎21 = −3 − 2𝑎11,

𝑏22 = −𝑏02 − 𝑏12, 𝑏31 = 2𝑎20 + 𝑎30 − 𝑏11 − 𝑏21;
(6)

𝑎03 = 0, 𝑏04 = 0, 𝑎12 = −2𝑎02, 𝑏13 = −𝑏03, 𝑏22 = 3 + 2𝑎11 + 𝑎21 − 𝑏02 − 𝑏12,

𝑏40 = (−3 − 2𝑎11 − 4𝑎2
20 − 𝑎21 − 4𝑎20𝑎30 − 𝑎2

30 + 2𝑎20𝑏11 + 𝑎30𝑏11 − 3𝑏20−
−2𝑎11𝑏20 − 𝑎21𝑏20 + 2𝑎20𝑏21 + 𝑎30𝑏21 − 3𝑏30 − 2𝑎11𝑏30 − 𝑎21𝑏30 + 2𝑎20𝑏31+
+𝑎30𝑏31)/(3 + 2𝑎11 + 𝑎21);

(7)

𝑎03 = 0, 𝑏04 = 0, 𝑏13 = 2𝑎02 + 𝑎12 − 𝑏03, 𝑏31 = (−9 − 12𝑎11 − 4𝑎2
11+

+4𝑎02𝑎20 + 2𝑎12𝑎20 − 6𝑎21 − 4𝑎11𝑎21 − 𝑎2
21 + 2𝑎02𝑎30 + 𝑎12𝑎30 + 3𝑏02+

+2𝑎11𝑏02 + 𝑎21𝑏02 − 2𝑎02𝑏11 − 𝑎12𝑏11 + 3𝑏12 + 2𝑎11𝑏12 + 𝑎21𝑏12−
−2𝑎02𝑏21 − 𝑎12𝑏21 + 3𝑏22 + 2𝑎11𝑏22 + 𝑎21𝑏22)/(2𝑎02 + 𝑎12),
𝑏40 = −(2𝑎02 + 𝑎12 + 6𝑎20 + 4𝑎11𝑎20 + 2𝑎20𝑎21 + 3𝑎30 + 2𝑎11𝑎30+
𝑎21𝑎30 − 2𝑎20𝑏02 − 𝑎30𝑏02 − 2𝑎20𝑏12 − 𝑎30𝑏12 + 2𝑎02𝑏20 + 𝑎12𝑏20−
−2𝑎20𝑏22 − 𝑎30𝑏22 + 2𝑎02𝑏30 + 𝑎12𝑏30)/(2𝑎02 + 𝑎12);

(8)

𝑎03 = 0, 𝑎12 = −2𝑎02, 𝑎21 = −3 − 2𝑎11, 𝑎30 = −2𝑎20; (9)

𝑏04 = 𝑎03, 𝑏22 = (−4𝑎2
02 + 3𝑎03 + 2𝑎03𝑎11 − 4𝑎02𝑎12 − 𝑎2

12 + 𝑎03𝑎21−
−𝑎03𝑏02 + 2𝑎02𝑏03 + 𝑎12𝑏03 − 𝑎03𝑏12 + 2𝑎02𝑏13 + 𝑎12𝑏13)/𝑎03,

𝑏31 = (−6𝑎02 − 4𝑎02𝑎11 − 3𝑎12 − 2𝑎11𝑎12 + 2𝑎03𝑎20 − 2𝑎02𝑎21 − 𝑎12𝑎21+
𝑎03𝑎30 + 3𝑏03 + 2𝑎11𝑏03 + 𝑎21𝑏03 − 𝑎03𝑏11 + 3𝑏13 + 2𝑎11𝑏13 + 𝑎21𝑏13−
−𝑎03𝑏21)/𝑎03, 𝑏40 = −(𝑎03 + 4𝑎02𝑎20 + 2𝑎12𝑎20 + 2𝑎02𝑎30 + 𝑎12𝑎30−
−2𝑎20𝑏03 − 𝑎30𝑏03 − 2𝑎20𝑏13 − 𝑎30𝑏13 + 𝑎03𝑏20 + 𝑎03𝑏30)/𝑎03.

(10)

The multiplicity of the invariant straight line 𝑥 = 1 is at least three if {𝑌2(𝑦) ≡
0, 𝑌3(𝑦) ≡ 0}. Taking into account the condition (3) the identity 𝑌3(𝑦) ≡ 0 gives, in each
of the five cases (6)-(10) of Lemma 2.1 the following series of conditions:

1) (6) ⇒

𝑎30 = −2𝑎20, 𝑎02 = 0, 𝑎11 = −3; (11)
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𝑏03 = 𝑎02, 𝑏12 = (2𝑎02 + 3𝑎20 + 𝑎11𝑎20 − 2𝑎20𝑏02 + 𝑎02𝑏20 − 𝑎02𝑏40)/𝑎20,

𝑏21 = (6 + 2𝑎11 + 𝑎2
20 − 2𝑎20𝑏11 + 3𝑏20 + 𝑎11𝑏20 − 3𝑏40 − 𝑎11𝑏40)/𝑎20,

𝑏30 = (3𝑎20 + 2𝑎30 + 𝑎20𝑏20 + 𝑎30𝑏20 − 3𝑎20𝑏40 − 𝑎30𝑏40)/𝑎20;
(12)

𝑏03 = 𝑎02, 𝑏12 = (3𝑎02 + 3𝑎30 + 𝑎11𝑎30 − 2𝑎30𝑏02 + 2𝑎02𝑏20 + 𝑎02𝑏30)/𝑎30,

𝑏21 = 9 + 3𝑎11 − 2𝑎30𝑏11 + 6𝑏20 + 2𝑎11𝑏20 + 3𝑏30 + 𝑎11𝑏30)/𝑎30,

𝑎20 = 0, 𝑏40 = 𝑏20 + 2;
(13)

2) (7) ⇒

𝑏03 = 𝑎02, 𝑏12 = (9 + 9𝑎11 + 2𝑎2
11 + 2𝑎02𝑎20 + 3𝑎21 + 𝑎11𝑎21 + 𝑎02𝑎30−

−6𝑏02 − 4𝑎11𝑏02 − 2𝑎21𝑏02)/(3 + 2𝑎11 + 𝑎21),
𝑏21 = (15𝑎20 + 8𝑎11𝑎20 + 3𝑎20𝑎21 + 6𝑎30 + 3𝑎11𝑎30 + 𝑎21𝑎30 − 6𝑏11−
−4𝑎11𝑏11 − 2𝑎21𝑏11)/(3 + 2𝑎11 + 𝑎21),
𝑏31 = (−3𝑎20 + 𝑎20𝑎21 + 𝑎11𝑎30 + 𝑎21𝑎30 + 3𝑏11 + 2𝑎11𝑏11+
+𝑎21𝑏11)/(3 + 2𝑎11 + 𝑎21);

(14)

𝑏03 = 𝑎02, 𝑏12 = (9 + 6𝑎11 + 𝑎2
11 + 𝑎02𝑎20 + 𝑎02𝑎30 − 6𝑏02 − 2𝑎11𝑏02+

+𝑎02𝑏11 − 𝑎02𝑏31)/(3 + 𝑎11),
𝑏21 = (9𝑎20 + 4𝑎11𝑎20 + 𝑎20𝑎21 + 6𝑎30 + 3𝑎11𝑎30 + 𝑎21𝑎30 + 𝑎11𝑏11+
+𝑎21𝑏11 − 6𝑏31 − 3𝑎11𝑏31 − 𝑎21𝑏31)/(3 + 𝑎11),
𝑏30 = (9𝑎20 + 4𝑎11𝑎20 + 𝑎20𝑎21 + 6𝑎30 + 3𝑎11𝑎30 + 𝑎21𝑎30 + 𝑎11𝑏11+
+𝑎21𝑏11 − 6𝑏31 − 3𝑎11𝑏31 − 𝑎21𝑏31)/(3 + 𝑎11);

(15)

𝑏03 = 𝑎02, 𝑏12 = (𝑎02𝑎20 − 6𝑏02 + 2𝑎21𝑏02 − 2𝑎02𝑏11 − 𝑎02𝑏21)/(3 − 𝑎21),
𝑎11 = −3, 𝑏31 = 𝑎20 + 𝑎30 + 𝑏11, 𝑏30 = (−9 + 3𝑎2

20 + 3𝑎21 + 𝑎20𝑎30−
−6𝑎20𝑏11 − 2𝑎30𝑏11 − 6𝑏20 + 2𝑎21𝑏20 − 3𝑎20𝑏21 − 𝑎30𝑏21)/(3 − 𝑎21);

(16)

3) (8) ⇒

𝑏03 = 𝑎02, 𝑏12 = (3𝑎02 + 4𝑎02𝑎11 + 𝑎11𝑎12 + 3𝑎02𝑎21 + 𝑎12𝑎21+
+𝑎02𝑏02 + 𝑎12𝑏02 − 3𝑎02𝑏22 − 𝑎12𝑏22)/𝑎02,

𝑏30 = −(3𝑎02 − 3𝑎11𝑎20 − 3𝑎20𝑎21 − 𝑎11𝑎30 − 𝑎21𝑎30 − 3𝑎20𝑏02−
−𝑎30𝑏02 + 2𝑎02𝑏20 + 3𝑎20𝑏22 + 𝑎30𝑏22)/𝑎02,

𝑏21 = (6𝑎11 + 3𝑎2
11 + 𝑎02𝑎20 + 6𝑎21 + 4𝑎11𝑎21 + 𝑎2

21 + 6𝑏02+
+3𝑎11𝑏02 + 𝑎21𝑏02 − 2𝑎02𝑏11 − 6𝑏22 − 3𝑎11𝑏22 − 𝑎21𝑏22)/𝑎02;

(17)

𝑏03 = 𝑎02, 𝑏12 = (3𝑎02 + 4𝑎02𝑎11 + 𝑎11𝑎12 + 3𝑎02𝑎21 + 𝑎12𝑎21+
𝑎02𝑏02 + 𝑎12𝑏02 − 3𝑎02𝑏22 − 𝑎12𝑏22)/𝑎02,

𝑏30 = −(6𝑎4
02 + 18𝑎2

02𝑎11 + 3𝑎2
02𝑎

2
11 + 3𝑎3

02𝑎12 − 9𝑎02𝑎
2
11𝑎12 − 𝑎02𝑎

3
11𝑎12+

(18)
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𝑎3
11𝑎

2
12 + 3𝑎3

02𝑎20 − 2𝑎3
02𝑎11𝑎20 − 2𝑎2

02𝑎11𝑎12𝑎20 + 18𝑎2
02𝑎21 − 6𝑎2

02𝑎11𝑎21−
𝑎2

02𝑎
2
11𝑎21 − 18𝑎02𝑎11𝑎12𝑎21 + 3𝑎2

11𝑎
2
12𝑎21 − 3𝑎3

02𝑎20𝑎21 − 2𝑎2
02𝑎12𝑎20𝑎21−

9𝑎2
02𝑎

2
21 − 9𝑎02𝑎12𝑎

2
21 + 3𝑎02𝑎11𝑎12𝑎

2
21 + 3𝑎11𝑎

2
12𝑎

2
21 + 𝑎

2
02𝑎

3
21 + 2𝑎02𝑎12·

𝑎3
21 + 𝑎

2
12𝑎

3
21 + 18𝑎2

02𝑏02 − 15𝑎2
02𝑎11𝑏02 − 2𝑎2

02𝑎
2
11𝑏02 − 18𝑎02𝑎11𝑎12𝑏02+

2𝑎02𝑎
2
11𝑎12𝑏02 + 3𝑎2

11𝑎
2
12𝑏02 − 4𝑎3

02𝑎20𝑏02 − 2𝑎2
02𝑎12𝑎20𝑏02 − 27𝑎2

02𝑎21𝑏02+
𝑎2

02𝑎11𝑎21𝑏02 − 18𝑎02𝑎12𝑎21𝑏02 + 10𝑎02𝑎11𝑎12𝑎21𝑏02 + 6𝑎11𝑎
2
12𝑎21𝑏02+

5𝑎2
02𝑎

2
21𝑏02 + 8𝑎02𝑎12𝑎

2
21𝑏02 + 3𝑎2

12𝑎
2
21𝑏02 − 18𝑎2

02𝑏
2
02 + 2𝑎2

02𝑎11𝑏
2
02 − 9𝑎02·

𝑎12𝑏
2
02 + 7𝑎02𝑎11𝑎12𝑏

2
02 + 3𝑎11𝑎

2
12𝑏

2
02 + 8𝑎2

02𝑎21𝑏
2
02 + 10𝑎02𝑎12𝑎21𝑏

2
02+

3𝑎2
12𝑎21𝑏

2
02 + 4𝑎2

02𝑏
3
02 + 4𝑎02𝑎12𝑏

3
02 + 𝑎

2
12𝑏

3
02 − 6𝑎3

02𝑏11 + 2𝑎2
02𝑎11𝑎12𝑏11+

2𝑎3
02𝑎21𝑏11 + 2𝑎2

02𝑎12𝑎21𝑏11 + 4𝑎3
02𝑏02𝑏11 + 2𝑎2

02𝑎12𝑏02𝑏11 + 4𝑎4
02𝑏20+

2𝑎3
02𝑎12𝑏20 − 3𝑎3

02𝑏21 + 𝑎2
02𝑎11𝑎12𝑏21 + 𝑎3

02𝑎21𝑏21 + 𝑎2
02𝑎12𝑎21𝑏21+

2𝑎3
02𝑏02𝑏21 + 𝑎2

02𝑎12𝑏02𝑏21 − 18𝑎2
02𝑏22 + 15𝑎2

02𝑎11𝑏22 + 2𝑎2
02𝑎

2
11𝑏22+

18𝑎02𝑎11𝑎12𝑏22 − 2𝑎02𝑎
2
11𝑎12𝑏22 − 3𝑎2

11𝑎
2
12𝑏22 + 4𝑎3

02𝑎20𝑏22 + 2𝑎2
02·

𝑎12𝑎20𝑏22 + 27𝑎2
02𝑎21𝑏22 − 𝑎2

02𝑎11𝑎21𝑏22 + 18𝑎02𝑎12𝑎21𝑏22 − 10𝑎02·
𝑎11𝑎12𝑎21𝑏22 − 6𝑎11𝑎

2
12𝑎21𝑏22 − 5𝑎2

02𝑎
2
21𝑏22 − 8𝑎02𝑎12𝑎

2
21𝑏22 − 3𝑎2

12·
𝑎2

21𝑏22 + 36𝑎2
02𝑏02𝑏22 − 4𝑎2

02𝑎11𝑏02𝑏22 + 18𝑎02𝑎12𝑏02𝑏22 − 14𝑎02𝑎11𝑎12·
𝑏02𝑏22 − 6𝑎11𝑎

2
12𝑏02𝑏22 − 16𝑎2

02𝑎21𝑏02𝑏22 − 20𝑎02𝑎12𝑎21𝑏02𝑏22 − 6𝑎2
12·

𝑎21𝑏02𝑏22 − 12𝑎2
02𝑏

2
02𝑏22 − 12𝑎02𝑎12𝑏

2
02𝑏22 − 3𝑎2

12𝑏
2
02𝑏22 − 4𝑎3

02𝑏11𝑏22−
2𝑎2

02𝑎12𝑏11𝑏22 − 2𝑎3
02𝑏21𝑏22 − 𝑎2

02𝑎12𝑏21𝑏22 − 18𝑎2
02𝑏

2
22 + 2𝑎2

02𝑎11𝑏
2
22−

9𝑎02𝑎12𝑏
2
22 + 7𝑎02𝑎11𝑎12𝑏

2
22 + 3𝑎11𝑎

2
12𝑏

2
22 + 8𝑎2

02𝑎21𝑏
2
22 + 10𝑎02𝑎12·

𝑎21𝑏
2
22 + 3𝑎2

12𝑎21𝑏
2
22 + 12𝑎2

02𝑏02𝑏
2
22 + 12𝑎02𝑎12𝑏02𝑏

2
22 + 3𝑎2

12𝑏02𝑏
2
22−

4𝑎2
02𝑏

3
22 − 4𝑎02𝑎12𝑏

3
22 − 𝑎

2
12𝑏

3
22)/(𝑎

3
02(2𝑎02 + 𝑎12)),

𝑎30 = (3𝑎02𝑎11 − 𝑎2
11𝑎12 − 2𝑎2

02𝑎20 + 3𝑎02𝑎21 − 𝑎02𝑎11𝑎21 − 2𝑎11𝑎12·
𝑎21 − 𝑎02𝑎

2
21 − 𝑎12𝑎

2
21 + 3𝑎02𝑏02 − 2𝑎02𝑎11𝑏02 − 2𝑎11𝑎12𝑏02 − 3𝑎02·

𝑎21𝑏02 − 2𝑎12𝑎21𝑏02 − 2𝑎02𝑏
2
02 − 𝑎12𝑏

2
02 − 3𝑎02𝑏22 + 2𝑎02𝑎11𝑏22+

2𝑎11𝑎12𝑏22 + 3𝑎02𝑎21𝑏22 + 2𝑎12𝑎21𝑏22 + 4𝑎02𝑏02𝑏22 + 2𝑎12𝑏02𝑏22−
2𝑎02𝑏

2
22 − 𝑎12𝑏

2
22)/𝑎

2
02;

𝑏03 = 𝑎02, 𝑎02 = 0, 𝑏22 = 𝑎11 + 𝑎21 + 𝑏02,

𝑏30 = (162 + 207𝑎11 + 87𝑎2
11 + 12𝑎3

11 − 3𝑎2
12 − 9𝑎12𝑎20 − 4𝑎11𝑎12𝑎20+

45𝑎21 + 36𝑎11𝑎21 + 7𝑎2
11𝑎21 − 𝑎12𝑎20𝑎21 + 3𝑎2

21 + 𝑎11𝑎
2
21 − 198𝑏02−

174𝑎11𝑏02 − 38𝑎2
11𝑏02 + 4𝑎12𝑎20𝑏02 − 42𝑎21𝑏02 − 18𝑎11𝑎21𝑏02 − 2𝑎2

21𝑏02+
72𝑏2

02 + 32𝑎11𝑏
2
02 + 8𝑎21𝑏

2
02 − 8𝑏3

02 + 12𝑎12𝑏11 + 6𝑎11𝑎12𝑏11 + 2𝑎12𝑎21𝑏11−
4𝑎12𝑏02𝑏11 − 99𝑏12 − 87𝑎11𝑏12 − 19𝑎2

11𝑏12 + 2𝑎12𝑎20𝑏12 − 21𝑎21𝑏12−
9𝑎11𝑎21𝑏12 − 𝑎2

21𝑏12 + 72𝑏02𝑏12 + 32𝑎11𝑏02𝑏12 + 8𝑎21𝑏02𝑏12 − 12𝑏2
02𝑏12−

2𝑎12𝑏11𝑏12 + 18𝑏2
12 + 8𝑎11𝑏

2
12 + 2𝑎21𝑏

2
12 − 6𝑏02𝑏

2
12 − 𝑏

3
12 − 2𝑎2

12𝑏20+

(19)
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6𝑎12𝑏21 + 3𝑎11𝑎12𝑏21 + 𝑎12𝑎21𝑏21 − 2𝑎12𝑏02𝑏21 − 𝑎12𝑏12𝑏21)/𝑎2
12,

𝑎30 = −(18 + 15𝑎11 + 3𝑎2
11 + 2𝑎12𝑎20 + 3𝑎21 + 𝑎11𝑎21 − 18𝑏02−

8𝑎11𝑏02 − 2𝑎21𝑏02 + 4𝑏2
02 − 9𝑏12 − 4𝑎11𝑏12 − 𝑎21𝑏12 + 4𝑏02𝑏12+

𝑏2
12)/𝑎12;

𝑏03 = 𝑎02, 𝑎02 = 0, 𝑏22 = 𝑎11 + 𝑎21 + 𝑏02,

𝑏30 = −(3𝑎12 + 9𝑎20 + 3𝑎11𝑎20 + 3𝑎30 + 𝑎11𝑎30 − 6𝑎20𝑏02 − 2𝑎30𝑏02−
−3𝑎20𝑏12 − 𝑎30𝑏12 + 2𝑎12𝑏20)/𝑎12,

𝑏21 = (−18 − 15𝑎11 − 3𝑎2
11 + 𝑎12𝑎20 − 3𝑎21 − 𝑎11𝑎21 + 12𝑏02 + 6𝑎11𝑏02+

2𝑎21𝑏02 − 2𝑎12𝑏11 + 6𝑏12 + 3𝑎11𝑏12 + 𝑎21𝑏12)/𝑎12;

(20)

4) (9) ⇒

𝑎02 = 0, 𝑎11 = −3, 𝑎20 = 0; (21)

5) (10) ⇒

𝑏13 = 𝑎12 + 𝑎02, 𝑏21 = (−6𝑎02 − 3𝑎02𝑎11 + 𝑎03𝑎20 − 𝑎02𝑎21 + 6𝑏03+
+3𝑎11𝑏03 + 𝑎21𝑏03 − 2𝑎03𝑏11)/𝑎03,

𝑏30 = −(3𝑎03 + 3𝑎02𝑎20 + 𝑎02𝑎30 − 3𝑎20𝑏03 − 𝑎30𝑏03 + 2𝑎03𝑏20)/𝑎03,

𝑏12 = (−3𝑎2
02 + 3𝑎03 + 𝑎03𝑎11 − 𝑎02𝑎12 − 2𝑎03𝑏02 + 3𝑎02𝑏03 + 𝑎12𝑏03)/𝑎03;

(22)

𝑏13 = 𝑎12 + 𝑎02, 𝑏21 = (9𝑎3
02 − 15𝑎02𝑎03 − 6𝑎02𝑎03𝑎11 + 6𝑎2

02𝑎12−
3𝑎03𝑎12 − 𝑎03𝑎11𝑎12 + 𝑎02𝑎

2
12 + 𝑎2

03𝑎20 − 𝑎02𝑎03𝑎21 + 6𝑎02𝑎03𝑏02+
2𝑎03𝑎12𝑏02 − 12𝑎2

02𝑏03 + 9𝑎03𝑏03 + 4𝑎03𝑎11𝑏03 − 7𝑎02𝑎12𝑏03 − 𝑎2
12𝑏03+

𝑎03𝑎21𝑏03 − 2𝑎03𝑏02𝑏03 + 3𝑎02𝑏
2
03 + 𝑎12𝑏

2
03 − 2𝑎2

03𝑏11 + 3𝑎02𝑎03𝑏12+
𝑎03𝑎12𝑏12 − 𝑎03𝑏03𝑏12)/𝑎2

03,

𝑏30 = (12𝑎4
02 + 3𝑎2

02𝑎03 − 9𝑎2
03 − 3𝑎3

03 + 5𝑎2
02𝑎03𝑎11 − 9𝑎2

03𝑎11 − 2𝑎2
03𝑎

2
11+

7𝑎3
02𝑎12 + 𝑎02𝑎03𝑎11𝑎12 + 𝑎2

02𝑎
2
12 − 𝑎02𝑎

2
03𝑎20 + 4𝑎2

02𝑎03𝑎21 − 3𝑎2
03𝑎21−

𝑎2
03𝑎11𝑎21 + 𝑎02𝑎03𝑎12𝑎21 + 6𝑎2

02𝑎03𝑏02 + 6𝑎2
03𝑏02 + 4𝑎2

03𝑎11𝑏02 + 2𝑎02𝑎03·
𝑎12𝑏02 + 2𝑎2

03𝑎21𝑏02 − 31𝑎3
02𝑏03 − 3𝑎02𝑎03𝑏03 − 6𝑎02𝑎03𝑎11𝑏03 − 16𝑎2

02𝑎12·
𝑏03 − 𝑎03𝑎11𝑎12𝑏03 − 2𝑎02𝑎

2
12𝑏03 + 𝑎2

03𝑎20𝑏03 − 5𝑎02𝑎03𝑎21𝑏03 − 𝑎03𝑎12𝑎21·
𝑏03 − 8𝑎02𝑎03𝑏02𝑏03 − 2𝑎03𝑎12𝑏02𝑏03 + 27𝑎2

02𝑏
2
03 + 𝑎03𝑎11𝑏

2
03 + 11𝑎02𝑎12·

𝑏2
03 + 𝑎2

12𝑏
2
03 + 𝑎03𝑎21𝑏

2
03 + 2𝑎03𝑏02𝑏

2
03 − 9𝑎02𝑏

3
03 − 2𝑎12𝑏

3
03 + 𝑏4

03+
3𝑎2

02𝑎03𝑏12 + 3𝑎2
03𝑏12 + 2𝑎2

03𝑎11𝑏12 + 𝑎02𝑎03𝑎12𝑏12 + 𝑎2
03𝑎21𝑏12−

4𝑎02𝑎03𝑏03𝑏12 − 𝑎03𝑎12𝑏03𝑏12 + 𝑎03𝑏
2
03𝑏12 − 2𝑎3

03𝑏20)/𝑎3
03,

𝑎30 = −(3𝑎3
02 + 3𝑎02𝑎03 + 2𝑎02𝑎03𝑎11 + 𝑎2

02𝑎12 + 2𝑎2
03𝑎20 + 𝑎02𝑎03𝑎21−

7𝑎2
02𝑏03 − 3𝑎03𝑏03 − 2𝑎03𝑎11𝑏03 − 2𝑎02𝑎12𝑏03 − 𝑎03𝑎21𝑏03 + 5𝑎02𝑏

2
03+

𝑎12𝑏
2
03 − 𝑏

3
03)/𝑎

2
03.

(23)
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Lemma 2.2. The invariant straight line 𝑥 = 1 has for quartic system (5) the multiplicity
at least three if and only if the coefficients of (5) verify the following series of conditions:
1) {(6), (11)}; 2) {(6), (12)}; 3) {(6), (13)}; 4) {(7), (14)};
5) {(7), (15)}; 6) {(7), (16)}; 7) {(8), (17)}; 8) {(8), (18)};
9) {(8), (19)}; 10) {(8), (20)}; 11) {(9), (21)}; 12) {(10),(22)};
13) {(10), (23)}.

The multiplicity of the invariant straight line 𝑥 = 1 is at least four if {𝑌2(𝑦) ≡
0, 𝑌3(𝑦) ≡ 0, 𝑌4(𝑦) ≡ 0}. Taking into account the condition (3) the identity 𝑌4(𝑦) ≡ 0
gives, in each of the cases 1)-13) of Lemma 2.2 the following series of conditions:
1) {(6), (11)} ⇒

𝑏03 = 0, 𝑏12 = −2𝑏02, 𝑏40 = −1 − 2𝑎2
20 + 2𝑎20𝑏11 − 𝑏20 + 𝑎20𝑏21 − 𝑏30; (24)

2) {(6), (12)} ⇒

𝑏02 = (3𝑎02 + 𝑎20 + 𝑎02𝑏20)/𝑎20, 𝑏11 = (4 + 𝑎11) (3 + 𝑏20)/𝑎20, 𝑏40 = −1; (25)

3) {(6), (13)} ⇒

𝑏02 = (−3𝑎02 + 𝑎30 + 𝑎02𝑏30)/𝑎30, 𝑏11 = (4 + 𝑎11) (−3 + 𝑏30)/𝑎30, 𝑏20 = −3; (26)

4) {(7), (14)} ⇒

𝑏02 = (3 + 2𝑎11 + 2𝑎02𝑎20 + 𝑎21 + 𝑎02𝑎30)/(3 + 2𝑎11 + 𝑎21),
𝑏11 = (4 + 𝑎11) (2𝑎20 + 𝑎30)/(3 + 2𝑎11 + 𝑎21),
𝑏20 = −(9 + 6𝑎11 − 2𝑎2

20 + 3𝑎21 − 𝑎20𝑎30)/(3 + 2𝑎11 + 𝑎21),
𝑏30 = (9 + 6𝑎11 + 2𝑎2

20 + 3𝑎21 + 3𝑎20𝑎30 + 𝑎2
30)/(3 + 2𝑎11 + 𝑎21);

(27)

5) {(7), (15)}⇒

𝑏02 = 1 − 𝑎02𝑎20 − 𝑎02𝑎30 + 𝑎02𝑏31, 𝑏11 = (4 + 𝑎11) (𝑏31 − 𝑎20 − 𝑎30),
𝑏20 = −3 − 𝑎2

20 − 𝑎20𝑎30 + 𝑎20𝑏31;
(28)

6) {(7), (16)} ⇒

𝑏02 = 1 + 𝑎02𝑏11, 𝑏21 = 𝑎20 − 5𝑏11 + 𝑎21𝑏11, 𝑏20 = −3 + 𝑎20𝑏11; (29)

7) {(8), (17)} ⇒

𝑏22 = 1 + 𝑎11 + 𝑎21, 𝑏11 = (4 + 𝑎11) (−1 + 𝑏02)/𝑎02,

𝑏20 = −(3𝑎02 + 𝑎20 − 𝑎20𝑏02)/𝑎02;
(30)
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𝑏22 = (−6𝑎02 − 𝑎02𝑎11 − 2𝑎12 + 4𝑎02𝑏02 + 2𝑎12𝑏02)/𝑎02,

𝑏11 = (4 + 𝑎11) (−1 + 𝑏02)/𝑎02,

𝑎21 = (−7𝑎02 − 2𝑎02𝑎11 − 2𝑎12 + 4𝑎02𝑏02 + 2𝑎12𝑏02)/𝑎02,

𝑎30 = (2𝑎02 + 𝑎12 − 2𝑎2
02𝑎20 − 4𝑎02𝑏02 − 2𝑎12𝑏02 + 2𝑎02𝑏

2
02 + 𝑎12𝑏

2
02)/𝑎

2
02;

(31)

8) {(8), (18)} ⇒

𝑏22 = 1 + 𝑎11 + 𝑎21, 𝑏20 = −(3𝑎02 + 𝑎20 − 𝑎20𝑏02)/𝑎02,

𝑏21 = (2 − 𝑎11 + 𝑎02𝑎20 − 𝑎21 − 2𝑏02 + 𝑎11𝑏02 + 𝑎21𝑏02)/𝑎02,

𝑏11 = (4 + 𝑎11) (−1 + 𝑏02)/𝑎02;
(32)

𝑏22 = −(6𝑎02 + 𝑎02𝑎11 + 2𝑎12 − 4𝑎02𝑏02 − 2𝑎12𝑏02)/𝑎02,

𝑏21 = (9𝑎02 + 𝑎02𝑎11 + 2𝑎12 + 𝑎2
02𝑎20 − 13𝑎02𝑏02 − 𝑎02𝑎11𝑏02−

4𝑎12𝑏02 + 4𝑎02𝑏
2
02 + 2𝑎12𝑏

2
02)/𝑎

2
02, 𝑏11 = (4 + 𝑎11) (−1 + 𝑏02)/𝑎02,

𝑎21 = −(7𝑎02 + 2𝑎02𝑎11 + 2𝑎12 − 4𝑎02𝑏02 − 2𝑎12𝑏02)/𝑎02;

(33)

𝑏22 = (−6𝑎02 − 𝑎02𝑎11 − 2𝑎12 + 4𝑎02𝑏02 + 2𝑎12𝑏02)/𝑎02,

𝑏21 = (2𝑎2
02 − 2𝑎2

02𝑎11 + 9𝑎02𝑎12 + 2𝑎2
12 − 2𝑎3

02𝑎20 − 6𝑎2
02𝑏02+

2𝑎2
02𝑎11𝑏02 − 16𝑎02𝑎12𝑏02 − 4𝑎2

12𝑏02 + 4𝑎2
02𝑏

2
02 + 7𝑎02𝑎12𝑏

2
02+

2𝑎2
12𝑏

2
02)/(𝑎

2
02(2𝑎02 + 𝑎12)),

𝑎21 = (−7𝑎02 − 2𝑎02𝑎11 − 2𝑎12 + 4𝑎02𝑏02 + 2𝑎12𝑏02)/𝑎02,

𝑏11 = (4𝑎02 + 𝑎02𝑎11 + 3𝑎2
02𝑎20 + 𝑎02𝑎12𝑎20 − 7𝑎02𝑏02 − 𝑎02𝑎11𝑏02−

𝑎12𝑏02 + 3𝑎02𝑏
2
02 + 𝑎12𝑏

2
02)/(𝑎02(2𝑎02 + 𝑎12));

(34)

9) {(8), (19)} ⇒

𝑏02 = 1, 𝑏21 = (2 + 𝑎11 − 𝑎2
11 + 𝑎12𝑎20 − 𝑎21 − 𝑎11𝑎21 − 2𝑏12+

𝑎11𝑏12 + 𝑎21𝑏12)/𝑎12, 𝑏20 = −(3𝑎12 + 𝑎20 + 𝑎11𝑎20 − 𝑎20𝑏12)/𝑎12,

𝑏11 = −(4 + 𝑎11) (1 + 𝑎11 − 𝑏12)/𝑎12;
(35)

𝑏02 = 1, 𝑏21 = 2(𝑎20 − 𝑏11) (1 + 𝑎12𝑎20 − 𝑎12𝑏11),
𝑎21 = −3 − 2𝑎11 − 2𝑎12𝑎20 + 2𝑎12𝑏11, 𝑏12 = 1 + 𝑎11 − 𝑎12𝑎20 + 𝑎12𝑏11;

(36)

𝑏02 = 1, 𝑏21 = (7 + 10𝑎11 + 3𝑎2
11 + 𝑎12𝑎20 − 9𝑏12 − 5𝑎11𝑏12 + 2𝑏2

12)/𝑎12,

𝑎21 = −5 − 4𝑎11 + 2𝑏12, 𝑏11 = −(4 + 𝑎11) (1 + 𝑎11 − 𝑏12)/𝑎12;
(37)

10) {(8), (20)} ⇒

𝑏02 = 1, 𝑏11 = −(4 + 𝑎11) (1 + 𝑎11 − 𝑏12)/𝑎12, 𝑎21 = −5 − 4𝑎11 + 2𝑏12,

𝑎30 = (1 + 2𝑎11 + 𝑎2
11 − 2𝑎12𝑎20 − 2𝑏12 − 2𝑎11𝑏12 + 𝑏2

12)/𝑎12;
(38)

𝑏02 = 1, 𝑏11 = −(4 + 𝑎11) (1 + 𝑎11 − 𝑏12)/𝑎12,

𝑏20 = −(3𝑎12 + 𝑎20 + 𝑎11𝑎20 − 𝑎20𝑏12)/𝑎12;
(39)
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11) {(9), (21)}⇒

𝑏04 = 0, 𝑏13 = −𝑏03, 𝑏22 = −𝑏12 − 𝑏02, 𝑏40 = −𝑏30 − 𝑏20 − 1; (40)

12) {(10), (22)} ⇒

𝑏02 = (−𝑎2
02 + 𝑎03 + 𝑎02𝑏03)/𝑎03, 𝑏20 = (16𝑎2

02 − 3𝑎2
03 + 4𝑎2

02𝑎11+
4𝑎02𝑎12 + 𝑎02𝑎11𝑎12 − 𝑎02𝑎03𝑎20 − 24𝑎02𝑏03 − 6𝑎02𝑎11𝑏03 − 4𝑎12𝑏03−
𝑎11𝑎12𝑏03 + 𝑎03𝑎20𝑏03 + 8𝑏2

03 + 2𝑎11𝑏
2
03 + 4𝑎02𝑎03𝑏11 + 𝑎03𝑎12𝑏11−

2𝑎03𝑏03𝑏11)/𝑎2
03, 𝑎21 = (−7𝑎2

02 − 3𝑎03 − 2𝑎03𝑎11 − 2𝑎02𝑎12+
10𝑎02𝑏03 + 2𝑎12𝑏03 − 3𝑏2

03)/𝑎03, 𝑎30 = (4𝑎3
02 + 𝑎

2
02𝑎12 − 2𝑎2

03𝑎20−
10𝑎2

02𝑏03 − 2𝑎02𝑎12𝑏03 + 8𝑎02𝑏
2
03 + 𝑎12𝑏

2
03 − 2𝑏3

03)/𝑎
2
03;

(41)

𝑏02 = (−𝑎2
02 + 𝑎03 + 𝑎02𝑏03)/𝑎03, 𝑏20 = −(3𝑎03 + 𝑎02𝑎20 − 𝑎20𝑏03)/𝑎03,

𝑏11 = (4 + 𝑎11) (𝑏03 − 𝑎02)/𝑎03;
(42)

13) {(10), (23)} ⇒

𝑏02 = (−𝑎2
02 + 𝑎03 + 𝑎02𝑏03)/𝑎03, 𝑏20 = −(3𝑎03 + 𝑎02𝑎20 − 𝑎20𝑏03)/𝑎03,

𝑏11 = −(4 + 𝑎11) (𝑎02 − 𝑏03)/𝑎03, 𝑏12 = (−𝑎2
02 + 𝑎03 + 𝑎03𝑎11−

𝑎02𝑎12 + 𝑎02𝑏03 + 𝑎12𝑏03)/𝑎03;
(43)

𝑏02 = (−𝑎2
02 + 𝑎03 + 𝑎02𝑏03)/𝑎03, 𝑎21 = (−7𝑎2

02 − 3𝑎03 − 2𝑎03𝑎11−
2𝑎02𝑎12 + 10𝑎02𝑏03 + 2𝑎12𝑏03 − 3𝑏2

03)/𝑎03, 𝑏20 = (16𝑎2
02 − 3𝑎2

03+
4𝑎2

02𝑎11 + 4𝑎02𝑎12 + 𝑎02𝑎11𝑎12 − 𝑎02𝑎03𝑎20 − 24𝑎02𝑏03 − 6𝑎02𝑎11𝑏03−
4𝑎12𝑏03 − 𝑎11𝑎12𝑏03 + 𝑎03𝑎20𝑏03 + 8𝑏2

03 + 2𝑎11𝑏
2
03 + 4𝑎02𝑎03𝑏11+

𝑎03𝑎12𝑏11 − 2𝑎03𝑏03𝑏11)/𝑎2
03, 𝑏12 = (−𝑎2

02 + 𝑎03 + 𝑎03𝑎11 − 𝑎02𝑎12+
𝑎02𝑏03 + 𝑎12𝑏03)/𝑎03;

(44)

𝑏02 = (−2𝑎2
02 + 2𝑎03 + 𝑎03𝑎11 − 𝑎02𝑎12 + 2𝑎02𝑏03 + 𝑎12𝑏03 − 𝑎03𝑏12)/𝑎03,

𝑎21 = −(7𝑎2
02 + 3𝑎03 + 2𝑎03𝑎11 + 2𝑎02𝑎12 − 10𝑎02𝑏03 − 2𝑎12𝑏03+

3𝑏2
03)/𝑎03,

𝑏20 = (24𝑎4
02 − 6𝑎2

02𝑎03 + 2𝑎2
03 − 3𝑎3

03 − 18𝑎2
02𝑎03𝑎11 + 2𝑎2

03𝑎11+
32𝑎3

02𝑎12 − 7𝑎02𝑎03𝑎12 − 8𝑎02𝑎03𝑎11𝑎12 + 10𝑎2
02𝑎

2
12 − 𝑎03𝑎

2
12−

𝑎03𝑎11𝑎
2
12 + 𝑎02𝑎

3
12 − 50𝑎3

02𝑏03 − 4𝑎02𝑎03𝑏03 + 16𝑎02𝑎03𝑎11𝑏03−
60𝑎2

02𝑎12𝑏03 + 2𝑎03𝑎12𝑏03 + 3𝑎03𝑎11𝑎12𝑏03 − 14𝑎02𝑎
2
12𝑏03 − 𝑎3

12𝑏03+
34𝑎2

02𝑏
2
03 + 4𝑎03𝑏

2
03 − 4𝑎03𝑎11𝑏

2
03 + 35𝑎02𝑎12𝑏

2
03 + 4𝑎2

12𝑏
2
03 − 8𝑎02𝑏

3
03−

7𝑎12𝑏
3
03 + 4𝑎02𝑎

2
03𝑏11 + 𝑎2

03𝑎12𝑏11 − 2𝑎2
03𝑏03𝑏11 + 22𝑎2

02𝑎03𝑏12−
𝑎2

03𝑏12 + 𝑎2
03𝑎11𝑏12 + 8𝑎02𝑎03𝑎12𝑏12 + 𝑎03𝑎

2
12𝑏12 − 23𝑎02𝑎03𝑏03𝑏12−

3𝑎03𝑎12𝑏03𝑏12 + 7𝑎03𝑏
2
03𝑏12 − 𝑎2

03𝑏
2
12)/𝑎

3
03,

(45)

47



CENTER PROBLEM FOR QUARTIC DIFFERENTIAL SYSTEMS

𝑎20 = (−6𝑎3
02 + 2𝑎02𝑎03 + 4𝑎02𝑎03𝑎11 − 6𝑎2

02𝑎12 + 𝑎03𝑎12 + 𝑎03𝑎11𝑎12−
𝑎02𝑎

2
12 + 10𝑎2

02𝑏03 − 2𝑎03𝑎11𝑏03 + 9𝑎02𝑎12𝑏03 + 𝑎2
12𝑏03 − 4𝑎02𝑏

2
03 − 3𝑎12𝑏

2
03−

5𝑎02𝑎03𝑏12 − 𝑎03𝑎12𝑏12 + 3𝑎03𝑏03𝑏12)𝑎2
03.

It is easy to see that the set of conditions {(7), (16), (29)} is a particular case for the set
of conditions {(7), (15), (28)} and the set of conditions {(8), (19), (35)} is a particular
case for {(8), (20), (39)}, the set of conditions {(10), (23), (43)} is a particular case for
the set of conditions {(10), (22), (42)}. The conditions {(8), (19), (37)} and {(8), (20),
(38)} are the same.

Lemma 2.3. The invariant straight line 𝑥 = 1 has for quartic system (5) the multiplicity
at least four if and only if the coefficients of (5) verify the following series of conditions:
1) {(6), (11), (24)}; 2) {(6), (12), (25)}; 3) {(6), (13), (26)};
4) {(7), (14), (27)}; 5) {(7), (15), (28)}; 6) {(8), (17), (30)};
7) {(8), (17), (31)}; 8) {(8), (18), (32)}; 9) {(8), (18), (33)};
10) {(8), (18), (34)}; 11) {(8), (19), (36)}; 12) {(8), (19), (37)};
13) {(8), (20), (39)}; 14) {(9), (21), (40)}; 15) {(10), (22), (41)};
16) {(10), (22), (42)}; 17) {(10), (23), (44)}; 18) {(10), (23), (45)}.

The multiplicity of the invariant straight line 𝑥 = 1 is at least five if in each of the cases
1)–18) of Lemma 2.3 the identity 𝑌5(𝑦) ≡ 0 holds. Proceeding as in the previous case
and taking into account (3), we will examine each case separately.

1) {(6), (11), (24)}⇒ 𝑌5(𝑦) ≡ 0 ⇒

𝑏30 = (3 − 2𝑎2
20 − 3𝑏02 + 𝑎20𝑏11 + 2𝑏20 − 2𝑏02𝑏20)/(𝑏02 − 1),

𝑏21 = (−5𝑎20 + 2𝑎20𝑏02 + 4𝑏11 − 2𝑏02𝑏11)/(𝑏02 − 2);
(46)

𝑏21 = −𝑎20, 𝑏11 = 2𝑎20, 𝑏02 = 1. (47)

2) {(6), (12), (25)} − the identity 𝑌5(𝑦) ≡ 0 and the conditions (3) are not compatible.
3) {(6), (13), (26)}⇒ 𝑌5(𝑦) = −9 + 3𝑎2

30 + 6𝑏30 − 𝑏2
30 + 4𝑎30(3 − 𝑏30)𝑦 . 0, because

in this case 𝑎30 ≠ 0.
4) {(7), (14), (27)}⇒ 𝑌5(𝑦) = (2𝑎20 + 𝑎30 + (3+ 2𝑎11 + 𝑎21)𝑦)2(2(3+ 2𝑎11 + 𝑎21)2 −

(2𝑎20 + 𝑎30)2 − 3(3 + 2𝑎11 + 𝑎21) (2𝑎20 + 𝑎30)𝑦)/(3 + 2𝑎11 + 𝑎21)2 . 0.
In the conditions 5) {(7), (15), (28)}, 6) {(8), (17), (30)}, 7) {(8), (17), (31)}, 8) {(8),

(18), (32)} − the identity 𝑌5(𝑦) ≡ 0 and the conditions (3) are not compatible.
9) {(8), (18), (33)} ⇒ 𝑌5(𝑦) ≡ 0 ⇒

𝑏02 = 1, 𝑎20 = 0, 𝑎12 = −(7𝑎02 + 3𝑎02𝑏20)/(2 + 𝑏20). (48)

48



Vacaraş O.

10) {(8), (18), (34)} ⇒ 𝑌5(𝑦) ≡ 0 ⇒

𝑎20 = 0, 𝑏02 = 1, 𝑏20 = −(7𝑎02 + 2𝑎12)/(3𝑎02 + 𝑎12). (49)

In the conditions 11) {(8), (19), (36)}, 12) {(8), (19), (37)} − the identity 𝑌5(𝑦) ≡ 0
and the conditions (3) are not compatible.

13) {(8), (20), (39)}⇒ 𝑌5(𝑦) . 0.
14) {(9), (21), (40)}⇒𝑌5(𝑦) = (𝑏11 + 𝑏21 + 𝑏31)𝑦(−3−2𝑏20 − 𝑏30 + (2𝑏02 + 𝑏12)𝑦2 +

2𝑏03𝑦
3) ≡ 0 ⇒

𝑏03 = 0, 𝑏12 = −2𝑏02, 𝑏30 = −3 − 2𝑏20. (50)

15) {(10), (22), (41)} ⇒ 𝑌5(𝑦) ≡ 0 ⇒

𝑏11 = (−23𝑎3
02 + 5𝑎02𝑎

2
03 − 10𝑎2

02𝑎12 + 𝑎2
03𝑎12 − 𝑎02𝑎

2
12 + 46𝑎2

02𝑏03−
3𝑎2

03𝑏03 + 15𝑎02𝑎12𝑏03 + 𝑎2
12𝑏03 − 29𝑎02𝑏

2
03 − 5𝑎12𝑏

2
03 + 6𝑏3

03)/𝑎
2
03,

𝑎11 = (23𝑎3
02 − 3𝑎02𝑎03 − 5𝑎02𝑎

2
03 + 10𝑎2

02𝑎12 − 𝑎2
03𝑎12 + 𝑎02𝑎

2
12−

46𝑎2
02𝑏03 + 3𝑎03𝑏03 + 3𝑎2

03𝑏03 − 15𝑎02𝑎12𝑏03 − 𝑎2
12𝑏03 + 29𝑎02𝑏

2
03+

5𝑎12𝑏
2
03 − 6𝑏3

03)/(𝑎03(𝑎02 − 𝑏03)),
𝑎20 = (−24𝑎3

02 + 5𝑎02𝑎
2
03 − 10𝑎2

02𝑎12 + 𝑎2
03𝑎12 − 𝑎02𝑎

2
12 + 48𝑎2

02𝑏03−
3𝑎2

03𝑏03 + 15𝑎02𝑎12𝑏03 + 𝑎2
12𝑏03 − 30𝑎02𝑏

2
03 − 5𝑎12𝑏

2
03 + 6𝑏3

03)/𝑎
2
03;

(51)

𝑏11 = 0, 𝑎12 = −2𝑎02, 𝑏03 = 𝑎02. (52)

16) {(10), (22), (42)}⇒ 𝑌5(𝑦) ≡ 0 ⇒

𝑏03 = 𝑎02, 𝑎12 = −2𝑎02, 𝑎21 = −3 − 2𝑎11, 𝑎30 = −2𝑎20. (53)

17) {(10), (23), (44)}⇒ 𝑌5(𝑦) ≡ 0 ⇒

𝑏11 = 0, 𝑏03 = 𝑎02, 𝑎12 = −2𝑎02; (54)

𝑏11 = (−23𝑎3
02 + 5𝑎02𝑎

2
03 − 10𝑎2

02𝑎12 + 𝑎2
03𝑎12 − 𝑎02𝑎

2
12 + 46𝑎2

02𝑏03−
3𝑎2

03𝑏03 + 15𝑎02𝑎12𝑏03 + 𝑎2
12𝑏03 − 29𝑎02𝑏

2
03 − 5𝑎12𝑏

2
03 + 6𝑏3

03)/𝑎
2
03,

𝑎20 = (−24𝑎3
02 + 5𝑎02𝑎

2
03 − 10𝑎2

02𝑎12 + 𝑎2
03𝑎12 − 𝑎02𝑎

2
12 + 48𝑎2

02𝑏03−
3𝑎2

03𝑏03 + 15𝑎02𝑎12𝑏03 + 𝑎2
12𝑏03 − 30𝑎02𝑏

2
03 − 5𝑎12𝑏

2
03 + 6𝑏3

03)/𝑎
2
03

𝑎11 = (23𝑎3
02 − 3𝑎02𝑎03 − 5𝑎02𝑎

2
03 + 10𝑎2

02𝑎12 − 𝑎2
03𝑎12+

𝑎02𝑎
2
12 − 46𝑎2

02𝑏03 + 3𝑎03𝑏03 + 3𝑎2
03𝑏03 − 15𝑎02𝑎12𝑏03−

𝑎2
12𝑏03 + 29𝑎02𝑏

2
03 + 5𝑎12𝑏

2
03 − 6𝑏3

03)/(𝑎03(𝑎02 − 𝑏03)).

(55)

18) {(10), (23), (45)} ⇒ 𝑌5(𝑦) ≡ 0 ⇒

𝑏03 = (5𝑎02 + 𝑎12)/3,
𝑏11 = 2(2𝑎02 + 𝑎12) (−2𝑎2

02 + 9𝑎03 + 3𝑎03𝑎11 − 𝑎02𝑎12)/(9𝑎2
03),

𝑏12 = (8𝑎2
02 − 3𝑎03 + 3𝑎03𝑎11 + 8𝑎02𝑎12 + 2𝑎2

12)/(6𝑎03);
(56)
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𝑏11 = 0, 𝑏03 = 𝑎02, 𝑎12 = −2𝑎02, 𝑏12 = 1 + 𝑎11; (57)

𝑏11 = (−23𝑎3
02 + 5𝑎02𝑎

2
03 − 10𝑎2

02𝑎12 + 𝑎2
03𝑎12 − 𝑎02𝑎

2
12 + 46𝑎2

02𝑏03−
3𝑎2

03𝑏03 + 15𝑎02𝑎12𝑏03 + 𝑎2
12𝑏03 − 29𝑎02𝑏

2
03 − 5𝑎12𝑏

2
03 + 6𝑏3

03)/𝑎
2
03,

𝑎11 = (23𝑎3
02 − 3𝑎02𝑎03 − 5𝑎02𝑎

2
03 + 10𝑎2

02𝑎12 − 𝑎2
03𝑎12 + 𝑎02𝑎

2
12−

46𝑎2
02𝑏03 + 3𝑎03𝑏03 + 3𝑎2

03𝑏03 − 15𝑎02𝑎12𝑏03 − 𝑎2
12𝑏03 + 29𝑎02𝑏

2
03+

5𝑎12𝑏
2
03 − 6𝑏3

03)/(𝑎03(𝑎02 − 𝑏03)),
𝑏12 = (22𝑎3

02 − 2𝑎02𝑎03 − 5𝑎02𝑎
2
03 + 9𝑎2

02𝑎12 − 𝑎2
03𝑎12 + 𝑎02𝑎

2
12−

44𝑎2
02𝑏03 + 2𝑎03𝑏03 + 3𝑎2

03𝑏03 − 13𝑎02𝑎12𝑏03 − 𝑎2
12𝑏03 + 28𝑎02𝑏

2
03+

4𝑎12𝑏
2
03 − 6𝑏3

03) (𝑎03(𝑎02 − 𝑏03)).

(58)

The sets of conditions {(10), (22), (41) (52)}, {(10), (22), (42) (53)}, {(10), (23), (44)
(54)} and {(6), (11), (24), (46)}, {(10), (23), (44), (55)}, {(10), (23), (45), (58)} are the
same. The set of conditions {(10), (23), (45), (57)} is a particular case for {(10), (22),
(41), (52)}.

Lemma 2.4. The invariant straight line 𝑥 = 1 has for quartic system (5) the multiplicity
at least five if and only if the coefficients of (5) verify the following series of conditions:
1) {(6), (11), (24), (46)}; 2) {(6), (11), (24), (47)};
3) {(8), (18), (33), (48)}; 4) {(8), (18), (34), (49)};
5) {(9), (21), (40), (50)}; 6) {(10), (22), (41), (51)};
7) {(10), (22), (41), (52)}; 8) {(10), (23), (45), (56)}.

The multiplicity of the invariant straight line 𝑥 = 1 is at least six if in each of the
cases 1)–8) of Lemma 2.4 the identity 𝑌6(𝑦) ≡ 0 holds. Taking into account (3), we will
examine each case separately:
1) {(6), (11), (24), (46)}⇒ {𝑌6(𝑦) ≡ 0, gcd(𝑝, 𝑞) = 1} ⇒

𝑏02 = 3/2, 𝑏11 = 2𝑎20 ≠ 0. (59)

In the cases 2) {(6), (11), (24), (47)}, 3) {(8), (18), (33), (48)}, 4) {(8), (18), (34),
(49)}, 6) {(10), (22), (41), (51)}, 7) {(10), (22), (41), (52)} − the identity 𝑌6(𝑦) ≡ 0 and
the conditions (3) are not compatible.

5) {(9), (21), (40), (50)} ⇒ 𝑌6(𝑦) ≡ 0 ⇒

𝑏02 = 3, 𝑏20 = −3. (60)

8) {(10), (23), (45), (56)} ⇒ 𝑌6(𝑦) . 0.

Lemma 2.5. The invariant straight line 𝑥 = 1 has for quartic system (5) the multiplicity
at least six if and only if the coefficients of (5) verify the following series of conditions:
1) (6), (11), (24), (46), (59); 2) (9), (21), (40), (50), (60).
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In the conditions 1) of Lemma 2.5 we have𝑌7(𝑦) = 𝑎20(7𝑎20 + 2𝑎20𝑏20 − 6𝑦+ 6𝑎2
20𝑦−

2𝑏20𝑦−6𝑎20𝑦
2+𝑦3) . 0, 𝑎20 ≠ 0, otherwise (𝑎20 = 0) the right-hand sides of (5) have the

common divisors of degree greater than 0. Thus the multiplicity of the invariant straight
line 𝑥 = 1 is exactly six.

In the conditions 2) of Lemma 2.5 we have 𝑌7(𝑦) = −𝑦(𝑏11 + 𝑏21 + 𝑏31 + 𝑏11𝑦
2 +

2𝑏21𝑦
2 + 3𝑏31𝑦

2). The identity 𝑌7(𝑦) ≡ 0 and the conditions (3) are not compatible (the
right-hand sides of (5) have the common divisors of degree greater than 0), therefore the
multiplicity of the invariant straight line 𝑥 = 1 is exactly six.

In this way we have proved the following theorem.

Theorem 2.1. In the class of quartic differential systems with a center-focus critical point
and non-degenerate infinity the maximal multiplicity of an affine real invariant straight
line is equal to six.

3. Solution of the center problem for quartic systems with an affine
invariant straight line of maximal multiplicity.

It is known that a critical point (0, 0) is a center for (2) if and only if in a neighborhood
of (0, 0) the system has a nonconstant analytic first integral 𝐹 (𝑥, 𝑦) (an analytic integrating
factor of the form 𝜇(𝑥, 𝑦) = 1+∑ 𝜇 𝑗 (𝑥, 𝑦)). If 𝐹 (𝑥, 𝑦) (𝜇(𝑥, 𝑦)) has the form 𝑓

𝛼1
1 · · · 𝑓 𝛼𝑠

𝑠 ,
where 𝑓 𝑗 , 1 ≤ 𝑗 ≤ 𝑝 are invariant straight lines and 𝑓 𝑗 , 𝑝 + 1 ≤ 𝑗 ≤ 𝑠 are exponential
factors, then the system (2) is called Darboux integrable.

Let 𝐹 (𝑥, 𝑦) = 𝑥2 + 𝑦2 + 𝐹3(𝑥, 𝑦) + 𝐹4(𝑥, 𝑦) + · · · + 𝐹𝑛 (𝑥, 𝑦) + · · · , be a function such
that

𝜕𝐹

𝜕𝑥
𝑝(𝑥, 𝑦) + 𝜕𝐹

𝜕𝑦
𝑞(𝑥, 𝑦) ≡

∞∑︁
𝑗=1

𝐿 𝑗 (𝑥2 + 𝑦2) 𝑗+1, (61)

where 𝐹𝑘 (𝑥, 𝑦) =
∑

𝑖+ 𝑗=𝑘 𝑓𝑖 𝑗𝑥
𝑖𝑦 𝑗 , 𝑓0 𝑗 = 0 if 𝑗 is even. The 𝐿 𝑗 are polynomials in the

coefficients of (2) and are called the Lyapunov quantities.
For example, the first two quantities look as

𝐿1 = (𝑎12−𝑎02𝑎11−𝑎11𝑎20+3𝑎30+2𝑎02𝑏02−3𝑏03+𝑏02𝑏11−2𝑎20𝑏20+𝑏11𝑏20−𝑏21)/4,
𝐿2 = (10𝑎3

02𝑎11 + 41𝑎02𝑎03𝑎11 − 12𝑎04𝑎11 − 𝑎02𝑎
3
11 − 10𝑎2

02𝑎12 − 21𝑎03𝑎12 + 𝑎2
11𝑎12 −

20𝑎02𝑎13+124𝑎2
02𝑎11𝑎20+37𝑎03𝑎11𝑎20−𝑎3

11𝑎20−94𝑎02𝑎12𝑎20−28𝑎13𝑎20+238𝑎02𝑎11𝑎
2
20−

112𝑎12𝑎
2
20 + 124𝑎11𝑎

3
20 + 19𝑎02𝑎11𝑎21 − 15𝑎12𝑎21 + 23𝑎11𝑎20𝑎21 − 4𝑎11𝑎22 − 90𝑎2

02𝑎30 −
27𝑎03𝑎30 − 5𝑎2

11𝑎30 − 378𝑎02𝑎20𝑎30 − 372𝑎2
20𝑎30 − 33𝑎21𝑎30 − 12𝑎02𝑎31 − 36𝑎20𝑎31 +

20𝑎11𝑎40−20𝑎3
02𝑏02−82𝑎02𝑎03𝑏02+24𝑎04𝑏02−39𝑎02𝑎

2
11𝑏02+33𝑎11𝑎12𝑏02−228𝑎2

02𝑎20𝑏02−
32𝑎03𝑎20𝑏02 − 37𝑎2

11𝑎20𝑏02 − 288𝑎02𝑎
2
20𝑏02 − 24𝑎3

20𝑏02 + 2𝑎02𝑎21𝑏02 + 40𝑎20𝑎21𝑏02 −
16𝑎22𝑏02+71𝑎11𝑎30𝑏02−88𝑎40𝑏02+158𝑎02𝑎11𝑏

2
02−100𝑎12𝑏

2
02+96𝑎11𝑎20𝑏

2
02−248𝑎30𝑏

2
02−
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152𝑎02𝑏
3
02 + 24𝑎20𝑏

3
02 + 30𝑎2

02𝑏03 + 63𝑎03𝑏03 + 9𝑎2
11𝑏03 + 322𝑎02𝑎20𝑏03 + 392𝑎2

20𝑏03 +
21𝑎21𝑏03−87𝑎11𝑏02𝑏03+228𝑏2

02𝑏03+80𝑎02𝑏04+88𝑎20𝑏04−37𝑎2
02𝑎11𝑏11−8𝑎03𝑎11𝑏11+

37𝑎02𝑎12𝑏11+8𝑎13𝑏11−138𝑎02𝑎11𝑎20𝑏11+89𝑎12𝑎20𝑏11−101𝑎11𝑎
2
20𝑏11+147𝑎02𝑎30𝑏11+

303𝑎20𝑎30𝑏11+64𝑎2
02𝑏02𝑏11−5𝑎03𝑏02𝑏11−3𝑎2

11𝑏02𝑏11+68𝑎02𝑎20𝑏02𝑏11−144𝑎2
20𝑏02𝑏11−

7𝑎21𝑏02𝑏11 + 29𝑎11𝑏
2
02𝑏11 − 76𝑏3

02𝑏11 − 131𝑎02𝑏03𝑏11 − 287𝑎20𝑏03𝑏11 − 20𝑏04𝑏11 +
27𝑎02𝑎11𝑏

2
11−27𝑎12𝑏

2
11+27𝑎11𝑎20𝑏

2
11−81𝑎30𝑏

2
11+3𝑎02𝑏02𝑏

2
11+109𝑎20𝑏02𝑏

2
11+77𝑏03𝑏

2
11−

23𝑏02𝑏
3
11−21𝑎02𝑎11𝑏12+21𝑎12𝑏12−17𝑎11𝑎20𝑏12+51𝑎30𝑏12+2𝑎02𝑏02𝑏12−40𝑎20𝑏02𝑏12−

39𝑏03𝑏12+𝑏02𝑏11𝑏12+36𝑏02𝑏13−29𝑎02𝑎
2
11𝑏20+29𝑎11𝑎12𝑏20+60𝑎2

02𝑎20𝑏20+18𝑎03𝑎20𝑏20−
27𝑎2

11𝑎20𝑏20+252𝑎02𝑎
2
20𝑏20+248𝑎3

20𝑏20+8𝑎02𝑎21𝑏20+46𝑎20𝑎21𝑏20−8𝑎22𝑏20+59𝑎11𝑎30𝑏20−
80𝑎40𝑏20+136𝑎02𝑎11𝑏02𝑏20−86𝑎12𝑏02𝑏20+28𝑎11𝑎20𝑏02𝑏20−178𝑎30𝑏02𝑏20−156𝑎02𝑏

2
02𝑏20+

192𝑎20𝑏
2
02𝑏20 −75𝑎11𝑏03𝑏20 +234𝑏02𝑏03𝑏20 −30𝑎2

02𝑏11𝑏20 −9𝑎03𝑏11𝑏20 −3𝑎2
11𝑏11𝑏20 −

232𝑎02𝑎20𝑏11𝑏20−350𝑎2
20𝑏11𝑏20−3𝑎21𝑏11𝑏20+42𝑎11𝑏02𝑏11𝑏20−142𝑏2

02𝑏11𝑏20+53𝑎02𝑏
2
11𝑏20+

159𝑎20𝑏
2
11𝑏20−23𝑏3

11𝑏20−8𝑎02𝑏12𝑏20−50𝑎20𝑏12𝑏20+5𝑏11𝑏12𝑏20+12𝑏13𝑏20+30𝑎02𝑎11𝑏
2
20−

30𝑎12𝑏
2
20−16𝑎11𝑎20𝑏

2
20−30𝑎30𝑏

2
20−60𝑎02𝑏02𝑏

2
20+132𝑎20𝑏02𝑏

2
20+90𝑏03𝑏

2
20+13𝑎11𝑏11𝑏

2
20−

76𝑏02𝑏11𝑏
2
20 + 20𝑎20𝑏

3
20 − 10𝑏11𝑏

3
20 + 30𝑎2

02𝑏21 + 9𝑎03𝑏21 + 3𝑎2
11𝑏21 + 134𝑎02𝑎20𝑏21 +

148𝑎2
20𝑏21+3𝑎21𝑏21−17𝑎11𝑏02𝑏21+64𝑏2

02𝑏21−53𝑎02𝑏11𝑏21−105𝑎20𝑏11𝑏21+23𝑏2
11𝑏21−

9𝑏12𝑏21 − 13𝑎11𝑏20𝑏21 + 46𝑏02𝑏20𝑏21 + 10𝑏2
20𝑏21 + 8𝑎02𝑏22 + 16𝑎20𝑏22 + 4𝑏11𝑏22 −

15𝑎02𝑎11𝑏30+15𝑎12𝑏30−19𝑎11𝑎20𝑏30+9𝑎30𝑏30+30𝑎02𝑏02𝑏30+32𝑎20𝑏02𝑏30−45𝑏03𝑏30+
8𝑎11𝑏11𝑏30−13𝑏02𝑏11𝑏30+34𝑎20𝑏20𝑏30−17𝑏11𝑏20𝑏30−3𝑏21𝑏30−8𝑎11𝑏31+28𝑏02𝑏31+
20𝑏20𝑏31 − 24𝑎20𝑏40 + 12𝑏11𝑏40)/96.

The critical point (0, 0) is a center if all Lyapunov quantities 𝐿 𝑗 vanish. (see [2]).
In the following we will solve the center problem for the system (5) under the conditions

1) and 2) of Lemma 2.5, i.e. when the affine line 𝑥 − 1 = 0 is of maximal multiplicity.
The conditions 1) of Lemma 2.5 are

𝑎11 = −3, 𝑎02 = 0, 𝑎30 = −2𝑎20, 𝑎21 = 3, 𝑎12 = 0, 𝑎03 = 0,
𝑏11 = 2𝑎20, 𝑏02 = 3/2, 𝑏30 = −2𝑏20 − 3, 𝑏21 = 0, 𝑏12 = −3, 𝑏03 = 0,

𝑏40 = 2𝑎2
20 + 𝑏20 + 2, 𝑏31 = −2𝑎20, 𝑏22 = 3/2, 𝑏13 = 0, 𝑏04 = 0; 𝑎20 ≠ 0.

(62)

The quartic system (5) takes the form:

¤𝑥 = (𝑥 − 1)2(𝑎20𝑥
2 + 𝑦 − 𝑥𝑦), 𝑎20 ≠ 0,

¤𝑦 = (−2𝑥 − 2𝑏20𝑥
2 + 2(3 + 2𝑏20)𝑥3 − 2(2 + 2𝑎2

20 + 𝑏20)𝑥4−
−4𝑎20𝑥𝑦 + 4𝑎20𝑥

3𝑦 − 3𝑦2 + 6𝑥𝑦2 − 3𝑥2𝑦2)/2.
(63)

We remark that the system (63) has the following integrating factor

𝜇(𝑥, 𝑦) = 1
(𝑥 − 1)6 .
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The conditions 2) of Lemma 2.5 are

𝑎20 = 0, 𝑎11 = −3, 𝑎02 = 𝑎30 = 0, 𝑎21 = 3, 𝑎12 = 𝑎03 = 0, 𝑏20 = −3,
𝑏02 = 3, 𝑏30 = 3, 𝑏12 = −6, 𝑏03 = 0, 𝑏40 = −1, 𝑏22 = 3, 𝑏13 = 0, 𝑏04 = 0.

(64)

The quartic system (5) takes the form:

¤𝑥 = −𝑦(𝑥 − 1)3,

¤𝑦 = −𝑥 + 3𝑥2 − 3𝑥3 + 𝑥4 − 𝑏11𝑥𝑦 − 𝑏21𝑥
2𝑦 − 𝑏31𝑥

3𝑦−
−3𝑦2 + 6𝑥𝑦2 − 3𝑥2𝑦2, 𝑏2

11 + 𝑏
2
21 + 𝑏

2
31 ≠ 0.

(65)

The first two Lyapunov quantities of the system (65) are 𝐿1 = −𝑏21/4 and 𝐿2 = 𝑏31/2. If
𝐿1 = 𝐿2 = 0, i.e. 𝑏21 = 𝑏31 = 0, then the system (65) has the following integrating factor

𝜇(𝑥, 𝑦) = 1
(𝑥 − 1)9 exp

(
−𝑏11(𝑏11𝑥

2(𝑥3 − 5𝑥2 + 10𝑥 − 10) + 20(𝑥 − 1)2𝑦)
20(𝑥 − 1)5

)
.

Theorem 3.1. The quartic differential system (5) with an affine invariant straight line
of maximal multiplicity six has a center at the origin (0, 0) if and only if its coefficients
verify the following sets of conditions: 1) (62); 2) {(64), 𝑏21 = 𝑏31 = 0}.

Theorem 3.2. The quartic differential system (5) with an affine invariant straight line
of maximal multiplicity six has a center at the origin (0, 0) if and only if the first two
Lyapunov quantities vanish 𝐿1 = 𝐿2 = 0.
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On the symbol of singular operators in the case of contour with
corner points

Vasile Neagu and Petru Moloşnic

Abstract. This paper proposes a method for constructing a symbol for singular integral
operators in the case of a piecewise Lyapunov contour. The definition of the symbol
function involves numbers that characterize the space in which the research is being
carried out, as well as the values of the corner points of the contour, which makes it
possible to obtain formulas for calculating the essential norms of singular operators and
conditions for the solvability of singular equations with a shift and complex conjugation.
In obtaining these results, we will essentially rely on the well-known results of I. Gelfand
concerning maximal ideals of commutative Banach algebras [7]. In the absence of corner
points on the integration contour, the results of this work are consistent with the results
from [1].
2020 Mathematics Subject Classification: 34G10; 45E05.
Keywords: singular operator, Banach algebras, piecewise Lyapunov contour, symbol,
Noether conditions.

Asupra simbolului operatorilor singulari ı̂n cazul conturului cu
puncte unghiulare

Rezumat. În această lucrare se propune o metodă de construire a simbolului operatorilor
integrali singulari ı̂n cazul unui contur Lyapunov pe porţiuni. Definiţia funcţiei-simbol
conţine parametrii, care caracterizează spaţiul ı̂n care se desfăşoară cercetarea, precum şi
mărimile punctelor unghiulare ale conturului, ceea ce face posibilă obţinerea de formule
de calcul a normelor esenţiale ale operatorilor singulari şi condiţiilor de rezolvabilitate a
ecuaţiilor singulare cu translaţii şi conjugare complexă. În obţinerea acestor rezultate, ne
vom baza ı̂n esenţă pe rezultatele binecunoscute ale lui I. Ghelfand privitoare la idealele
maximale ale algebrelor Banach comutative [7]. În absenţa punctelor unghiulare pe
conturul de integrare, rezultatele din această lucrare sunt ı̂n concordanţă cu rezultatele
din [1].
Cuvinte-cheie: operator singular, algebre Banach, contur Lyapunov pe porţiuni, simbol,
condiţii Noether.
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ON THE SYMBOL OF SINGULAR OPERATORS IN THE CASE OF CONTOUR
WITH CORNER POINTS

1. Introduction

A great number of works are devoted to singular integral operators and Riemann
boundary value problems in the case of a Lyapunov contour; it is enough to point out the
monograph by I. Gokhberg and N. Krupnik [1], which contains an extensive bibliography
on this issue. In papers [2], [3] and others, it was shown that the presence of corner points
on the integration contour affects some properties of singular operators. In particular,
if the integration contour contains one corner point with an angle equal to

𝜋

2
, then the

essential norm of the operator with the Cauchy kernel in the space 𝐿2 is equal to 1 +
√

2,
and in the case of the Lyapunov contour this norm is equal to 1. The conditions for the
Noetherian property of singular operators with shift or with complex conjugation also
depend on the presence of corner points on the integration contour. As usual, by the
Noether conditions of the operator 𝐴 we mean, firstly, obtaining conditions under which
the set of values of the operator 𝐴 is a subspace, or the equality holds

𝐼𝑚𝐴 = ∩ 𝑓 ∈𝐾𝑒𝑟 𝐴∗𝐾𝑒𝑟 𝑓 ,
and, secondly, the equations 𝐴𝑥 = 0 and 𝐴

∗
𝜑 = 0 have a finite number of linearly

independent solutions. As it is known, a linear bounded Noetherian operator is true if and
only if it has right and left regularizers. Obtaining the conditions for Noetherianity, as a
rule, leads to the concept of an operator symbol, first introduced by S. Mikhlin, and which
turned out to be fruitful in many branches of mathematics, including the construction of
the Noetherian theory of singular integral operators [4], [5].

Note that Gelfand’s theory of maximal ideals also played an important role in obtaining
the criterion for the Noether property of one-dimensional singular integral operators with
continuous coefficients, Wiener-Hopf operators, multidimensional singular operators,
and Toeplitz matrices. The results presented in this paper are a generalization of known
results to the case where the integration contour has corner points. Thus, in the case of
the absence of corner points on the integration contour, the proposed results of this work
agree with the results from [1].

Let us present some facts from the theory of Banach commutative algebras, which will
be used below.

Definition 1.1. A normed space 𝑋 is called a normed algebra if it is an algebra with unity
e and two more axioms are satisfied:

∥𝑒∥ = 1; ∥𝑥𝑦∥ ≤ ∥𝑥∥∥𝑦∥ ∀𝑥, 𝑦 ∈ 𝑋.

If the normed algebra 𝑋 is also complete, then it is called a Banach algebra.
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Let 𝑋 be a commutative Banach algebra. An ideal 𝑀 is called maximal if 𝑀 is not
contained in any other nontrivial ideal. Any ideal 𝐼 (nontrivial) consists only of non-
invertible elements. Any ideal is contained in a maximal ideal. According to I. Gelfand’s
Theorem [7], a Banach algebra over the field of complex numbers, which is a field, is
isometrically isomorphic to the field C.

A linear continuous functional 𝑓 defined on a Banach algebra 𝑋 is called multiplicative
if for any 𝑥 and 𝑦 the equality holds

𝑓 (𝑥𝑦) = 𝑓 (𝑥) · 𝑓 (𝑦) .

The zero subspace of the functional 𝑓 (i.e. the totality of those 𝑥 ∈ 𝑋 for which
𝑓 (𝑥) = 0) is denoted by Kerf and is called the kernel of 𝑓 .

Theorem 1.1. The kernel Kerf for any multiplicative functional 𝑓 is a maximal ideal.

Theorem 1.2. For any maximal ideal 𝑀 , one can construct a unique multiplicative
functional 𝑓 such that Kerf=M.

Conclusion. Thus, there is a one-to-one correspondence between the set of maximal ideals
{𝑀} and the set of multiplicative functionals 𝑓 defined on the algebra 𝑋 . Therefore, the
corresponding functionals are denoted 𝑓𝑀 , ( 𝑓 ↔ 𝑀).

Theorem 1.3. (Gelfand (see [7]. An element 𝑥 ∈ 𝑋 is invertible in 𝑋 if and only if it is not
contained in any maximal ideal (equivalent to 𝑓 (𝑥) ≠ 0 for any multiplicative functional).

Thus, the problem of invertibility in the algebra 𝑋 can be reduced to determining all
maximal ideals or to determining all multiplicative functionals defined on 𝑋 .

2. Algebra U𝒑𝜷

Let U be some algebra (commutative or non-commutative). Recall that a set { 𝑓𝑀 } of
multiplicative functionals is called sufficient if an element 𝑥 is invertible in U if and only
if 𝑓𝑀 (𝑥) ≠ 0 for any M. According to I. Gelfand’s theorem, every commutative Banach
algebra has a sufficient set of multiplicative functionals. The set of functionals of the form
{ 𝑓𝑀 }, where 𝑀 runs over the set of maximal ideals, forms a sufficient set of functionals.

A simple example of a non-commutative Banach algebra that has a sufficient set of
multiplicative functionals is the algebra of upper triangular numerical matrices

U =

{(
𝑎11 𝑎12

0 𝑎22

)} (
𝑎 𝑗𝑘 ∈ 𝐶

)
.

Two functionals 𝑓1(𝑎) = 𝑎11 and 𝑓2(𝑎) = 𝑎22 form a sufficient set.
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Let 𝐸 = 𝐿2(𝑎, 𝑏) and letU be a subalgebra of 𝐿 (𝐸), generated by one singular operator
𝑆: (

𝑆𝜑
)
(𝑡) = 1

𝜋𝑖

∫ 𝑏

𝑎

𝜑(𝜏)
𝜏 − 𝑡 𝑑𝜏 (𝑡 ∈ [𝑎, 𝑏]) .

Since 𝑆∗ = 𝑆, then U is a 𝑐∗ subalgebra of 𝐿 (𝐸) and, in particular, it is symmetric.
The spectrum of the element 𝑆 in the algebra U coincides with its spectrum in the algebra
𝐿 (𝐸), i.e. with the segment [−1, 1]. Each multiplicative functional is defined by a point
𝜏 ∈ [−1, 1].

𝑓𝜏

(
𝑛∑︁
𝑘=0

𝛼𝑘𝑆
𝑘

)
=

𝑛∑︁
𝑘=0

𝛼𝑘𝜏
𝑘 .

In particular, the operator 𝐴 = 𝛼𝐼 + 𝛽𝑆 (𝛼, 𝛽 ∈ 𝐶) is invertible in U if and only if
𝛼 + 𝛽𝜏 ≠ 0, ∀𝜏 ∈ [−1, 1].

Consider the operator 𝐵, defined by the equality

(𝐵𝜑) (𝑡) = 𝛼𝜑(𝑡) + 𝛽

𝜋𝑖

∫ 𝑏

𝑎

𝜑(𝜏)
𝜏 − 𝑡 𝑑𝜏 +

𝛾

(𝜋𝑖)2

∫ 𝑏

𝑎

𝐿𝑛
(𝑏 − 𝑡) (𝜏 − 𝑎)
(𝑡 − 𝑎) (𝑑 − 𝜏)

𝜑 (𝜏) 𝑑𝜏
𝜏 − 𝑡 .

The operator 𝐵 belongs to the algebraU. Indeed, using the Poincaré-Bertrand formula,
it is easy to deduce that 𝐵 = 𝛼𝐼 + 𝛽𝑆 + 𝛾

(
𝑆2 − 𝐼

)
. This implies:

Theorem 2.1. The operator 𝐵 is invertible if and only if the inequality 𝛾𝜏2+𝛽𝜏+(𝛼 − 𝛾) ≠
0 holds for all 𝜏 ∈ [−1, 1].

Let us introduce the following notation. We denote by 𝐿 (B) the algebra of all linear
bounded operators acting in a Banach spaceB. LetU𝑝𝛽 be the smallest Banach subalgebra
with algebra unit 𝐿

(
𝐿𝑝

(
𝑅+, 𝑡𝛽

) )
(𝑅+= [0, +∞)), containing the operator(

𝑆𝜑
)
(𝑡) = 1

𝜋𝑖

∫
𝑅+

𝜑(𝜏)
𝜏 − 𝑡 𝑑𝜏

(
𝑡 ∈ 𝑅+) .

We will assume that 1 < 𝑝 < ∞ and −1 < 𝛽 < 𝑝 − 1. Let 𝛿 be a number from the
interval

(
0, 1

2

)
. Let us denote by 𝑙 (𝛿) an arc of a circle containing points −1 and 1 having

the following property: from point 𝑧 (𝑧 ≠ ±1) of the arc 𝑙 (𝛿) the segment [−1, 1] is visible
at an angle of 2𝜋𝛿 and when going around the arc 𝑙 (𝛿) from point −1 to 1 this segment
remains to the left. For numbers 𝛿 from the interval

(
1
2 , 1

)
we set 𝑙 (𝛿) = −𝑙 (1 − 𝛿). Let

𝑙

(
1
2

)
denote the segment [−1, 1]. As, it is known [1], the spectrum of the operator 𝑆 in

the space 𝐿𝑝
(
𝑅+, |𝑡 |𝛽

)
coincides with the arc 𝑙

(
1+𝛽
𝑝

)
. Since the algebra U𝑝𝛽 is generated

by one element, then [1] takes place.

Theorem 2.2. The set of maximal ideals of the algebra U𝑝𝛽 is homeomorphic to the
arc 𝑙 = 𝑙

(
1+𝛽
𝑝

)
. If 𝑀𝑧 is the maximal ideal corresponding to the point 𝑧 (∈ 𝑙), then the

Gelfand transformation 𝑆 (𝑀𝑧) = 𝑧.
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This theorem can be significantly expanded (see [6]).

Theorem 2.3. The algebra U𝑝𝛽 is an algebra without a radical with a symmetric invo-

lution 𝐴→
↼

𝐴. In particular,
↼

𝑆 = (cos 2𝜋𝛾𝑆 − 𝑖 sin 2𝜋𝛾𝐼) (cos 2𝜋𝛾𝐼 − 𝑖 sin 2𝜋𝛾𝑆)−1
(
𝛾 =

1 + 𝛽
𝑝

)
.

For 𝑝 = 2, the Gelfand transformation 𝐴(𝑧) = 𝐴(𝑀𝑧) satisfies the equality

∥𝐴∥ = max
𝑧∈𝑙 (𝛾)

|𝐴(𝑧) |, (1)

and for 𝑝 ≠ 2, the following estimates hold:

max
𝑧∈𝑙 (𝛾)

|𝐴(𝑧) | ≤ ∥𝐴∥ ≤ 𝑐 ·max
(

max
𝑧∈𝑙 (𝛾)

|𝐴(𝑧) |, max
𝑧∈𝑙 (𝛾)

����(1−𝑧2
)
𝐿𝑛

1−𝑧
1+𝑧

𝑑𝐴(𝑧)
𝑑𝑧

����) (2)

where the constant 𝑐 depends only on 𝑝 and 𝛽.

Proof. Let 𝛾 =
1+𝛽
𝑝

. The operator 𝐵, defined by the equality
(
𝐵𝜑

)
(𝑡) = 𝑒𝛾𝑡𝜑 (𝑒𝑡 ),

isometrically maps the space 𝐿𝑝
(
𝑅+, 𝑡𝛽

)
onto 𝐿𝑝 (𝑅). It is directly verified that the

operator 𝑆 = 𝐵𝑆𝐵−1 has the form(
𝑆𝜑

)
(𝑡) = 1

𝜋𝑖

∫ +∞

−∞

𝑒 (𝑡−𝑠)𝛾𝜑(𝑠)
1 − 𝑒𝑡−𝑠 𝑑𝑠.

Thus, the algebra U𝑝𝛽 , generated by one operator 𝑆, is isometric to some subalgebra
of the convolution algebra and, therefore, has no radical [7]. Let 𝜋𝑖𝑆(𝜉) be the Fourier
transform of the function 𝑒𝑡𝛾

1−𝑒𝑡 . It can be shown (we will not go into details) that

𝑆(𝜉) = 𝑒2𝜋 ( 𝜉+𝑖𝛾) + 1
𝑒2𝜋 ( 𝜉+𝑖𝛾) − 1

(−∞ ≤ 𝜉 ≤ +∞). (3)

The set of values of the function 𝑆(𝜉) runs along the arc 𝑙 (𝛾). We set 𝑧 = 𝑆(𝜉), then
the operator 𝐴 ∈ U𝑝𝛽 satisfies the equality

𝑨
(
𝑆(𝜉)

)
=

(
𝐹𝐵𝐴𝐵−1𝐹−1(𝜉)

)
,

where 𝐹 is the Fourier transform. This, in particular, implies equality (1) for 𝑝 = 2. For
𝑝 ≠ 2, a lower estimation for the norms of the operator 𝐴 follows from Theorem 2.2. The
upper estimation is obtained using theorem on multipliers of S. Mikhlin [4], in which it
is established that

∥𝐵𝐴𝐵−1∥ ≤ 𝑐𝑝 · max
(
max
𝜉 ∈𝑅

𝐴

(
𝑆(𝜉)

))
, max
𝜉 ∈𝑅

�������𝜉 ·
𝑑𝐴

(
𝑆(𝜉)

)
𝑑𝜉

������� ,
where the number 𝑐𝑝 depends only on 𝑝. The theorem has been proven. □
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Remark 2.1. Let us define the functional over 𝐿2
(
𝑅+, 𝑡𝛽

)
by the equality

𝑓 (𝜑) =
∫ ∞

0
𝜑(𝑡) 𝑓 (𝑡)𝑡𝛽𝑑𝑡,

then 𝑆∗ = 𝑡−𝛽𝑆𝑡𝛽 𝐼. It is directly verified that 𝐹𝐵𝑆∗𝐵−1𝐹−1 = 𝐹𝐵𝑆𝐵−1𝐹−1. Therefore,
for 𝑝 = 2, we have 𝑆 = 𝑆∗.

Corollary 2.1. Let the function 𝑓 be differentiable at each point 𝑧 ∈ 𝑙 (𝛾) \ {−1, 1}. If
there exists a sequence of polynomials 𝑃𝑛 such that

max
𝑧∈𝑙 (𝛾)

|𝑃𝑛 (𝑧) − 𝑓 (𝑧) | → 0; max
𝑧∈𝑙 (𝛾)

����(1 − 𝑧2)𝐿𝑛1 − 𝑧
1 + 𝑧 (𝑃

′
𝑛 (𝑧) − 𝑓 ′(𝑧)

���� → 0

as 𝑛→ ∞, then 𝑓 (𝑆) ∈ U𝑝𝛽 .

A more general corollary is the following.

Corollary 2.2. Let 𝐴0 ∈ U 𝑝𝛽 and let 𝜑 (𝑧) be the Gelfand’s transform of operator 𝐴0

and ℎ be differentiable at each point 𝑧 ∈ 𝑙 (𝛾) \ {−1, 1} . If there exists a sequence of
polynomials 𝑃𝑛 such that

𝑚𝑎𝑥
𝑧∈𝑙 (𝛾)

|𝑃𝑛 (𝑧) − ℎ(𝑧) | → 0; 𝑚𝑎𝑥
𝑧∈𝑙 (𝛾)

����(1 − 𝑧2) 𝑑
𝑑𝑧
𝐿𝑛

1 − 𝑧
1 + 𝑧 (𝑃𝑛 (𝜑 (𝑧)) − ℎ(𝑧)

���� → 0

as 𝑛→ ∞, then ℎ(𝐴0) ∈ U𝑝𝛽 .

In what follows, we will need the following theorem.

Theorem 2.4. Let 𝜔 = 𝑒𝜋𝑖𝛼, where 𝛼 is some complex number. If −1<𝑅𝑒𝛼<1, then the
operator 𝑁𝜔 , defined by the equality

(𝑁𝜔𝜑) (𝑥) =
1
𝜋𝑖

∫
𝑅+

𝜑 (𝑦)
𝑦 + 𝜔𝑥 𝑑𝑦,

(
𝑥 ∈ 𝑅+) ,

belongs to the algebra U𝑝𝛽 and its Gelfand transformation has the form

𝑁𝜔 (𝑧) = (𝑧 − 1)
1+𝛼

2 (𝑧 + 1)
1−𝛼

2 (𝑧 ∈ 𝑙 (𝛾)) . (4)

The branch of this function is chosen so that at 𝑧 = −𝑖𝑐𝑡𝑔𝜋𝛾 it takes the value

− 𝑖𝑒𝑥𝑝(−𝜋𝑖𝛾𝛼)
sin 𝜋𝛾

.

Proof. It is directly verified that

𝜋𝑖𝐵𝑁𝜔𝐵
−1𝜑 =

(
𝑒𝛾𝑡

(
1 + 𝜔𝑒𝑡

) )
∗ 𝜑.

It follows that

𝑓𝑧 (𝑁𝜔) =
1
𝜋𝑖

∫ +∞

−∞

𝑒𝛾𝑡−𝑖 𝜉 𝑡

𝑡 + 𝜔𝑒𝑡 𝑑𝑡 =
−𝑖𝑒𝑖 𝜉−𝛾

sin ((𝛾 − 𝑖𝜉) 𝜋) = (𝑧 − 1)
1+𝛼

2 (𝑧 + 1)
1−𝛼

2 .
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Let us show that the function ℎ(𝑧) = 𝑓𝑧 (𝑁𝜔) satisfies the conditions of Corollary 2.1 or
2.2. Let first

��𝛾 − 1
2
�� ≤ 1

4 , then |𝑧 | ≤ 1. In this case, for any 𝛿(𝑅𝑒𝛿 > 0), the function
(𝑧 + 1) 𝛿 satisfies the condition of Corollary 2.2 (for example, partial sums of the Taylor
series can be taken as the polynomials 𝑃𝑛 (𝑧). If |𝛾 − 1

2 | >
1
4 , then the function

𝑓𝑧 (𝑁𝜔) = 𝑧
(
1 − 𝑧−1

) 1+𝛼
2

(
1 + 𝑧−1

) 1−𝛼
2

satisfies the conditions of Corollary 2.1. The role of the operator 𝐴0 is played by the
operator 𝑆−1. The invertibility of the operator 𝑆 follows from the condition 𝛾 ≠ 1

2 . The
theorem is proved. □

3. Symbol of the operator 𝑎𝐼 + 𝑏𝑆Γ
Let the contour Γ𝛼 consist of two semi-axes starting from the point 𝑧 = 0. We denote

by 𝛼 (0 < 𝛼 ≤ 𝜋) the angle formed by these half-lines. We will assume that one of these
semi-straight lines coincides with the semi-axis 𝑅+ = [0, +∞) and that the contour Γ𝛼 is
oriented in such a way that on Γ𝛼 ∩ 𝑅+ the orientation coincides with that on 𝑅+.

Let 𝐵 = 𝐿𝑝
(
Γ𝛼, |𝑡 |𝛽

)
(−1 < 𝛽 < 𝑝 − 1) and denote by 𝜆0 (Γ𝛼) the set of constant

functions on portions that receive two values on Γ𝛼: one value on 𝑅+ and another value
on Γ𝛼\𝑅+. If ℎ ∈ 𝜆0 (Γ), then we write

ℎ(𝑡) =
{
ℎ1, 𝑓 𝑜𝑟 𝑡 ∈ 𝑅+

ℎ2, 𝑓 𝑜𝑟 𝑡 ∈ Γ𝛼\𝑅+ , ℎ 𝑗 ∈ C.

So, ℎ(0) = ℎ2, ℎ(0 + 0) = ℎ1, ℎ(∞ − 0) = ℎ1, ℎ(∞ + 0) = ℎ2.
We will consider the contour Γ𝛼 compactified with a point at infinity, whose neighbor-

hoods are complementary to the neighborhoods of 𝑧0 = 0. Obviously, the contour Γ𝛼 is
homeomorphic to a bounded contour Γ̃, which has two angular points.

We denote by 𝐾𝛼 the Banach algebra generated by the singular integration operator 𝑆Γ
and by all multiplication operators on the functions ℎ ∈ 𝜆0(Γ𝛼). By 𝐾+ we denote the
subalgebra of the algebra 𝐿

(
𝐿𝑝

(
𝑅+, |𝑡 |𝛽

) )
generated by the singular integral operators

𝑎𝐼 + 𝑏𝑆 (𝑆 = 𝑆𝑅+) with constant coefficients on 𝑅+. As 𝐾+ is commutative, then it
possesses [5] a sufficient system of multiplicative functionals. The operator 𝜈,

(𝜈𝜑) (𝑥) =
(
𝜑(𝑥), 𝜑

(
𝑒𝑖𝛼𝑥

) ) (
𝑥 ∈ 𝑅+) ,

is linear and bounded and acts from the space 𝐿𝑝
(
Γ𝛼, |𝑡 |𝛽

)
to the space 𝐿2

𝑝

(
𝑅+, 𝑡𝛽

)
. Let

𝜑 ∈ 𝐿𝑝
(
Γ𝛼, |𝑡 |𝛽

)
and consider the equation

𝐴𝜑 = 𝑎𝜑 + 𝑏𝑆Γ𝛼
𝜑 = 𝜓,
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𝑎(𝑡) =
{
𝑎1, 𝑓 𝑜𝑟 𝑡 ∈ 𝑅+

𝑎2, 𝑓 𝑜𝑟 𝑡 ∈ Γ𝛼\𝑅+ , 𝑏(𝑡) =
{
𝑏1, 𝑓 𝑜𝑟 𝑡 ∈ 𝑅+

𝑏2, 𝑓 𝑜𝑟 𝑡 ∈ Γ𝛼\𝑅+ , 𝑎 𝑗 , 𝑏 𝑗 ∈ C.

This equation can be written as a system of equations: in one equation 𝑡 ∈ 𝑅+ , and in
the second equation 𝑡 ∈ Γ𝛼\𝑅+. We get,

𝑎(𝑡)𝜑(𝑡) + 𝑏 (𝑡 )
𝜋𝑖

∫
𝑅+

𝜑 (𝜏 )
𝜏−𝑡 𝑑𝜏 +

𝑏 (𝜏 )
𝜋𝑖

∫
Γ𝛼\𝑅+

𝜑 (𝜏 )
𝜏−𝑡 𝑑𝜏 = 𝜓(𝑡), 𝑡 ∈ 𝑅+,

𝑎(𝑡)𝜑(𝑡) + 𝑏 (𝑡 )
𝜋𝑖

∫
𝑅+

𝜑 (𝜏 )
𝜏−𝑡 𝑑𝜏 +

𝑏 (𝜏 )
𝜋𝑖

∫
Γ𝛼\𝑅+

𝜑 (𝜏 )
𝜏−𝑡 𝑑𝜏 = 𝜓(𝑡), 𝑡 ∈ Γ𝛼 \ 𝑅+.

In the integral ∫
Γ𝛼\𝑅+

𝜑(𝜏)
𝜏 − 𝑡 𝑑𝜏

we change the variable 𝜏 → 𝑒𝑖𝛼𝜏 and in the second equation of the obtained system, we
change 𝑡 by 𝑒𝑖𝛼𝑡. Then, we obtain

𝑎1𝜑1(𝑡) + 𝑏1
𝜋𝑖

∫
𝑅+

𝜑1 (𝜏 )
𝜏−𝑡 𝑑𝜏 −

𝑏1
𝜋𝑖

∫
𝑅+

𝜑2 (𝜏 )
𝜏−𝑒−𝑖𝛼𝑡 𝑑𝜏 = 𝜓1(𝑡), 𝑡 ∈ 𝑅+,

𝑎2𝜑2(𝑡) + 𝑏2
𝜋𝑖

∫
𝑅+

𝜑1 (𝜏 )
𝜏−𝑒𝑖𝛼𝑡 𝑑𝜏 −

𝑏2
𝜋𝑖

∫
𝑅+

𝜑2 (𝜏 )
𝜏−𝑡 𝑑𝜏 = 𝜓2(𝑡), 𝑡 ∈ 𝑅+.

in which the notations were used: 𝑓1(𝑡) = 𝑓 (𝑡), 𝑓2(𝑡) = 𝑓
(
𝑒𝑖𝛼𝑡

)
(𝑡 ∈ 𝑅+).

Thus, the operator 𝜈𝐴𝜈−1 has the form

𝜈𝐴𝜈−1 =






 𝑎1𝐼 + 𝑏1𝑆, −𝑏1𝑀

𝑏2𝑁, 𝑎2𝐼 − 𝑏2𝑆






 ,
where

(𝑆𝜑) (𝑡) = 1
𝜋𝑖

∫
𝑅+

𝜑(𝜏)
𝜏 − 𝑡 𝑑𝜏, (𝑀𝜑) (𝑡) = 1

𝜋𝑖

∫
𝑅+

𝜑(𝜏)
𝜏 − 𝑒−𝑖𝛼𝑡 𝑑𝜏,

(𝑁𝜑) (𝑡) = 1
𝜋𝑖

∫
𝑅+

𝜑(𝜏)
𝜏 − 𝑒𝑖𝛼𝑡 𝑑𝜏

(
𝑡 ∈ 𝑅+) .

From Theorems 2.2 and 2.3 it follows that operators 𝑀 and 𝑁 belong to the algebra
𝐾+ generated by the operator 𝑆(= 𝑆𝑅+) and the multiplication operators to the constant
functions. Therefore, 𝜈𝐾𝛼𝜈−1 ⊂ (𝐾+)2×2. Let {𝛾𝑀 } be the homeomorphism system that
determines the symbol on the algebra 𝐾+. For any operator 𝐴 ∈ 𝐾𝛼 we put

𝛾̃𝑀 (𝐴) =


𝛾𝑀 (

𝐴 𝑗𝑘
)

2
𝑗 ,𝑘=1 , where



𝐴 𝑗𝑘

2
𝑗 ,𝑘=1 = 𝜈𝐴𝜈−1.

4. Conditions for Noetherianity

Theorem 4.1. The operator 𝐴 ∈ 𝐾𝛼 is Noetherian in the space 𝐿𝑝
(
Γ𝛼, |𝑡 |𝛽

)
if and only

if

𝑑𝑒𝑡𝛾̃
𝑀
(𝐴) ≠ 0.
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Indeed, the factor algebra 𝐾+ with respect to all compact operators in 𝐿
(
𝐿𝑝

(
𝑅+, 𝑡𝛽

) )
is commutative, therefore, the elements of the matrix operator



𝐴 𝑗𝑘

2
𝑗 ,𝑘=1 = 𝜈𝐴𝜈−1

commute up to compact. Then, according to [5], the operator


𝐴 𝑗𝑘

2

𝑗 ,𝑘=1 is Noetherian in
𝐿𝑝

(
𝑅+, 𝑡𝛽

)
, if and only if the operatorΔ = 𝑑𝑒𝑡



𝐴 𝑗𝑘

 is Noetherian in 𝐿𝑝
(
𝑅+, 𝑡𝛽

)
. But the

operator 𝑑𝑒𝑡


𝐴 𝑗𝑘

 is Noetherian if and only if 𝛾

𝑀

(
𝑑𝑒𝑡



(𝐴 𝑗𝑘)

) . As 𝛾
𝑀

(
𝑑𝑒𝑡



(𝐴 𝑗𝑘)

) =
𝑑𝑒𝑡



𝛾
𝑀

(
𝐴 𝑗𝑘

)

, it follows that 𝐴 is Noetherian if and only if 𝑑𝑒𝑡𝛾̃
𝑀
(𝐴) ≠ 0.

The theorem is proved.
Conclusion. Theorem 4.1 allows us to define a symbol on the algebra K. Namely, it is
natural to call the matrix 𝛾̃

𝑀
(𝐴) a symbol of the operators 𝐴 ∈ 𝐾 . Taking into account

formulas (3) and (4), the symbol of the operators 𝐻 = ℎ𝐼, ℎ ∈ 𝜆0(Γ) and 𝑆Γ will have the
form:

𝛾̃
𝑀
(𝐻)=






 ℎ1 0
0 ℎ2






 , 𝛾̃𝑀
(𝑆Γ)=






 𝑧 (𝑧 − 1)1− 𝛼
2𝜋 (𝑧 + 1)

𝛼
2𝜋

(𝑧 − 1)
𝛼

2𝜋 (𝑧 + 1)1− 𝛼
2𝜋 −𝑧






 . (5)

We will write the symbol of the operator 𝑆Γ in a more convenient form. For this let us
put

𝑧 =
𝑒2𝜋 ( 𝜉+𝑖𝛾) + 1
𝑒2𝜋 ( 𝜉+𝑖𝛾) − 1

= 𝑐𝑡ℎ (𝜋 (𝜉 + 𝑖𝛾))
(
−∞ ≤ 𝜉 ≤ +∞, 𝛾 =

1 + 𝛽
𝑝

)
.

Then

(𝑧 − 1)1− 𝛼
2𝜋 (𝑧 + 1)

𝛼
2𝜋 = 2

𝑒 (𝛼−𝜋 ) ( 𝜉+𝑖𝛾)

𝑒𝜋 ( 𝜉+𝑖𝛾) − 𝑒−𝜋 ( 𝜉+𝑖𝛾)
=
𝑒 (𝛼−𝜋 ) ( 𝜉+𝑖𝛾)

𝑠ℎ𝜋(𝜉 + 𝑖𝛾) ,

(𝑧 − 1)
𝛼

2𝜋 (𝑧 + 1)1− 𝛼
2𝜋 = 2

𝑒 (𝜋−𝛼) ( 𝜉+𝑖𝛾)

𝑒𝜋 ( 𝜉+𝑖𝛾) − 𝑒−𝜋 ( 𝜉+𝑖𝛾)
=
𝑒 (𝜋−𝛼) ( 𝜉+𝑖𝛾)

𝑠ℎ𝜋(𝜉 + 𝑖𝛾) .

Therefore the symbol of the operator 𝑆Γ takes the form

𝛾̃
𝑀
(𝑆Γ) =






 𝑐𝑡ℎ (𝜋(𝜉 + 𝑖𝛾)) 𝑒 (𝛼−𝜋) (𝜉+𝑖𝛾)

𝑠ℎ𝜋 ( 𝜉+𝑖𝛾)
𝑒 (𝜋−𝛼) (𝜉+𝑖𝛾)

𝑠ℎ𝜋 ( 𝜉+𝑖𝛾) −𝑐𝑡ℎ (𝜋(𝜉 + 𝑖𝛾))






 . (6)

Remark 4.1. If 𝛼 = 𝜋, that is, the contour Γ satisfies the Lyapunov conditions at the point
𝑧0 = 0, then the symbol of the operator 𝐻 = ℎ𝐼 remains the same, and the symbol of the
operator 𝑆Γ has the form

𝛾̃
𝑀
(𝑆Γ) =






 𝑧
√
𝑧2 − 1√

𝑧2 − 1 −𝑧






 =





 𝑐𝑡ℎ𝜋 (𝜉 + 𝑖𝛾) (𝑠ℎ𝜋(𝜉 + 𝑖𝛾))−1

(𝑠ℎ𝜋(𝜉 + 𝑖𝛾))−1 −𝑐𝑡ℎ𝜋 (𝜉 + 𝑖𝛾)






 . (7)

Now we have what it is needed to define the symbol of the singular integral operators
with coefficients in 𝐶𝑃(Γ) in the case of the piecewise Lyapunov contour.
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So, let Γ be a piecewise closed Lyapunov contour. We denote by 𝑡1, . . . , 𝑡𝑛 all angular
points with angles 𝛼𝑘 (0 < 𝛼𝑘 < 𝜋) (𝑘 = 1, . . . , 𝑛) and

𝑝(𝑡) =
𝑛∏
𝑘=1

|𝑡 − 𝑡𝑘 |𝛽𝑘 (1 < 𝑝 < ∞, −1 < 𝛽𝑘 < 𝑝 − 1) .

We denote byΣ(Γ, 𝑝) (⊂ 𝐿 (𝐿𝑝 (Γ, 𝑝))) the algebra generated by the operators (𝐻𝜑) (𝑡) =
ℎ(𝑡)𝜑(𝑡), ℎ(𝑡) ∈ 𝐶𝑃(Γ) and the operator 𝑆Γ. We mention, that the ideal formed by the
compact operators acting in the space 𝐿𝑝 (Γ, 𝑝) is contained in the algebra Σ(Γ, 𝑝).

𝐻 (𝑡, 𝜉) =





 ℎ(𝑡 + 0) 0

0 ℎ(𝑡 − 0)






 . (8)

We define the symbol 𝑆Γ (𝑡, 𝜉) of the operator 𝑆Γ as follows:

𝑆(𝑡, 𝜉) =





 𝑐𝑡ℎ𝜋(𝜉 + 𝑖𝛾(𝑡)) − 𝑒𝑥𝑝 ( (𝛼(𝑡 )−𝜋 ) ( 𝜉+𝑖𝛾 (𝑡 ) ) )

𝑠ℎ𝜋 ( 𝜉+𝑖𝛾 (𝑡 ) )
𝑒𝑥𝑝 ( (𝜋−𝛼(𝑡 ) ) ( 𝜉+𝑖𝛾 (𝑡 ) ) )

𝑠ℎ𝜋 ( 𝜉+𝑖𝛾 (𝑡 ) ) −𝑐𝑡ℎ𝜋(𝜉 + 𝑖𝛾(𝑡))






 , (9)

where

𝛼(𝑡) =
{
𝛼𝑘 , 𝑖 𝑓 𝑡 = 𝑡𝑘 (𝑘 = 1, 2, . . . , 𝑛)
𝜋, 𝑖 𝑓 𝑡 ∈ Γ \ {𝑡1, 𝑡2, . . . , 𝑡𝑛}

and

𝛾(𝑡) =
{ 1+𝛽𝑘

𝑝
, 𝑖 𝑓 𝑡 = 𝑡𝑘 (𝑘 = 1, 2, . . . , 𝑛)

1
𝑝
, 𝑖 𝑓 𝑡 ∈ Γ \ {𝑡1, 𝑡2, . . . , 𝑡𝑛}

Theorem 4.2. Let and 𝐴 ∈ Σ(Γ, 𝜌) and 𝐴(𝑡, 𝜉) be its symbol. The operator 𝐴 is
Noetherian in the space 𝐿𝑝 (Γ, 𝜌) if and only if

𝑑𝑒𝑡𝐴(𝑡, 𝜉) ≠ 0 (𝑡 ∈ Γ,−∞ ≤ 𝜉 ≤ +∞).

The proof of Theorem 4.2 follows from Theorem 4.1, using the results from [8].
Theorems 4.1 and 4.2 can be generalized to the case where the integration contour

is complex. More precisely, let Γ consist of 𝑛 rays: Γ =
⋃𝑛
𝑚=1 Γ𝑚, where Γ𝑚 =

(𝜀𝑚𝑥 : 𝑥 ∈ 𝑅+, 𝜀𝑚 ∈ C, | |𝜀𝑚 | = 1), 𝑃𝐶0(Γ) is the set of functions continuous on Γ \ {0}
and having finite limits as 𝑡 → 0 and 𝑡 → ∞ along each ray Γ𝑚 and 𝐾𝑝 (⊂ 𝐿 (𝐿𝑝 (Γ))) is
the algebra generated by singular operators with coefficients from 𝑃𝐶0(Γ). We assume
that 𝜀1 = 1, i.e. that Γ1 = 𝑅+. Let 𝜇 denote the isometry 𝐿𝑝 (Γ) → 𝐿𝑛𝑝 (Γ1), defined by
the equality 𝜇𝜑 = (𝜑1, 𝜑2, . . . , 𝜑𝑛), where 𝜑𝑘 (𝑡) = 𝜑(𝜀𝑘𝑡) (𝑘 = 1, 2, . . . , 𝑛; 𝑡 ≥ 0). In
this case

𝜇𝐻𝜇−1 =












𝐻1 0 . . . 0
0 𝐻2 . . . 0
. . . .

0 0 . . . 𝐻𝑛











 , 𝜇𝑆Γ𝜇
−1 =



𝑅 𝑗𝑘

𝑛𝑗,𝑘=1 .
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Here
(𝐻𝜑) (𝑡) = ℎ(𝑡)𝜑(𝑡), (𝐻𝑘𝜑) (𝑡) = ℎ(𝜀𝑘𝑡)𝜑(𝑡) (𝑡 ∈ Γ1)

and
(𝑅 𝑗𝑘𝜑) =

1
𝜋𝑖

∫ ∞

0

𝜑(𝜏)𝑑𝜏
𝜏 − 𝜀−1

𝑗
𝜀𝑘𝑡

.

It follows from Theorem 2.4 that 𝑅 𝑗𝑘 ∈ 𝐾+, hence 𝜇𝐾𝑝𝜇−1 ⊂ (𝐾+)𝑛×𝑛. As in Theorem
4.1, it can be shown that the operator 𝐴 ∈ 𝐾𝑝 is Noetherian if and only if the condition

𝑑𝑒𝑡


𝛾̃

𝑀

(
𝐴 𝑗𝑘

)

𝑛
𝑗,𝑘=1 ≠ 0,

where 𝜇𝐴𝜇−1 =


𝐴 𝑗𝑘

𝑛𝑗,𝑘=1. Thus,



𝛾̃
𝑀

(
𝐴 𝑗𝑘

)

𝑛
𝑗,𝑘=1 defines a matrix symbol

on 𝐾𝑝.

5. Calculation of essential norms of singular operators

Recall (see [9]) that for any operator 𝐴 from some Banach algebra U with symmetric
symbol the following relation holds:

inf
𝑇∈T

∥𝐴 + 𝑇 ∥ = max
𝑥
𝑆1 (A(𝑥)) , (10)

where A(𝑥) is the symbol of the operator 𝐴, and 𝑆2
1 (A(𝑥)) denotes the largest eigenvalue

of the matrix A(𝑥) · (A(𝑥))∗ . Equality (10) is equivalent to the following equality

inf
𝑇∈J

∥𝐴 + 𝑇 ∥2 = max
𝜆∈ 𝜎̂ (𝐴𝐴∗ )

𝜆, (11)

where 𝜎̂(𝐴𝐴∗) denotes the spectrum of the residue class {𝐴𝐴∗ + 𝑇} in the quotient
algebra U/T . The set 𝜎̂(𝐴𝐴∗) coincides with the set of numbers 𝜆 for which the operator
𝐴𝐴

∗ − 𝜆𝐼 is not Noetherian.
Applying equality (11) to the operator 𝑆Γ𝛼

, taking into account formula (7), we obtain,

|𝑆Γ𝛼
|2𝛽 = lim

𝜉 ∈𝑅

(
𝑓 (𝜉) +

√︁
𝑓 2(𝜉) − 1

)
, (12)

where

𝑓 (𝜉) =
𝑒4𝜋 𝜉 + 2

(
𝑒 (4𝜋−2𝛼) 𝜉 + 𝑒2𝛼𝜉 − cos 𝜋𝛽𝑒2𝜋 𝜉

)
+ 1

𝑒4𝜋 𝜉 + 2 cos 𝜋𝛽𝑒2𝜋 𝜉 + 1
.

Let us give some examples. Suppose 𝛼 = 𝜋, i.e. Γ𝛼 is the real axis R, then from
equality (12) we obtain

|𝑆Γ𝛼
|𝛽 = ctg

𝜋(1 − |𝛽 |)
4

.

Assume that 𝛽 = 0 and let

𝑧 =
1 − 𝑒2𝜋 𝜉

1 + 𝑒2𝜋 𝜉 (−∞ ≤ 𝜉 ≤ +∞),
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then from equality (12) follows the following formula for the essential norm of the operator
𝑆Γ𝛼

:

|𝑆Γ𝛼
|0 = ctg

(
𝜃 (𝛼)

2

)
,

where

2 ctg 𝜃 (𝛼) = max
−1≤𝑧≤1

�����(1 + 𝑧)
(
1 − 𝑧
1 + 𝑧

) 𝛼
2𝜋

+ (1 − 𝑧)
(

1 + 𝑧
1 − 𝑧

) 𝛼
2𝜋

����� .
In particular, for 𝛼 = 𝜋

3 , 𝛼 = 𝜋
2 , we obtain |𝑆Γ𝛼

|0 = 1+
√

5
2 , |𝑆Γ𝛼

|0 =
√

2.
Thus, in the case of a contour with corner points, the essential norm of the singular

operator also depends on the values of the angles formed by the contour at its corner
points. We also note that for any 𝛼 (0 < 𝛼 ≤ 𝜋), the inequalities hold

1 ≤ |𝑆Γ𝛼
|0 < 1 +

√
2. (13)

Next, we will consider the case where the integration contour Γ has a finite number of
corner points.

Let Γ be a piecewise Lyapunov contour, 𝜏1, 𝜏2, . . . , 𝜏𝑠 be all corner points of the
contour Γ, and 𝛼1, 𝛼2, . . . , 𝛼𝑠 be the angles between the one-sided tangents to Γ at the
points 𝜏1, 𝜏2, . . . , 𝜏𝑠, respectively. In the space 𝐿2(Γ), we will consider the operator 𝐴
defined by the equality

𝐴 = 𝑆Γ𝑆
∗
Γ − 𝜆𝐼.

The symbol of the operator 𝐴 is the matrix function 𝐴(𝑡, 𝜉) (𝑡 ∈ Γ,−∞ ≤ 𝜉 ≤ ∞) of
the second order, defined as follows:

At points 𝑡 that do not coincide with any of the points 𝜏1, 𝜏2, . . . , 𝜏𝑠, we have

𝐴(𝑡, 𝜉) = (1 − 𝜆)𝐸2, (14)

where 𝐸2 is the identity matrix of the second order. But, at the points 𝜏𝑘 (𝑘 = 1, 2, . . . , 𝑠)
we obtain

𝐴(𝜏𝑘 , 𝜉) = 𝑆𝑘 (𝜉) (𝑆𝑘 (𝜉))∗ − 𝜆𝐸2, (15)

where 𝑆𝑘 (𝜉) coincides with the right-hand side of equality (9), in which 𝑝 = 2 and 𝛽𝑘 = 0.

Theorem 5.1. An operator 𝐴 = 𝑆Γ𝑆
∗
Γ
− 𝜆𝐼 is Noetherian in the space 𝐿2(Γ) if and only

if the determinant of its symbol is nonzero:

𝑑𝑒𝑡𝐴(𝑡, 𝜉) ≠ 0(𝑡 ∈ Γ,−∞ ≤ 𝜉 ≤ ∞).

To prove this theorem, we need the following lemma.
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Lemma 5.1. An operator 𝐴𝛼 = 𝑆𝛼𝑆
∗
𝛼 − 𝜆𝐼 (𝑆𝛼 = 𝑆Γ𝛼

), acting in the space 𝐿2(Γ𝛼), is
a local Noetherian operator∗ at 𝑡 = 0 if and only if it is a local Noetherian operator at
𝑡 = ∞.

Proof. Let the operator 𝐴𝛼 be local Noetherian at 𝑡 = 0. This means (see [9]) that it
has left and right local regularizers at this point, i.e. there exist operators 𝑅1, 𝑅2 and a
neighborhood𝑈0(∋ 0) such that. □

𝑅1𝐴𝛼𝑃𝑈0 = 𝑃𝑈0 + 𝑇1, 𝑃𝑈0𝐴𝛼𝑅2 = 𝑃𝑈0 + 𝑇2, (16)

where 𝑇1 and 𝑇2 are compact operators and 𝑃𝑈0 is an operator acting according to the rule(
𝑃𝑈0𝜑

)
(𝑡) =

{
𝜑(𝑡), 𝑖 𝑓 𝑡 ∈ 𝑈𝑜
0, 𝑖 𝑓 𝑡 ∈ 𝑈0\Γ𝛼

.

Let us consider the operator 𝑀 defined by the equality(
𝑀𝜑

)
(𝑡) = 𝑒𝑖𝛼

𝑡
𝜑

(
𝑒𝑖𝛼

𝑡

)
(𝑡 ∈ Γ𝛼) .

It is easy to prove that the operator 𝑀 acts in the space 𝐿2(Γ𝛼), ∥𝑀 ∥ = 1 and the
following equalities holds:

𝑀𝑆𝛼𝑀
−1 = 𝑆𝛼, 𝑀𝑆∗𝛼𝑀

−1 = 𝑆∗𝛼. (17)

Applying the operator 𝑀 to the equality (15) on the left and 𝑀−1 on the right and
taking into account the equality (16), we obtain

𝑅1𝐴𝛼𝑃𝑈∞ = 𝑃𝑈∞ + 𝑇1, 𝑃𝑈∞𝐴𝛼𝑅2 = 𝑃𝑈∞ + 𝑇2, (18)

where 𝑅𝑖 = 𝑀𝑃𝑖𝑀
−1 and 𝑇𝑖 = 𝑀𝑃𝑖𝑀

−1 (𝑖 = 1, 2), and 𝑈∞ is a neighborhood of the
point 𝑡 = ∞. The equality (18) means that the operator 𝐴𝛼 is locally Noetherian at the
point 𝑡 = ∞. The converse statement of the lemma is proved similarly. The lemma is
proved.

Proof of the Theorem 5.1. Let 𝐴 be a Noetherian operator and𝑈𝜏 be some neighborhood
of a point 𝜏(∈ Γ) that does not contain points 𝜏𝑘 ≠ 𝜏. By 𝜑𝜏 we denote a function defined
on 𝑈𝜏 as follows. If 𝜏 ≠ 𝜏𝑘 , then we set 𝜑𝜏 (𝑡) ≡ 𝑡 (𝑡 ∈ 𝑈𝜏). If 𝜏 = 𝜏𝑘 (𝑘 = 1, 2, . . . , 𝑠),
then 𝜑𝜏𝑘 is a function that maps one-to-one the neighborhood𝑈𝜏𝑘 onto some neighborhood
𝑉𝑘 (Γ𝛼𝑘 ) of the point 𝑡 = 0, where 𝜑𝜏𝑘 = 0 (𝑘 = 1, 2, . . . , 𝑠). Since Γ is a piecewise
Lyapunov contour, it is possible to achieve that the derivatives 𝜑′𝜏𝑘 (𝑡) (𝑡 ∈ 𝑈𝜏𝑘 ) satisfy
the Hölder. condition.

∗For the definition of 𝜑 - equivalence, see [9] on page 576.
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ON THE SYMBOL OF SINGULAR OPERATORS IN THE CASE OF CONTOUR
WITH CORNER POINTS

At each point 𝜏 ≠ 𝜏𝑘 the operator 𝐴 is 𝜑𝜏 equivalent to the operator
𝐶 = (1 − 𝜆)𝐼 acting in the space 𝐿2(Γ). Since 𝐴 is Noetherian, then (see [9] Theo-
rem 1.4) the operator 𝐶 is locally Noetherian at the point 𝜏, hence 𝜆 ≠ 1.

At the point 𝜏𝑘 , the operator 𝐴 is 𝜑𝜏𝑘 equivalent to the operator 𝐴𝑘 = 𝑆𝛼𝑘𝑆
∗
𝛼𝑘

− 𝜆𝐼,
acting in the space 𝐿2(Γ𝛼𝑘 ). It also follows that 𝐴𝑘 is a local Noetherian operator at the
point 𝑡 = 0. By Lemma 5.1, 𝐴𝑘 is a local Noetherian operator at the point 𝑡 = ∞. At
points 𝑡 ∈ Γ𝛼𝑘 other than zero and infinity, the operator 𝐴𝑘 is equivalent to the operator
(1− 𝜆)𝐼. Since 𝜆 ≠ 1, 𝐴𝑘 is local Noetherian at these points as well. Hence, by Theorem
1.6, it follows from [9] that 𝐴𝑘 is Noetherian in 𝐿2(Γ𝛼𝑘 ). It follows from Theorem 4.2
that 𝑑𝑒𝑡𝐴𝑘 (𝑡, 𝜉) ≠ 0 (𝑡 ∈ Γ𝛼𝑘 ,−∞ ≤ 𝜉 ≤ ∞). It is easy to see that 𝐴𝑘 (0, 𝜉) = 𝐴(𝜏𝑘 , 𝜉).
Therefore, 𝑑𝑒𝑡𝐴(𝑡, 𝜉) ≠ 0 (𝑡 ∈ Γ,−∞ ≤ 𝜉 ≤ ∞).

The necessity of the theorem is proved.
Sufficiency. Let 𝑑𝑒𝑡𝐴(𝑡, 𝜉) ≠ 0 (𝑡 ∈ Γ,−∞ ≤ 𝜉 ≤ ∞). Then 𝜆 ≠ 1 and

𝑑𝑒𝑡 (𝑆𝑘 (0, 𝜉) (𝑆𝑘 (0, 𝜉))∗ − 𝜆𝐸2) ≠ 0 (𝑘 = 1, 2, . . . , 𝑠).

From this and Lemma 5.1 it follows that the operators 𝐴𝑘 (𝑘 = 1, 2, . . . , 𝑠) and 𝐶 =

(1 − 𝜆)𝐼 are Noetherian. Since the operator 𝐴 at each point 𝜏 is 𝜑𝜏 equivalent to one of
these operators, it follows (see [9], Theorem 2.4) that 𝐴 is Noetherian. The theorem is
proved.

From Theorem 5.1 follows

Corollary 5.1. The operator 𝑆∗ does not belong to the algebra Σ(Γ) generated by the
operators 𝑎𝐼 (𝑎 ∈ 𝐶 (Γ)) and 𝑆Γ.

Indeed, let us assume that 𝑆∗ belongs to the algebra Σ(Γ). Since the symbols of the
operators from Σ(Γ) commute, the symbol of the operator 𝑅 = 𝜆𝐼 − (𝑆∗

Γ
𝑆Γ − 𝑆Γ𝑆∗Γ) is

equal to 𝜆. Consequently, for all 𝜆 ≠ 0 the operator 𝑅 is Noetherian. It is easy to verify
that this contradicts Theorem 5.1.

From Theorem 5.1 and equality (10) it is easy to deduce that the essential norm |𝑆Γ |
of the operator 𝑆Γ in the space 𝐿2(Γ) is defined by the equality

|𝑆Γ | = max
1≤𝑘≤𝑠

��𝑆𝛼𝑘 �� . (19)

From this and from equality (12) we conclude that the essential norm of the operator
𝑆Γ in the space 𝐿2(Γ) satisfies the conditions

1 ≤ |𝑆Γ | < 1 +
√

2.

Note that similarly, using the symbol and equality (13), we can calculate the essential
norms of the Riesz operators 𝑃Γ = (𝐼 + 𝑆Γ)/2 and 𝑄Γ = (𝐼 − 𝑆Γ)/2. It turns out that for
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these operators the following relation holds:

|𝑃Γ | = |𝑄Γ | =
|𝑆Γ |2 + 1
2|𝑆Γ |2

. (20)

Remark 5.1. The equality (20) confirms the following hypothesis of the mathematician
S. Marcus: let 𝐵 be some Banach space and 𝐿1, 𝐿2 subspaces from 𝐵 such that 𝐿1

⋂
𝐿2 =

0 and 𝐵 = 𝐿1 + 𝐿2, then equality

|𝑃 | = |𝑄 | = |𝑆Γ |2 + 1
2|𝑆Γ |2

takes place, where 𝑃 and 𝑄 are projectors projecting the space 𝐵 onto 𝐿1, respectively,
on 𝐿2 and 𝑆 = 𝑃 +𝑄.
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On computation of the ordinary Hilbert series for Sibirsky
graded algebras of differential system s(3, 5)

Lidia Muşinschi and Victor Pricop

Abstract. The generalized and ordinary Hilbert series for Sibirsky graded algebras of
comitants and invariants of autonomous polynomial differential systems are of particu-
lar importance for some problems of qualitative theory of differential systems. In the
Republic of Moldova the computation of these series have their beginnings in the works
of Professor M. N. Popa and his disciples. But the construction of these series for some
complicated differential systems encounters insurmountable computational difficulties,
especially, for the generalized Hilbert series, from which the ordinary Hilbert series can
be easily obtained. In this paper, it is shown how the adaptation of Molien’s formula
address to the mentioned problem to overcome the enormous calculations, an ordinary
Hilbert series were obtained for Sibirsky graded algebras of comitants and invariants for
the differential system 𝑠(3, 5).
2020 Mathematics Subject Classification: 34C05, 34C07, 34C14.
Keywords: differential systems, Sibirsky graded algebras, Hilbert series, Krull dimen-
sion.

Despre calcularea seriilor Hilbert obişnuite pentru algebrele
graduate Sibirschi ale sistemului diferent, ial s(3, 5)

Rezumat. Seriile Hilbert generalizate şi obişnuite pentru algebrele graduate Sibirschi
ale comitanţilor şi invarianţilor sistemelor diferenţiale polinomiale autonome joacă un
rol deosebit pentru unele probleme din teoria calitativă a acestor sisteme. În Republica
Moldova calcularea seriilor Hilbert ı̂ncep ı̂n lucrările profesorului M. N. Popa şi ale dis-
cipolilor săi. Totuşi construcţia acestor serii pentru unele sisteme diferenţiale complicate
ı̂ntâmpină dificultăţi enorme de calcul, ı̂n special pentru seria Hilbert generalizată din
care se obţine cu uşurinţă seria Hilbert obişnuită. În această lucrare se arată cum se
foloseşte adaptarea formulei lui Molien pentru a depăşi problema calculelor enorme. Au
fost obţinute seriile Hilbert obişnuite pentru algebrele graduate Sibirschi ale comitanţilor
şi invarianţilor pentru sistemul diferenţial 𝑠(3, 5).
Cuvinte-cheie: sisteme diferenţiale, algebre graduate Sibirschi, serii Hilbert, dimensiu-
nea Krull.
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1. Introduction

Consider a two-dimensional autonomous polynomial system of differential equations

𝑑𝑥

𝑑𝑡
=

ℓ∑︁
𝑖=0

𝑃𝑚𝑖
(𝑥, 𝑦), 𝑑𝑦

𝑑𝑡
=

ℓ∑︁
𝑖=0

𝑄𝑚𝑖
(𝑥, 𝑦), (1)

where Γ = {𝑚𝑖}ℓ𝑖=0, (ℓ < ∞) is a some finite set of distinct non-negative integers,
𝑃𝑚𝑖

(𝑥, 𝑦) and𝑄𝑚𝑖
(𝑥, 𝑦) are homogeneous of degree𝑚𝑖 with respect to the phase variables

𝑥 and 𝑦 (i.e., 𝑃𝑚𝑖
(𝛼𝑥, 𝛼𝑦) = 𝛼𝑚𝑖𝑃𝑚𝑖

(𝑥, 𝑦), 𝑄𝑚𝑖
(𝛼𝑥, 𝛼𝑦) = 𝛼𝑚𝑖𝑄𝑚𝑖

(𝑥, 𝑦), 𝛼 ∈ R). The
coefficients and variables in the polynomials 𝑃𝑚𝑖

(𝑥, 𝑦) and 𝑄𝑚𝑖
(𝑥, 𝑦) take values from

the field of real numbers R.
Hereafter for the system of the form (1) we will use the notation 𝑠(𝑚0, 𝑚1, ..., 𝑚ℓ) or

𝑠(Γ) where Γ = {𝑚𝑖}ℓ𝑖=0, 𝑚𝑖 are degrees of homogeneities 𝑃𝑚𝑖
(𝑥, 𝑦) and 𝑄𝑚𝑖

(𝑥, 𝑦) with
respect to the phase variables 𝑥 and 𝑦.

One of the methods to study the differential systems of the form (1) is ”The method
of algebraic invariants in the theory of differential equations”, which is developed in the
works of Academician K. S. Sibirsky [1, 2, 3] and his disciples.

This method generated applications of Lie groups and algebras, graded algebras of
invariants and comitants, generating functions and Hilbert series to the study of the
system (1) (see, for example [4, 5]).

One of the methods of computation of generalized and ordinary Hilbert series for
differential systems is Silvester’s generalized method known from [4]. This method for
differential systems with high-degree polynomial on the right-hand sides is connected
with cumbersome computations with application of supercomputers. In contrast to the
mentioned above, using the residues method, were obtained the ordinary Hilbert series for
Sibirsky graded algebras of comitants and invariants for the following differential systems
𝑠(1, 3, 7) [6], 𝑠(3, 7) [7], 𝑠(1, 3, 5) [8], 𝑠(1, 3, 5, 7) [9]. So, it is welcome to complete the
set of computed Hilbert series with others, for example, the Hilbert series for the system
𝑠(3, 5).

2. Graded algebras of comitants (invariants) of the system (1.1)

Let 𝐴 be a set of coefficients of the system (1). Denote by 𝐺𝐿 (2,R) a group of
centro-affine transformations

𝑞 : 𝑥 = 𝛼𝑥 + 𝛽𝑦, 𝑦 = 𝛾𝑥 + 𝛿𝑦 (Δ =

����𝛼 𝛽𝛾 𝛿 ���� ≠ 0) (2)

where 𝛼, 𝛽, 𝛾, 𝛿 takes value from the field of real numbers R.
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ON COMPUTATION OF THE ORDINARY HILBERT SERIES FOR SIBIRSKY
GRADED ALGEBRAS OF DIFFERENTIAL SYSTEM 𝑠(3, 5)

Definition 2.1. The polynomial 𝑘 (𝑥, 𝑦, 𝐴) of phase variables and coefficients of the system
(1) is called a centro-affine comitant of this system, if the equality

𝑘 (𝑥, 𝑦, 𝐴) = Δ−𝑔𝑘 (𝑥, 𝑦, 𝐴)

holds for any 𝑞 ∈ 𝐺𝐿 (2,R), any coefficients of the system (1), any phase variables. If
the comitant 𝑘 does not depend on the phase variables, then it its called the invariant
(usually denoted by 𝑖) of the system (1) by the centro-affine group 𝐺𝐿 (2,R).

The number 𝑔 is called the weight of the comitant 𝑘 . If 𝑔 = 0, then 𝑘 is called the
absolute comitant, otherwise the relative comitant.

Definition 2.2. For any differential system 𝑠(𝑚0, 𝑚1, ..., 𝑚ℓ), a centro-affine comitant
has a type

(𝑑) = (𝛿, 𝑑1, 𝑑2, ..., 𝑑ℓ) (3)

where 𝑑𝑖 is the degree of homogeneity of comitant with respect to the coefficients of
homogeneities 𝑃𝑚𝑖

(𝑥, 𝑦) and 𝑄𝑚𝑖
(𝑥, 𝑦), 𝛿 is the degree of homogeneity of comitant with

respect to the phase variables 𝑥, 𝑦. At the same time the number 𝑑 =
∑ℓ

𝑖=1 𝑑𝑖 (𝛿) is called
the degree (order) of comitant of the type (3).

Lemma 2.1. [4] The set of centro-affine comitants of the system (1) of the same type
(3) forms a finite-dimensional linear space, i.e., has a finite maximal system of linearly
independent comitants (linear basis) of a given type through which all others are linearly
expressed.

Remark 2.1. In [4] it is shown that the set of centro-affine comitants generate a finite-
determined graded algebra of comitants (invariants) with respect to the unimodular group
𝑆𝐿 (2,R) ⊂ 𝐺𝐿 (2,R), which are denoted by

𝑆Γ =
∑︁
(𝑑)

𝑆
(𝑑)
Γ

(
𝑆𝐼Γ =

∑︁
(𝑑)

𝑆𝐼
(𝑑)
Γ

)
.

By 𝑑𝑖𝑚R𝑆
(𝑑)
Γ

(𝑑𝑖𝑚R𝑆𝐼
(𝑑)
Γ

) are denoted dimensions of linear spaces from the Lemma 2.1.
These algebras in [5] were named Sibirsky graded algebra of comitants (invariants),
respectively.

If for Sibirsky graded algebras 𝑆𝑚0,𝑚1,...,𝑚ℓ
and 𝑆𝐼𝑚0,𝑚1,...,𝑚ℓ

we introduce a single
notation 𝐴, then they can be written in the form

𝐴 =< 𝑎1, 𝑎2, ..., 𝑎𝑚 | 𝑓1 = 0, 𝑓2 = 0, ..., 𝑓𝑛 = 0 > (𝑚, 𝑛 < ∞) (4)

where 𝑎𝑖 are the generators of this algebra, 𝑓 𝑗 – defining relations (syzygies) between
these generators.
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One of the problems in studying these algebras is determining the numbers and ex-
pressions of its generators. For this, it is necessary to study the type of comitants and
invariants that forms these generators. From the paper [10] on Modern Algebra, it follows
that generating functions and Hilbert series play an essential role in solving this problem.

3. Hilbert series for Sibirsky graded algebras 𝑆𝑚0,𝑚1,...,𝑚ℓ
and

𝑆𝐼𝑚0,𝑚1,...,𝑚ℓ

From [4] it is known

𝜑
(0)
Γ

(𝑢) = (1 − 𝑢−2)𝜓 (0)
𝑚0 (𝑢)𝜓

(0)
𝑚1 (𝑢)...𝜓

(0)
𝑚ℓ

(𝑢) (5)

where

𝜓
(0)
𝑚𝑖

(𝑢) =


1
(1−𝑢𝑧𝑖 ) (1−𝑢−1𝑧𝑖 )

, for 𝑚𝑖 = 0,
1

(1−𝑢𝑚𝑖+1𝑧𝑖 ) (1−𝑢−𝑚𝑖−1𝑧𝑖 )
∏𝑚𝑖

𝑘=1 (1−𝑢
𝑚𝑖−2𝑘+1𝑧𝑖 )2 , for 𝑚𝑖 ≠ 0

(6)

for each Γ = {𝑚𝑖}ℓ𝑖=0.
The expressions (5)–(6) we will call initial form of the generating function for centro-

affine comitants of the system (1).
In the paper [4], it is shown that if the function (5)–(6) is represented as

𝜑Γ (𝑢) − 𝑢−2𝜑Γ (𝑢−1) = 𝜑 (0)
Γ

(𝑢), (7)

then we can restrict ourselves to the study of only rational function 𝜑Γ (𝑢).
However, the question arises, how to obtain the function 𝜑Γ (𝑢) from (7) for more

complicated Γ. This problem was solved by generalizing the Silvester’s method by
decomposition of the function 𝜑 (0)

Γ
(𝑢) in elementary fractions [4].

Following the paper [4], under a generalized Hilbert series of the algebra 𝑆Γ, we will
understand

𝐻 (𝑆Γ, 𝑢, 𝑧0, 𝑧1, ..., 𝑧ℓ) =
∑︁
(𝑑)

𝑑𝑖𝑚R𝑆
(𝑑)
Γ
𝑢𝛿𝑧

𝑑0
0 𝑧

𝑑1
1 ...𝑧

𝑑ℓ
ℓ
,

and

𝐻 (𝑆Γ, 𝑢, 𝑧0, 𝑧1, ..., 𝑧ℓ) = 𝜑Γ (𝑢) (8)

where 𝜑Γ (𝑢) is from (7).
Note that (according to the same paper [4]) an ordinary Hilbert series is obtained in an

obvious way from the generalized

𝐻𝑆Γ (𝑢) = 𝐻 (𝑆Γ, 𝑢, 𝑢, 𝑢, ..., 𝑢). (9)
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If we denote the algebra of invariants for a fixed Γ for the system (1) by 𝑆𝐼Γ, then for
generalized Hilbert series of this algebra we have

𝐻 (𝑆𝐼Γ, 𝑧0, 𝑧1, ..., 𝑧ℓ) = 𝐻 (𝑆Γ, 0, 𝑧0, 𝑧1, ..., 𝑧ℓ) = 𝜑Γ (0), (10)

and for the ordinary Hilbert series we obtain

𝐻𝑆𝐼Γ (𝑧) = 𝐻 (𝑆𝐼Γ, 𝑧, 𝑧, ..., 𝑧). (11)

The computation of the generalized Hilbert series for differential systems with high-
degree polynomial on the right-hand sides is connected with cumbersome computations
with the application of supercomputers. This emphasizes the importance of the calculus
of ordinary Hilbert series. From the papers [4], [5], it follows that, we can studying
the structures of these algebras using the generalized and the ordinary Hilbert series
of Sibirsky graded algebras for the differential system (1). The Hilbert series gives an
information about the upper bound of degrees for generators of these algebras.

Remark 3.1. According to [4], [5] the Krull dimension for finitely determined algebras
is equal to the order of pole of corresponding ordinary Hilbert series at the unit. The
Krull dimension gives us the maximal number of algebraically independent comitants and
invariants of corresponding Sibirsky graded algebras of differential systems.

4. Methods of computation of the generalized and ordinary Hilbert
series for Sibirsky graded algebras of differential systems

From the paper [4], it is known the Silvester’s generalized method for computation of
the generalized and ordinary Hilbert series. Using this method, there were calculated
Hilbers series for Sibirsky graded algebras for differential systems 𝑠(1), 𝑠(2), 𝑠(0, 2),
𝑠(1, 3), 𝑠(2, 3), 𝑠(5) [4], 𝑠(1, 4), 𝑠(1, 5) [5]. An attempt to obtain the Hilbert series
for relatively simple system 𝑠(1, 2, 3) with this method was unsuccessful. For more
complicated differential systems this method encounters insurmountable computational
difficulties. Use of other methods is welcome.

Definition 4.1. [11] For a graded vector space 𝑉 =
⊕∞

𝑑=𝑘 𝑉𝑑 with 𝑉𝑑 finite dimensional
for all 𝑑 we define the Hilbert series ov 𝑉 as the formal Laurent series

𝐻 (𝑉, 𝑡) =
∞∑︁
𝑑=𝑘

𝑑𝑖𝑚(𝑉𝑑)𝑡𝑑 .

An important tool for computing invariants is the Hilbert series. The Hilbert series of
a ring contains a lot of information about the ring itself. For example, the dimension and
other geometric invariants can be read from the Hilbert series.
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Theorem 4.1. (Molien’s formula [11]) Let 𝐺 be a finite group acting on a finite-
dimensional vector space 𝑉 over a field 𝐾 of characteristic not dividing |𝐺 |. Then

𝐻 (𝐾 [𝑉]𝐺 , 𝑡) = 1
|𝐺 |

∑︁
𝜎∈𝐺

1
𝑑𝑒𝑡0

𝑉
(1 − 𝑡𝜎)

.

If 𝐾 has the characteristic 0, then 𝑑𝑒𝑡0
𝑉
(1 − 𝑡𝜎) can be taken as 𝑑𝑒𝑡𝑉 (1 − 𝑡𝜎).

We recall the Residue Theorem in complex function theory. This theorem can be
applied to compute the Hilbert series of invariant rings [11].

Theorem 4.2. (The Residue Theorem [11]) Suppose that 𝐷 is a connected, simply
connected compact region in C, whose border is 𝜕𝐷, and 𝛾 : [0, 1] → C is a smooth
curve such that 𝛾( [0, 1]) = 𝜕𝐷, 𝛾(0) = 𝛾(1) and circles around 𝐷 exactly once in the
counter clockwise direction. Assume that 𝑓 is a meromorphic function on C with no poles
in 𝜕𝐷. Then we have

1
2𝜋𝑖

∫
𝛾

𝑓 (𝑧)𝑑𝑧 =
∑︁
𝑎∈𝐷

𝑅𝑒𝑠( 𝑓 , 𝑎).

There are only finitely many points in the compact region 𝐷 such that 𝑓 has non-zero
residue there.

Theorem 4.3. [11]

𝐻 (𝐾 [𝑉]𝐺 , 𝑡) = 1
2𝜋𝑖

∫
𝑆1

1
𝑑𝑒𝑡 (𝐼 − 𝑡𝜌𝑉 (𝑧))

𝑑𝑧

𝑧

where 𝑆1 ⊂ C is the unit circle {𝑧 : |𝑧 | = 1}.

Using the Residue Theorem and corresponding generating function [4] the last formula
was adapted for computation of ordinary Hilbert series for Sibirsky graded algebras of
comitants and invariants of differential systems as follows

Theorem 4.4. [5]

𝐻𝑆𝐼Γ (𝑡) =
1

2𝜋𝑖

∫
𝑆1

𝜑
(0)
Γ

(𝑧)
𝑧

𝑑𝑧

where 𝑆1 ⊂ C is the unit circle {𝑧 : |𝑧 | = 1}, 𝜑 (0)
Γ

(𝑧) is the corresponding generating
function (5)–(6).
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5. Computation of the ordinary Hilbert series for Sibirsky graded
algebras of differential system 𝑠(3, 5)

Using Theorem 4.4, we obtain

Theorem 5.1. For the differential system 𝑠(3, 5), the following ordinary Hilbert series
for Sibirsky graded algebras of comitants 𝑆3,5 and invariants 𝑆𝐼3,5 was obtained

𝐻𝑆3,5 (𝑡) =
1

(1 + 𝑡)2(1 − 𝑡2)4(1 − 𝑡4)3(1 − 𝑡3)7(1 − 𝑡5)4(1 − 𝑡7)
· (1 + 2𝑡 + 2𝑡2+

+8𝑡3 + 49𝑡4 + 179𝑡5 + 533𝑡6 + 1382𝑡7 + 3301𝑡8 + 7356𝑡9 + 15353𝑡10+

+29865𝑡11 + 54402𝑡12 + 93137𝑡13 + 150665𝑡14 + 231125𝑡15 + 337272𝑡16+

+468744𝑡17 + 621438𝑡18 + 786783𝑡19 + 952653𝑡20 + 1104296𝑡21 + 1226739𝑡22+

+1306380𝑡23 + 1334077𝑡24 + 1306380𝑡25 + 1226739𝑡26 + 1104296𝑡27+

+952653𝑡28 + 786783𝑡29 + 621438𝑡30 + 468744𝑡31 + 337272𝑡32 + 231125𝑡33+

+150665𝑡34 + 93137𝑡35 + 54402𝑡36 + 29865𝑡37 + 15353𝑡38 + 7356𝑡39+

+3301𝑡40 + 1382𝑡41 + 533𝑡42 + 179𝑡43 + 49𝑡44 + 8𝑡45 + 2𝑡46 + 2𝑡47 + 𝑡48)

𝐻𝑆𝐼3,5 (𝑡) =
1

(1 − 𝑡)4(1 + 𝑡)5(1 − 𝑡4)4(1 − 𝑡3)6(1 − 𝑡5)3 · (1 + 𝑡 + 𝑡2 + 7𝑡3+

+36𝑡4 + 106𝑡5 + 290𝑡6 + 672𝑡7 + 1451𝑡8 + 2875𝑡9 + 5322𝑡10 + 9053𝑡11+

+14398𝑡12 + 21263𝑡13 + 29463𝑡14 + 38314𝑡15 + 47076𝑡16 + 54444𝑡17+

+59516𝑡18 + 61259𝑡19 + 59516𝑡20 + 54444𝑡21 + 47076𝑡22 + 38314𝑡23+

+29463𝑡24 + 21263𝑡25 + 14398𝑡26 + 9053𝑡27 + 5322𝑡28 + 2875𝑡29 + 1451𝑡30+

+672𝑡31 + 290𝑡32 + 106𝑡33 + 36𝑡34 + 7𝑡35 + 𝑡36 + 𝑡37 + 𝑡38)

Remark 5.1. For the Sibirsky graded algebras 𝑆3,5 (𝑆𝐼3,5), the Krull dimensions is equal
to 19 (17) respectively.

Remark 5.2. The Krull dimension gives us the maximal number of algebraically inde-
pendent comitants and invariants of Sibirsky graded algebras 𝑆3,5 and 𝑆𝐼3,5 of differential
system 𝑠(3, 5).

Remark 5.3. Note that for Hilbert series of Sibirsky graded algebra of comitants of the
system 𝑠(Γ), where 0 ∉ Γ, the following equality holds 𝐻𝑆Γ (𝑡) = 𝐻𝑆𝐼Γ∪{0} (𝑡).

From [11], a method for computing the ordinary Hilbert series of invariants rings using
the residues is known, that was adapted for the ordinary Hilbert series for Sibirsky graded
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algebras of comitants and invariants of differential systems. This method is more effective
than the generalized Sylvester’s method.
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Stability conditions of unperturbed motion governed by the
ternary differential system of Lyapunov-Darboux type with
nonlinearities of fifth degree

Natalia Neagu

Abstract. In this paper, there was studied Lyapunov stability of the unperturbed motion
for the ternary differential system with nonlinearities of fifth degree on a center-affine
variety. The Lyapunov series was constructed and the stability conditions of the unper-
turbed motion governed by this system were determined in the critical case.
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Condiţiile de stabilitate a mişcării neperturbate guvernate
de sistemul diferenţial ternar de tip Lyapunov-Darboux cu
nelinearităţi de gradul cinci

Rezumat. În lucrare a fost studiată stabilitatea după Lyapunov a mişcării neperturbate
pentru sistemul diferenţial ternar cu nelinearităţi de gradul cinci, pe o varietate centro-
afină. A fost construită seria Lyapunov şi determinate condiţiile de stabilitate a mişcării
neperturbate guvernate de acest sistem ı̂n cazul critic.
Cuvinte-cheie: sistem diferenţial, stabilitatea mişcării neperturbate, ecuaţie critică,
ecuaţie necritică, serie Lyapunov.

1. Introduction

We examine the three-dimensional differential system 𝑠3(1, 5) of unperturbed motion
of the form

𝑑𝑥 𝑗

𝑑𝑡
= 𝑎

𝑗
𝛼𝑥

𝛼 + 𝑎
𝑗

𝛼𝛽𝛾𝛿𝜇
𝑥𝛼𝑥𝛽𝑥𝛾𝑥 𝛿𝑥𝜇 ( 𝑗 , 𝛼, 𝛽, 𝛾, 𝛿, 𝜇 = 1, 3), (1)

where 𝑎
𝑗

𝛼𝛽𝛾𝛿𝜇
is a symmetric tensor in the lower indices, by which a total convolution is

done.

Definition 1.1. According to I. G. Malkin [1], we will say that the system (1) is critical
if the characteristic equation of this system has one zero root, and all other roots of this
equation have negative real parts.
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Lemma 1.1. The three-dimensional differential system (1) is critical if and only if the
following center-affine invariant conditions hold

𝐿1,3 > 0, 𝐿2,3 > 0, 𝐿3,3 = 0, (2)

where

𝐿1,3 = −𝜃1, 𝐿2,3 =
1
2
(𝜃2

1 − 𝜃2), 𝐿3,3 =
1
6
(−𝜃3

1 + 3𝜃1𝜃2 − 2𝜃3), (3)

and

𝜃1 = 𝑎𝛼
𝛼, 𝜃2 = 𝑎𝛼

𝛽 𝑎
𝛽
𝛼, 𝜃3 = 𝑎𝛼

𝛾 𝑎
𝛽
𝛼𝑎

𝛾

𝛽
. (4)

Lemma 1.2. In the case of conditions (2), by a center-affine transformation [2], the system
(1) can be brought to the critical Lyapunov form

𝑑𝑥1

𝑑𝑡
= 𝑎

𝑗

𝛼𝛽𝛾𝛿𝜇
𝑥𝛼𝑥𝛽𝑥𝛾𝑥 𝛿𝑥𝜇,

𝑑𝑥 𝑗

𝑑𝑡
= 𝑎

𝑗
𝛼𝑥

𝛼 + 𝑎
𝑗

𝛼𝛽𝛾𝛿𝜇
𝑥𝛼𝑥𝛽𝑥𝛾𝑥 𝛿𝑥𝜇 ( 𝑗 = 2, 3;𝛼, 𝛽, 𝛾, 𝛿, 𝜇 = 1, 3),

(5)

where the first equation from (5) is called the critical equation and the second one – the
non-critical equation.

2. The critical differential system of Lyapunov-Darboux type with
nonlinearities of fifth degree

In the center-affine condition 𝜂 = 𝑎𝛼
𝛽𝛾𝛿𝜇𝜈

𝑥𝛽𝑥𝛾𝑥 𝛿𝑥𝜇𝑥𝜈𝑥𝜏𝑦 𝜉𝜀𝛼𝜏 𝜉 ≡ 0 [3], with nota-
tions

𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑧, 𝑎2
1 = 𝑝, 𝑎2

2 = 𝑞, 𝑎2
3 = 𝑟, 𝑎3

1 = 𝑠, 𝑎3
2 = 𝑚, 𝑎3

3 = 𝑛, (6)

the system (5), it is a critical system of Lyapunov-Darboux type, of the form

𝑑𝑥

𝑑𝑡
= 5𝑥𝑅(𝑥, 𝑦, 𝑧),

𝑑𝑦

𝑑𝑡
= 𝑝𝑥 + 𝑞𝑦 + 𝑟𝑧 + 5𝑦𝑅(𝑥, 𝑦, 𝑧),

𝑑𝑧

𝑑𝑡
= 𝑠𝑥 + 𝑚𝑦 + 𝑛𝑧 + 5𝑧𝑅(𝑥, 𝑦, 𝑧),

(7)

where

𝑅(𝑥, 𝑦, 𝑧) = 𝑎1𝑥
4 + 𝑎2𝑦

4 + 𝑎3𝑧
4 + 4𝑎4𝑥

3𝑦 + 4𝑎5𝑥
3𝑧 + 4𝑎6𝑥𝑦

3 + 4𝑎7𝑥𝑧
3 + 6𝑎8𝑥

2𝑦2+

+6𝑎9𝑥
2𝑧2 + 12𝑎10𝑥

2𝑦𝑧 + 12𝑎11𝑥𝑦
2𝑧 + 12𝑎12𝑥𝑦𝑧

2 + 6𝑎13𝑦
2𝑧2 + 4𝑎14𝑦

3𝑧 + 4𝑎15𝑦𝑧
3,

(8)
and 𝑚, 𝑛, 𝑝, 𝑞, 𝑟, 𝑠, 𝑎𝑖 (𝑖 = 1, 15) are real arbitrary coefficients.
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Remark 2.1. For the system (7), we have

𝐿2,3 = 𝑛𝑞 − 𝑚𝑟,

and according to conditions (2) these values are greater than zero.

Remark 2.2. Under the conditions of Remark 2.1, without loss of generality, we can
assume that 𝑛𝑞 ≠ 0.

Proof. We consider the center-affine substitution

𝑥 = 𝑥, 𝑦̄ = 𝑧, 𝑧 = 𝑦. (9)

It is easy to verify that in the case of substitution (9), we obtain that in system (7) the
expression 𝑚𝑟 becomes 𝑛𝑞. Taking into account Remark 2.1, we obtain that 𝑛𝑞 ≠ 0. □

We analyze the noncritical equations

𝑝𝑥 + 𝑞𝑦 + 𝑟𝑧 + 5𝑦(𝑎1𝑥
4 + 𝑎2𝑦

4 + 𝑎3𝑧
4 + 4𝑎4𝑥

3𝑦 + 4𝑎5𝑥
3𝑧 + 4𝑎6𝑥𝑦

3 + 4𝑎7𝑥𝑧
3+

+6𝑎8𝑥
2𝑦2 + 6𝑎9𝑥

2𝑧2 + 12𝑎10𝑥
2𝑦𝑧 + 12𝑎11𝑥𝑦

2𝑧 + 12𝑎12𝑥𝑦𝑧
2 + 6𝑎13𝑦

2𝑧2+

+4𝑎14𝑦
3𝑧 + 4𝑎15𝑦𝑧

3) = 0,

𝑠𝑥 + 𝑚𝑦 + 𝑛𝑧 + 5𝑧(𝑎1𝑥
4 + 𝑎2𝑦

4 + 𝑎3𝑧
4 + 4𝑎4𝑥

3𝑦 + 4𝑎5𝑥
3𝑧 + 4𝑎6𝑥𝑦

3 + 4𝑎7𝑥𝑧
3+

+6𝑎8𝑥
2𝑦2 + 6𝑎9𝑥

2𝑧2 + 12𝑎10𝑥
2𝑦𝑧 + 12𝑎11𝑥𝑦

2𝑧 + 12𝑎12𝑥𝑦𝑧
2 + 6𝑎13𝑦

2𝑧2+

+4𝑎14𝑦
3𝑧 + 4𝑎15𝑦𝑧

3) = 0.

(10)

Then from the first relation of (10) we express 𝑦, and from the second relation we
express 𝑧

𝑦 = − 𝑝

𝑞
𝑥 − 𝑟

𝑞
𝑧 − 5

𝑞
𝑦(𝑎1𝑥

4 + 𝑎2𝑦
4 + 𝑎3𝑧

4 + 4𝑎4𝑥
3𝑦 + 4𝑎5𝑥

3𝑧 + 4𝑎6𝑥𝑦
3 + 4𝑎7𝑥𝑧

3+

+6𝑎8𝑥
2𝑦2 + 6𝑎9𝑥

2𝑧2 + 12𝑎10𝑥
2𝑦𝑧 + 12𝑎11𝑥𝑦

2𝑧 + 12𝑎12𝑥𝑦𝑧
2 + 6𝑎13𝑦

2𝑧2+

+4𝑎14𝑦
3𝑧 + 4𝑎15𝑦𝑧

3),

𝑧 = − 𝑠

𝑛
𝑥 − 𝑚

𝑛
𝑦 − 5

𝑛
𝑧(𝑎1𝑥

4 + 𝑎2𝑦
4 + 𝑎3𝑧

4 + 4𝑎4𝑥
3𝑦 + 4𝑎5𝑥

3𝑧 + 4𝑎6𝑥𝑦
3 + 4𝑎7𝑥𝑧

3+

+6𝑎8𝑥
2𝑦2 + 6𝑎9𝑥

2𝑧2 + 12𝑎10𝑥
2𝑦𝑧 + 12𝑎11𝑥𝑦

2𝑧 + 12𝑎12𝑥𝑦𝑧
2 + 6𝑎13𝑦

2𝑧2+

+4𝑎14𝑦
3𝑧 + 4𝑎15𝑦𝑧

3).
(11)

We seek 𝑦 and 𝑧 as a holomorphic functions of 𝑥. Then we can write

𝑦(𝑥) = 𝐴1𝑥 + 𝐴2𝑥
2 + 𝐴3𝑥

3 + 𝐴4𝑥
4 + 𝐴5𝑥

5 + ...,

𝑧(𝑥) = 𝐵1𝑥 + 𝐵2𝑥
2 + 𝐵3𝑥

3 + 𝐵4𝑥
4 + 𝐵5𝑥

5 + ... (12)
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Substituting (12) into (11) we have

𝐴1𝑥 + 𝐴2𝑥
2 + 𝐴3𝑥

3 + 𝐴4𝑥
4 + 𝐴5𝑥

5 + ... = − 𝑝

𝑞
𝑥 − 𝑟

𝑞
(𝐵1𝑥 + 𝐵2𝑥

2 + 𝐵3𝑥
3 + 𝐵4𝑥

4+

+𝐵5𝑥
5 + ...) − 5

𝑞
(𝐴1𝑥 + 𝐴2𝑥

2 + 𝐴3𝑥
3 + 𝐴4𝑥

4 + 𝐴5𝑥
5 + ...) [𝑎1𝑥

4 + 𝑎2(𝐴1𝑥 + 𝐴2𝑥
2+

+𝐴3𝑥
3 + 𝐴4𝑥

4 + 𝐴5𝑥
5 + ...)4 + 𝑎3(𝐵1𝑥 + 𝐵2𝑥

2 + 𝐵3𝑥
3 + 𝐵4𝑥

4 + 𝐵5𝑥
5 + ...)4+

+4𝑎4𝑥
3(𝐴1𝑥 + 𝐴2𝑥

2 + 𝐴3𝑥
3 + 𝐴4𝑥

4 + 𝐴5𝑥
5 + ...) + 4𝑎5𝑥

3(𝐵1𝑥 + 𝐵2𝑥
2 + 𝐵3𝑥

3 + 𝐵4𝑥
4+

+𝐵5𝑥
5 + ...) + 4𝑎6𝑥(𝐴1𝑥 + 𝐴2𝑥

2 + 𝐴3𝑥
3 + 𝐴4𝑥

4 + 𝐴5𝑥
5 + ...)3 + 4𝑎7𝑥(𝐵1𝑥 + 𝐵2𝑥

2+

+𝐵3𝑥
3 + 𝐵4𝑥

4 + 𝐵5𝑥
5 + ...)3 + 6𝑎8𝑥

2(𝐴1𝑥 + 𝐴2𝑥
2 + 𝐴3𝑥

3 + 𝐴4𝑥
4 + 𝐴5𝑥

5 + ...)2+

+6𝑎9𝑥
2(𝐵1𝑥 + 𝐵2𝑥

2 + 𝐵3𝑥
3 + 𝐵4𝑥

4 + 𝐵5𝑥
5 + ...)2 + 12𝑎10𝑥

2(𝐴1𝑥 + 𝐴2𝑥
2 + 𝐴3𝑥

3+

+𝐴4𝑥
4 + 𝐴5𝑥

5 + ...) (𝐵1𝑥 + 𝐵2𝑥
2 + 𝐵3𝑥

3 + 𝐵4𝑥
4 + 𝐵5𝑥

5 + ...) + +12𝑎11𝑥(𝐴1𝑥 + 𝐴2𝑥
2+

+𝐴3𝑥
3 + 𝐴4𝑥

4 + 𝐴5𝑥
5 + ...)2(𝐵1𝑥 + 𝐵2𝑥

2 + 𝐵3𝑥
3 + 𝐵4𝑥

4 + 𝐵5𝑥
5 + ...)+

+12𝑎12𝑥(𝐴1𝑥 + 𝐴2𝑥
2 + 𝐴3𝑥

3 + 𝐴4𝑥
4 + 𝐴5𝑥

5 + ...) (𝐵1𝑥 + 𝐵2𝑥
2 + 𝐵3𝑥

3 + 𝐵4𝑥
4+

+𝐵5𝑥
5 + ...)2 + 6𝑎13(𝐴1𝑥 + 𝐴2𝑥

2 + 𝐴3𝑥
3 + 𝐴4𝑥

4 + 𝐴5𝑥
5 + ...)2(𝐵1𝑥 + 𝐵2𝑥

2 + 𝐵3𝑥
3+

+𝐵4𝑥
4 + 𝐵5𝑥

5 + ...)2 + 4𝑎14(𝐴1𝑥 + 𝐴2𝑥
2 + 𝐴3𝑥

3 + 𝐴4𝑥
4 + 𝐴5𝑥

5 + ...)3(𝐵1𝑥 + 𝐵2𝑥
2+

+𝐵3𝑥
3 + 𝐵4𝑥

4 + 𝐵5𝑥
5 + ...) + 4𝑎15(𝐴1𝑥 + 𝐴2𝑥

2 + 𝐴3𝑥
3 + 𝐴4𝑥

4 + 𝐴5𝑥
5 + ...) (𝐵1𝑥+

+𝐵2𝑥
2 + 𝐵3𝑥

3 + 𝐵4𝑥
4 + 𝐵5𝑥

5 + ...)3],

𝐵1𝑥 + 𝐵2𝑥
2 + 𝐵3𝑥

3 + 𝐵4𝑥
4 + 𝐵5𝑥

5 + ... = − 𝑠

𝑛
𝑥 − 𝑚

𝑛
(𝐴1𝑥 + 𝐴2𝑥

2 + 𝐴3𝑥
3+

+𝐴4𝑥
4 + 𝐴5𝑥

5 + ...) − 5
𝑛
(𝐵1𝑥 + 𝐵2𝑥

2 + 𝐵3𝑥
3 + 𝐵4𝑥

4 + 𝐵5𝑥
5 + ...) [𝑎1𝑥

4 + 𝑎2(𝐴1𝑥+

+𝐴2𝑥
2 + 𝐴3𝑥

3 + 𝐴4𝑥
4 + 𝐴5𝑥

5 + ...)4 + 𝑎3(𝐵1𝑥 + 𝐵2𝑥
2 + 𝐵3𝑥

3 + 𝐵4𝑥
4 + 𝐵5𝑥

5 + ...)4+

+4𝑎4𝑥
3(𝐴1𝑥 + 𝐴2𝑥

2 + 𝐴3𝑥
3 + 𝐴4𝑥

4 + 𝐴5𝑥
5 + ...) + 4𝑎5𝑥

3(𝐵1𝑥 + 𝐵2𝑥
2 + 𝐵3𝑥

3+

+𝐵4𝑥
4 + 𝐵5𝑥

5 + ...) + 4𝑎6𝑥(𝐴1𝑥 + 𝐴2𝑥
2 + 𝐴3𝑥

3 + 𝐴4𝑥
4 + 𝐴5𝑥

5 + ...)3 + 4𝑎7𝑥(𝐵1𝑥+

+𝐵2𝑥
2 + 𝐵3𝑥

3 + 𝐵4𝑥
4 + 𝐵5𝑥

5 + ...)3 + 6𝑎8𝑥
2(𝐴1𝑥 + 𝐴2𝑥

2 + 𝐴3𝑥
3 + 𝐴4𝑥

4 + 𝐴5𝑥
5 + ...)2+

+6𝑎9𝑥
2(𝐵1𝑥 + 𝐵2𝑥

2 + 𝐵3𝑥
3 + 𝐵4𝑥

4 + 𝐵5𝑥
5 + ...)2 + 12𝑎10𝑥

2(𝐴1𝑥 + 𝐴2𝑥
2 + 𝐴3𝑥

3+

+𝐴4𝑥
4 + 𝐴5𝑥

5 + ...) (𝐵1𝑥 + 𝐵2𝑥
2 + 𝐵3𝑥

3 + 𝐵4𝑥
4 + 𝐵5𝑥

5 + ...) + 12𝑎11𝑥(𝐴1𝑥 + 𝐴2𝑥
2+

+𝐴3𝑥
3 + 𝐴4𝑥

4 + 𝐴5𝑥
5 + ...)2(𝐵1𝑥 + 𝐵2𝑥

2 + 𝐵3𝑥
3 + 𝐵4𝑥

4 + 𝐵5𝑥
5 + ...)+

+12𝑎12𝑥(𝐴1𝑥 + 𝐴2𝑥
2 + 𝐴3𝑥

3 + 𝐴4𝑥
4 + 𝐴5𝑥

5 + ...) (𝐵1𝑥 + 𝐵2𝑥
2 + 𝐵3𝑥

3 + 𝐵4𝑥
4+

+𝐵5𝑥
5 + ...)2 + 6𝑎13(𝐴1𝑥 + 𝐴2𝑥

2 + 𝐴3𝑥
3 + 𝐴4𝑥

4 + 𝐴5𝑥
5 + ...)2(𝐵1𝑥 + 𝐵2𝑥

2 + 𝐵3𝑥
3+

+𝐵4𝑥
4 + 𝐵5𝑥

5 + ...)2 + 4𝑎14(𝐴1𝑥 + 𝐴2𝑥
2 + 𝐴3𝑥

3 + 𝐴4𝑥
4 + 𝐴5𝑥

5 + ...)3(𝐵1𝑥 + 𝐵2𝑥
2+
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+𝐵3𝑥
3 + 𝐵4𝑥

4 + 𝐵5𝑥
5 + ...) + 4𝑎15(𝐴1𝑥 + 𝐴2𝑥

2 + 𝐴3𝑥
3 + 𝐴4𝑥

4 + 𝐴5𝑥
5 + ...) (𝐵1𝑥+

+𝐵2𝑥
2 + 𝐵3𝑥

3 + 𝐵4𝑥
4 + 𝐵5𝑥

5 + ...)3],
This implies that

𝐴1𝑥 + 𝐴2𝑥
2 + 𝐴3𝑥

3 + 𝐴4𝑥
4 + 𝐴5𝑥

5 + ... = − 𝑝 + 𝑟𝐵1
𝑞

𝑥 − 𝑟𝐵2
𝑞

𝑥2 − 𝑟𝐵3
𝑞

𝑥3 − 𝑟𝐵4
𝑞

𝑥4−

−1
𝑞
(5𝑎1𝐴1 + 20𝑎4𝐴

2
1 + 30𝑎8𝐴

3
1 + 20𝑎6𝐴

4
1 + 5𝑎2𝐴

5
1 + 60𝑎10𝐴

2
1𝐵1 + 60𝑎11𝐴

3
1𝐵1+

+20𝑎14𝐴
4
1𝐵1 + 20𝑎5𝐴1𝐵1 + 60𝑎12𝐴

2
1𝐵

2
1 + 30𝑎13𝐴

3
1𝐵

2
1 + 30𝑎9𝐴1𝐵

2
1 + 20𝑎15𝐴

2
1𝐵

3
1+

+20𝑎7𝐴1𝐵
3
1 + 5𝑎3𝐴1𝐵

4
1 + 𝑟𝐵5)𝑥5 + ...

𝐵1𝑥 + 𝐵2𝑥
2 + 𝐵3𝑥

3 + 𝐵4𝑥
4 + 𝐵5𝑥

5 + ... = −𝑚𝐴1 + 𝑠

𝑛
𝑥 − 𝑚𝐴2

𝑛
𝑥2 − 𝑚𝐴3

𝑛
𝑥3 − 𝑚𝐴4

𝑛
𝑥4−

−1
𝑛
(5𝑎2𝐴

4
1𝐵1 + 20𝑎4𝐴1𝐵1 + 20𝑎6𝐴

3
1𝐵1 + 30𝑎8𝐴

2
1𝐵1 + 60𝑎10𝐴1𝐵

2
1 + 60𝑎11𝐴

2
1𝐵

2
1+

+20𝑎14𝐴
3
1𝐵

2
1 + 60𝑎12𝐴1𝐵

3
1 + 30𝑎13𝐴

2
1𝐵

3
1 + 20𝑎15𝐴1𝐵

4
1 + 𝑚𝐴5 + 5𝑎1𝐵1 + 20𝑎5𝐵

2
1+

+30𝑎9𝐵
3
1 + 20𝑎7𝐵

4
1 + 5𝑎3𝐵

5
1)𝑥

5 + ...

From this identity we have

𝐴1 =
𝑟𝑠 − 𝑛𝑝

𝑛𝑞 − 𝑚𝑟
, 𝐵1 =

𝑚𝑝 − 𝑞𝑠

𝑛𝑞 − 𝑚𝑟
; 𝐴2 = 𝐵2 = 𝐴3 = 𝐵3 = 𝐴4 = 𝐵4 = 0,

𝐴5 = − 5
𝑛𝑞 − 𝑚𝑟

(𝑎1 + 4𝑎4𝐴1 + 6𝑎8𝐴
2
1 + 4𝑎6𝐴

3
1 + 𝑎2𝐴

4
1 + 12𝑎10𝐴1𝐵1+

+12𝑎11𝐴
2
1𝐵1 + 4𝑎14𝐴

3
1𝐵1 + 4𝑎5𝐵1 + 12𝑎12𝐴1𝐵

2
1 + 6𝑎13𝐴

2
1𝐵

2
1 + 6𝑎9𝐵

2
1 + 4𝑎15𝐴1𝐵

3
1+

+4𝑎7𝐵
3
1 + 𝑎3𝐵

4
1) (𝑛𝐴1 − 𝑟𝐵1),

𝐵5 =
5

𝑛𝑞 − 𝑚𝑟
(𝑎1 + 4𝑎4𝐴1 + 6𝑎8𝐴

2
1 + 4𝑎6𝐴

3
1 + 𝑎2𝐴

4
1 + 12𝑎10𝐴1𝐵1+

+12𝑎11𝐴
2
1𝐵1 + 4𝑎14𝐴

3
1𝐵1 + 4𝑎5𝐵1 + 12𝑎12𝐴1𝐵

2
1 + 6𝑎13𝐴

2
1𝐵

2
1 + 6𝑎9𝐵

2
1 + 4𝑎15𝐴1𝐵

3
1+

+4𝑎7𝐵
3
1 + 𝑎3𝐵

4
1) (𝑚𝐴1 − 𝑞𝐵1),

𝐴6 = 𝐵6 = 𝐴7 = 𝐵7 = 𝐴8 = 𝐵8 = 0,

𝐴9 = − 5
𝑛𝑞 − 𝑚𝑟

[(𝑎1 + 4𝑎4𝐴1 + 6𝑎8𝐴
2
1 + 4𝑎6𝐴

3
1 + 𝑎2𝐴

4
1 + 12𝑎10𝐴1𝐵1+

+12𝑎11𝐴
2
1𝐵1 + 4𝑎14𝐴

3
1𝐵1 + 4𝑎5𝐵1 + 12𝑎12𝐴1𝐵

2
1 + 6𝑎13𝐴

2
1𝐵

2
1 + 6𝑎9𝐵

2
1 + 4𝑎15𝐴1𝐵

3
1+

+4𝑎7𝐵
3
1 + 𝑎3𝐵

4
1) (𝑛𝐴5 − 𝑟𝐵5) + 4(𝑎2𝐴

3
1𝐴5 + 𝑎4𝐴5 + 3𝑎6𝐴

2
1𝐴5 + 3𝑎8𝐴1𝐴5+

+3𝑎10𝐴5𝐵1 + 6𝑎11𝐴1𝐴5𝐵1 + 3𝑎14𝐴
2
1𝐴5𝐵1 + 3𝑎12𝐴5𝐵

2
1 + 3𝑎13𝐴1𝐴5𝐵

2
1+

+𝑎15𝐴5𝐵
3
1 + 3𝑎10𝐴1𝐵5 + 3𝑎11𝐴

2
1𝐵5 + 𝑎14𝐴

3
1𝐵5 + 𝑎5𝐵5 + 6𝑎12𝐴1𝐵1𝐵5 + 3𝑎13𝐴

2
1𝐵1𝐵5+

+3𝑎9𝐵1𝐵5 + 3𝑎15𝐴1𝐵
2
1𝐵5 + 3𝑎7𝐵

2
1𝐵5 + 𝑎3𝐵

3
1𝐵5) (𝑛𝐴1 − 𝑟𝐵1)],
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𝐵9 =
5

𝑛𝑞 − 𝑚𝑟
[(𝑎1 + 4𝑎4𝐴1 + 6𝑎8𝐴

2
1 + 4𝑎6𝐴

3
1 + 𝑎2𝐴

4
1 + 12𝑎10𝐴1𝐵1+

+12𝑎11𝐴
2
1𝐵1 + 4𝑎14𝐴

3
1𝐵1 + 4𝑎5𝐵1 + 12𝑎12𝐴1𝐵

2
1 + 6𝑎13𝐴

2
1𝐵

2
1 + 6𝑎9𝐵

2
1+

+4𝑎15𝐴1𝐵
3
1 + 4𝑎7𝐵

3
1 + 𝑎3𝐵

4
1) (𝑚𝐴5 − 𝑞𝐵5) + 4(𝑎2𝐴

3
1𝐴5 + 𝑎4𝐴5+

+3𝑎6𝐴
2
1𝐴5 + 3𝑎8𝐴1𝐴5 + 3𝑎10𝐴5𝐵1 + 6𝑎11𝐴1𝐴5𝐵1 + 3𝑎14𝐴

2
1𝐴5𝐵1+

+3𝑎12𝐴5𝐵
2
1 + 3𝑎13𝐴1𝐴5𝐵

2
1 + 𝑎15𝐴5𝐵

3
1 + 3𝑎10𝐴1𝐵5 + 3𝑎11𝐴

2
1𝐵5 + 𝑎14𝐴

3
1𝐵5+

+𝑎5𝐵5 + 6𝑎12𝐴1𝐵1𝐵5 + 3𝑎13𝐴
2
1𝐵1𝐵5 + 3𝑎9𝐵1𝐵5 + 3𝑎15𝐴1𝐵

2
1𝐵5+

+3𝑎7𝐵
2
1𝐵5 + 𝑎3𝐵

3
1𝐵5) (𝑚𝐴1 − 𝑞𝐵1)],

𝐴10 = 𝐵10 = 𝐴11 = 𝐵11 = 0, ...

(13)

Substituting (12) into the right-hand sides of the critical differential equations (7), we
get the following identity

𝐶1𝑥 + 𝐶2𝑥
2 + 𝐶3𝑥

3 + 𝐶4𝑥
4 + 𝐶5𝑥

5 + ... = 5𝑥(𝑎1𝑥
4 + 𝑎2𝑦

4 + 𝑎3𝑧
4 + 4𝑎4𝑥

3𝑦 + 4𝑎5𝑥
3𝑧+

+4𝑎6𝑥𝑦
3 + 4𝑎7𝑥𝑧

3 + 6𝑎8𝑥
2𝑦2 + 6𝑎9𝑥

2𝑧2 + 12𝑎10𝑥
2𝑦𝑧 + 12𝑎11𝑥𝑦

2𝑧 + 12𝑎12𝑥𝑦𝑧
2+

+6𝑎13𝑦
2𝑧2 + 4𝑎14𝑦

3𝑧 + 4𝑎15𝑦𝑧
3),

or in detailed form
𝐶1𝑥 + 𝐶2𝑥

2 + 𝐶3𝑥
3 + 𝐶4𝑥

4 + 𝐶5𝑥
5 + ... =

= 5𝑥 [𝑎1𝑥
4 + 𝑎2(𝐴1𝑥 + 𝐴2𝑥

2 + 𝐴3𝑥
3 + 𝐴4𝑥

4 + 𝐴5𝑥
5 + ...)4 + 𝑎3(𝐵1𝑥 + 𝐵2𝑥

2 + 𝐵3𝑥
3+

+𝐵4𝑥
4 + 𝐵5𝑥

5 + ...)4 + 4𝑎4𝑥
3(𝐴1𝑥 + 𝐴2𝑥

2 + 𝐴3𝑥
3 + 𝐴4𝑥

4 + 𝐴5𝑥
5 + ...)+

+4𝑎5𝑥
3(𝐵1𝑥 + 𝐵2𝑥

2 + 𝐵3𝑥
3 + 𝐵4𝑥

4 + 𝐵5𝑥
5 + ...) + 4𝑎6𝑥(𝐴1𝑥 + 𝐴2𝑥

2 + 𝐴3𝑥
3 + 𝐴4𝑥

4+

+𝐴5𝑥
5 + ...)3 + 4𝑎7𝑥𝑧(𝐵1𝑥 + 𝐵2𝑥

2 + 𝐵3𝑥
3 + 𝐵4𝑥

4 + 𝐵5𝑥
5 + ...)3 + 6𝑎8𝑥

2(𝐴1𝑥 + 𝐴2𝑥
2+

+𝐴3𝑥
3 + 𝐴4𝑥

4 + 𝐴5𝑥
5 + ...)2 + 6𝑎9𝑥

2(𝐵1𝑥 + 𝐵2𝑥
2 + 𝐵3𝑥

3 + 𝐵4𝑥
4 + 𝐵5𝑥

5 + ...)2+

+12𝑎10𝑥
2(𝐴1𝑥 + 𝐴2𝑥

2 + 𝐴3𝑥
3 + 𝐴4𝑥

4 + 𝐴5𝑥
5 + ...) (𝐵1𝑥 + 𝐵2𝑥

2 + 𝐵3𝑥
3 + 𝐵4𝑥

4+

+𝐵5𝑥
5 + ...) + 12𝑎11𝑥(𝐴1𝑥 + 𝐴2𝑥

2 + 𝐴3𝑥
3 + 𝐴4𝑥

4 + 𝐴5𝑥
5 + ...)2(𝐵1𝑥 + 𝐵2𝑥

2 + 𝐵3𝑥
3+

+𝐵4𝑥
4 + 𝐵5𝑥

5 + ...) + 12𝑎12𝑥(𝐴1𝑥 + 𝐴2𝑥
2 + 𝐴3𝑥

3 + 𝐴4𝑥
4 + 𝐴5𝑥

5 + ...) (𝐵1𝑥 + 𝐵2𝑥
2+

+𝐵3𝑥
3 + 𝐵4𝑥

4 + 𝐵5𝑥
5 + ...)2 + 6𝑎13(𝐴1𝑥 + 𝐴2𝑥

2 + 𝐴3𝑥
3 + 𝐴4𝑥

4 + 𝐴5𝑥
5 + ...)2(𝐵1𝑥+

+𝐵2𝑥
2 + 𝐵3𝑥

3 + 𝐵4𝑥
4 + 𝐵5𝑥

5 + ...)2 + 4𝑎14(𝐴1𝑥 + 𝐴2𝑥
2 + 𝐴3𝑥

3 + 𝐴4𝑥
4 + 𝐴5𝑥

5+

+...)3(𝐵1𝑥 + 𝐵2𝑥
2 + 𝐵3𝑥

3 + 𝐵4𝑥
4 + 𝐵5𝑥

5 + ...) + 4𝑎15(𝐴1𝑥 + 𝐴2𝑥
2 + 𝐴3𝑥

3 + 𝐴4𝑥
4+

+𝐴5𝑥
5 + ...) (𝐵1𝑥 + 𝐵2𝑥

2 + 𝐵3𝑥
3 + 𝐵4𝑥

4 + 𝐵5𝑥
5 + ...)3] .

From here, we obtain
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𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 = 0,

𝐶5 = 5(𝑎1 + 4𝑎4𝐴1 + 6𝑎8𝐴
2
1 + 4𝑎6𝐴

3
1 + 𝑎2𝐴

4
1 + 12𝑎10𝐴1𝐵1 + 12𝑎11𝐴

2
1𝐵1+

+4𝑎14𝐴
3
1𝐵1 + 4𝑎5𝐵1 + 12𝑎12𝐴1𝐵

2
1 + 6𝑎13𝐴

2
1𝐵

2
1 + 6𝑎9𝐵

2
1 + 4𝑎15𝐴1𝐵

3
1+

+4𝑎7𝐵
3
1 + 𝑎3𝐵

4
1),

𝐶6 = 20(𝑎2𝐴
3
1𝐴2 + 𝑎4𝐴2 + 3𝑎6𝐴

2
1𝐴2 + 3𝑎8𝐴1𝐴2 + 3𝑎10𝐴2𝐵1 + 6𝑎11𝐴1𝐴2𝐵1+

+3𝑎14𝐴
2
1𝐴2𝐵1 + 3𝑎12𝐴2𝐵

2
1 + 3𝑎13𝐴1𝐴2𝐵

2
1 + 𝑎15𝐴2𝐵

3
1 + 3𝑎10𝐴1𝐵2 + 3𝑎11𝐴

2
1𝐵2+

+𝑎14𝐴
3
1𝐵2 + 𝑎5𝐵2 + 6𝑎12𝐴1𝐵1𝐵2 + 3𝑎13𝐴

2
1𝐵1𝐵2 + 3𝑎9𝐵1𝐵2 + 3𝑎15𝐴1𝐵

2
1𝐵2+

+3𝑎7𝐵
2
1𝐵2 + 𝑎3𝐵

3
1𝐵2),

𝐶7 = 10(3𝑎2𝐴
2
1𝐴

2
2 + 2𝑎2𝐴

3
1𝐴3 + 2𝑎4𝐴3 + 6𝑎6𝐴1𝐴

2
2 + 6𝑎6𝐴

2
1𝐴3 + 3𝑎8𝐴

2
2+

+6𝑎8𝐴1𝐴3 + 6𝑎11𝐴
2
2𝐵1 + 6𝑎14𝐴1𝐴

2
2𝐵1 + 6𝑎10𝐴3𝐵1 + 12𝑎11𝐴1𝐴3𝐵1+

+6𝑎14𝐴
2
1𝐴3𝐵1 + 3𝑎13𝐴

2
2𝐵

2
1 + 6𝑎12𝐴3𝐵

2
1 + 6𝑎13𝐴1𝐴3𝐵

2
1 + 2𝑎15𝐴3𝐵

3
1 + 6𝑎10𝐴2𝐵2+

+12𝑎11𝐴1𝐴2𝐵2 + 6𝑎14𝐴
2
1𝐴2𝐵2 + 12𝑎12𝐴2𝐵1𝐵2 + 12𝑎13𝐴1𝐴2𝐵1𝐵2+

+6𝑎15𝐴2𝐵
2
1𝐵2 + 6𝑎12𝐴1𝐵

2
2 + 3𝑎13𝐴

2
1𝐵

2
2 + 3𝑎9𝐵

2
2 + 6𝑎15𝐴1𝐵1𝐵

2
2 + 6𝑎7𝐵1𝐵

2
2+

+3𝑎3𝐵
2
1𝐵

2
2 + 6𝑎10𝐴1𝐵3 + 6𝑎11𝐴

2
1𝐵3 + 2𝑎14𝐴

3
1𝐵3 + 2𝑎5𝐵3 + 12𝑎12𝐴1𝐵1𝐵3+

+6𝑎13𝐴
2
1𝐵1𝐵3 + 6𝑎9𝐵1𝐵3 + 6𝑎15𝐴1𝐵

2
1𝐵3 + 6𝑎7𝐵

2
1𝐵3 + 2𝑎3𝐵

3
1𝐵3), ...

(14)

3. The stability conditions of unperturbed motion for the ternary
differential system of Lyapunov-darboux type with nonlinearities of

fifth degree

We will introduce the following notation:

𝑀 = 𝑎1 + 4𝑎4𝐴1 + 6𝑎8𝐴
2
1 + 4𝑎6𝐴

3
1 + 𝑎2𝐴

4
1 + 12𝑎10𝐴1𝐵1 + 12𝑎11𝐴

2
1𝐵1+

+4𝑎14𝐴
3
1𝐵1 + 4𝑎5𝐵1 + 12𝑎12𝐴1𝐵

2
1 + 6𝑎13𝐴

2
1𝐵

2
1 + 6𝑎9𝐵

2
1 + 4𝑎15𝐴1𝐵

3
1+

+4𝑎7𝐵
3
1 + 𝑎3𝐵

4
1,

(15)

According to Lyapunov Theorem [4, §32], we have

Theorem 3.1. Let the critical system (7) be given on the invariant variety. The stability
of the unperturbed motion is described by one of the following three possible cases:

I. If 𝑀 > 0, then the unperturbed motion is unstable;
II. If 𝑀 < 0, then the unperturbed motion is stable;
III. If 𝑀 = 0, then the unperturbed motion is stable.
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In the last case, the unperturbed motion belongs to some continuous series of stabilized
motions. Moreover, this motion is asymptotically stable.

Proof. According to Lyapunov Theorem [4], we analyze the coefficients of the series (14).
The stability or the instability of the unperturbed motion of the system (7) is determined
by the sign of expression 𝐶5, and we get Cases I and II.

Therefore, if 𝐶5 = 0, then all 𝐴𝑖 = 𝐵𝑖 = 0 (∀𝑖), so we get Case III of this theorem. □

Remark 3.1. Theorem 3.1 was presented at the 31st Conference on Applied and Industrial
Mathematics (CAIM-2024) [6].
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Abstract. A new method of constructing non-associative topological quasigroups
obeying certain laws is given. Also, in this paper we research 𝑇-quasigroups with Abel-
Grassmann identity (𝑎𝑏) · 𝑐 = (𝑐𝑏) · 𝑎.
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quasigroup.

Despre o metodă de construcţie a quasigrupurilor topologice
care ı̂ndeplinesc anumite identităţi

Rezumat. În lucrarea dată este prezentată o nouă metodă de construcţie a quasi-
grupurilor topologice neasociative care respectă anumite legi. Totodată sunt cercetate
𝑇-quasigrupurile care satisfac identitatea Abel-Grassmann (𝑎𝑏) · 𝑐 = (𝑐𝑏) · 𝑎.
Cuvinte-cheie: 𝑇-quasigrup, 𝐴𝐺-quasigrup, 𝐺𝐴-quasigrup, quasigrupul Manin, qu-
asigrupul Cote, quasigrup medial, semimedial, paramedial şi bicomutativ, quasigrup
topologic.

1. Introduction

In this paper, two central issues were examined.
Problem 1. Let (𝑄, ·) be a𝑇−𝑞𝑢𝑎𝑠𝑖𝑔𝑟𝑜𝑢𝑝. Under which conditions the𝑄 is a quasigroup
(of its T - forms (𝑄(+), 𝜑, 𝜓, 𝑎)) satisfying the identities 𝑃𝑖 of some algebraic structure,
where 𝑖 = 1, 2, ..., 𝑘?

In the condition of problem formulated above we research 𝑇 − 𝑞𝑢𝑎𝑠𝑖𝑔𝑟𝑜𝑢𝑝𝑠 with
Abel-Grassmann identity (𝑎𝑏) · 𝑐 = (𝑐𝑏) · 𝑎.

It is shown that if 𝐺 is a 𝑇 − 𝑞𝑢𝑎𝑠𝑖𝑔𝑟𝑜𝑢𝑝, then 𝐺 is 𝐴𝐺 − 𝑞𝑢𝑎𝑠𝑖𝑔𝑟𝑜𝑢𝑝 if and only if
for any of its 𝑇 − 𝑓 𝑜𝑟𝑚𝑠 (𝐺 (+), 𝜑, 𝜓) is 𝜑2(𝑥) = 𝜓(𝑥).

At the same time in this paper we examine the following problem.
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Problem 2. Let (𝐺,+) be a commutative topological group. Under which conditions
on the set 𝐺 × 𝐺 can be defined the binary operation (◦) such that (𝐺 × 𝐺, ◦) is a
non-associative topological quasigroups obeying certain laws?

Our main goal is to prove a new method of constructing topological quasigroups.
The authors have used the concept of a special direct product of a topological Abelian

group 𝐺 and proved that a binary operation can be defined on the set 𝐺 × 𝐺, such that
the new algebraic structure is a non-associative topological quasigroups obeying certain
laws.

Thus, solving the problem formulated above, it was demonstrated that any commuta-
tive topological group can be “transformed” into non-associative topological quasigroup
obeying certain laws using the method developed. Examples of quasigroups that satisfy
the examined identities were constructed.

The results established are related to the results of L. Chiriac and N. Josu in [1, 2] and
to the research papers [3, 4, 8, 9, 10].

2. Basic Notions

In this section we recall some fundamental definitions and notations [5, 6, 7, 11].
A non-empty set 𝐺 is said to be a groupoid with respect to a binary operation denoted

by {·}, if for every ordered pair (𝑎, 𝑏) of elements of 𝐺 there is a unique element 𝑎𝑏 ∈ 𝐺.
A quasigroup is a binary algebraic structure in which one-sided multiplication is a

bijection in that all equations of the form 𝑎𝑥 = 𝑏 and 𝑦𝑎 = 𝑏 have unique solutions.
A groupoid 𝐺 is called a primitive groupoid with divisions, if there exist two binary

operation 𝑙 : 𝐺 × 𝐺 → 𝐺, 𝑟 : 𝐺 × 𝐺 → 𝐺 such that 𝑙 (𝑎, 𝑏) · 𝑎 = 𝑏, 𝑎 · 𝑟 (𝑎, 𝑏) = 𝑏 for
all 𝑎, 𝑏 ∈ 𝐺. Thus, a primitive groupoid with divisions is a universal algebra with three
binary operations.

A primitive groupoid 𝐺 with divisions is called a quasigroup if the equations 𝑎𝑥 = 𝑏

and 𝑦𝑎 = 𝑏 have unique solutions. In a quasigroup 𝐺 the divisions 𝑙, 𝑟 are unique. If the
multiplication operation in a quasigroup (𝐺, ·) with a topology is continuous, then 𝐺 is
called a semitopoligical quasigroup. If in a semitopological quasigroup 𝐺 the divisions 𝑙
and 𝑟 are continuous, then 𝐺 is called a topological quasigroup.

An element 𝑒 ∈ 𝐺 is called an identity if 𝑒𝑥 = 𝑥𝑒 = 𝑥 every 𝑥 ∈ 𝐺. A quasigroup (𝐺, )
with an identity element 𝑒 ∈ 𝐺 is called a loop.

A groupoid (𝐺, ·) is called medial if it satisfies the law 𝑥𝑦 · 𝑧𝑡 = 𝑥𝑧 · 𝑦𝑡 for all
𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝐺. A groupoid (𝐺, ·) is called paramedial if it satisfies the law 𝑥𝑦 · 𝑧𝑡 = 𝑡𝑦 · 𝑧𝑥
for all 𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝐺.
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A groupoid (𝐺, ·) is called bicommutative if it satisfies the law 𝑥𝑦 · 𝑧𝑡 = 𝑡𝑧 · 𝑦𝑥 for all
𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝐺.

A groupoid (𝐺, ·) is called 𝐴𝐷-groupoid if it satisfies the law 𝑎 · 𝑏𝑐 = 𝑐 · 𝑏𝑎 for all
𝑎, 𝑏, 𝑐 ∈ 𝐺 .

A groupoid (𝐺, ·) is called a groupoid Abel-Grassmann or 𝐴𝐺-groupoid if it satisfies
the left invertive law (𝑎𝑏) · 𝑐 = (𝑐𝑏) · 𝑎 for all 𝑎, 𝑏, 𝑐 ∈ 𝐺.

A groupoid (𝐺, ·) is called a 𝐺𝐴-groupoid if it satisfies law (𝑎𝑏) · 𝑐 = 𝑐 · 𝑏𝑎 for all
𝑎, 𝑏, 𝑐 ∈ 𝐺.

A groupoid (𝐺, ·) is called a groupoid Manin or 𝐶𝐻-groupoid if it satisfies the law
𝑥(𝑦 · 𝑥𝑧) = (𝑥𝑥 · 𝑦)𝑧 for all 𝑥, 𝑦, 𝑧 ∈ 𝐺.

A groupoid (𝐺, ·) is called a groupoid Cote if it satisfies the law 𝑥(𝑥𝑦 · 𝑧) = (𝑧 · 𝑥𝑥)𝑦
for all 𝑥, 𝑦, 𝑧 ∈ 𝐺.

Left semi-medial identity in a groupoid (𝐺, ·) has the following form: 𝑥𝑥 · 𝑧𝑡 = 𝑥𝑦 · 𝑥𝑧
for all 𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝐺. R.H. Bruck [14] used this identity to define commutative Moufang
loops in the class of loops.

3. T-quasigroups with Abel-Grassmann identity

In this section we study some aspects of charaterization of abelian groups isotopic to
𝑇 − 𝑞𝑢𝑎𝑠𝑖𝑔𝑟𝑜𝑢𝑝𝑠.

Definition. Quasigroup (𝐺, ·) is a 𝑇 − 𝑞𝑢𝑎𝑠𝑖𝑔𝑟𝑜𝑢𝑝 if and only if there exists an abelian
group (𝐺,+), its automorphisms 𝜑 and 𝜓, and a fixed element 𝑎 ∈ 𝐺 such that 𝑥 · 𝑦 =

𝜑(𝑥) + 𝜓(𝑦) + 𝑎 for all 𝑥, 𝑦 ∈ 𝐺.
Under the conditions of Definition we shall say that the isotope (𝐺, ·) is generated by

the automorphisms 𝜑, 𝜓 and a fixed element 𝑎 ∈ 𝐺 of the abelian group (𝐺,+) and write
(𝐺, ·) = 𝑔(𝐺,+, 𝜑, 𝜓, 𝑎).

We study the problem formulated below.
Problem 1. Let (𝑄, ·) be a 𝑇 − 𝑞𝑢𝑎𝑠𝑖𝑔𝑟𝑜𝑢𝑝. Under which conditions the 𝑄 is a quasi-
group (of its T - forms (𝑄(+), 𝜑, 𝜓, 𝑎)) satisfying the identities 𝑃𝑖 of some algebraic
structure, where 𝑖 = 1, 2, ..., 𝑘?

Professor V. Shcherbacov and his students studied “Schroder T-quasigroups of gener-
alized associativity” and “T-quasigroups with Stein 2-nd and 3-rd identity” in [12, 13].

We examine the T-quasigroups with Abel-Grassmann identity.
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Theorem 3.1. Let 𝐺 be a 𝑇 − 𝑞𝑢𝑎𝑠𝑖𝑔𝑟𝑜𝑢𝑝. Then 𝐺 is 𝐴𝐺 − 𝑞𝑢𝑎𝑠𝑖𝑔𝑟𝑜𝑢𝑝 if and only if
for any of its 𝑇 − 𝑓 𝑜𝑟𝑚𝑠 (𝐺 (+), 𝜑, 𝜓)), 𝜑2(𝑥) = 𝜓(𝑥).

Proof. We rewrite the identity of the 𝐴𝐺 − 𝑞𝑢𝑎𝑠𝑖𝑔𝑟𝑜𝑢𝑝,

(𝑥𝑦) · 𝑧 = (𝑧𝑦) · 𝑥, (1)

in the following form:

𝜑(𝑥𝑦) + 𝜓(𝑧) = 𝜑(𝑧𝑦) + 𝜓(𝑥). (2)

From (2) we have

𝜑(𝜑(𝑥) + 𝜓(𝑦)) + 𝜓(𝑧) = 𝜑(𝜑(𝑧) + 𝜓(𝑦)) + 𝜓(𝑥), (3)

𝜑2(𝑥) + 𝜑𝜓(𝑦) + 𝜓(𝑧) = 𝜑2(𝑧) + 𝜑𝜓(𝑦) + 𝜓(𝑥). (4)

If we substitute in equality (4) 𝑥 = 𝑦 = 0, then we obtain

𝜓(𝑧) = 𝜑2(𝑧). (5)

Similarly, if we substitute in equality (4) 𝑧 = 𝑦 = 0, then we obtain

𝜑2(𝑥) = 𝜓(𝑥). (6)

Converse. Substituting the expression 𝑥 · 𝑦 = 𝜑(𝑥) + 𝜓(𝑦) in identity (1) then we get
(4). Substituting in (4) equalities (5) and (6), 𝜓(𝑧) = 𝜑2(𝑧) and 𝜑2(𝑥) = 𝜓(𝑥), we obtain
that the identity (4) is true. In this way, in this case, we have that identity (1) is true. The
proof is complete. □

Example 3.1. Examine the group Z𝑛 of residues modulo n. Define the quasigroup (𝐺, ·).
We define the binary operation 𝑥 · 𝑦 = 3𝑥 + 9𝑦(mod18) for all 𝑥, 𝑦 ∈ 𝐺. Then (𝐺, ·)
is an 𝐴𝐺 − 𝑞𝑢𝑎𝑠𝑖𝑔𝑟𝑜𝑢𝑝. Check. Let (𝑥 · 𝑦) · 𝑧 = (𝑧 · 𝑦) · 𝑥. Then, 3(3𝑥 + 9𝑦) + 9𝑧 =

3(3𝑧 + 9𝑦) + 9𝑥(mod18), 9𝑥 + 27𝑦 + 9𝑧 = 9𝑧 + 27𝑦 + 9𝑥(mod18), 0 = 0(mod18).

Example 3.2. Denote by Z𝑝 = Z/𝑝Z = {0, 1, ..., 𝑝 − 1} the cyclic group of order 𝑝. Let
(𝐺,+) = (Z5,+), 𝜑(𝑥) = 2𝑥, 𝜓(𝑥) = 4𝑥. Then 𝑥 · 𝑦 = 2𝑥 + 4𝑦 and 𝜑2(𝑥) = 𝜓(𝑥). Hence,
(𝐺, ·) = 𝑔(𝐺,+, 𝜑, 𝜓) is an 𝐴𝐺-quasigroup.
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Below we have constructed the Cayley table for 𝐴𝐺-quasigroup (𝐺, ·).

(·) 0 1 2 3 4
0 0 4 3 2 1
1 2 1 0 4 3
2 4 3 2 1 0
3 1 0 4 3 2
4 3 2 1 0 4

Example 3.3. Let (𝐺,+) = (Z5,+), 𝜑(𝑥) = 2𝑥, 𝜓(𝑥) = 3𝑥. Then 𝑥 · 𝑦 = 2𝑥 + 3𝑦 and
𝜑2(𝑥) ≠ 𝜓(𝑥). Hence, (𝐺, ·) = 𝑔(𝐺,+, 𝜑, 𝜓) is not an 𝐴𝐺-quasigroup.

Below we have constructed the Cayley table for quasigroup (𝐺, ·), where (𝑎𝑏) · 𝑐 =

(𝑐𝑏) · 𝑎 does not hold in (𝐺, ·). For example, (3 · 4) · 2 ≠ (2 · 4) · 3.

(·) 0 1 2 3 4
0 0 3 1 4 2
1 2 0 3 1 4
2 4 2 0 3 1
3 1 4 2 0 3
4 3 1 4 2 0

4. On a method of constructing medial, paramedial and bicommutative
topological quasigroups

In this section we examined 𝑃𝑟𝑜𝑏𝑙𝑒𝑚2. In Section 4 we prove a new method of
constructing medial, semimedial, paramedial, bicommutative, Manin, Cote and GA non-
associative topological quasigroup.

Theorem 4.1. Let (𝐺,+, 𝜏) be a commutative topological group where 𝐺 is not a single-
ton. For (𝑥1, 𝑦1) and (𝑥2, 𝑦2) in 𝐺 × 𝐺 define

(𝑥1, 𝑦1) ◦ (𝑥2, 𝑦2) = (−𝑥1 − 𝑥2, 𝑦1 + 𝑦2)

Then (𝐺 × 𝐺, ◦, 𝜏𝐺), relative to the product topology 𝜏𝐺 , is a medial, semimedial,
paramedial, bicommutative, Manin, Cote and GA non-associative topological quasigroup.
Moreover, if (𝐺, 𝜏) is𝑇𝑖−𝑠𝑝𝑎𝑐𝑒, then (𝐺×𝐺, 𝜏𝐺) is𝑇𝑖−𝑠𝑝𝑎𝑐𝑒 too, where 𝑖 = 1, 2, 3, 3.5.

Proof. 1. We will prove that (𝐺×𝐺, ◦) is a quasigroup. To this end, we will show that the
equations 𝑦 ◦ 𝑎 = 𝑏 and 𝑎 ◦ 𝑥 = 𝑏 have unique solutions in (𝐺 × 𝐺, ◦). Let 𝑦 = (𝑦1, 𝑦2),
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𝑥 = (𝑥1, 𝑥2), 𝑎 = (𝑎1, 𝑎2) and 𝑏 = (𝑏1, 𝑏2). Since, 𝑦 ◦ 𝑎 = 𝑏 we have

(𝑦1, 𝑦2) ◦ (𝑎1, 𝑎2) = (𝑏1, 𝑏2). (7)

According to the conditions of the Theorem

(𝑦1, 𝑦2) ◦ (𝑎1, 𝑎2) = (−𝑦1 − 𝑎1, 𝑦2 + 𝑎2). (8)

From (7) and (8) we get

−𝑦1 − 𝑎1 = 𝑏1 (9)

and
𝑎2 + 𝑦2 = 𝑏2. (10)

From (10) and (9) we obtain

𝑦2 = 𝑏2 − 𝑎2. (11)

and
𝑦1 = −𝑎1 − 𝑏1. (12)

Hence, 𝑦1 = −𝑏1 − 𝑎1 and 𝑦2 = 𝑏2 − 𝑎2 are solutions of the equation 𝑦 ◦ 𝑎 = 𝑏. It is
easy to show that any other solutions of that equation coincide with 𝑦1 and 𝑦2.

In this case
𝑙 ((𝑎1, 𝑎2), (𝑏1, 𝑏2)) = (−𝑏1 − 𝑎1, 𝑏2 − 𝑎2)

and 𝑙 ((𝑎1, 𝑎2), (𝑏1, 𝑏2)) ◦ (𝑎1, 𝑎2) = (𝑏1, 𝑏2).
We will show that the equation 𝑎 ◦ 𝑥 = 𝑏 have unique solutions in (𝐺 × 𝐺, ◦). Let

𝑥 = (𝑥1, 𝑥2), 𝑎 = (𝑎1, 𝑎2) and 𝑏 = (𝑏1, 𝑏2). Since 𝑎 ◦ 𝑥 = 𝑏 we have

(𝑎1, 𝑎2) ◦ (𝑥1, 𝑥2) = (𝑏1, 𝑏2). (14)

According to the conditions of the Theorem

(𝑎1, 𝑎2) ◦ (𝑥1, 𝑥2) = (−𝑎1 − 𝑥1, 𝑎2 + 𝑥2). (15)

From (14) and (15) we get

−𝑥1 − 𝑎1 = 𝑏1 (16)

and
𝑎2 + 𝑥2 = 𝑏2. (17)

From (17) and (16) we obtain
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𝑥2 = 𝑏2 − 𝑎2. (18)

and
𝑥1 = −𝑎1 − 𝑏1. (19)

Hence, 𝑥1 = −𝑏1 − 𝑎1 and 𝑥2 = 𝑏2 − 𝑎2 are solutions of the equation 𝑎 ◦ 𝑥 = 𝑏. It
is easy to show that any other solutions of that equation coincide with 𝑥1 and 𝑥2. Then
𝑥1 = −𝑏1 − 𝑎1 and 𝑥2 = 𝑏2 − 𝑎2 are unique solutions.

In this case
𝑟 ((𝑎1, 𝑎2), (𝑏1, 𝑏2)) = (−𝑏1 − 𝑎1, 𝑏2 − 𝑎2)

and (𝑎1, 𝑎2) ◦ 𝑟 ((𝑎1, 𝑎2), (𝑏1, 𝑏2)) = (𝑏1, 𝑏2).
Thus (𝐺 × 𝐺, ◦) is a quasigroup.

2. We will prove that associativity

((𝑥1, 𝑦1) ◦ (𝑥2, 𝑦2)) ◦ (𝑥3, 𝑦3) = (𝑥1, 𝑦1) ◦ ((𝑥2, 𝑦2) ◦ (𝑥3, 𝑦3)) (20)

does not hold in (𝐺 × 𝐺, ◦).
Indeed, for the first side of the law (20) we obtain

((𝑥1, 𝑦1) ◦ (𝑥2, 𝑦2)) ◦ (𝑥3, 𝑦3) = (−𝑥1 − 𝑥2, 𝑦1 + 𝑦2) ◦ (𝑥3, 𝑦3) =

= (𝑥1 + 𝑥2 − 𝑥3, 𝑦1 + 𝑦2 + 𝑦3). (21)

Similarly, for the second side of the law (20) we have

(𝑥1, 𝑦1) ◦ ((𝑥2, 𝑦2) ◦ (𝑥3, 𝑦3)) = (𝑥1, 𝑦1) ◦ (−𝑥2 − 𝑥3, 𝑦2 + 𝑦3) =

= (−𝑥1 + 𝑥2 + 𝑥3, 𝑦1 + 𝑦2 + 𝑦3). (22)

From (21) and (22) it is clear that associativity does not hold in (𝐺 × 𝐺, ◦).

3. We will show that (𝐺 × 𝐺, ◦) is a medial quasigroup that is, the property 𝑥𝑦 · 𝑧𝑡 =
= 𝑥𝑧 · 𝑦𝑡 holds.

Let 𝑥 = (𝑥1, 𝑦1), 𝑦 = (𝑥2, 𝑦2), 𝑧 = (𝑥3, 𝑦3), 𝑡 = (𝑥4, 𝑦4), then

((𝑥1, 𝑦1)◦(𝑥2, 𝑦2))◦((𝑥3, 𝑦3)◦(𝑥4, 𝑦4)) = ((𝑥1, 𝑦1)◦(𝑥3, 𝑦3))◦((𝑥2, 𝑦2)◦(𝑥4, 𝑦7)). (23)

According to the Theorem for the first side of the law (23) we have

((𝑥1, 𝑦1) ◦ (𝑥2, 𝑦2)) ◦ ((𝑥3, 𝑦3) ◦ (𝑥4, 𝑦4)) =

= ((−𝑥1 − 𝑥2, 𝑦1 + 𝑦2)) ◦ ((−𝑥3 − 𝑥4, 𝑦3 + 𝑦4)) =

= (𝑥1 + 𝑥2 + 𝑥3 + 𝑥4, 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4). (24)
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Similarly, for the other side of the law (23) we get

((𝑥1, 𝑦1) ◦ (𝑥3, 𝑦3)) ◦ ((𝑥2, 𝑦2) ◦ (𝑥4, 𝑦4)) =

= (−𝑥1 − 𝑥3, 𝑦1 + 𝑦3) ◦ (−𝑥2 − 𝑥4, 𝑦2 + 𝑦4) =

= (𝑥1 + 𝑥3 + 𝑥2 + 𝑥4, 𝑦1 + 𝑦3 + 𝑦2 + 𝑦4). (25)

From (24) and (25) we obtain that both sides are equal and (𝐺 × 𝐺, ◦) is a medial
quasigroup. Similarly, it is shown that paramediality and bicommutative does hold in
(𝐺 × 𝐺, ◦).

4. We will show that (𝐺 × 𝐺, ◦) is Manin quasigroup that is, the property 𝑥(𝑦 · 𝑥𝑧) =
(𝑥𝑥 · 𝑦)𝑧 holds.

Let 𝑥 = (𝑥1, 𝑦1), 𝑦 = (𝑥2, 𝑦2), 𝑧 = (𝑥3, 𝑦3) then

(𝑥1, 𝑦1)◦((𝑥2, 𝑦2)◦((𝑥1, 𝑦1)◦(𝑥3, 𝑦3))) = (((𝑥1, 𝑦1)◦(𝑥1, 𝑦1))◦(𝑥2, 𝑦2))◦(𝑥3, 𝑦3)). (26)

According to the Theorem for the first side of the law (26) we have

(𝑥1, 𝑦1) ◦ ((𝑥2, 𝑦2) ◦ ((𝑥1, 𝑦1) ◦ (𝑥3, 𝑦3))) =

(𝑥1, 𝑦1) ◦ ((𝑥2, 𝑦2) ◦ (−𝑥1 − 𝑥3, 𝑦1 + 𝑦3)) =

(𝑥1, 𝑦1) ◦ (−𝑥2 + 𝑥1 + 𝑥3, 𝑦1 + 𝑦2 + 𝑦3) =

(−𝑥1 + 𝑥2 − 𝑥1 − 𝑥3, 2𝑦1 + 𝑦2 + 𝑦3). (27)

Similarly, for the other side of the law (26) we get

(((𝑥1, 𝑦1) ◦ (𝑥1, 𝑦1)) ◦ (𝑥2, 𝑦2)) ◦ (𝑥3, 𝑦3)) =

((−𝑥1 − 𝑥1, 𝑦1 + 𝑦1) ◦ (𝑥2, 𝑦2)) ◦ (𝑥3, 𝑦3)) =

(+𝑥1 + 𝑥1 − 𝑥2, 𝑦1 + 𝑦1 + 𝑦2) ◦ (𝑥3, 𝑦3) =

= (−𝑥1 − 𝑥1 + 𝑥2 − 𝑥3, 2𝑦1 + 𝑦2 + 𝑦3). (28)

From (27) and (28) we obtain that both sides are equal and (𝐺 × 𝐺, ◦) is a Manin
quasigroup. Similarly, it is shown that (𝐺 × 𝐺, ◦) is a Cote quasigroup.

5. Similarly, we will show that 𝐺𝐴 identity is fulfilled in (𝐺 × 𝐺, ◦). Let 𝑥 =

(𝑥1, 𝑦1), 𝑦 = (𝑥2, 𝑦2), 𝑧 = (𝑥3, 𝑦3) then

((𝑥1, 𝑦1) ◦ (𝑥2, 𝑦2)) ◦ ((𝑥3, 𝑦3) = (𝑥3, 𝑦3) ◦ ((𝑥2, 𝑦2)) ◦ (𝑥1, 𝑦1)) (29)

Indeed, according to the Theorem for the first side of the law (29) we have

((𝑥1, 𝑦1) ◦ (𝑥2, 𝑦2)) ◦ (𝑥3, 𝑦3) =

(−𝑥1 − 𝑥2, 𝑦1 + 𝑦2) ◦ (𝑥3, 𝑦3) =
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(𝑥1 + 𝑥2 − 𝑥3, 𝑦1 + 𝑦2 + 𝑦3). (30)

Similarly, for the other side of the law (29) we get

(𝑥3, 𝑦3) ◦ ((𝑥2, 𝑦2)) ◦ (𝑥1, 𝑦1)) =

(𝑥3, 𝑦3) ◦ (−𝑥2 − 𝑥1, 𝑦2 + 𝑦1) =
(−𝑥3 + 𝑥2 + 𝑥1, 𝑦3 + 𝑦2 + 𝑦1). (31)

From (30) and (31) we obtain that both sides are equal and (𝐺 × 𝐺, ◦) is a 𝐺𝐴

quasigroup.
Multiplication (◦) and divisions 𝑙 (𝑎, 𝑏) and 𝑟 (𝑎, 𝑏) are jointly continuous relative to

the product topology.
Consequently, (𝐺 × 𝐺, ◦, 𝜏𝐺) is a non-associative, medial, semimedial, paramedial,

bicommutative, Manin, Cote and GA topological quasigroup.
If (𝐺, 𝜏) is 𝑇𝑖-space, then according to Theorem 2.3.11 in [6], a product of 𝑇𝑖-spaces

is a 𝑇𝑖-spaces, where 𝑖 = 1, 2, 3, 3.5. The proof is complete. □

In [1] was proved the following Theorem.

Theorem 4.2. Let (𝐺,+, 𝜏) be a commutative topological group where 𝐺 is not a single-
ton. For (𝑥1, 𝑦1) and (𝑥2, 𝑦2) in 𝐺 × 𝐺 define

(𝑥1, 𝑦1) ◦ (𝑥2, 𝑦2) = (𝑥1 + 𝑦1 − 𝑥2, 𝑥2 + 𝑦2 − 𝑦1).
Then (𝐺 ×𝐺, ◦, 𝜏𝐺), relative to the product topology 𝜏𝐺 , is a paramedial, non-medial

and non-associative topological quasigroup. Moreover, if (𝐺, 𝜏) is 𝑇𝑖 − 𝑠𝑝𝑎𝑐𝑒, then
(𝐺 × 𝐺, 𝜏𝐺) is 𝑇𝑖 − 𝑠𝑝𝑎𝑐𝑒 too, where 𝑖 = 1, 2, 3, 3.5.

The following Theorem was proved in [2].

Theorem 4.3. Let (𝐺,+, 𝜏) be a commutative topological group where 𝐺 is not a single-
ton. For (𝑥1, 𝑦1) and (𝑥2, 𝑦2) in 𝐺 × 𝐺 define

(𝑥1, 𝑦1) ◦ (𝑥2, 𝑦2) = (−𝑥1 − 𝑦1 + 𝑦2,−𝑥2 − 𝑦2 + 𝑥1).
Then (𝐺 ×𝐺, ◦, 𝜏𝐺), relative to the product topology 𝜏𝐺 , is a non-associative, medial,

𝐴𝐺 and 𝐴𝐷-topological quasigroup. Moreover, if (𝐺, 𝜏) is 𝑇𝑖 − 𝑠𝑝𝑎𝑐𝑒, then (𝐺 ×𝐺, 𝜏𝐺)
is 𝑇𝑖 − 𝑠𝑝𝑎𝑐𝑒 too, where 𝑖 = 1, 2, 3, 3.5.

Example 4.1. Let 𝐺 = {0, 1, 2}. We define the binary operation “ + ”.

(+) 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1
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Then (𝐺,+) is a commutative group. Define a binary operation (◦) on the set 𝐺 × 𝐺

by (𝑥1, 𝑦1) ◦ (𝑥2, 𝑦2) = (−𝑥1 − 𝑥2, 𝑦1 + 𝑦2) for all 𝑥1, 𝑦1, 𝑥2, 𝑦2 ∈ 𝐺 × 𝐺. If we label
the elements as follows (0, 0) ↔ 0, (0, 1) ↔ 1, (0, 2) ↔ 2, (1, 0) ↔ 3, (1, 1) ↔ 4,
(1, 2) ↔ 5, (2, 0) ↔ 6, (2, 1) ↔ 7, (2, 2) ↔ 8, then obtain:

(◦) 0 1 2 3 4 5 6 7 8
0 0 1 2 6 7 8 3 4 5
1 1 2 0 7 8 6 4 5 3
2 2 0 1 8 6 7 5 3 4
3 6 7 8 3 4 5 0 1 2
4 7 8 6 4 5 3 1 2 0
5 8 6 7 5 3 4 2 0 1
6 3 4 5 0 1 2 6 7 8
7 4 5 3 1 2 0 7 8 6
8 5 3 4 2 0 1 8 6 7

Then (𝐺 × 𝐺, ◦) is a medial, semimedial, paramedial, bicommutative, Manin, Cote,
GA non-associative quasigroup.
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Affine invariant conditions for a class of differential polynomial
cubic systems

Cristina Bujac

Abstract. In this article the affine invariant criteria constructed in terms of algebraic
polynomials with coefficients 𝑎̃ ∈ R20 for a class of cubic systems are established.
We are focused on non-degenerate real cubic systems with 7 invariant straight lines,
considering the line at infinity and their multiplicities and possesing four real singularities
at infinity. Additionally, the only configurations of the type (3, 3) of mentioned systems
are considered and we denote this class by 𝐶𝑆𝐿4𝑟∞

(3,3) . In [5] the existence of exactly 14
configurations of invariant straight lines for systems in 𝐶𝑆𝐿4𝑟∞

(3,3) was proved. Here we
complete this classification by determining necessary and sufficient conditions for the
realization of each one of the 14 configurations in terms of affine invariant polynomials.
2020 Mathematics Subject Classification: 34C23, 34A34.
Keywords: polynomial cubic system, invariant straight line, finite/infinite singular point,
configuration of invariant straight lines, affine invariant conditions.

Condiţii afin invariante pentru o clasă de sisteme polinomiale
diferenţiale cubice

Rezumat. În acest articol sunt stabilite criterii invariante construite ı̂n termeni de poli-
noame algebrice cu coeficienţi 𝑎̃ ∈ R20 pentru o clasă de sisteme cubice. Ne concentrăm
pe sisteme cubice reale, nedegenerate, cu 7 drepte invariante, luând ı̂n consideraţie dreapta
de la infinit şi multiplicităţile acesteia, care posedă patru singularităţi reale la infinit. În
plus, sunt analizate doar configuraţiile de tipul (3, 3) ale sistemelor menţionate, iar această
clasă este notată cu 𝐶𝑆𝐿4𝑟∞

(3,3) . În [5] a fost demonstrată existenţa exact a 14 configuraţii
de drepte invariante pentru sistemele din 𝐶𝑆𝐿4𝑟∞

(3,3) . În acest articol, completăm această
clasificare prin determinarea condiţiilor necesare şi suficiente afin-invarinate pentru rea-
lizarea fiecăreia dintre cele 14 configuraţii depistate.
Cuvinte-cheie: sistem cubic polinomial, dreaptă invariantă, punct singular finit/infinit,
configuraţie de drepte invariante, condiţii afin-invariante.
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AFFINE INVARIANT CONDITIONS FOR A CLASS OF DIFFERENTIAL
POLYNOMIAL CUBIC SYSTEMS

1. Introduction and preliminary results

Consider the family CS of real cubic systems, i.e. systems of the form:

¤𝑥 = 𝑝0 + 𝑝1(𝑥, 𝑦) + 𝑝2(𝑥, 𝑦) + 𝑝3(𝑥, 𝑦) ≡ 𝑃(𝑎, 𝑥, 𝑦),

¤𝑦 = 𝑞0 + 𝑞1(𝑥, 𝑦) + 𝑞2(𝑥, 𝑦) + 𝑞3(𝑥, 𝑦) ≡ 𝑄(𝑎, 𝑥, 𝑦)
(1)

with variables 𝑥 and 𝑦 and real coefficients such that gcd(𝑃,𝑄) = 1 and
max(deg(𝑃,𝑄)) = 3. The polynomials 𝑝𝑖 (𝑥, 𝑦) and 𝑞𝑖 (𝑥, 𝑦) for 𝑖 = 0, 1, 2, 3 are
homogeneous polynomials of degree 𝑖 in variables 𝑥 and 𝑦:

𝑝0 = 𝑎00, 𝑝1(𝑥, 𝑦) = 𝑎10𝑥 + 𝑎01𝑦,

𝑝2(𝑥, 𝑦) = 𝑎20𝑥
2 + 2𝑎11𝑥𝑦 + 𝑎02𝑦

2,

𝑝3(𝑥, 𝑦) = 𝑎30𝑥
3 + 3𝑎21𝑥

2𝑦 + 3𝑎12𝑥𝑦
2 + 𝑎03𝑦

3,

𝑞0 = 𝑏00, 𝑞1(𝑥, 𝑦) = 𝑏10𝑥 + 𝑏01𝑦,

𝑞2(𝑥, 𝑦) = 𝑏20𝑥
2 + 2𝑏11𝑥𝑦 + 𝑏02𝑦

2,

𝑞3(𝑥, 𝑦) = 𝑏30𝑥
3 + 3𝑏21𝑥

2𝑦 + 3𝑏12𝑥𝑦
2 + 𝑏03𝑦

3.

Let 𝑎 ∈ 𝑅20, i.e. 𝑎 = (𝑎00, 𝑎10, 𝑎01, . . . , 𝑎03, 𝑏00, 𝑏10, 𝑏01, . . . , 𝑏03) be the 20-tuple of
the coefficients of systems (1). We denote

R[𝑎, 𝑥, 𝑦] = R[𝑎00, 𝑎10, 𝑎01, . . . , 𝑎03, 𝑏00, 𝑏10, 𝑏01, . . . , 𝑏03, 𝑥, 𝑦] .

The set CS of cubic differential systems (1) depends on 20 parameters, and therefore
mathematicians began studying particular families of CS. Among these families, there
are cubic systems with invariant straight lines, and we denote such families of systems by
CSL.

A line 𝑓 (𝑥, 𝑦) = 𝑤 + 𝑢𝑥 + 𝑣𝑦 = 0 over C is an invariant line for a system (1) if and
only if there exists 𝐾 (𝑥, 𝑦) ∈ C[𝑥, 𝑦], which satisfies the following identity in C[𝑥, 𝑦]:

𝑢𝑃(𝑥, 𝑦) + 𝑣𝑄(𝑥, 𝑦) = (𝑤 + 𝑢𝑥 + 𝑣𝑦)𝐾 (𝑥, 𝑦).

According to [1] the maximum number of the invariant straight lines (including the line
at infinity 𝑍 = 0) for cubic differential systems with a finite number of infinite singularities
is 9. In paper [17], all the possible configurations of invariant lines are obtained in the
case, when the total multiplicity of these lines (including the line at infinity) equals nine.
If the total multiplicity of these lines (including the line at infinity) equals eight, then all
possible configurations of invariant lines are found in [7, 8, 9, 10, 11].

We continue our investigation on CSL with invariant lines of total multiplicity 7 (the
line at infinity is considered). To each system in CSL, we associate its configuration of
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invariant lines, i.e. the set of its invariant lines together with the real singular points of
the system located on the union of these lines.

More precisely, we call configuration of invariant straight lines of a real planar poly-
nomial differential system (1), the set of (complex) invariant straight lines (which may
have real coefficients) including the line at infinity of the system, each endowed with its
own multiplicity and together with all the real singular points of this system located on
these invariant straight lines, each one endowed with its own multiplicity.

The notion of configuration of invariant lines for a polynomial differential system was
first introduced in [15].

It is known that on CS (1), the group 𝐴 𝑓 𝑓 (2,R) of affine transformations of the plane
acts [14]. For every subgroup 𝐺 ⊆ 𝐴 𝑓 𝑓 (2,R) we have an induced action of 𝐺 on CS.
We can identify the set CS of cubic systems (1) with a subset of R20 via the map CS −→
R20, which associates to each cubic system (1) the 20-tuple 𝑎̃ = (𝑎00, 𝑎10, 𝑎01, . . . , 𝑎03,

𝑏00, 𝑏10, 𝑏01, . . . , 𝑏03) of its coefficients.
The definitions of an affine or 𝐺𝐿-comitant or invariant as well as the definitions of a

𝑇-comitant and 𝐶𝑇-comitant can be found in [15] (see also [2]).
Here, we construct the necessary invariant polynomials (𝑇-comitants) that we need

for detecting the existence of invariant lines for the family of cubic systems having four
distinct real singularities and exactly seven invariant straight lines including the line at
infinity and counting multiplicities.

We consider the polynomials

𝐶𝑖 (𝑎, 𝑥, 𝑦) = 𝑦𝑝𝑖 (𝑎, 𝑥, 𝑦) − 𝑥𝑞𝑖 (𝑎, 𝑥, 𝑦) ∈ R[𝑎, 𝑥, 𝑦], 𝑖 = 0, 1, 2, 3,

𝐷𝑖 (𝑎, 𝑥, 𝑦) =
𝜕

𝜕𝑥
𝑝𝑖 (𝑎, 𝑥, 𝑦) +

𝜕

𝜕𝑦
𝑞𝑖 (𝑎, 𝑥, 𝑦) ∈ R[𝑎, 𝑥, 𝑦], 𝑖 = 1, 2, 3.

In [16] it was shown that the following polynomials{
𝐶𝑖 (𝑎, 𝑥, 𝑦), 𝐷1(𝑎), 𝐷2(𝑎, 𝑥, 𝑦), 𝐷3(𝑎, 𝑥, 𝑦), 𝑖 = 0, 1, 2, 3

}
(2)

of degree one in the coefficients of systems (1) are 𝐺𝐿-comitants of these systems.
Notation 3. Let 𝑓 , 𝑔 ∈ 𝑅[𝑎, 𝑥, 𝑦] and

( 𝑓 , 𝑔) (𝑘 ) =
𝑘∑︁

ℎ=0
(−1)ℎ

(
𝑘

ℎ

)
𝜕𝑘 𝑓

𝜕𝑥𝑘−ℎ𝜕𝑦ℎ
𝜕𝑘𝑔

𝜕𝑥ℎ𝜕𝑦𝑘−ℎ
.

( 𝑓 , 𝑔) (𝑘 ) ∈ R[𝑎, 𝑥, 𝑦] is called the transvectant of index 𝑘 of ( 𝑓 , 𝑔) (cf. [12, 18]).
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To define the invariant polynomials, we first construct the comitants of the second
degree, with respect to the coefficients of the initial systems (1), of the form:

𝑆1 = (𝐶0, 𝐶1) (1) , 𝑆10 = (𝐶1, 𝐶3) (1) , 𝑆19 = (𝐶2, 𝐷3) (1) ,

𝑆2 = (𝐶0, 𝐶2) (1) , 𝑆11 = (𝐶1, 𝐶3) (2) , 𝑆20 = (𝐶2, 𝐷3) (2) ,

𝑆3 = (𝐶0, 𝐷2) (1) , 𝑆12 = (𝐶1, 𝐷3) (1) , 𝑆21 = (𝐷2, 𝐶3) (1) ,

𝑆4 = (𝐶0, 𝐶3) (1) , 𝑆13 = (𝐶1, 𝐷3) (2) , 𝑆22 = (𝐷2, 𝐷3) (1) ,

𝑆5 = (𝐶0, 𝐷3) (1) , 𝑆14 = (𝐶2, 𝐶2) (2) , 𝑆23 = (𝐶3, 𝐶3) (2) ,

𝑆6 = (𝐶1, 𝐶1) (2) , 𝑆15 = (𝐶2, 𝐷2) (1) , 𝑆24 = (𝐶3, 𝐶3) (4) ,

𝑆7 = (𝐶1, 𝐶2) (1) , 𝑆16 = (𝐶2, 𝐶3) (1) , 𝑆25 = (𝐶3, 𝐷3) (1) ,

𝑆8 = (𝐶1, 𝐶2) (2) , 𝑆17 = (𝐶2, 𝐶3) (2) , 𝑆26 = (𝐶3, 𝐷3) (2) ,

𝑆9 = (𝐶1, 𝐷2) (1) , 𝑆18 = (𝐶2, 𝐶3) (3) , 𝑆27 = (𝐷3, 𝐷3) (2) .

Next we determine the conditions for the existence of the couples of parallel invariant
straight lines which a cubic system can have (see Theorem 1.1). For this we use the
following invariant polynomials constructed in [17] and [8]:

V1(𝑎, 𝑥, 𝑦) = 𝑆23 + 2𝐷2
3,

V2(𝑎, 𝑥, 𝑦) = 𝑆26,

V3(𝑎, 𝑥, 𝑦) = 6𝑆25 − 3𝑆23 − 2𝐷2
3,

V4(𝑎, 𝑥, 𝑦) = 𝐶3

[
(𝐶3, 𝑆23) (4) + 36 (𝐷3, 𝑆26) (2)

]
,

V5(𝑎, 𝑥, 𝑦) = 6𝐶3(9𝐴5 − 7𝐴6) + 2𝐷3(4𝑇16 − 𝑇17) − 3𝑇3(3𝐴1 + 5𝐴2)+

+ 3𝐴2𝑇4 + 36𝑇2
5 − 3𝑇44,

U1(𝑎, 𝑥, 𝑦) = 𝑆24 − 4𝑆27,

U2(𝑎, 𝑥, 𝑦) = 6(𝑆23 − 3𝑆25, 𝑆26) (2) − 3𝑆23(𝑆24 − 8𝑆27)−

− 24𝑆2
26 + 2𝐶3(𝐶3, 𝑆23) (4) + 24𝐷3(𝐷3, 𝑆26) (1) + 24𝐷2

3𝑆27.
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In order to construct the needed affine invariant conditions, we will use the following
polynomials:

H1 = 48𝐷4
1𝑆24

[
2𝐷2

1 + 3𝑆6
]
+ 192𝐷5

1(𝑆18, 𝐷2) (1) + 12𝑆2
6𝑆24

[
6𝐷2

1 + 𝑆6
]

+ 216𝑆3𝑆24
[
4𝐷4

1 − 𝑆
2
6 − 16𝑆2

3
]
− 108𝑆24(𝑆5, 𝐶0) (1)

[
8𝐷3

1 − 12𝐷1𝑆6

+ 72𝐷1𝑆3−9(𝑆5, 𝐶0) (1)
]
− 216𝑆24(𝑆8, 𝐶0) (1)

[
4𝐷3

1+2𝐷1𝑆6+9(𝑆5, 𝐶0) (1)
]

− 192
[
(𝑆18, 𝐶0) (1)

]2 [13𝐷2
1+9𝑆6+24𝑆3

]
−24(𝑆18, 𝐶0) (1) (𝑆14, 𝐶1) (2)

[
66𝐷2

1

+ 17𝑆6−72𝑆3
]
+16(𝑆18, 𝐷2) (1)

[
12𝐷3

1𝑆6+3𝐷1𝑆
2
6+104𝐷3

1𝑆3 − 45𝐷1𝑆3𝑆6

+288𝐷1𝑆
2
3+360𝐷1

2(𝑆5,𝐶0)(1)+189𝑆6(𝑆5,𝐶0)(1)+24𝑆6(𝑆8,𝐶0)(1)−144𝑆3(𝑆8,𝐶0)(1)
]

+216𝑆24
(
(𝑆11, 𝐶0) (1) , 𝐶0

) (1) [6𝐷2
1 − 𝑆6 + 9𝑆3

]
+ 36

(
(𝑆14,𝐶0) (1),𝐶0

) (1)
×
[
15𝐷2

1𝑆24+12𝑆3𝑆24+(𝑆18,𝐷2)(1)
]
+1152𝐷1(𝑆18,𝐶0

(1) (𝑆18,𝐶1) (1),𝐶0
)(1)

− 768
[ (
(𝑆14,𝐶0)(1),𝐷2

)(1) ]2+24
(
(𝑆18, 𝐶2) (1) , 𝐶1

) (2) [4𝐷4
1+4𝐷2

1𝑆6+𝑆2
6

+96𝐷2
1𝑆3−33𝐷1(𝑆8,𝐶0)(1)−63

(
(𝑆11,𝐶0)(1),𝐶0

) (1)]+3
(
(𝑆14,𝐶2)(1),𝐶2

)(3)×[
4𝐷4

1 + 4𝐷2
1𝑆6 + 𝑆2

6 + 32𝐷2
1𝑆3 − 16𝑆3𝑆6 − 32𝐷1(𝑆8, 𝐶0) (1)

− 64
(
(𝑆14, 𝐶0) (1) , 𝐶0

) (1) ] − 144
[
9𝐷1𝑆24 + 16(𝑆18, 𝐷2) (1)

]
×( (

(𝑆17, 𝐶0) (1) , 𝐶0
) (1)

, 𝐶0
) (1) − 64

( (
(𝑆18, 𝐶2) (1) , 𝐶2

) (2)
, 𝐶0

) (1) [
𝐷3

1

− 18(𝑆8, 𝐶0) (1)
]
+ 243𝑆24

( ( (
(𝑆25, 𝐶0) (1) , 𝐶0

) (1)
, 𝐶0

) (1)
, 𝐶0

) (1) ;
H2 = − 3𝑆24

[
4𝐷3

1−18(𝑆5, 𝐶0)(1)+9(𝑆8, 𝐶0)(1)+2(𝑆18, 𝐷2)(1)
[
6𝐷2

1+16𝑆3−3𝑆6
]

+18𝐷1𝑆24
[
3𝑆3−𝑆6

]
− 12𝐷1

(
(𝑆18,𝐶2)(1),𝐶1

)(2)+32
( (
(𝑆18,𝐶2)(1) ,𝐶2

)(2) ,𝐶0
)(1) ;

H3 = 72𝑇136(2307𝑇140 − 607𝑇141) + 𝑇74(13𝑇144 + 264𝑇145);

H4 = 𝑇74;

H5 = 12𝐷4
1𝑆24 − 18𝐷1𝑆6(𝑆18, 𝐷2) (1) + 128𝐷1𝑆3(𝑆18, 𝐷2) (1)

− 48(𝑆8, 𝐶0) (1) (𝑆18, 𝐷2) (1) + 27𝑆24((𝑆11, 𝐶0) (1) , 𝐶0) (1)

− 9𝑆24((𝑆14, 𝐶0) (1) , 𝐶0) (1) + 18𝐷2
1((𝑆18, 𝐶2) (1) , 𝐶1) (2)

−7𝑆6((𝑆18, 𝐶2) (1) ,𝐶1) (2)+2𝐷2
1((𝑆14, 𝐶2) (1) , 𝐶2) (3) − 𝑆6((𝑆14, 𝐶2) (1) ,𝐶2) (3)

+ 8𝑆3((𝑆14, 𝐶2) (1) , 𝐶2) (3) − 3𝑆2
6𝑆24 − 16𝐷1(((𝑆18, 𝐶2) (1) , 𝐶2) (2) , 𝐶0) (1)

+ 54𝐷2
1𝑆3𝑆24 + 27𝑆6𝑆3𝑆24 − 36𝑆2

3𝑆24 − 54𝐷1𝑆24(𝑆5, 𝐶0) (1)

− 48(𝑆18, 𝐶0) (1) )2 + 60(𝑆18, 𝐶0) (1) (𝑆14, 𝐶1) (2) + 28𝐷3
1(𝑆18, 𝐷2) (1) .
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Here the polynomials

𝐴1 = 𝑆24/288, 𝐴2 = 𝑆27/72,

𝐴5 = (𝑆23, 𝐶3) (4)/27/35, 𝐴6 = (𝑆26, 𝐷3) (2)/25/33

are affine invariants and

𝑇3 =𝑆23/18, 𝑇4 = 𝑆25/6, 𝑇5 = 𝑆26/72,

𝑇6 =(3𝐶1𝐷
2
3 − 27𝐶1𝑇3 + 54𝐶1𝑇4 + 4𝐶3𝐷

2
2 − 2𝐶3𝑆14+

+ 16𝐶3𝑆14 − 4𝐶2𝐷2𝐷3 + 2𝐶2𝑆17 + 12𝐶2𝑆21 − 4𝐶2𝑆19)/24/32,

𝑇11 =(𝐷2
3, 𝐶2) (2) − 9(𝑇3, 𝐶2) (2) + 18(𝑇4, 𝐶2) (2) − 6(𝐷2

3, 𝐷2) (1)+

+ 54(𝑇3, 𝐷2) (1) − 108(𝑇4, 𝐷2) (1) + 12𝐷2𝑆26 − 12(𝑆26, 𝐶2) (1)+

+ 432𝐶2𝐴1 − 2160𝐶2𝐴2)/27/34,

𝑇16 =(𝑆23, 𝐷3) (2)/2633, 𝑇17 = (𝑆26, 𝐷3) (1)/25/33,

𝑇74 =(2187𝑇2
3𝐶0 + 8748𝑇2

4𝐶0 + 20736𝑇11𝐶
2
2 − 62208𝑇11𝐶1𝐶3+

+ 108𝐶3𝐷1𝐷2𝐷
2
3 − 8𝐶2𝐷

2
2𝐷

2
3 − 54𝐶2𝐷1𝐷

3
3 + 6𝐶1𝐷2𝐷

3
3+

+ 27𝐶0𝐷
4
3 − 54𝐶3𝐷

2
3𝑆8 + 108𝐶3𝐷

2
3𝑆9 + 27𝐶2𝐷

2
3𝑆11 − 27𝐶2𝐷

2
3𝑆12+

+ 4𝐶2𝐷
2
3𝑆14 − 32𝐶2𝐷

2
3𝑆15 + 54𝐷1𝐷

2
3𝑆16 − 3𝐶1𝐷

2
3𝑆17 + 6𝐶1𝐷

2
3𝑆19−

− 9𝑇3(54𝐶0(18𝑇4 + 𝐷2
3) + 54𝐶3(2𝐷1𝐷2 − 𝑆8 + 2𝑆9) − 𝐶2(8𝐷2

2+

+ 54𝐷1𝐷3 − 27𝑆11 + 27𝑆12 − 4𝑆14 + 32𝑆15) + 54𝐷1𝑆16 + 3𝐶1(2𝐷2𝐷3−

−𝑆17+2𝑆19−6𝑆21))−576𝑇6(2𝐷2𝐷3−𝑆17+2𝑆19−6𝑆21)−18𝐶1𝐷
2
3𝑆21+

+ 18𝑇4(6𝐶1𝐷2𝐷3 + 54𝐶0𝐷
2
3 + 54𝐶3(2𝐷1𝐷2 − 𝑆8 + 2𝑆9) − 𝐶2(8𝐷2

2+

+ 54𝐷1𝐷3 − 27𝑆11 + 27𝑆12 − 4𝑆14 + 32𝑆15) + 54𝐷1𝑆16 − 3𝐶1𝑆17+

+ 6𝐶1𝑆19 − 18𝐶1𝑆21))/28/34,

𝑇44 =((𝑆23, 𝐶3) (1) , 𝐷3) (2) , 𝑇133 =
(
𝑇74,𝐶3

) (1)
, 𝑇137 =

(
𝑇74,𝐷3

) (1)/6,

𝑇136 =
(
𝑇74, 𝐶3

) (2)/24, 𝑇140 =
(
𝑇74, 𝐷3

) (2)/12,

𝑇141 =
(
𝑇74, 𝐶3

) (3)/36, 𝑇144 =
(
𝑇133, 𝐶3

) (4)
, 𝑇145 =

(
𝑇137, 𝐶3

) (3)
are 𝑇-comitants of cubic systems (1) (see [15] for the definition of a 𝑇-comitant). We
note that for the above invariant polynomials, we preserve the notations introduced in [8].
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Using a different notation for the coefficients, we rewrite the cubic systems (1) as:

¤𝑥 = 𝑎+𝑐𝑥+𝑑𝑦+𝑔𝑥2+2ℎ𝑥𝑦+𝑘𝑦2+𝑝𝑥3+3𝑞𝑥2𝑦+3𝑟𝑥𝑦2+𝑠𝑦3 ≡ 𝑃(𝑥, 𝑦),

¤𝑦 = 𝑏+𝑒𝑥+ 𝑓 𝑦+𝑙𝑥2+2𝑚𝑥𝑦+𝑛𝑦2+𝑡𝑥3+3𝑢𝑥2𝑦+3𝑣𝑥𝑦2+𝑤𝑦3 ≡ 𝑄(𝑥, 𝑦).
(3)

Let 𝐿 (𝑥, 𝑦) = 𝑊 + 𝑈𝑥 + 𝑉𝑦 = 0 be an invariant straight line of this family of cubic
systems. Then, we get

𝑈𝑃(𝑥, 𝑦) +𝑉𝑄(𝑥, 𝑦) = (𝑊 +𝑈𝑥 +𝑉𝑦) (𝐹 + 𝐷𝑥 + 𝐸𝑦 + 𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2),

and this identity yields the following equations:

𝐸𝑞1 = 𝑡𝑉 + (𝑝 − 𝐴)𝑈 = 0,
𝐸𝑞2 = (3𝑢 − 𝐴)𝑉 + (3𝑞 − 2𝐵)𝑈 = 0,
𝐸𝑞3 = (3𝑣 − 2𝐵)𝑉 + (3𝑟 − 𝐶)𝑈 = 0,
𝐸𝑞4 = (𝑠 − 𝐶)𝑈 +𝑉𝑤 = 0,
𝐸𝑞5 = 𝑙𝑉 + (𝑔 − 𝐷)𝑈 − 𝐴𝑊 = 0,
𝐸𝑞6 = (2𝑚 − 𝐷)𝑉 + (2ℎ − 𝐸)𝑈 − 2𝐵𝑊 = 0,
𝐸𝑞7 = (𝑛 − 𝐸)𝑉 + 𝑘𝑈 − 𝐶𝑊 = 0,
𝐸𝑞8 = 𝑒𝑉 + (𝑐 − 𝐹)𝑈 − 𝐷𝑊 = 0,
𝐸𝑞9 = ( 𝑓 − 𝐹)𝑉 + 𝑑𝑈 − 𝐸𝑊 = 0,
𝐸𝑞10 = 𝑏𝑉 + 𝑎𝑈 − 𝐹𝑊 = 0.

(4)

The infinite singularities (real or complex) of systems (3) are determined by the linear
factors in the factorization over C of the polynomial

𝐶3 = 𝑦𝑝3(𝑥, 𝑦) − 𝑥𝑞3(𝑥, 𝑦).

All possible configurations of invariant lines, in the case, when the total multiplicity of
these lines (including the line at infinity) equals seven possessing at infinity four distinct
infinite singularities (all real, or two real and two complex), are determined in [5, 4, 3, 6].
In these papers, the author studied the above-mentioned systems according to the type of
configurations of invariant straight lines. Additionally, the affine invariant conditions for
the class of cubic systems possessing two real and two complex singularities at infinity
was constructed.

In this paper, the class of cubic systems with four real distinct infinite singularities and
invariant straight lines in the configuration of the type (3, 3) is considered. All possible
configurations of invariant straight lines for this class were constructed in [5] (see Figure
1). Our goal is to determine the affine invariant conditions for the realization of each one
of these 14 configurations.
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According to [17] (see also [19]) we have the following results ( Lemma 1.1, Lemma
1.2 and Theorem 1.1).

Lemma 1.1. A cubic system 𝑆 ∈ CS has 4 real distinct infinite singularities if and only if

D1 > 0, D2 > 0, D3 > 0.

Lemma 1.2. If a cubic system 𝑆 ∈ CS has 4 real distinct infinite singularities, then this
system could be brought via a linear transformation to the canonical form{

𝑥′ = 𝑝0 + 𝑝1(𝑥, 𝑦) + 𝑝2(𝑥, 𝑦) + (𝑝 + 𝑟)𝑥3 + (𝑠 + 𝑣)𝑥2𝑦 + 𝑞𝑥𝑦2,

𝑦′ = 𝑞0 + 𝑞1(𝑥, 𝑦) + 𝑞2(𝑥, 𝑦) + 𝑝𝑥2𝑦 + (𝑟 + 𝑣)𝑥𝑦2 + (𝑞 + 𝑠)𝑦3,
(5)

with 𝑟𝑠(𝑟 + 𝑠) ≠ 0 and 𝐶3 = 𝑥𝑦(𝑥 − 𝑦) (𝑟𝑥 + 𝑠𝑦).

Theorem 1.1 ([3]). Assume that a cubic system 𝑆 ∈ CS possesses a given number of
triplets or/and couples of invariant parallel lines real or/and complex. Then the following
conditions are satisfied, respectively:

(i) two triplets ⇒ V1 = V2 = U1 = 0;
(ii) one triplet and one couple ⇒ V4 = V5 = U2 = 0;
(iii) one triplet ⇒ V4 = U2 = 0;
(iv) 3 couples ⇒ V3 = 0;
(v) 2 couples ⇒ V5 = 0.

According to [5] the following lemma is valid:

Lemma 1.3. Assume the family of cubic system possessing 4 real distinct infinite singu-
larities, i.e. the conditions D1 > 0, D2 > 0, D3 > 0 hold. We additionally consider that
for this family the condition V1 = V2 = 0 is satisfied. Then:

(A) this family of cubic systems could be brought via an affine transformation and
time rescaling to the systems

¤𝑥 = 𝑎 + 𝑐𝑥 + 𝑑𝑦 + 2ℎ𝑥𝑦 + 𝑘𝑦2 + 𝑥3,

¤𝑦 = 𝑏 + 𝑒𝑥 + 𝑓 𝑦 + 𝑙𝑥2 + 2𝑚𝑥𝑦 + 𝑦3;
(6)

(B) a cubic system (6) has invariant straight lines of total multiplicity 7 (including the
line at infinity) in the configuration of the type (3, 3) if and only if the following
conditions hold:

𝑘 = 𝑑 = ℎ = 𝑒 = 𝑙 = 𝑚 = 0, (𝑐 − 𝑓 )2 + (𝑎2 − 𝑏2)2 ≠ 0. (7)

So, according to (7) systems (6) became of the form

¤𝑥 = 𝑎 + 𝑐𝑥 + 𝑥3, ¤𝑦 = 𝑏 + 𝑓 𝑦 + 𝑦3. (8)
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We denote

𝜉1 = −(27𝑎2 + 4𝑐3), 𝜉2 = −(27𝑏2 + 4 𝑓 3), 𝜈1 = 𝑎2 + 𝑐2, 𝜈2 = 𝑏2 + 𝑓 2.

According to [5, Theorem 3.2, Subsection 3.1] we have the following lemma:

Lemma 1.4. Assume that for a system (8) the conditions given below in terms of the
polynomials 𝜉1, 𝜉2, 𝜈1 and 𝜈2 are satisfied. Then this system could be brought via an
affine transformation and time rescaling to one of the presented below canonical systems
(9)–(17). Moreover, this system possesses one of the configurations Config. 7.1a –
7.14a (see Figure 1) if and only if the conditions under the parameters 𝑎 and 𝑏 of the
corresponding canonical system (when these conditions exist) are satisfied, respectively:

𝜉1𝜉2 > 0, 𝜉1 + 𝜉2 > 0 ⇒ (9) ⇔ Config. 7.1a;

𝜉1𝜉2 > 0, 𝜉1 + 𝜉2 < 0 ⇒ (10),


𝑎𝑏≠0 ⇔Config. 7.2a;
𝑎𝑏=0,𝑎+𝑏≠0 ⇔Config. 7. 3a;
𝑎=𝑏= 0 ⇔ Config. 7.4a;

𝜉1𝜉2 < 0 ⇒ (11) with

[
𝑏 ≠ 0 ⇔ Config. 7.5a;
𝑏 = 0 ⇔ Config. 7.6a;

𝜉1𝜉2 = 0, 𝜉1 + 𝜉2 > 0, 𝜈1𝜈2 ≠ 0 ⇔ (12) ⇒ Config. 7.7a;

𝜉1𝜉2 = 0, 𝜉1 + 𝜉2 < 0, 𝜈1𝜈2 ≠ 0 ⇒ (13) with

[
𝑏 ≠ 0 ⇔ Config. 7.8a;
𝑏 = 0 ⇔ Config. 7.9a;

𝜉1𝜉2 = 0, 𝜉1 + 𝜉2 > 0, 𝜈1𝜈2 = 0 ⇒ (14) ⇔ Config. 7.10a;

𝜉1𝜉2 = 0, 𝜉1 + 𝜉2 < 0, 𝜈1𝜈2 = 0 ⇒ (15) with

[
𝑏≠0 ⇔ Config. 7.11a;
𝑏=0 ⇔ Config. 7.12a;

𝜉1𝜉2 = 0, 𝜉1 + 𝜉2 = 0, 𝜈1𝜈2 ≠ 0 ⇒ (16) ⇔ Config. 7.13a;

𝜉1𝜉2 = 0, 𝜉1 + 𝜉2 = 0, 𝜈1𝜈2 = 0 ⇒ (17) ⇔ Config. 7.14a.

The canonical systems indicated in the statement of the above lemma are the following
ones:

¤𝑥 = 𝑥(𝑥 − 1) (𝑥 − 𝑎), ¤𝑦 = 𝑦(𝑦 − 𝑏) (𝑦 − 𝑐), 𝑎(𝑎 + 1)𝑏𝑐(𝑏 − 𝑐) ≠ 0, (9)

¤𝑥 = 𝑥
[
(𝑥 + 𝑎)2 + 𝑐

]
, ¤𝑦 = 𝑦

[
(𝑦 + 𝑏)2 + 𝑓

]
, 𝑐 > 0, 𝑓 > 0. (10)

¤𝑥 = 𝑥(𝑥 − 1) (𝑥 − 𝑎), ¤𝑦 = 𝑦
[
(𝑦 + 𝑏)2 + 𝑐

]
, 𝑎(𝑎 − 1) ≠ 0 𝑐 > 0. (11)

¤𝑥 = 𝑥2(𝑥 − 1), ¤𝑦 = 𝑦(𝑦 − 𝑏) (𝑦 − 𝑐), 𝑏𝑐(𝑏 − 𝑐) ≠ 0. (12)

¤𝑥 = 𝑥2(𝑥 − 1), ¤𝑦 = 𝑦
[
(𝑦 + 𝑏)2 + 𝑐

]
, 𝑐 > 0. (13)
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Figure 1. Configurations of invariant straght lines for systems in 𝐶𝑆𝐿4𝑟∞
(3,3)

¤𝑥 = 𝑥3, ¤𝑦 = 𝑦(𝑦 − 1) (𝑦 − 𝑏), 𝑏(𝑏 − 1) ≠ 0. (14)

¤𝑥 = 𝑥3, ¤𝑦 = 𝑦
[
1 + (𝑦 + 𝑏)2] . (15)

¤𝑥 = 𝑥2(𝑥 − 1), ¤𝑦 = 𝑦2(𝑦 − 𝑏), 𝑏 ≠ 0. (16)

¤𝑥 = 𝑥3, ¤𝑦 = 𝑦2(𝑦 − 1). (17)
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2. Invariant criteria for the realization of the configurations Config.
7.1a - Config. 7.14a of systems belonging to 𝐶𝐿𝑆4𝑟∞

(3,3)

First we prove the following lemma.

Lemma 2.1. An arbitrary non-degenerate cubic system belongs to the class 𝐶𝐿𝑆4𝑟∞
(3,3) if

and only if the following conditions hold:

D1 > 0,D2 > 0,D3 > 0,V1 = V2 = U1 = L1 = L8 = 0,L2
2 + K2

1 ≠ 0. (18)

Proof. According to Lemma 1.3 systems (6) could have two triplets of invariant straight
line if and only if the conditions (7) are satisfied.

For systems (6) we calculate:

L1 = −20736(𝑙𝑥3 + 2𝑚𝑥2𝑦 − 2ℎ𝑥𝑦2 − 𝑘𝑦3).

Evidently L1 = 0 is equivalent to 𝑙 = 𝑚 = ℎ = 𝑘 = 0.
We define the new invariant polynomial

L8 = 𝑇15 − 2𝑇14

and evaluate it for systems (6) in the case 𝑙 = 𝑚 = ℎ = 𝑘 = 0:

L8 = 3𝑒𝑥2 − 3𝑑𝑦2.

It is evident that the condition L8 = 0 is equivalent to 𝑑 = 𝑒 = 0. Therefore, we have
found out the invariant conditions which are equivalent with the first part of the conditions
(7). So, applying L1 = L8 = 0 to systems (6) we arrive at systems (8) for which we
calculate

L2 = −186624(𝑐 − 𝑓 )𝑥𝑦, K1 = 2173155474 · 817(𝑎2 − 𝑏2) (𝑥2 − 𝑦2).

Therefore, we deduce that the condition L2
2 + K2

1 ≠ 0 is equivalent to

(𝑐 − 𝑓 )2 + (𝑎2 − 𝑏2)2 ≠ 0.

The proof is complete. □

Next, we prove our main result.

Theorem 2.1. Assume that for a generic cubic system (3) the conditions (18) are satisfied,
i.e. this system belongs to the class 𝐶𝐿𝑆4𝑟∞

(3,3) . Then this system has one of the configura-
tions Config. 7.1 – 7.14 if and only if one of the following sets of conditions is satisfied,
correspondingly:
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(𝐴1) H1 > 0, H2 > 0 ⇔ Config. 7.1a;

(𝐴2) H1 > 0, H2 < 0, H3 ≠ 0 ⇔ Config. 7.2a;

(𝐴3) H1 > 0, H2 < 0, H3 = 0, H4 ≠ 0 ⇔ Config. 7.3a;

(𝐴4) H1 > 0, H2 < 0, H3 = H4 = 0 ⇔ Config. 7.4a;

(𝐴5) H1 < 0, H3 ≠ 0 ⇔ Config. 7.5a;

(𝐴6) H1 < 0, H3 = 0 ⇒ Config. 7.5a or 7.6a;

(𝐴7) H1 = 0, H2 > 0, H5 ≠ 0 ⇔ Config. 7.7a;

(𝐴8) H1 = 0, H2 < 0, H5 ≠ 0, H3 ≠ 0 ⇔ Config. 7.8a;

(𝐴9) H1 = 0, H2 < 0, H5 ≠ 0, H3 = 0 ⇔ Config. 7.9a;

(𝐴10) H1 = 0, H2 > 0, H5 = 0 ⇔ Config. 7.10a;

(𝐴11) H1 = 0, H2 < 0, H5 = 0, K2 ≠ 0 ⇔ Config. 7.11a;

(𝐴12) H1 = 0, H2 < 0, H5 = 0, K2 = 0 ⇔ Config. 7.12a;

(𝐴13) H1 = 0, H2 = 0, H3 ≠ 0 ⇔ Config. 7.13a;

(𝐴14) H1 = 0, H2 = 0, H3 = 0 ⇔ Config. 7.14a.

Proof. Consider a cubic system belonging to 𝐶𝐿𝑆4𝑟∞
(3,3) . As it was prove earlier, such a

system via an affine transformation an time rescaling could be brought to the canonical
form (8). For these systems we calculate

H1 =21233(27𝑎2 + 4𝑐3) (27𝑏2 + 4 𝑓 3) = 21233𝜉1𝜉2;

H2 =2734(27𝑎2 + 27𝑏2 + 4𝑐3 + 4 𝑓 3) (𝑥2 + 𝑦2) = 2734(𝜉1 + 𝜉2) (𝑥2 + 𝑦2).
(19)

The statement (𝐴1). According to Theorem 2.1, we have H1 > 0, H2 > 0 and by (19)
these conditions are equivalent to 𝜉1𝜉2 > 0 and 𝜉1 + 𝜉2 > 0, respectively. As a result,
according to Lemma 1.4, we get systems (9) for which we calculate:

H1 = 21233𝑎2𝑏2𝑐2(𝑎 − 1)2(𝑏 − 𝑐)2.

Therefore, the condition H1 > 0 imply 𝑎(𝑎+1)𝑏𝑐(𝑏−𝑐) ≠ 0. Thus, according to Lemma
1.4 we arrive at configuration Config. 7.1a. This completes the proof of the statemant
(𝐴1) of the theorem.

The statements (𝐴2) − (𝐴4). We observe that the conditions H1 > 0, H2 < 0 are
common for all these three statements. On the other hand these conditions are equivalent
to 𝜉1𝜉2 > 0 and 𝜉1+𝜉2 < 0. By [5] via an affine transformation and time rescaling systems
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(8) could be brought to the form (10) for which we calculate

H1 =21633𝑐 𝑓 (𝑎2 + 𝑐)2(𝑏2 + 𝑓 )2;

H2 = − 2934 [𝑐(𝑎2 + 𝑐)2 + 𝑓 (𝑏2 + 𝑓 )2)] (𝑥2 + 𝑦2).

It is evident that H1 > 0 implies 𝑐 𝑓 > 0 and due to H2 < 0 we get 𝑐 > 0 and 𝑓 > 0.
For systems (10) we calculate:

H3 =21015217𝑎𝑏(𝑎2 + 9𝑐) (𝑏2 + 9 𝑓 )𝑥6𝑦6(𝑥4 − 𝑦4);

H4 =2𝑥4𝑦4 [𝑏(𝑏2 + 9 𝑓 )𝑥 − 𝑎(𝑎2 + 9𝑐)𝑦
]
.

Assume first that the condition H3 ≠ 0 is satisfied. Since 𝑐 > 0 and 𝑓 > 0 we conclude
that this condition is equivalent to 𝑎𝑏 ≠ 0. So, according to Lemma 1.4 in this case we
get the configuration Config. 7.2a and the statement (𝐴2) of our theorem is proved.

If H3 = 0 we get 𝑎𝑏 = 0 and we investigate two cases: H4 ≠ 0 and H4 = 0.
The condition H4 ≠ 0 implies 𝑎2 + 𝑏2 ≠ 0. So, according to Lemma 1.4 in this case

we get configurations Config. 7.3a and hence, the statement (𝐴3) is proved.
Assume finally H3 = H4 = 0. This implies 𝑎 = 𝑏 = 0 and by Lemma 1.4 we get

Config. 7.4a. Thus, we proved the statement (𝐴4) of the theorem.

The statements (𝐴5), (𝐴6). In this case we have 𝜉1𝜉2 < 0 and according to [5] via an
affine transformation and time rescaling systems (8) could be brought to the form (11) for
which we calculate

H1 = − 21433(𝑎 − 1)2𝑎2𝑐(𝑏2 + 𝑐)2,

H3 =29325217𝑏(𝑎 − 2) (𝑎 + 1) (2𝑎 − 1) (𝑏2 + 9𝑐)𝑥6𝑦6(𝑥4 − 𝑦4).

We observe that the condition H1 < 0 guarantees 𝑎(𝑎 − 1) ≠ 0 and 𝑐 > 0, i.e. the
conditions mentioned in (11) hold. At the same time due to 𝑐 > 0 the condition H3 ≠ 0
imply 𝑏 ≠ 0. So according to Lemma (1.4) the conditions H1 < 0 and H3 ≠ 0 give us
Config. 7.5a

Assume now H3 = 0. In this case, we get two possibilities: 𝑏 = 0 or 𝑏 ≠ 0 and
(𝑎 − 2) (𝑎 + 1) (2𝑎 − 1). In the first case, by Lemma 1.4 we have the configuration Config.
7.6a, whereas in the second case we arrive at the configuration Config. 7.5a. So we
conclude that the statements (𝐴5) and (𝐴6) of Theorem 2.1 are valid.

We point out that the problem of determining of an invariant polynomial which gou-
verns the condition 𝑏 = 0 remains open.

The statement (𝐴7). In this case for systems (8) the conditions H1 = 0, H2 > 0 and
H5 ≠ 0 are satisfied. The first two conditions give us 𝜉1𝜉2 = 0 and 𝜉1 + 𝜉2 > 0 for systems
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(8) for which we have
H5 = −2833(𝑐𝜉2 + 𝑓 𝜉1). (20)

We claim that the condition H5 ≠ 0 implies 𝜈1𝜈2 ≠ 0. Indeed, supposing the contrary
that 𝜈1 = 0 (respectively 𝜈2 = 0) we get 𝑎 = 𝑐 = 0 (respectively 𝑏 = 𝑓 = 0) and this
leads to the condition H5 = 0. This proves our claim and hence, we have the condition
𝜈1𝜈2 ≠ 0. Then according to Lemma 1.4 via an affine transformation and time rescaling
systems (8) could be brought to the form (13) for which we calculate:

H5 =2832𝑏2(𝑏 − 𝑐)2𝑐2.

Evidently the condition H5 ≠ 0 implies 𝑏𝑐(𝑏 − 𝑐) ≠ 0 and we get the condition required
for systems (13).

So, accoridng to Lemma 1.4 in this case we get configuration Config. 7.7a and hence,
the statement (𝐴7) is proved.

The statements (𝐴8), (𝐴9). In both cases the conditions H1 = 0, H2 < 0 and H5 ≠ 0
are satisfied. Then for systems (8) the first two conditions give us 𝜉1𝜉2 = 0 and 𝜉1+𝜉2 < 0.
Moreover, as it was shown in the case of the statement (𝐴7) the condition H5 ≠ 0 implies
𝜈1𝜈2 ≠ 0. So according to Lemma 1.4 via an affine transformation and time rescaling
systems (8) could be brought to the form (14) for which we calculate:

H2 = − 2934𝑐(𝑏2 + 𝑐)2(𝑥2 + 𝑦2).

Clearly the condition H2 < 0 yields 𝑐 > 0, i. e. we get the condition required for systems
(14).

In order to distinguish the conditions 𝑏 ≠ 0 (the statement (𝐴8)) and 𝑏 = 0 (the
statement (𝐴9)) for systems (14) we evaluate the invariant polynomial H3:

H3 =210385217𝑏(𝑏2 + 9𝑐)𝑥6(𝑥 − 𝑦)𝑦6(𝑥 + 𝑦) (𝑥2 + 𝑦2).

Since 𝑐 > 0, we obtain that the conditions 𝑏 = 0 is equivalent to H3 = 0. Therefore by
Lemma 1.4 we arrive at the configuration Config. 7.8a if 𝑏 ≠ 0 (i. e. H3 ≠ 0) and Config.
7.9a if 𝑏 = 0 (i. e. H3 = 0).

The statement (𝐴10). As earlier we determine that for systems (8) the conditions
H1 = 0, H2 > 0 imply 𝜉1𝜉2 = 0 and 𝜉1 + 𝜉2 > 0.

We claim that the condition H5 = 0 implies 𝜈1𝜈2 = 0. Indeed, since 𝜉1𝜉2 = 0, we may
assume that 𝜉1 = 0 due to the change (𝑥, 𝑦, 𝑎, 𝑏, 𝑐, 𝑓 ) ↦→ (𝑦, 𝑥, 𝑏, 𝑎, 𝑓 , 𝑐). Then we have
𝜉1 = −(25𝑎2 +4𝑐3) = 0. According to (20) the condition 𝜉1 = 0 and 𝜉2 ≠ 0 implies 𝑐 = 0
and then, we have 𝜉1 = 27𝑎2 = 0, i. e. we get 𝑎 = 0. Evidently we arrive at the codnition
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𝜈1 = 0 and this complete the prove of our claim. Then according to Lemma 1.4 via an
affine transformation and time rescaling systems (8) could be brought to the form (14) for
which we calculate:

H2 = 2734𝑏2(𝑏 − 1)2(𝑥2 + 𝑦2).

Evidently the condition H2 > 0 implies 𝑏(𝑏 − 1) ≠ 0, i. e we get the condition required
for systems (14).

So, accoridng to Lemma 1.4 in this case we get configuration Config. 7.10a and hence,
the statement (𝐴10) is proved.

The statements (𝐴11), (𝐴12). In both cases the conditions H1 = 0, H2 < 0 and
H5 = 0 are satisfied. Simillary as in the case of statement (𝐴10) it can be proved that
the condition H5 = 0 implies 𝜈1𝜈2 = 0. So according to Lemma 1.4 via an affine
transformation and time rescaling systems (8) could be brought to the form (15) for which
we calculate:

H1 = H5 = 0, H2 = −2934(𝑏2 + 1)2(𝑥2 + 𝑦2).

In order to distinguish the conditions 𝑏 ≠ 0 (the statement (𝐴11)) and 𝑏 = 0 (the
statement (𝐴12)) for systems (15) we evaluate the invariant polynomial K2:

K2 =2𝑏(9 + 𝑏2)𝑥5𝑦4.

We get that the conditions 𝑏 = 0 is equivalent to K2 = 0. Therefore by Lemma (1.4) we
arrive at the configuration Config. 7.11a if 𝑏 ≠ 0 (i. e. K2 ≠ 0) and Config. 7.12a if
𝑏 = 0 (i. e. K2 = 0).

The statements (𝐴13), (𝐴14). We observe that in both cases the conditions H1 =

0, H2 = 0 are satified and this is equivalent with 𝜉1𝜉2 = 0 and 𝜉1 + 𝜉2 = 0. For systems
(8) with 𝜉1 = 𝜉2 = 0, we set two new parameters 𝑢 and 𝑣 as follows: 𝑎 = 2𝑢3, 𝑏 = 2𝑣3

and then we get 𝑐 = −3𝑢2, 𝑓 = −3𝑣2. In this case we calculate:

H3 =210325217𝑢3𝑣3𝑥6𝑦6(𝑥4 − 𝑦4),

H4 = − 54𝑥4𝑦4(𝑣3𝑥 − 𝑢3𝑦),
(21)

and 𝜈1 = 𝑢4(9 + 4𝑢2), 𝜈2 = 𝑣4(9 + 4𝑣2). It is clear that 𝜈1𝜈2 ≠ 0 is equivalent to H3 ≠ 0.
Thus by Lemma 1.4 via an affine transformation of coordinates and time rescaling

systems (8) could be brought to the form (16) for which we calculate:

H3 =210325217𝑏3𝑥6𝑦6(𝑥4 − 𝑦4) ≠ 0 ⇒ 𝑏 ≠ 0.

Therefore by Lemma 1.4 we arrive at the configuration Config. 7.13a.
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Let now H3 = 0, i. e. 𝜈1𝜈2 = 0. This implies 𝑢𝑣 = 0 and we claim that 𝑢2 + 𝑣2 ≠ 0
due to the condition K2

1 + L2
2 ≠ 0. Indeed, for systems (8) with the parameters 𝑎, 𝑏, 𝑐, 𝑓

given above, we calculate L2 = 559872(𝑢2 − 𝑣2)𝑥𝑦 ≠ 0 and this proves our claim.
Thus we have 𝜈1𝜈2 = 0 and 𝜈2

1 + 𝜈2
2 ≠ 0 and according to Lemma 1.4 via an affine

transformation and time rescaling systems (8) could be brought to the form (17) and
consequently we obtain the configuration Config. 7.14a. □
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invariant lines of the type (3, 3). Bul. Acad. Ştiinţe Repub. Mold., Mat., 2019, vol. 90, no. 2, 79–98.

[7] Bujac, C. One subfamily of cubic systems with invariant lines of total multiplicity eight and with two
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User perception analysis of the developed AR applications:
satisfaction and development directions

Inga Titchiev and Olesea Caftanatov

Abstract. This article explores the application of Augmented Reality (AR) in education,
specifically focusing on the use of AR-based flashcards to support deep learning of
mathematical concepts (geometry, Pi number) and vocabulary acquisition (metaphorical
terms). AR flashcards offer an innovative solution by integrating dynamic, multimedia-
rich content, which enhances understanding and engagement. Prototypes were tested
with various user groups, including middle school and university students, who provided
valuable feedback through surveys. The SWOT analysis revealed strengths such as clarity
and usefulness, particularly in subjects like mathematics and biology, but also identified
areas for improvement, such as technical issues and interface design. Based on user input,
the design of animal-themed markers was refined to better align with user preferences by
more relevant and specific imagery. The findings emphasize the importance of continuous
refinement of AR applications to enhance their educational impact and accessibility.
2020 Mathematics Subject Classification: 68U15, 68T30.
Keywords: user perception, deep learning, augmented flashcards, user satisfaction.

Analiza percept, iei utilizatorilor asupra aplicat, iilor AR dezvoltate:
satisfact, ie s, i direct, ii pentru dezvoltare

Rezumat. Acest articol explorează aplicarea Realităt,ii Augmentate (AR) ı̂n educat,ie,
concentrându-se pe utilizarea cardurilor AR pentru a sprijini ı̂nvăt,area profundă a unor
concepte matematice (geometrie, numărul pi) şi achizit,ia vocabularului (termeni meta-
forici). Cardurile AR oferă o solut,ie inovatoare prin integrarea de cont,inut dinamic s, i
multimedia, care ı̂mbunătăt,es, te ı̂nt,elegerea s, i angajamentul. Prototipurile au fost testate
cu diverse grupuri de utilizatori, inclusiv elevi de gimnaziu s, i student,i, care au furnizat
un feedback valoros prin sondaje. Analiza SWOT a evident,iat punctele forte, cum ar fi
claritatea s, i utilitatea, ı̂n special ı̂n domenii precum matematică s, i biologie, dar a identi-
ficat s, i zone de ı̂mbunătăt,ire, cum ar fi problemele tehnice s, i designul interfet,ei. Pe baza
feedback-ului utilizatorilor, designul markerilor cu tematică animală a fost ı̂mbunătăt,it
pentru a se alinia mai bine la preferint,ele utilizatorilor prin imagini mai relevante s, i
specifice. Rezultatele subliniază important,a rafinării continue a aplicat,iilor AR pentru a
spori impactul lor educat,ional s, i accesibilitatea.
Cuvinte-cheie: percepţia utilizatorilor, ı̂nvăţare profundă, carduri augmentate, satisfact,ia
utilizatorilor.
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1. Introduction

In recent years, there is an increasing interest in applying Augmented Reality (AR)
to create engaging, unique, and interactive educational environments [1, 2]. During
the last three years, the research areas of our team are also related to the integration
of Augmented Reality (AR) technologies in the educational field. This exploration has
involved the design and implementation of various learning style scenarios aimed at
enhancing user engagement with educational content [3]. Through this process, we have
gained valuable insights into both the potential and the challenges associated with AR
applications in education [4]. Our primary objective has been to develop AR applications
that cater to diverse learning styles, thereby increasing user engagement. By creating
immersive and interactive learning environments, we sought to make educational content
more accessible and appealing to students. This approach has led to the development of
scenarios that are not only visually engaging but also pedagogically effective, leveraging
the unique capabilities of AR to provide enriched learning experiences.

We developed mobile applications to learn both math [5] and languages[6]. For
mathematics learning, AR technology has been applied to topics related to geometry
and exploring the world of Pi, offering a dynamic and immersive approach in the two
developed applications: Learning Styles with AR and The Mysteries of Pi. In these
applications, students can interact with various 2D and 3D geometric figures, as well as
the number of Pi, in a creative and interactive way, developing a deeper understanding of
these concepts.

For language, learning specifically includes apps like the Etymology app, which uses
augmented flashcards, and Marker-Based approach. In the context of deep learning of a
language, one of the most critical aspects of mastering a language is building a strong
vocabulary. The size and depth of an individual’s vocabulary significantly influence his
ability to develop the four core Romanian skills: listening, speaking, reading, and writing.
As teachers have consistently emphasized, expanding one’s vocabulary accelerates overall
language proficiency, improving comprehension and communication alike.

However, the process of vocabulary acquisition is not without challenges, particularly
when it comes to learning metaphorical terms, which play a pivotal role in enriching
language use and fostering nuanced understanding. Metaphorical expressions often carry
meanings beyond their literal definitions, making them particularly difficult for learners
to grasp. For students, deciphering and internalizing such terms can feel overwhelming
because of cultural differences, abstract meanings, and limited exposure to contextual
usage.
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To address these challenges, innovative methods are required to support vocabulary
learning. One promising approach is the use of augmented flashcards. Unlike traditional
flashcards, augmented flashcards integrate dynamic, context-rich content-such as images,
examples, and interactive exercises-helping learners connect abstract or metaphorical
terms with concrete and memorable experiences. By combining technology with effective
teaching strategies, augmented flashcards can transform vocabulary acquisition into a
more engaging and accessible process, empowering students to overcome obstacles and
expand their linguistic horizons.

In the early stages of our research, we successfully designed a series of augmented
flashcard prototypes. These prototypes focus on various categories of metaphors, includ-
ing mythological, sacred, anthropomorphic, chromatophore, and artifact metaphors, see
Fig.1. Some flashcards are dedicated to conveying a single meaning, while others address
multiple interpretations, resulting in tailored designs for each variation. To enhance com-
prehension and engagement, each flashcard is enriched with multimedia elements such
as videos, GIFs, and images, providing vivid visual representations of the metaphorical
terms.

Figure 1. Customized flashcards for learning the etymology of metaphorical
terms

The customized cards feature homograph words that also represent metaphorical terms.
When scanned using the developed mobile application, these cards generate augmented
flashcards, as shown in Figure 2. For the sacred metaphor ”Romanit,a” (b), the front
side of the flashcard displays the type of metaphorical term, the Moldovan-Romanian
homograph word, and a video illustration of the term. Swiping the card reveals the back
side, where a description with etymological explanations of the term is provided. These
descriptions are translated into three languages, with the Spanish (a), Russian (b), and
English (c) versions displayed in Figure 2.

However, to date, there is a lack of studies analyzing these applications that identify
factors such as usability, satisfactions, advantages, limitations, effectiveness, challenges,
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Figure 2. Screenshots from the augmented flashcard application

and features of augmented reality in educational settings. Personalization for promoting
inclusive education using AR is also an area of growing interest. Thus, this article aims
to shed light on some of these aspects.

In this regard, the applications have been subsequently tested with users of various
age groups. The test was carried out with middle school students (grades 6–8) at IP
Gimnaziul nr. 42, university students from the Technical University of Moldova under the
supervision of Dr. Victoria Bobicev, and 70 students from Isen University in Cartagena
and the University of Murcia in Spain, guided by Dr. Lucia Amaros. Student feedback
has been collected through an opinion survey.

2. Analysis methodology

In the beginning, we will make a general presentation of the two sets of data that
represent the answers provided by respondents from the Republic of Moldova and abroad.
The first data set consisted of 70 respondents (from abroad), and the second data set
consisted of 33 respondents (from Republic of Moldova). Both groups answered a set of
12 basic questions. The data processing algorithm consists of the following steps:

(1) Data cleaning - check for missing values and handle them appropriately, standard-
ize text on key columns (e.g., capitalization, space trimming), check for missing
data, and remove duplicate entries.

(2) Descriptive analysis summary (gender distribution, satisfaction distribution, use-
fulness distribution).

(3) Data is analyzed to identify trends - common themes or repeated keywords are
identified, similar responses are grouped (for example, recommendations related
to improving images or usability), key trends or frequent suggestions are high-
lighted.
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Figure 3. Gender distribution of the first set of data

(4) To determine the correlation between different data, the Chi-square test will be
applied which is used to check if there is a relationship between two categorical
variables or if an observed distribution differs significantly from an expected
distribution.

2.1. For the first set of data

Descriptive analysis for the first data set consists of gender distribution (see Figure 3)
of them, satisfaction level, and usefulness rating of users (see Figure 4).

In order to determine the correlation between gender and user satisfaction level, the
chi-square test will be applied. Chi-square test results:

• Chi-square statistics (X²): 121.31
• P-value: 6.27𝑒 − 09 (≈ 0.00000000627)

The extremely low p-value (< 0.05) suggests that there is a significant relationship
between gender and satisfaction level. This indicates that the distribution of satisfaction
levels is not uniform across genders and that there may be a distinct pattern.

The Chi-square test indicated a significant relationship between gender and level of
satisfaction (𝑝 < 0.05). Women had a majority turnout, which may influence the overall
distribution. Specific issues which were mentioned by the users were of limited com-
patibility, large app size, and limited interactivity. Several recommendations were made,
such as ensuring compatibility of applications with multiple platforms (multiple devices
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Figure 4. Satisfaction and usefulness for the first dataset

and operating systems), the possibility of using multiple languages, adding additional in-
teractive features such as animations and sounds, especially for younger users, improving
accessibility, reducing the size of the application for easier installation.

The relationship between utility and satisfaction was analyzed in order to identify
whether the perception of utility influences the level of satisfaction.

Chi-square test results:

• Chi-square statistics (X²): 253.33
• P-value: 5.10𝑒 − 22

The extremely small p-value indicates a significant relationship between perceived
usefulness and the level of satisfaction. The distributions suggest that perceived usefulness
directly influences user satisfaction. Users who find the app extremely useful or very
useful report higher levels of satisfaction. To the question of what they did not like about
the application, the most respondents answer with ”Nothing”, indicating a general level
of satisfaction. Dissatisfactions identified include limited compatibility, app size, and
interactivity.

2.2. For the second set of data

The descriptive analysis for the second data set includes the gender distribution (see
Figure 5), user satisfaction levels, and usefulness ratings provided by users (see Figure
6).

Chi-square test results for utility vs. satisfaction:

• Chi-square statistics (X²): 27.92
• P-value: 0.063

There is no significant relationship at the 5% level (𝑝 > 0.05), but there is a notable trend.
The distribution indicates that perceived usefulness can influence satisfaction.
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Figure 5. Gender distribution of the second set of data

Chi-square test results for clarity vs. satisfaction:

• Chi-square statistics (X²): 17.29
• P-value: 0.836

The relationship between task clarity and satisfaction is not significant (𝑝 > 0.05).
The distributions are more uniform, suggesting that satisfaction does not depend directly
on perceived clarity.

Figure 6. Satisfaction and usefulness for the second dataset

Participants who consider the app extremely useful or very useful tend to report higher
levels of satisfaction. In contrast, perceptions of moderate usefulness are associated
with varying levels of satisfaction, suggesting a partial correlation between perceived
usefulness and overall satisfaction. Task clarity does not significantly influence overall
satisfaction. The responses are evenly distributed for very clear or extremely clear scenar-
ios, regardless of satisfaction. Increasing perceived usefulness of the apps may contribute
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to greater satisfaction. Task clarity is well rated but does not appear to be a determinant
of satisfaction.

Recommendations: adding interactive functionality (e.g., animations, visual tutorials),
developing more applicative scenarios that increase the practical value of the application,
keeping current standards, given that participants already perceive them to be very clear,
creating a continuous feedback mechanism to better understand user needs, and developing
custom functionality for different levels of satisfaction. Cards and scenarios are the main
elements that users found attractive. Feedback suggests requirements for more content,
but also observations about what works well.

3. SWOT Analysis

Integrating augmented reality (AR) into education involves challenges such as infras-
tructure limitations, content creation complexity, teacher training, and ensuring equitable
access for students. To overcome these obstacles and fully leverage AR’s potential, con-
ducting a SWOT analysis of user satisfaction survey data is essential. This analysis helps
identify strengths, weaknesses of developed applications, opportunities for improvement,
and highlight threats, providing a solid foundation for optimizing applications and creating
a more effective educational experience.

• Strengths:
Most respondents consider the tasks and scenarios very clear or extremely clear,

and a significant number express high satisfaction with the applications. Many
find these applications useful or very useful, particularly in educational fields
such as mathematics, computer science, and biology. ”Cards” and ”Scenarios”
are highly appreciated, especially those featuring metaphors and animations,
while users also value interactive examples and 3D animations.

• Weaknesses:
In some cases applications face technical issues, such as incompatibility with

iOS or long loading times, while criticism has been directed at the text size on cards
and the overall interface design. Additionally, the lack of clear navigation menus
and the absence of integration into a single platform are noted as limitations.

• Opportunities:
There is a desire to diversify scenarios, such as those related to geometry, ro-

botics, physics, and biology, while also adapting applications to work seamlessly
on all devices, including iOS. Personalization is another key focus, with the aim
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Figure 7. Marker designs improvements

of creating tailored scenarios based on user feedback, incorporating more anima-
tions with sounds and interactions. In addition, leveraging augmented reality is
seen as a valuable opportunity to enhance lessons across multiple domains.

• Threats:
The developed augmented reality applications do not collect personal data

from students, making them relatively secure in terms of data privacy. However,
several potential threats could arise. One is that users with limited engagement
may find it difficult to provide detailed or meaningful feedback, which could
hinder developers’ efforts to enhance and adapt the platform based on user needs.
Another challenge could stem from competition, as other AR learning platforms
offering a wider range of features or personalized experiences might attract users,
impacting the application’s growth and user retention. In addition, compatibility
and design issues present technical limitations that could negatively affect the
overall perception of the applications.

4. Application improvements as a result of the data analysis from the
questionnaire

After the presentation at Gimnaziul Nr. 42, where four of the developed applications
were demonstrated to students for testing, they provided feedback on usability, functional-
ity, and engagement, identified bugs, and suggested improvements to help refine the user
experience. Although they preferred the card designs, they suggested that the markers
feature more relevant and specific imagery. For instance, they would prefer to see real
animals related to the cards rather than abstract designs.
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Although they acknowledged that designing markers for math exercises can be chal-
lenging in terms of clarity and aesthetics, they felt that there is more flexibility for
animal-themed applications. Based on this feedback, we have made several iterations to
improve the marker designs (see Figure 7) for the animal app to better align with their
preferences.

5. Conlusions

The integration of Augmented Reality (AR) into educational applications offers im-
mense potential to enhance learning experiences. Through the development and testing
of augmented flashcards, we have demonstrated that interactive and multimedia-rich tools
can significantly increase engagement and effectiveness in deep learning.

Feedback from various user groups highlights both the strengths and challenges of
AR-based educational applications. While most users expressed high satisfaction with
the clarity and utility of the applications, issues such as technical compatibility, app size,
and limited interactivity underline the need for ongoing improvements. The SWOT anal-
ysis further emphasizes opportunities for expanding the range of scenarios, improving
accessibility, and incorporating personalized features to cater to diverse learning needs.
Testing showed that the application was well-received, particularly in subjects like lan-
guage learning, mathematics, and biology, although technical issues and interface design
needed improvement. Feedback from users led to design improvements for animal-themed
markers, aligning them with preferences for more relevant imagery. Continuous refine-
ment based on user feedback is essential to maximize the application’s educational value
and accessibility.
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Center conditions for a cubic differential system with one
invariant straight line and one invariant conic

Dumitru Cozma

Abstract. In this work we find the center conditions for a cubic system of differential
equations with a critical point of a center or a focus type having one invariant straight
line and one invariant conic. The center-focus problem is studied by using the Darboux
integrability and the rational reversibility methods.
2020 Mathematics Subject Classification: 34C05.
Keywords: cubic system of differential equations, the center-focus problem, invariant
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Condiţii de existenţă a centrului pentru un sistem diferenţial
cubic cu o dreaptă invariantă şi o conică invariantă

Rezumat. În lucrare se determină condiţii de existenţă a centrului pentru un sistem
cubic de ecuaţii diferenţiale, cu punct critic de tip centru sau focar, care posedă o dreaptă
invariantă şi o conică invariantă. Problema deosebirii centrului de focar se studiază
aplicând integrabilitatea Darboux şi reversibilitatea raţională.
Cuvinte-cheie: sistem cubic de ecuaţii diferenţiale, problema centrului şi focarului,
curbă algebrică invariantă, integrabilitatea Darboux, reversibilitate raţională.

1. Introduction

We consider the cubic system of differential equations{
¤𝑥 = 𝑦 + 𝑎𝑥2 + 𝑐𝑥𝑦 + 𝑓 𝑦2 + 𝑘𝑥3 + 𝑚𝑥2𝑦 + 𝑝𝑥𝑦2 + 𝑟𝑦3 ≡ 𝑃(𝑥, 𝑦),
¤𝑦 = −(𝑥 + 𝑔𝑥2 + 𝑑𝑥𝑦 + 𝑏𝑦2 + 𝑠𝑥3 + 𝑞𝑥2𝑦 + 𝑛𝑥𝑦2 + 𝑙𝑦3) ≡ 𝑄(𝑥, 𝑦),

(1)

where 𝑃(𝑥, 𝑦) and𝑄(𝑥, 𝑦) are relatively prime polynomials in the ring of real polynomials
in the variables 𝑥, 𝑦 and ¤𝑥 = 𝑑𝑥/𝑑𝑡, ¤𝑦 = 𝑑𝑦/𝑑𝑡. The origin of coordinates 𝑂 (0, 0) is a
critical point which is a center or focus (a fine focus) for (1).

The problem of distinguishing between a center and a focus (the center-focus problem)
is open for cubic systems (1). It is completely solved for: quadratic systems, cubic
symmetric systems, the Kukles system, and some families of polynomial differential
systems of higher degree.
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The center-focus problem was solved for some subclasses of cubic differential systems
(1) with algebraic solutions: two parallel invariant straight lines [5], [25]; three invariant
straight lines [8], [26], [27]; four invariant straight lines [8], [19], [22]; two invariant
straight lines and one invariant cubic [13], [14]; two invariant straight lines and one
invariant conic [10], [11], [12].

An approach to the center-focus problem is based on the theory of integrability. It
means investigating the integrability of (1) in some neighborhood of the critical point
𝑂 (0, 0). The integrability conditions were found for some subclasses of cubic differential
systems (1) with invariant algebraic curves in [4], [6], [7], [16], [21]. It was found that
every center in a cubic differential system (1) is provided by the Darboux integrability if
the system has four invariant straight lines [19] or the system has two invariant straight
lines and one invariant conic [8].

The Darboux integrability conditions were determined for: cubic systems (1) with
two parallel invariant straight lines [5], a class of reversible cubic systems [1] and some
complex cubic systems [20].

The purpose of this work is to find the center conditions for a cubic system (1) that
has two invariant algebraic curves. The paper is structured as follows. In Section 2, we
review established results related to the existence of invariant algebraic curves and the
Darboux integrability. Section 3 examines the existence of Darboux first integrals that
consist of an invariant straight line and an irreducible invariant conic. In Section 4, we
apply the method of rational reversibility to determine the center conditions for a cubic
system (1) that contains an invariant straight line and an invariant conic.

2. Invariant algebraic curves and Darboux integrability

Invariant algebraic curves play a crucial role in the study of the integrability of polyno-
mial differential systems. They provide significant insights into the qualitative behavior
of solutions and help in identifying the first integrals.

Definition 2.1. An algebraic curve Φ(𝑥, 𝑦) = 0 in C2 with Φ ∈ C[𝑥, 𝑦] is an invariant
algebraic curve of a differential system (1) if there exists a polynomial 𝐾 (𝑥, 𝑦) ∈ C[𝑥, 𝑦]
such that

𝜕Φ

𝜕𝑥
𝑃(𝑥, 𝑦) + 𝜕Φ

𝜕𝑦
𝑄(𝑥, 𝑦) = Φ(𝑥, 𝑦)𝐾 (𝑥, 𝑦). (2)

The polynomial𝐾 (𝑥, 𝑦) is called the cofactor of the invariant algebraic curveΦ(𝑥, 𝑦) = 0.

It is a very hard problem to find invariant algebraic curves for a given system (1)
because, in general, we do not have any evidence about the degree of a curve [24]. Not
all polynomial differential systems admit invariant algebraic curves.
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We analyze the center-focus problem for the cubic system (1) under the assumption
that it possesses irreducible invariant algebraic curves in C[𝑥, 𝑦]. The notation C[𝑥, 𝑦]
denotes the ring of polynomials in two variables with complex coefficients [13].

Definition 2.2 ([8]). The invariant algebraic curve Φ(𝑥, 𝑦) = 0 is said to be an algebraic
solution of system (1) if and only if Φ(𝑥, 𝑦) is an irreducible element of C[𝑥, 𝑦].

Knowledge of invariant algebraic curves is fundamental in the study of polynomial
differential systems. They provide key information about integrability, phase portraits,
stability, and global dynamics. The necessary and sufficient conditions for the existence
of invariant algebraic curves in a cubic system (1) were determined when the curves are:
straight lines [8], [18], [19], [27]; straight lines and conics [10], [11], [9], [8]; straight
lines and cubics [13], [14]; conics [15]; cubics [17].

According to [7], [8], system (1) is considered integrable on an open set 𝐷 of R2 if
there exists a nonconstant analytic function 𝐹 : 𝐷 → R that remains constant along all
solution curves (𝑥(𝑡), 𝑦(𝑡)) within 𝐷, meaning that 𝐹 (𝑥(𝑡), 𝑦(𝑡)) = 𝐶 for all 𝑡 where the
solution is defined. This function 𝐹 is called a first integral of the system on 𝐷.

Suppose that the function 𝐹 exists in 𝐷. Then all the solutions of the cubic system (1)
in 𝐷 are known [24] and 𝐹 (𝑥, 𝑦) = 𝐶 gives every solution of (1) for some 𝐶 ∈ R. Clearly
𝐹 is a first integral if and only if 𝐹 solves the partial differential equation

𝑃
𝜕𝐹

𝜕𝑥
+𝑄𝜕𝐹

𝜕𝑦
≡ 0. (3)

For cubic system (1), we study the algebraic integrability which is called the Darboux
integrability [2], [24]. Darboux’s method provides a systematic way to construct a first
integral or an integrating factor. Suppose that the curves Φ 𝑗 = 0, 𝑗 = 1, 𝑘 are invariant
algebraic curves of (1) and 𝛼 𝑗 ∈ C. A first integral of the form

Φ
𝛼1
1 Φ

𝛼2
2 · · ·Φ𝛼𝑘

𝑘
, (4)

is called a Darboux first integral.
We mention that for cubic systems (1), the conditions for the existence of integrating

factors of the form 𝜇 = Φ𝛽 were obtained in [17] when Φ = 0 is an invariant cubic and in
[15] when Φ = 0 is an invariant conic. First integrals and integrating factors of the form
𝑙
𝛼1
1 Φ𝛼2 , composed of one invariant straight line 𝑙1 = 0 and one invariant cubic Φ = 0,

were determined in [7], [16]. In this paper, we study for cubic system (1) the problem of
the existence of first integrals of the form

𝑙𝛼1 Φ
𝛽 = 𝐶, (5)

where 𝑙1 = 0 is an invariant straight line and Φ = 0 is an invariant conic.
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It is known [24] that the origin will be a center for system (1) if and only if there exists
a nonconstant analytic first integral

𝑥2 + 𝑦2 + 𝐹3(𝑥, 𝑦) + · · · + 𝐹𝑚(𝑥, 𝑦) + · · · = 𝐶

in some neighborhood of 𝑂 (0, 0), where 𝐹𝑚 are homogeneous polynomials of degree 𝑚.

3. Cubic systems with two invariant algebraic curves

Assume that 𝐴𝑥 + 𝐵𝑦 + 1 = 0 is a real invariant straight line of the cubic differential
system (1). Then, by a transformation of the form 𝑥 → 𝜔(𝑥 cos𝛼 − 𝑦 sin𝛼), 𝑦 →
𝜔(𝑥 sin𝛼+ 𝑦 cos𝛼), we can bring this line to the form 𝑥 = 1. In [16] the following lemma
was proved.

Lemma 3.1. A straight line 𝑥 = 1 is an invariant straight line for cubic system (1) if and
only if the following set of conditions is satisfied

𝑟 = 0, 𝑝 = − 𝑓 , 𝑚 = −𝑐 − 1, 𝑘 = −𝑎. (6)

When conditions (6) are satisfied, we obtain a cubic system of the form{
¤𝑥 = (1 − 𝑥) (𝑦 + 𝑥𝑦 + 𝑎𝑥2 + 𝑐𝑥𝑦 + 𝑓 𝑦2) ≡ 𝑃(𝑥, 𝑦),
¤𝑦 = −(𝑥 + 𝑔𝑥2 + 𝑑𝑥𝑦 + 𝑏𝑦2 + 𝑠𝑥3 + 𝑞𝑥2𝑦 + 𝑛𝑥𝑦2 + 𝑙𝑦3) ≡ 𝑄(𝑥, 𝑦).

(7)

Let us assume that the cubic differential system (7) has an irreducible invariant conic

Φ(𝑥, 𝑦) ≡ 𝑎20𝑥
2 + 𝑎11𝑥𝑦 + 𝑎02𝑦

2 + 𝑎10𝑥 + 𝑎01𝑦 + 1 = 0, (8)

where 𝑎01, 𝑎10, 𝑎02, 𝑎11, 𝑎20 are real parameters and (𝑎02, 𝑎11, 𝑎20) ≠ 0. For every conic
curve (8) the following quantities [8] are invariants

𝐼1 = 𝑎02 + 𝑎20, 𝐼2 = (4𝑎20𝑎02 − 𝑎2
11)/4,

𝐼3 = (4𝑎20𝑎02 − 𝑎20𝑎
2
01 + 𝑎11𝑎01𝑎10 − 𝑎2

10𝑎02 − 𝑎2
11)/4

(9)

with respect to the rotation of axes. The conic (8) is: a parabola when 𝐼2 = 0, an ellipse
when 𝐼2 > 0 and a hyperbola when 𝐼2 < 0. If 𝐼3 = 0, then the conic (8) is reducible into
two straight lines.

By Definition 2.1, the curve (8) is an invariant conic for cubic system (7) if and only if
there exists a cofactor 𝐾 (𝑥, 𝑦) = 𝑐10𝑥 + 𝑐01𝑦 + 𝑐20𝑥

2 + 𝑐11𝑥𝑦 + 𝑐02𝑦
2 such that

𝑃(𝑥, 𝑦) 𝜕Φ
𝜕𝑥

+𝑄(𝑥, 𝑦) 𝜕Φ
𝜕𝑦

≡ Φ(𝑥, 𝑦)𝐾 (𝑥, 𝑦), (10)

where 𝑐10, 𝑐01, 𝑐20, 𝑐11, 𝑐02 ∈ R.
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The identity (10) yields a system {𝐹𝑖 𝑗 = 0, 𝑖 + 𝑗 = 1, 2, 3, 4} of fourteen equations for
the unknowns 𝑐𝑘𝑙 , 𝑎𝑘𝑙 , 𝑘 + 𝑙 = 1, 2. When 𝑖 + 𝑗 = 1, 2, we find from (10) that

𝑐10 = −𝑎01, 𝑐01 = 𝑎10, 𝑐11 = 𝑎2
01 − 𝑑𝑎01 − 𝑎2

10 + 𝑐𝑎10 − 2𝑎02 + 2𝑎20,

𝑐20 = 𝑎𝑎10 + 𝑎01𝑎10 − 𝑔𝑎01 − 𝑎11, 𝑐02 = 𝑎11 − 𝑏𝑎01 + 𝑓 𝑎10 − 𝑎01𝑎10

and when 𝑖 + 𝑗 = 3, 4, we obtain from (10) the system of algebraic equations

𝐹40 ≡ (𝑎20 − 𝑠)𝑎11 + (𝑔𝑎01 − 𝑎𝑎10 − 2𝑎 − 𝑎01𝑎10)𝑎20 = 0,

𝐹31 ≡ (2𝑎20 − 2𝑠)𝑎02 + (𝑎2
10 − 𝑎

2
01 + 𝑑𝑎01 − 𝑐𝑎10 − 2𝑐 − 2)𝑎20+

+ (𝑎11 + 𝑔𝑎01 − 𝑎𝑎10 − 𝑎 − 𝑎01𝑎10 − 𝑞)𝑎11 − 2𝑎2
20 = 0,

𝐹22 ≡ (3𝑎11 − 𝑎𝑎10 − 𝑎01𝑎10 + 𝑔𝑎01 − 2𝑞)𝑎02 − 3𝑎11𝑎20+
+ 𝑎11(𝑎2

10 − 𝑎
2
01 + 𝑑𝑎01 − 𝑐𝑎10 − 𝑐 − 𝑛 − 1)+

+ ((𝑎10 + 𝑏)𝑎01 − 𝑓 (𝑎10 + 2))𝑎20 = 0,

𝐹13 ≡ (2𝑎02 + 𝑎2
10 − 𝑎

2
01 − 2𝑎20 + 𝑑𝑎01 − 𝑐𝑎10 − 2𝑛)𝑎02 − 𝑎2

11+
+ ((𝑎10 + 𝑏)𝑎01 − 𝑓 (𝑎10 + 1) − 𝑙)𝑎11 = 0,

𝐹04 ≡ ((𝑎10 + 𝑏)𝑎01 − 2𝑙 − 𝑓 𝑎10 − 𝑎11)𝑎02 = 0,

𝐹30 ≡ (𝑎11 − 𝑎)𝑎10 + (𝑎01 + 2𝑎)𝑎20 − 𝑔𝑎11+
+ 𝑔𝑎01𝑎10 − 𝑎𝑎2

10 − 𝑎01𝑎
2
10 − 𝑠𝑎01 = 0,

𝐹21 ≡ 𝑎3
10 + (𝑎 − 𝑑 + 2𝑎01)𝑎11 − 𝑎𝑎10𝑎01 + (2𝑐 − 3𝑎10)𝑎20+

+ 2(𝑎10 − 𝑔)𝑎02 − 𝑐𝑎2
10 − 𝑐𝑎10 − 𝑎10 + 𝑑𝑎01𝑎10+

+ 𝑔𝑎2
01 − 2𝑎2

01𝑎10 − 𝑞𝑎01 = 0,

𝐹12 ≡ (3𝑎01 − 2𝑑)𝑎02 + (𝑐 − 𝑏 − 2𝑎10)𝑎11 + 2( 𝑓 − 𝑎01)𝑎20 − 𝑎3
01+

+ 𝑑𝑎2
01 + (2𝑎10 + 𝑏 − 𝑐)𝑎01𝑎10 − 𝑛𝑎01 − 𝑓 𝑎2

10 − 𝑓 𝑎10 = 0,

𝐹03 ≡ ( 𝑓 − 𝑎01)𝑎11 − (𝑎10 + 2𝑏)𝑎02+
+ (𝑎01𝑎10 + 𝑏𝑎01 − 𝑓 𝑎10 − 𝑙)𝑎01 = 0.

(11)

We shall study the consistency of (11) in 𝑎10, 𝑎01, 𝑎20, 𝑎11, 𝑎02 and establish the
conditions under which the system has one solution.

4. Cubic systems and first integrals

In this section, we study for cubic system (1) the problem of the existence of first
integrals of the form

𝐹 (𝑥, 𝑦) ≡ (𝑥 − 1)𝛼 (𝑎20𝑥
2 + 𝑎11𝑥𝑦 + 𝑎02𝑦

2 + 𝑎10𝑥 + 𝑎01𝑦 + 1)𝛽 = 𝐶, (12)

where the invariant conic is irreducible and 𝛼, 𝛽 are nonzero real exponents.
According to [8], the relation (12) is a first integral for the system (1) if and only if the

identity (3) holds. We will use this identity to find the first integrals (12) of system (1).
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Theorem 4.1. The cubic differential system (1), where 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) are relatively
prime polynomials, does not possess Darboux first integrals in the form of (12).

Proof. The identity (3) being applied to (12) yields the following system of equations

{𝐻𝑖 𝑗 = 0, 𝑖 + 𝑗 = 1, 2, 3, 4} (13)

in the coefficients of (1) and the parameters 𝑎10, 𝑎01, 𝑎20, 𝑎11, 𝑎02, 𝛼, 𝛽, 𝛼𝛽 ≠ 0.
From equations 𝐻01 = 0 and 𝐻10 = 0 of the system (13) we obtain 𝛼 = 𝑎10𝛽 and

𝑎01 = 0. Then the equations 𝐻02 = 0, 𝐻11 = 0, and 𝐻20 = 0 of (13) yield the following
𝑎11 = 0, 𝑎20 = (𝑎10 + 2𝑎02 + 𝑎2

10)/2.
From equations 𝐻𝑖 𝑗 = 0, 𝑖 + 𝑗 = 3 of the system (13) we find

𝑎 = 0, 𝑑 = 𝑓 , 𝑎10 = −2𝑏, 𝑔 = [(] (𝑏 + 𝑐)𝑎02 + 𝑏(2𝑏2 − 3𝑏 + 1)]/𝑎02.
Then the equations 𝐻𝑖 𝑗 = 0, 𝑖 + 𝑗 = 4 of (13) imply

𝑙 = 𝑏 𝑓 , 𝑎10 = −2𝑏, 𝑞 = [ 𝑓 (𝑏𝑎02 − 𝑎02 + 2𝑏3 − 3𝑏2 + 𝑏)]/𝑎02,
𝑛 = 𝑏𝑐 + 𝑏, 𝑠 = [(𝑎02 − 𝑏 + 2𝑏2) (𝑏 − 1) (𝑐 + 1)]/𝑎02.

We find that right-hand sides of (1) have a common factor 1 + (𝑐 + 1)𝑥 + 𝑓 𝑦 = 0 in
contradictions to the assumption of Theorem. ■

Remark 4.1. There exists quadratic differential systems with first integrals containing
one invariant straight line and one invariant conic. For example, in [3] it was shown that
for quadratic system

¤𝑥 = −𝑦 − 𝑥2 − 𝑦2, ¤𝑦 = 𝑥(1 + 𝑦)
the straight line 𝑦 + 1 = 0 and the conic 6𝑥2 + 3𝑦2 + 2𝑦 − 1 = 0 are invariants. This
system has a first integral (𝑦 + 1)2(6𝑥2 + 3𝑦2 + 2𝑦 − 1) = 𝐶.

5. Cubic systems and rational reversibility

As established in [28], if the differential system (1) has a critical point𝑂 (0, 0) of center
or focus type and remains invariant under reflection with respect to the axis 𝑋 = 0 and
reversion of time, then 𝑂 (0, 0) is a center for system (1).

It is evident that the critical point (𝑂 (0, 0) is a center for the system (1) if a diffeo-
morphism exists 𝐻 : 𝑈 → 𝑉, 𝐻 = {𝑋 = 𝑔(𝑥, 𝑦), 𝑌 = ℎ(𝑥, 𝑦)}, 𝐻 (0, 0) = (0, 0), which
brings the system (1) to a system that has an axis of symmetry [28].

In this paper, we obtain centers by rational reversibility. We seek a rational transfor-
mation, invertible in a neighborhood of 𝑂 (0, 0), of the form [6], [23]

𝑥 =
𝑎1𝑋 + 𝑏1𝑌

𝑎3𝑋 + 𝑏3𝑌 − 1
, 𝑦 =

𝑎2𝑋 + 𝑏2𝑌

𝑎3𝑋 + 𝑏3𝑌 − 1
(14)

with 𝑎 𝑗 , 𝑏 𝑗 ∈ R, 𝑗 = 1, 2, 3, which maps the critical point 𝑂 (0, 0) to 𝑋 = 𝑌 = 0.
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Applying this transformation to system (7) we get a quartic system

¤𝑋 =

4∑︁
𝑖+ 𝑗=0

𝐴𝑖 𝑗𝑋
𝑖𝑌 𝑗 , 𝑌 =

4∑︁
𝑖+ 𝑗=0

𝐵𝑖 𝑗𝑋
𝑖𝑌 𝑗 , (15)

where 𝐴𝑖 𝑗 , 𝐵𝑖 𝑗 are polynomials that depend on both the coefficients of system (1) and the
parameters 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3 from the mapping (14).

We will show that the parameters in (14) can be found such that the system (15) is
equivalent, in some neighborhood of 𝑂 (0, 0), with a polynomial system [6]

¤𝑋 = 𝑌 + 𝑀 (𝑋2, 𝑌 ), ¤𝑌 = −𝑋 (1 + 𝑁 (𝑋2, 𝑌 )). (16)

This system is symmetric with respect to the axis 𝑋 = 0 and the critical point𝑂 (0, 0) is a
center. The systems (15) and (16) are equivalent if the following conditions are fulfilled:

𝐵40 = 0, 𝐴13 ≡ 𝐵04 = 0, 𝐴31 ≡ 𝐵22 = 0, 𝐴10 ≡ 𝐵01 = 0, 𝐴00 = 𝐵00 = 0,

and

𝐴30 ≡ 2𝑎𝑎3𝑏2𝑎
2
1 + [2𝑎3(𝑐 − 𝑔) − (𝑐 + 𝑠 + 1)𝑎1 − 𝑎2(𝑞 + 𝑓 )]𝑏2𝑎2𝑎1+

+ 𝑎3
2(𝑙𝑏1 − 𝑛𝑏2) − 𝑎𝑏2𝑎

3
1 + 2𝑎2

2𝑎3(𝑏𝑏1 + ( 𝑓 − 𝑑)𝑏2) = 0,

𝐴12 ≡ 𝑏3
1(𝑞𝑎2 + 2𝑎3𝑔) + [2(𝑑 + 𝑎)𝑎3 + 𝑎2(2𝑛 − 𝑐 − 3𝑠 − 1)]𝑏2𝑏

2
1+

+ [𝑎2(3𝑙 − 2 𝑓 + 3𝑎 − 2𝑞) + 2𝑎3(𝑐 + 𝑏)]𝑏2
2𝑏1+

+ [2 𝑓 𝑎3 − 𝑓 𝑎1 − (𝑛 − 2𝑐 − 2)𝑎2]𝑏3
2 = 0,

𝐴11 ≡ [𝑑𝑏1 + 𝑏2(𝑐 + 2𝑏 − 2𝑔)]𝑏1𝑎2+
+ 3𝑎3 + 𝑏2

2 [𝑐𝑎1 − 𝑎2(𝑑 − 2 𝑓 + 2𝑎)] = 0,

𝐴01 ≡ 𝑏2
2 + 𝑏

2
1 − 1 = 0, 𝐴10 ≡ 𝑏2𝑎2 + 𝑏1𝑎1 = 0,

𝐵04 ≡ [𝑠𝑏4
1 + 𝑏2𝑏1(𝑏2

1(𝑞 − 𝑎) + 𝑏2𝑏1(𝑛 − 𝑐 − 1) + 𝑏2
2(𝑙 − 𝑓 ))]𝑎3 = 0,

𝐵22 ≡ [𝑎2𝑏
2
2𝑎1(−2 𝑓 + 3𝑎 − 𝑞) + 𝑑𝑎2𝑏

2
1𝑎3 + 𝑛𝑎2

2𝑏
2
1 + 𝑐𝑎1𝑏

2
2𝑎3+

+ (3𝑙 − 𝑓 − 2𝑞)𝑎2
2𝑏1𝑏2 + (3𝑠 − 2(𝑛 − 𝑐 − 1))𝑎2

2𝑏
2
2 − (𝑐 + 1)𝑏2

2𝑎
2
1+

+ (𝑐 + 2𝑏 − 2𝑔)𝑎2𝑎3𝑏1𝑏2 − (𝑑 + 2𝑎 − 2 𝑓 )𝑎2𝑏
2
2𝑎3 + 𝑎2

3]𝑎3 = 0,

𝐵03 ≡ (−𝑎𝑎2 − 𝑔𝑎3)𝑏3
1 − [(𝑐 + 𝑠 + 1)𝑎2 + (𝑑 + 𝑎)𝑎3]𝑏2

1𝑏2+
+ [(− 𝑓 − 𝑞)𝑎2 − (𝑐 + 𝑏)𝑎3]𝑏1𝑏

2
2 + [𝑙𝑎1 − 𝑛𝑎2 − 𝑓 𝑎3]𝑏3

2 = 0,

𝐵21 ≡ − 𝑓 𝑎3
1𝑏2 + (2𝑛 − 𝑐 − 3𝑠 − 1)𝑎2

1𝑎2𝑏2 + (𝑑 − 𝑎)𝑎2
1𝑎3𝑏2−

− (2𝑞 − 3𝑎 − 3𝑙 + 2 𝑓 )𝑏2𝑎
2
2𝑎1 + [− 𝑓 𝑏1 − (𝑛 + 2𝑐 + 2)𝑏2]𝑎3

2+
+ 𝑏2𝑎3𝑎2𝑎1(2𝑏 − 𝑔) + [𝑏2( 𝑓 − 2𝑎) + 𝑏1(𝑐 − 𝑏)]𝑎3𝑎

2
2 = 0,

𝐵02 ≡ 𝑎𝑏2
1𝑎2 − (𝑔 − 𝑐)𝑏2𝑎2𝑏1 − 𝑏2

2(𝑑𝑎2 − 𝑏𝑎1 − 𝑓 𝑎2) − 𝑎3 = 0,

𝐵20 ≡ 2𝑎3 + 𝑔𝑎3
1 + 𝑓 𝑎3

2 + (𝑑 + 𝑎)𝑎2𝑎
2
1 + (𝑐 + 𝑏)𝑎2

2𝑎1 = 0,

𝐵10 ≡ 𝑎2
2 + 𝑎

2
1 − 1 = 0.

(17)
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Theorem 5.1. The cubic differential system (1) with two algebraic solutions 𝑥 − 1 = 0,
𝑎20𝑥

2 + 𝑎11𝑥𝑦+ 𝑎02𝑦
2 + 𝑎10𝑥 + 𝑎01𝑦+1 = 0 is rationally reversible if one of the following

conditions (i), (ii), (iii) holds:

(i) 𝑐 = −3/2, 𝑏 = 𝑚 = 1/2, 𝑔 = −1, 𝑓 = 𝑙 = 𝑝 = 𝑟 = 0, 𝑘 = −𝑎, 𝑞 = (𝑎 − 𝑑)/2,
𝑠 = −(2𝑎 + 𝑎01) (𝑎2

01 − 𝑑𝑎01 + 𝑛)/(2𝑎01), 2𝑛𝑎2
01 − (𝑎 + 2𝑑𝑛)𝑎01 + 2𝑛2 + 𝑛) = 0;

(ii) 𝑐 = −3/2, 𝑏 = 𝑚 = 1/2, 𝑔 = −1, 𝑙 = 𝑓 /2, 𝑘 = −𝑎, 𝑝 = − 𝑓 , 𝑟 = 0,
𝑑 = [(8𝑎02 + 1)𝑎01]/(8𝑎02), 𝑞 = (𝑎 − 𝑑)/2, 𝑛 = ( 𝑓 𝑎01 + 8𝑎2

02 − 2𝑎02)/(8𝑎02),
𝑠 = [(2𝑎 + 𝑎01)𝑎01]/(16𝑎02);

(iii) 𝑐 = −3/2, 𝑏 = 𝑚 = 1/2, 𝑔 = −1, 𝑙 = 𝑓 /2, 𝑘 = −𝑎, 𝑝 = − 𝑓 , 𝑞 =

(𝑎 − 𝑑)/2, 𝑎 = [(𝑎2
01 − 𝑑𝑎01 + 2𝑎20) (4𝑎20 − 1)𝑎01]/(𝑎2

01 − 16𝑎02𝑎20), 𝑓 =

[4(𝑑 − 𝑎01)𝑎2
01𝑎02 + 2𝑎01𝑎02(8𝑎02 − 4𝑎20 + 1) − 16𝑑𝑎2

02]/(𝑎
2
01 − 16𝑎02𝑎20), 𝑛 =

[(𝑑−𝑎3
01)𝑎01+𝑎2

01(8𝑎02𝑎20+3𝑎02−2𝑎20)−2𝑑𝑎01𝑎02(4𝑎20+1) +4𝑎02𝑎20(4𝑎20−
4𝑎02 + 1)]/(𝑎2

01 − 16𝑎02𝑎20), 𝑠 = [𝑎2
01𝑎20(8𝑎20 − 1) + 2𝑑𝑎01𝑎20(1 − 4𝑎20) +

4𝑎2
20(4𝑎20 − 4𝑎02 − 1)]/(𝑎2

01 − 16𝑎02𝑎20), 𝑟 = 0.

Proof. We study the consistency of systems {(17), (11)} considering two cases: 𝑎3 = 0
and 𝑎3 ≠ 0. According to [6], the equations 𝐴01 = 0 and 𝐵10 = 0 from (17) can be
parametrized as follows:

𝑎1 =
2𝑢

𝑢2 + 1
, 𝑎2 =

𝑢2 − 1
𝑢2 + 1

, 𝑏1 =
2𝑣

𝑣2 + 1
, 𝑏2 =

𝑣2 − 1
𝑣2 + 1

, (18)

where 𝑢 and 𝑣 are real parameters. Then 𝐴10 = 0 becomes 𝐴10 ≡ 𝑒1𝑒2 = 0, where
𝑒1 = 𝑢 − 𝑣 + 𝑢𝑣 + 1, 𝑒2 = 𝑣 − 𝑢 + 𝑢𝑣 + 1.

Assume that 𝑒1 = 0. Then the equation 𝑒1 = 0 yields 𝑣 = (1+ 𝑢)/(1− 𝑢) and 𝐴10 ≡ 0.

1. Let 𝑎3 = 0. Then 𝐵04 ≡ 0 and 𝐵22 ≡ 0. When 𝑢 = 0, the equations of (17) yield
𝑟 = 𝑞 = 𝑝 = 𝑙 = 𝑘 = 𝑓 = 𝑑 = 𝑎 = 0, 𝑚 = −1 − 𝑐.

In this case, the cubic system has two parallel invariant straight lines 1 − 𝑥 = 0,
1 + (𝑐 + 1)𝑥 = 0 and the center-focus problem was solved in [5], [25].

When 𝑢 = −1, the equations of (17) imply
𝑟 = 𝑞 = 𝑝 = 𝑙 = 𝑘 = 𝑔 = 𝑓 = 𝑐 = 𝑏 = 𝑎 = 0, 𝑚 = −1.

The cubic system has the invariant straight lines 1 − 𝑥 = 0, 1 + 𝑥 = 0 and center-focus
problem was solved in [5], [25].

If 𝑢(𝑢 + 1) ≠ 0, then the equations of (17) yield

𝑟 = 0, 𝑝 = − 𝑓 , 𝑚 = −𝑐 − 1, 𝑘 = −𝑎, 𝑎 = [𝑏𝑢(20𝑢2 − 6𝑢4 − 6) + ( 𝑓 − 𝑑) (𝑢2(𝑢4 −
7𝑢2 + 7) − 1)]/[2(1− 𝑢2)3], 𝑐 = [2𝑏(6𝑢3 − 𝑢5 − 𝑢) − 𝑓 (𝑢6 − 1) + (4𝑑 − 7 𝑓 ) (𝑢2 −
𝑢4)]/[2𝑢(𝑢2 − 1)2], 𝑔 = [( 𝑓 + 𝑑) (1 − 𝑢6) + ( 𝑓 − 7𝑑) (𝑢2 − 𝑢4) + 𝑏(2𝑢5 + 2𝑢 −
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12𝑢3)]/[4𝑢(1−𝑢2)2], 𝑛 = [ 𝑓 (1−𝑢14)−4(𝑏−1) (𝑢+𝑢13)− (15 𝑓 +4𝑑) (𝑢2−𝑢12)+
8(4𝑏−11) (𝑢3+𝑢11)−3(15 𝑓 −4𝑑) (𝑢4−𝑢10)+4(95−7𝑏) (𝑢5+𝑢9)+(61 𝑓 −8𝑑) (𝑢6−
𝑢8) −16𝑢7(37+8𝑏)]/[2𝑢(1+𝑢2)4(𝑢2−1)2], 𝑙 = [ 𝑓 (𝑢8−10𝑢4−4𝑢2−4𝑢6+1) +
(7+𝑏) (4𝑢5−4𝑢3) + (1−𝑏) (4𝑢−4𝑢7)]/[(1+𝑢2)4], 𝑞 = [6(124−15𝑏) (𝑢5+𝑢9) −
6(𝑏−4) (𝑢13+𝑢−10𝑢3−10𝑢11)−24(44+13𝑏)𝑢7−(31 𝑓 +9𝑑) (𝑢2−𝑢12)+3(23 𝑓 −
15𝑑) (𝑢4−𝑢10)+(3𝑑+5 𝑓 ) (1−𝑢14)+3(35 𝑓 −11𝑑) (𝑢6−𝑢8)]/[2(𝑢2+1)4(𝑢2−1)3],
𝑠 = [( 𝑓 + 𝑑) (9𝑢2 + 𝑢18 − 9𝑢16 − 1) − 2(2 + 𝑏) (𝑢 + 𝑢17) + 64(𝑢3 + 𝑢15) + 4(9 𝑓 +
𝑑) (𝑢14−𝑢4) +8(13𝑏−46) (𝑢5+𝑢13) +4(21 𝑓 −19𝑑) (𝑢6−𝑢12) −64(2𝑏−15) (𝑢7+
𝑢11) + 2(65 𝑓 − 31𝑑) (𝑢8 − 𝑢10) − 4𝑢9(326 + 115𝑏)]/[4𝑢(1 − 𝑢4)4] .

In this case the cubic system possesses two invariant straight lines 1 − 𝑥 = 0, (1 +
𝑢2)2 − (1 + 𝑢4 − 6𝑢2)𝑥 + 4(𝑢3 − 𝑢)𝑦 = 0 and center-focus problem was solved in [6].

2. Let 𝑎3 ≠ 0. Then from the equation 𝐵20 = 0 of (17) we get

𝑎3 = [𝑢2(3 𝑓 − 4𝑑 − 4𝑎) (𝑢2 − 1) − 2𝑢(𝑐 + 𝑏) (𝑢4 + 1) − 𝑓 (𝑢6 − 1)+
+ 4(𝑐 + 𝑏 − 2𝑔)𝑢3]/[2(1 + 𝑢2)3] .

Assume that 𝑢 = 0. If 𝑎 = 0, then the equations of (17) yield
𝑠 = 𝑟 = 𝑞 = 𝑝 = 𝑛 = 𝑙 = 𝑘 = 𝑑 = 𝑎 = 0, 𝑚 = −𝑐 − 1.

The cubic system has the invariant straight lines 1−𝑥 = 0, 1+(𝑐+1)𝑥 = 0 and center-focus
problem was solved in [5], [25].

Assume that 𝑢 = 0 and let 𝑎 ≠ 0. Then the equations of (17) yield

𝑑 = −3𝑎, 𝑓 = −2𝑎, 𝑐 = 𝑏 − 2, 𝑔 = −1, 𝑙 = −2𝑎𝑏, 𝑘 = −𝑎, 𝑚 = 1 − 𝑏, 𝑛 = 2𝑎2,

𝑝 = 𝑞 = 2𝑎, 𝑟 = 𝑠 = 0.

The cubic system has three invariant straight lines 1− 𝑥 = 0, 1− 2𝑎𝑦 = 0, 1− 𝑥 − 2𝑎𝑦 = 0
and center-focus problem was solved in [26].

Assume that 𝑢 = −1. If 𝑔 = −1, then from the equations of (17) we get

𝑐 = −3/2, 𝑏 = 𝑚 = 1/2, 𝑔 = −1, 𝑙 = 𝑓 /2, 𝑘 = −𝑎, 𝑝 = − 𝑓 , 𝑞 = (𝑎 − 𝑑)/2, 𝑟 = 0.

The equation 𝐹04 = 0 of (11) implies two cases to be investigated: 𝑎02 = 0 and 𝑎02 ≠ 0.
Let 𝑎02 = 0. If 𝑎11 = 0, then 𝑎01𝑎20 ≠ 0 and 𝐹03 ≡ (𝑎01 − 𝑓 ) (2𝑎10 + 1) = 0. When

𝑎01 = 𝑓 , the equations 𝐹22 ≠ 0 and when 𝑎10 = (−1)/2, we obtain that 𝐹21 ≠ 0.
Assume that 𝑎11 ≠ 0. We express 𝑠, 𝑛 and 𝑎11 from the equations 𝐹40 = 0, 𝐹22 = 0

and 𝐹13 = 0, respectively. In this case we have 𝐹03 ≡ 𝑖1𝑖2𝑖3 = 0, where
𝑖1 = 𝑎01 − 𝑓 , 𝑖2 = 2𝑎10 + 3, 𝑖3 = 𝑓 .

If 𝑖1 = 0, then 𝑎01 = 𝑓 and 𝐹12 = 0 yields 𝑎10 = −1 − 𝑎20. In this case the conic is
reducible.
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If 𝑖1 ≠ 0 and 𝑖2 = 0, then 𝑎10 = (−3)/2 and 𝐹21 = 0 implies 𝑎20 = 1/2. In this case
the conic is also reducible.

If 𝑖1𝑖2 ≠ 0 and 𝑖3 = 0, then 𝑓 = 0 and 𝐹12 = 0 implies 𝑎10 = −1. In this case we obtain
the set of conditions (i) for the existence of an invariant conic

(𝑎2
01 − 𝑑𝑎01 + 𝑛)𝑥2 + 𝑎01𝑥𝑦 + 2(𝑥 − 𝑎01𝑦 − 1) = 0.

Let now 𝑎02 ≠ 0. We express 𝑎11, 𝑠 and 𝑛 from equations 𝐹04 = 0, 𝐹31 = 0 and 𝐹13 = 0
of (11), respectively. Then 𝐹03 ≡ 𝑗1 𝑗2 = 0, where 𝑗1 = 𝑎10 + 1, 𝑗2 = 𝑓 𝑎01 − 𝑓 2 − 𝑎02.

Assume that 𝑗1 = 0, then 𝑎10 = −1. If 𝑎20 = 𝑎2
01/(16𝑎02), then 𝐹22 = 𝐹40 = 0 yields

𝑑 = [(8𝑎02 + 1)𝑎01]/(8𝑎02).
In this case we get the set of conditions (ii) for the existence of an invariant conic

(𝑎01𝑥 − 4𝑎02𝑦)2 − 16𝑎02𝑥 + 16𝑎01𝑎02𝑦 + 16𝑎02 = 0.

If 𝑎20 ≠ 𝑎2
01/(16𝑎02), then we express 𝑎 and 𝑓 from the equations 𝐹40 = 𝐹30 = 0 and

𝐹12 = 𝐹22 = 0 of (11). In this case we have the set of conditions (iii) for the existence of
an invariant conic

2𝑎20𝑥
2 − 𝑎01𝑥𝑦 + 2𝑎02𝑦

2 − 2𝑥 + 2𝑎01𝑦 + 2 = 0.

Assume that 𝑗1 ≠ 0 and let 𝑗2 = 0. Then 𝑎10 = 𝑓 𝑎01 − 𝑓 2 and 𝐹21 = 0 yields
𝑑 = (6𝑎20 − 2𝑎2

10 − 𝑎10 + 4 𝑓 2 + 2𝑎 𝑓 )/(2 𝑓 ).
If 𝑎01 = 2 𝑓 , then 𝐹22 = 0 implies 𝑎20 = 𝑎2

10/4 and the conic is reducible.
Let 𝑎01 ≠ 2 𝑓 . Then we express 𝑎 from 𝐹12 = 0 and 𝐹22 = 0 yields 𝑎20 = (−2𝑎10−1)/4.

In this case the conic is also reducible.

Assume that 𝑢 = 0 and let 𝑔 ≠ −1. Then the equations of (17) yield

𝑟 = 𝑝 = 𝑙 = 𝑘 = 𝑓 = 𝑎 = 0, 𝑞 = −𝑑, 𝑚 = 2, 𝑔 = −2, 𝑐 = −3, 𝑏 = 1.

In this case the cubic system has the invariant straight lines 1 − 𝑥 = 0, 1 − 2𝑥 = 0 and
center-focus problem was solved in [5], [25].

Assume now 𝑢(𝑢 + 1) ≠ 0. We express 𝑎, 𝑠, 𝑙, 𝑔, 𝑛, 𝑞, from the equations 𝐴11 =

0, 𝐴12 = 0, 𝐴30 = 0, 𝐵02 = 0, 𝐵04 = 0, 𝐵21 = 0 of (17), respectively. In this case we
obtain that 𝐵03 ≡ ℎ 𝑓1 = 0, 𝐵22 ≡ ℎ 𝑓2 = 0, where

ℎ = (7 𝑓 − 4𝑑) (𝑢2 − 𝑢4) + 𝑓 (𝑢6 − 1) + 2(𝑐 + 𝑏 + 2) (𝑢 + 𝑢5) − 4(𝑐 + 3𝑏)𝑢3,

𝑓1 = (2𝑑 − 3 𝑓 ) (1 + 14𝑢4 + 𝑢8) − 2(11𝑐 + 25𝑏 + 4) (𝑢3 − 𝑢5)+
+ 2(5𝑐 + 7𝑏 + 4) (𝑢 − 𝑢7) − 8(2𝑑 − 5 𝑓 ) (𝑢2 + 𝑢6),

𝑓2 = 2(𝑏 − 2 − 𝑐) (1 + 𝑢8) + (2𝑑 − 15 𝑓 ) (𝑢 − 𝑢7) − 8(6𝑐 + 16𝑏 + 1)𝑢4+
+ 2(11𝑐 + 17𝑏 + 8) (𝑢2 + 𝑢6) + (81 𝑓 − 46𝑑) (𝑢3 − 𝑢5).

If ℎ = 0, then the equation of (17) imply
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𝑟 = 0, 𝑝 = − 𝑓 , 𝑚 = −𝑐 − 1, 𝑘 = −𝑎, 𝑎 = [ 𝑓 (1 + 7𝑢4 − 7𝑢2 − 𝑢6) − 2(𝑐 + 𝑏 +
2) (𝑢+𝑢5) +4(3𝑐−𝑏+10)𝑢3]/[8(𝑢2−1)𝑢2], 𝑑 = 2𝑎+ [2(𝑐+5−2𝑏)𝑢]/(1−𝑢2),
𝑔 = [ 𝑓 (15𝑢2−15𝑢4+𝑢6−1) +2𝑢(2+𝑐+𝑏) (1+𝑢4) −4(3𝑐+3𝑏+14)𝑢3]/(16𝑢3),
𝑙 = [4𝑏𝑢(1 − 𝑢6) + 8 𝑓 (𝑢2 + 2𝑢4 + 𝑢6) + 4(𝑏 − 8) (𝑢3 − 𝑢5)]/(1 + 𝑢2)4, 𝑛 =

[ 𝑓 (𝑢12 − 8𝑢10 + 32𝑢6 + 7𝑢8 + 7𝑢4 + 1− 8𝑢2) − 2(𝑐 + 𝑏 + 2)𝑢 − 𝑢11) − 6(𝑐 − 3𝑏 −
2) (𝑢3−𝑢9)−4(𝑐−5𝑏+44) (𝑢5−𝑢7)]/[𝑢(𝑢2−1) (1+𝑢2)4], 𝑞 = [ 𝑓 (1+19𝑢12−19𝑢2+
33𝑢4−33𝑢10+53𝑢6−53𝑢8−𝑢14)+2(33𝑐−46−47𝑏) (𝑢5+𝑢9)+4(3𝑐+5𝑏+16) (𝑢3+
𝑢11) −2(𝑐+ 𝑏+2) (𝑢+𝑢13) +8𝑢7(13𝑐+152−29𝑏)]/[4(𝑢2 −1) (1+𝑢2)4𝑢2], 𝑠 =
[ 𝑓 (1+𝑢4−19𝑢2+21𝑢6−𝑢10−21𝑢8+19𝑢12−𝑢14)+2(17𝑐−62−15𝑏) (𝑢5+𝑢9)+4(𝑐+
5𝑏+14) (𝑢3+𝑢11)−2(𝑐+𝑏+2) (𝑢+𝑢13)+8𝑢7(7𝑐+82−13𝑏)]/[4𝑢(1−𝑢2)2(1+𝑢2)4] .

We have two invariant straight lines 1 − 𝑥 = 0, (1 + 𝑢2)2 − 8𝑢2𝑥 − 4(𝑢2 − 1)𝑢𝑦 = 0 and
center-focus problem was solved in [6].

Assume that ℎ ≠ 0. We find the resultant of the polynomials 𝑓1, 𝑓2 with respect to 𝑑
and obtain that 𝑅𝑒𝑠( 𝑓1, 𝑓2, 𝑑) = 0, if
𝑏 = [(𝑐+2) (𝑢6−1) − 𝑓 (6𝑢5−52𝑢3+6𝑢) + (15𝑐+22)𝑢2(1−𝑢2)]/[(1+𝑢2)2(𝑢2−1)] .
In this case we express 𝑑 from the equations 𝐵03 ≡ 𝐵22 = 0 and the equations of (17)

yield

𝑟 = 0, 𝑝 = − 𝑓 , 𝑚 = −𝑐 − 1,, 𝑘 = −𝑎, 𝑎 = [(6𝑢2 − 𝑢4 − 1) 𝑓 ]/[2(1 − 𝑢2)2],
𝑏 = [(2+𝑐) (𝑢6−1)− 𝑓 (6𝑢−52𝑢3+6𝑢5)+(22+15𝑐) (𝑢2−𝑢4)]/[(1+𝑢2)2(𝑢2−1)],
𝑑 = [ 𝑓 (3 + 3𝑢8 − 100𝑢2 − 100𝑢6 + 306𝑢4) + (3 + 2𝑐) (12𝑢7 + 52𝑢3 − 52𝑢5 −
12𝑢)]/[2(1−𝑢4)2], 𝑔 = [1−𝑢6+2 𝑓 (𝑢−30𝑢3+𝑢5) + (23+16𝑐) (𝑢4−𝑢2)]/[(1+
𝑢2)2(𝑢2−1)], 𝑙 = [(2+𝑐) (𝑢6+7𝑢2−7𝑢4−1) + 𝑓 𝑢(20𝑢2−6𝑢4−6)] [ 𝑓 (1−14𝑢2+
𝑢4) +4(1+ 𝑐) (𝑢3 −𝑢)]/[(1+𝑢2)4(𝑢2 −1)], 𝑛 = [4 𝑓 (9+5𝑐) (𝑢11 −𝑢) +2(32𝑐2 +
104𝑐+72−49 𝑓 2) (𝑢2+𝑢10) +92 𝑓 (11+7𝑐) (𝑢3−𝑢9) + (1391 𝑓 2−1152𝑐−384𝑐2−
768) (𝑢4 + 𝑢8) + 8 𝑓 (445+ 301𝑐) (𝑢7 − 𝑢5) + 4(160𝑐2 + 472𝑐 − 791 𝑓 2 + 312)𝑢6 +
𝑓 2(𝑢12+1)]/[2(1−𝑢2)2(1+𝑢2)4], 𝑞 = [4 𝑓 (567+394𝑐)𝑢6+2(87+127𝑐+40𝑐2−
61 𝑓 2) (𝑢9−𝑢3)− 𝑓 (1103+720𝑐) (𝑢4+𝑢8)+4(353 𝑓 2−223𝑐−76𝑐2−147) (𝑢7−𝑢5)+
2( 𝑓 2−3𝑐−3) (𝑢11−𝑢)− 𝑓 (1+𝑢12)+2 𝑓 (33+14𝑐) (𝑢2+𝑢10)]/[(1−𝑢2)2(1+𝑢2)4],
𝑠 = 𝑢[ 𝑓 (1 − 36𝑢2 + 54𝑢4 − 36𝑢6 + 𝑢8) + 8(1 + 𝑐) (𝑢7 + 3𝑢3 − 3𝑢5 − 𝑢)] [ 𝑓 (2𝑢5 +
2𝑢 − 28𝑢3) − (15 + 8𝑐) (𝑢2 − 𝑢4) − 𝑢6 + 1)]/[(1 − 𝑢4)4] .

The cubic system has three invariant straight lines 1 − 𝑥 = 0, ( 𝑓 𝑢4 + 4𝑐𝑢3 − 14 𝑓 𝑢2 −
4𝑐𝑢 + 𝑓 ) (2𝑢𝑥 + 𝑢2𝑦 − 𝑦) + (𝑢4𝑥 − 14𝑢2𝑥 + 𝑥 − 8𝑢3𝑦 + 8𝑢𝑦 − 𝑢4 − 2𝑢2 − 1) (1 − 𝑢2) =
0, ( 𝑓 𝑢4−14 𝑓 𝑢2+4𝑐𝑢3−4𝑐𝑢+ 𝑓 ) (2𝑢𝑥+𝑢2𝑦−𝑦)+(8𝑢2𝑥+4𝑢3𝑦−4𝑢𝑦+(1+𝑢2)2) (𝑢2−1) = 0
and center-focus problem was solved in [26].
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Assume that 𝑒2 = 0. It is easy to see that 𝑒2(𝑢, 𝑣) = 𝑒1(−𝑢,−𝑣) and the case 𝑒2 = 0 is
equivalent to the case 𝑒1 = 0. ■

Theorem 5.2. The critical point 𝑂 (0, 0) is a center for a cubic differential system (1),
with two algebraic solutions 𝑥 − 1 = 0, 𝑎20𝑥

2 + 𝑎11𝑥𝑦 + 𝑎02𝑦
2 + 𝑎10𝑥 + 𝑎01𝑦 + 1 = 0, if

one of the conditions (i), (ii), (iii) is satisfied.

The proof of Theorem 5.2 follows directly from Theorem 5.1, if the cubic system (1)
is rationally reversible, then the critical point 𝑂 (0, 0) is a center [23], [28].
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Moldova. Matematica, 1993, vol. 3, 54–62.
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